Search for Quark Substructure in 7 TeV pp Collisions with ... · Search for Quark Substructure in 7...

30
Search for Quark Substructure in 7 TeV pp Collisions with the ATLAS Detector Frank Berghaus SUPERVISOR: Michel Lefebvre University of Victoria June 12, 2012

Transcript of Search for Quark Substructure in 7 TeV pp Collisions with ... · Search for Quark Substructure in 7...

Search for Quark Substructure in 7 TeV ppCollisions with the ATLAS Detector

Frank Berghaus

SUPERVISOR: Michel Lefebvre

University of Victoria

June 12, 2012

Introduction ATLAS and the LHC

The LHC provides counter-rotatingproton beams each at 3.5 TeV(2010-2011)Beams intersect in ATLAS causingcollisions of quarks (and/or gluons)

Decay products of collisionsare recorded by ATLASPseudo-rapidity η is themeasure of longitudinal angle:

η = − ln tan (θ/2)

Differences inpseudo-rapidity are invariantunder longitudinal boostRapidity (y ) of masslessparticles

F. Berghaus (UVic) Quark Substructure June 12, 2012 2 / 16

Introduction Quark Compositeness

Quark Compositeness

Are quarks fundamental particles or composite objects?Constituents are generally called preonsPreons may reveal themselves at an energy scale Λ

Expect to see the effects of composite nature if√

s is sufficientlyhigh

At lower energies quarks appear point-likeSearch for deviation in dijet cross-section from QCD prediction

A 4-fermion contact interaction should become evident for anobservation of quark compositenessIf data agrees well with QCD set a limit on Λ

Aside: Composite nature could also be observed by finding aquark resonance

F. Berghaus (UVic) Quark Substructure June 12, 2012 3 / 16

Introduction Quark Compositeness

Quark Contact Interactions (CI)

Effects of contact interactions should appear if√

s is sufficientlylargeIf Λ >

√s interactions between constituents are suppressed, with

quarks appearing point-like→ dominant contribution to crosssection from 4-fermion contact term

4-fermion contact term in Lagrangian

Lqqqq (Λ) =ξg2

2Λ2 ΨLqγ

µΨLqΨL

qγµΨLq

g2/4π = 1, Ψ are the left handed quarksξ = +1 (−1) is destructive (constructive)interference with QCDExclusion limits change by ∼1 % dependingon the choice of ξ

F. Berghaus (UVic) Quark Substructure June 12, 2012 4 / 16

Measurement Observable: χ

Sensitive Observables

QCD at LO looks like Rutherford scattering in the centre-of-massframe:

d σdΩ∼ 1

sin4 (Θ/2)

Contact interactions are expected to yield a more isotropicspectrumUseful angular variable in hadron collider experiment is χ:

χ = e|y1−y2| =1 + cosΘ

1− cosΘ

y1 is the rapidity of the leading (in pT ) jety2 is the rapidity of the sub-leading (in pT ) jetInvariant under Lorentz boosts along the beam (z)

F. Berghaus (UVic) Quark Substructure June 12, 2012 5 / 16

Measurement Observable: χ

Expected Distribution

Rutherford scattering (QCD):

d σdΩ∼ 1

sin4 (Θ/2)→ d σ

dχ∼ 1

Isotropic scattering (CI):

d σdΩ∼ 1→ d σ

dχ∼ 1

(1 + χ)2

χ1 10

χ(

1 / N

) d

N /

d

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35QCD

QCD+CI

Higher order QCD predicts more events at low χ

Can test NLO QCD using events at low dijet mass

F. Berghaus (UVic) Quark Substructure June 12, 2012 6 / 16

Measurement Distribution

Data Distributions

|2

-y1

|y = eχ

1 10

χ d

N /

( 1

/ N )

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 < 800 GeV ( +0.00 )jj520 < m

< 1200 GeV ( +0.04 )jj800 < m

< 1600 GeV ( +0.08 )jj1200 < m

< 2000 GeV ( +0.12 )jj1600 < m

< 7000 GeV ( +0.18 )jj2000 < m

QCD Prediction

= 5000 GeVΛQCI with

ATLAS WorkIn Progress

2010 data L = 36 pb−1

Low χ implies largescattering angleData and MC predictionare normalized per mjj binOffset each mjj bin fordisplayQCD and CI prediction iscorrected to NLO usingk-factors derived from QCDNLO calculations for CIhave recently becomeavailable [5]

