Sect. 3.11: Transformation to Lab Coords

15

description

Sect. 3.11: Transformation to Lab Coords. Scattering so far : Treated as 1 body problem ! Assumed 1 particle scatters off a stationary “Center of Force”. - PowerPoint PPT Presentation

Transcript of Sect. 3.11: Transformation to Lab Coords

Page 1: Sect. 3.11: Transformation to Lab Coords
Page 2: Sect. 3.11: Transformation to Lab Coords

Sect. 3.11: Transformation to Lab Coords• Scattering so far:

– Treated as 1 body problem! Assumed 1 particle scatters off a stationary “Center of Force”.

– Central Force problem formulation We know this means that we are doing problem in the Center of Mass coordinate system for 2 bodies & that we are looking at the behavior of the reduced mass μ.

– ACTUAL SCATTERING, is (of course) a 2 body problem! 2 masses m1 & m2 scattering off each other. In “lab coordinate system” we need to account for both bodies. Everything we’ve done so far is valid also in the lab frame if m2 >> m1 = m = μ so that the recoil of m2 due to m1 scattering from it can be neglected. Effectively

the same as assuming infinitely massive m2. Now, transform back to the lab frame.

Page 3: Sect. 3.11: Transformation to Lab Coords

• Recall: 2 body problem in Center of Mass coordinates:

• Center of Mass Coordinate: (M (m1+m2))

R (m1r1 +m2r2)(M)• Relative Coordinate:

r r1 - r2

• Define: Reduced Mass: μ (m1m2)(m1+m2)A useful relation: μ-1 (m1)-1 +(m2)-1

• Algebra Inverse coordinate relations:r1 = R + (μ/m1)r; r2 = R - (μ/m2)r

• Velocities related by: v1 = V + (μ/m1)v; v2 = V - (μ/m2)v

Page 4: Sect. 3.11: Transformation to Lab Coords

• To get from the 1 body CM frame scattering problem just discussed to the 2 body lab frame problem, just replacing m μ in what we’ve done so far is not sufficient! In particular:

• The scattering angle measured in the lab θ angle between final & incident directions of the scattered particle in the lab coordinate system.

• Scattering angle calculated in previous discussion: Θ = π -2∫dr(s/r)[r2{1- V(r)/E} - s2]-½ Angle between the initial & final directions of the relative coordinate r between m1 & m2 in the CM coordinate system. θ = Θ only if m2 is stationary (or infinitely massive) throughout the scattering. – NOTE: θ θ the angle describing the orbit r(θ)!

Page 5: Sect. 3.11: Transformation to Lab Coords

Kinematics of the Transformation• Assume m2 is initially at rest in the lab frame.

– Clearly, after m1 scatters from it, in general it will not be at rest! It will recoil due to the scattering!

– Freshman physics: Momentum IS ALWAYS conserved in a collision!

Cannot get the lab scattering angle θ directly from solving the 1 body CM frame problem for Θ.– Need to take the result from the1 body CM frame scattering &

transform it back to the lab frame. See figure

Page 6: Sect. 3.11: Transformation to Lab Coords

• In the lab frame, the situation looks like:m2 is initially at rest

• In the CM frame,

the situation looks like: Looks like this to an observermoving with theCenter of Mass.

Page 7: Sect. 3.11: Transformation to Lab Coords

• In the lab frame: m2 initially at rest. Connection

between θ & Θ obtained by looking at detailed transform between lab & CM coordinates

In the CM frame: In the CM frame, the total linear momentum of the 2 particles = 0. Before scattering, the particles move directly towardseach other. Afterwards,

they move off as shown.

CM frame scattering angle Θ =same as scattering angle of either particle.

Page 8: Sect. 3.11: Transformation to Lab Coords

• Terminology, notation, changed slightly:

• r1, v1 = position, velocity of the incident particle, m1 AFTER scattering in the LAB system.

• (r1)´, (v1)´, = position, velocity of m1 AFTER scattering in the CM system.

• R,V = position, velocity of the Center of Mass in the LAB system. From early discussion: V = constant.

• By definition (any time) r1 = R + (r1)´ & v1 = V + (v1)´ See figure (after scattering!):

Page 9: Sect. 3.11: Transformation to Lab Coords

r1 = R + (r1)´ & v1 = V + (v1)´ Figure (after scattering!):

v1 & (v1)´ make angles & Θ, respectively with direction of V. Initial velocity of m1 in lab system

= v0 . m2 is initially at rest in the

lab system v0 = initial relative

velocity (= initial v in the general formalism). Linear momentum conservation: (m1+ m2)V = m1v0

V = (μ/m2)v0 (1) From the figure: v1cos = (v1)´cosΘ + V (2)Also: v1sin = (v1)´sinΘ (3)Divide (2) by (3) & use (1) (ρ (μv0)/[m2(v1)´]):

tan = (sinΘ)/(cosΘ + ρ) (4) Note: if m2 is infinite, ρ = 0 & = Θ

Page 10: Sect. 3.11: Transformation to Lab Coords

r1 = R + (r1)´ & v1 = V + (v1)´ Figure (after scattering!):