F. Berghaus (UVic) Quark Substructure June 12, 2012 7 / 16

Analysis Methodology

Likelihood Function

Counting events in bins of mjj and χ so binned Poisson Likelihood:

L(n|Λ) =

Nbins∏j=0

(µj(Λ)nj

nj !· e−µj (Λ)

)

nj is the number of recorded events in bin jµj (Λ) is the number of events predicted for bin j at CI scale Λ

Shape only analysis: The MC is normalized to contain the samenumber of events as the data in each mjj binSince we only have MC simulation for some discrete points in Λ fit:

µj(Λ) ∼ a0︸︷︷︸QCD

+ a1Λ−4︸ ︷︷ ︸CI

+ a2Λ−2︸ ︷︷ ︸Interference

F. Berghaus (UVic) Quark Substructure June 12, 2012 8 / 16

Analysis Methodology

Test Statistics

Maximum likelihood ratio

Q(Λ) = −2 ln

(L(n|Λ)

L(n|Λ)

)

Λ is the most likely value of Λ found byminimizing −2 ln L(n|Λ)

where n stands for the data recorded or pseudo-experiments

F. Berghaus (UVic) Quark Substructure June 12, 2012 9 / 16

Analysis Methodology

p-Value for Q (Maximum Likelihood Ratio)

Create pseudo-experiments bydrawing Poisson random numbers ineach bin centred on theMC-prediction for Λ =∞Fill likelihood distribution with Q fromeach pseudo-experimentDetermine the fraction ofpseudo-experiments with Q greaterthan the data

ATLAS WorkIn Progress

p-Value from ATLAS data:0.95

The p-value is the probability of observinga more extreme Q given QCD than thedata: PQCD(Q(∞) ≥ Qdata(∞))

F. Berghaus (UVic) Quark Substructure June 12, 2012 10 / 16

Analysis Methodology

Definition of Confidence Limits

Extend the idea of the p-value to be computed from our predictionat some Λ [6]:

CLs+b(Λ) = PQCD+CI(Q(Λ) ≥ Qdata(Λ))

Previous ATLAS exclusion limit was set at CLs+b < 0.05 (the 95 %exclusion limit)A more conservative approach corrects for the QCD likelihooddistribution assuming Λ:

CLs(Λ) =PQCD+CI(Q(Λ) ≥ Qdata(Λ))

1− PQCD(Q(Λ) ≤ Qdata(Λ))

CMS used this definition in their recent paper

F. Berghaus (UVic) Quark Substructure June 12, 2012 11 / 16

Analysis Results

Λ Limit using CLs with Q

[TeV]Λ

2 3 4 5 6 7

sC

L

0.04

0.05

0.06

0.07

0.08

0.09

0.1

observed

expected

σ 1±expected

σ 2±expected

ATLAS WorkIn Progress

Using 2010 ATLASdata L = 36 pb−1

Test statistic

Q = −2 lnL(n|Λ)

L(n|Λ)

Observed 95 %CLs limit = 5.36 TeVExpected 95 %CLs limit = 5.31 TeV

F. Berghaus (UVic) Quark Substructure June 12, 2012 12 / 16

Analysis Errors

Systematic Effects

ExperimentalJet Energy Scale (∼ 0.1% change to CLs)

Could cause excess of events at high jj

Jet pT resolution (∼ 0.1% change to CLs)Minimal bin-to-bin migration in mjj

Theoretical:Factorization (µf ) and renormalization (µr ) scale choice(∼ 1.3% change to CLs)

Dominant effect

Parton distribution function errors (∼ 0.2% change to CLs)

Angular observable minimizes the effect of all of theseuncertaintiesSystematic effects are included through Bayesian integration

F. Berghaus (UVic) Quark Substructure June 12, 2012 13 / 16

Analysis Errors

Effect on Limits

ATLAS Work In ProgressCLs CLs+b

Effect Obs [TeV] Exp [TeV] Obs [TeV] Exp [TeV]No Systematics 5.36 5.31 5.60 5.48MC Statistics 5.36 5.31 5.59 5.49Jet pT Resolution 5.37 5.31 5.60 5.49Jet Energy Scale 5.37 5.31 5.60 5.49µf /µr Scale Choice 5.29 5.21 5.54 5.40PDF Fit Errors 5.37 5.32 5.60 5.50All1 5.29 5.20 5.52 5.41

1Assuming effects are independentF. Berghaus (UVic) Quark Substructure June 12, 2012 14 / 16

Analysis Errors

Previous Limitswith ξ = −1

Limits [TeV]Experiment

√s [TeV] L [fb−1] observed expected Stat

ATLAS 7 4.8 7.8 8.7 CLs+bCMS 7 2.2 10.5 9.7 CLsD0 1.96 0.7 2.82 2.75 binned χ2

CDF2 1.96 0.106 1.4 - binned χ2

All limits based on χ and mjj [1, 2, 3, 4]ATLAS also performed measurement using the centrality ratiofinely binned in mjj to get a 95 % CLs+b exclusion of 7.6 TeV(expected 8.2 TeV)

2CDF paper is from 1996, while D0’s is from 2009F. Berghaus (UVic) Quark Substructure June 12, 2012 15 / 16

Summary

SummaryATLAS Work In Progress

An exclusion limit for quark compositeness has been obtainedfrom the 2010 data-set

Λ > 5.29 TeV at 95% CLs 7 TeV Collisions L = 36 pb−1

Accounted For:Jet energy scale uncertaintyJet pT resolutionFactorization and renormalization scaleuncertaintyPDF fit errorsStatistical limitations of simulated events

F. Berghaus (UVic) Quark Substructure June 12, 2012 16 / 16

Appendix Data-set

Event Cleaning and Selection

GRL: Require LHC stable beam, good conditions for the Innerdetector and calorimetersUsing single jet triggers on efficiency plateau

Cleaning cuts:One primary vertex with at least five tracksAll jets pass quality cuts

Selection CutsLeading jet pT > 60 GeVSub-leading jet pT > 30 GeVDijet rapidity separation |y?| = |(y1 − y2)/2| < 1.7Dijet boost |y | = |(y1 + y2)/2| < 1.1

F. Berghaus (UVic) Quark Substructure June 12, 2012 17 / 16

Appendix Data-set

Total Data For Analysis

ATLAS Work In Progressmjj Bin [TeV] Periods A-E Periods F-Imin max L1 Item L [pb−1] EF Item L [pb−1].52 .8 J30 2.00 j50_jetNoEF 0.25.8 1.2 J55 3.11 j77_jetNoEF 6.461.2 1.6 J55 3.11 j95_NoAlg 33.171.6 2.0 J55 3.11 j95_NoAlg 33.172.0 ∞ J55 3.11 j95_NoAlg 33.17

Trigger selection guarantees ∼100 % efficiency in each mjj binTotal 2010 data: ∼36 pb−1

F. Berghaus (UVic) Quark Substructure June 12, 2012 18 / 16

Appendix Exclusion Limits

Test Statistics

Likelihood ratio (reference tomost probable)

Q(Λ) = −2 ln

(L(n|Λ)

L(n|Λ)

)

Λ is the most likely value of Λfound by minimizing−2 ln L(n|Λ)

Likelihood ratio (reference toQCD)

q(Λ) = −2 ln(

L(n|Λ)

L(n|∞)

)

Λ =∞ implies the likelihoodof QCD given the data

where n stands for the data recorded or pseudo-experiments

F. Berghaus (UVic) Quark Substructure June 12, 2012 19 / 16

Appendix Exclusion Limits

Λ Limit using CLs+b with Q

[TeV]Λ

2 3 4 5 6 7

s+b

CL

0.04

0.05

0.06

0.07

0.08

0.09

0.1

observed

expected

σ 1±expected

σ 2±expected

ATLAS WorkIn Progress

Using 2010 ATLASdata L = 36 pb−1

Using test statistic

Q = −2 lnL(n|Λ)

L(n|Λ)