Alternative relation from the Law of Cosines. From the figure:

(v1)2 = [(v1)´]2 + V2 + 2(v1)´VcosΘ

Also: v1sin = (v1)´sinΘ & V = (μ/m2)v0

Combine & get (ρ (μv0)/[m2(v1)´]):

cos = (cosΘ + ρ)/[1+2ρcosΘ + ρ2]½ (4´)

Page 11: Sect. 3.11: Transformation to Lab Coords

• Relations between scattering angles in the lab & CM frames: tan = (sinΘ)/(cosΘ + ρ) (4) cos = (cosΘ + ρ)/[1+2ρcosΘ + ρ2]½ (4´)

• Consider ρ (μv0)/[m2(v1)´]:From the CM definition, (v1)´ = (μ/m1)v, v = |r| = relative speed after collision: ρ = (m1/m2)(v0/v)

• Elastic (KE conserving) scattering: v0 = v, ρ = (m1/m2) • Inelastic (KE non-conserving) scattering: (E = (½)μ(v0)2)

(½)μv2 - (½)μ(v0)2 Q “Q value” of collision.Clearly, since KE is lost, Q < 0

Algebra gives (M = m1+m2): (v/v0) = [1 +(M/m2)(Q/E)]½

ρ = (m1/m2)[1 +(M/m2)(Q/E)]-½ (5)

Analyze scattering kinematics: Combine (5) & (4) or (4´)

Page 12: Sect. 3.11: Transformation to Lab Coords

Transforming • To analyze scattering cross sections in the lab frame, its not sufficient

to do simple kinematics! Also need to transform the cross section σ itself from a function of Θ to a function of . σ(Θ) σ´()

• Connection: Obtained by conservation of particle number: # particles scattered into a given differential solid angle d must be the same, whether measured in the lab or CM frame. So: 2πIσ(Θ)sinΘ|dΘ| = 2πIσ´()sin|d|

σ´() = σ(Θ)(sinΘ/sin)(|dΘ|/|d|) Rewrite as: σ´() = σ(Θ)(|dcosΘ|/|dcos|) Use kinematic result: cos = (cosΘ + ρ)/[1+2ρcosΘ + ρ2]½ Take derivative & get: (ρ = (m1/m2)[1 +(M/m2)(Q/E)] ]-½)

σ´() = σ(Θ)[1+2ρcosΘ + ρ2]½(cos Θ + ρ)-1 (6)

Page 13: Sect. 3.11: Transformation to Lab Coords

σ´() = σ(Θ)[1+2ρcosΘ + ρ2]½(cos Θ + ρ)-1 (6) • Note: σ´() & σ(Θ) are both measured in the lab frame! They’re

expressed in terms of different coordinates. • Special Case #1: Elastic scattering with m1 = m2:

ρ = 1 cos = [(½)(1+ cosΘ)]½ = cos(½Θ) = (½Θ) – Since Θ π, in this case, cannot have > ½π In the lab system, all scattering is in forward hemisphere.– In this case, (6) becomes: σ´() = 4cosΘσ(Θ) Even in the very special case where σ(Θ) = constant, σ´() still depends

on angle!

• Special Case #2: Elastic scattering with m1 << m2 (effectively, m2 is infinite) ρ 0 σ´() σ(Θ)

Page 14: Sect. 3.11: Transformation to Lab Coords

More Details • Obviously, scattering slows down the incident particle!

• More kinematics: We had (v1)2 = [(v1)´]2 + V2 + 2(v1)´VcosΘ Also, ρ = (μv0)/[m2(v1)´] and V = (μ/m2)v0

Combine these to get (algebra):

[(v1)2/(v0)2] = [μ2/(m2ρ)2][1+ 2ρcosΘ + ρ2] (a)• Special case: Elastic scattering ρ = (m1/m2)

– Let E0 (½)m1(v0)2 = initial KE of m1 before scattering

– Let E1 (½)m1(v1)2 = final KE of m1 after scattering

(a) (E1/E0) = [1+2 ρcosΘ + ρ2]/(1+ ρ)2

If m1 = m2 , (E1/E0) = (½)(1+ cosΘ) = cos2 (Typo in text, forgot the square!). For max Θ = π, = (½)π (E1/E0) = 0. The incident particle stops in the lab system!!

Principle behind “moderator” in neutron scattering.

Page 15: Sect. 3.11: Transformation to Lab Coords

Classical Mech vs. QM • Some final thoughts on classical scattering discussion.• All we’ve used is simple conservation of momentum & energy. The

cross section results are classical. • However, as long as we know the Q value & momentum is conserved, it

doesn’t really matter if it is QM or classical scattering!• Why? Because we’ve analyzed the outgoing particle beam (mostly,

except for Coulomb scattering) without caring what the details of the scattering were! Details of the scattering, of course, usually require QM analysis!

The results of MOST of Sects 3.10 & 3.11 can be used in analyzing experiments for (almost) any kind of (low energy) scattering! Exception: At high enough energies, need to do all of this with Relativity! See Sect. 7.7!