Observed 95 %CLs+b limit = 5.60 TeVExpected 95 %CLs+b limit = 5.48 TeV

F. Berghaus (UVic) Quark Substructure June 12, 2012 20 / 16

Appendix Exclusion Limits

Λ Limit using CLs+b with q

ATLAS WorkIn Progress

Using 2010 ATLASdata L = 36 pb−1

Using test statistic

q = −2 lnL(n|Λ)

L(n|∞)

Observed 95 %CLs+b limit = 5.85 TeVExpected 95 %CLs+b limit = 5.70 TeV

F. Berghaus (UVic) Quark Substructure June 12, 2012 21 / 16

Appendix Exclusion Limits

Λ Limit using CLs with q

ATLAS WorkIn Progress

Using 2010 ATLASdata L = 36 pb−1

Using test statistic

q = −2 lnL(n|Λ)

L(n|∞)

Observed 95 %CLs limit = 5.54 TeVExpected 95 %CLs limit = 5.47 TeV

F. Berghaus (UVic) Quark Substructure June 12, 2012 22 / 16

Appendix Review

Previous Limitswith ξ = +1

Limits [TeV]Experiment

√s [TeV] L [fb−1] observed expected Stat

ATLAS 7 – – – CLs+bCMS 7 2.2 7.5 7.0 CLsD0 1.96 0.7 2.84 2.76 binned χ2

CDF3 1.96 0.106 1.6 – binned χ2

ATLAS currently has no MC simulation to make this measurement

3CDF paper is from 1996, while D0’s is from 2009F. Berghaus (UVic) Quark Substructure June 12, 2012 23 / 16

Appendix PDF Fits

QCI Simulation Fits Residuals

-4Λ = αIndex of

0 2 4 6 8 10 12

MC

σ)

) /

α(fit

) -

nα(

MC

( n

-6

-4

-2

0

2

-4Λ = αIndex of

0 2 4 6 8 10 12

MC

σ)

) /

α(fit

) -

nα(

MC

( n

-3

-2

-1

0

1

2

-4Λ = αIndex of

0 2 4 6 8 10 12

MC

σ)

) /

α(fit

) -

nα(

MC

( n

-3

-2

-1

0

1

2

3

4

-4Λ = αIndex of

0 2 4 6 8 10 12

MC

σ)

) /

α(fit

) -

nα(

MC

( n

-2

-1

0

1

2

-4Λ = αIndex of

0 2 4 6 8 10 12

MC

σ)

) /

α(fit

) -

nα(

MC

( n

-2

-1.5

-1

-0.5

0

0.5

1

-4Λ = αIndex of

0 2 4 6 8 10 12

MC

σ)

) /

α(fit

) -

nα(

MC

( n

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4Λ = αIndex of

0 2 4 6 8 10 12

MC

σ)

) /

α(fit

) -

nα(

MC

( n

-1

-0.5

0

0.5

1

1.5

-4Λ = αIndex of

0 2 4 6 8 10 12

MC

σ)

) /

α(fit

) -

nα(

MC

( n

-1

-0.5

0

0.5

1

1.5

-4Λ = αIndex of

0 2 4 6 8 10 12

MC

σ)

) /

α(fit

) -

nα(

MC

( n

-1

-0.5

0

0.5

1

1.5

-4Λ = αIndex of

0 2 4 6 8 10 12

MC

σ)

) /

α(fit

) -

nα(

MC

( n

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4Λ = αIndex of

0 2 4 6 8 10 12

MC

σ)

) /

α(fit

) -

nα(

MC

( n

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

ATLAS WorkIn Progress

F. Berghaus (UVic) Quark Substructure June 12, 2012 24 / 16

Appendix Systematics

Factorization/renormalization Scale Choice

Large (∼ 20%) variationacross χDominant effectPrior:

µr and µf picked from 1x

between 0.5 and 2.0 each

χ1 10

(nom

inal

)/ fµ, rµ(σ0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

2 ) = ( 2.0, 2.0 ) Qf

µ, r

µ( 2 ) = ( 0.5, 0.5 ) Q

fµ,

rµ(

2 ) = ( 1.0, 2.0 ) Qf

µ, r

µ( 2 ) = ( 1.0, 0.5 ) Q

fµ,

rµ(

2 ) = ( 2.0, 1.0 ) Qf

µ, r

µ( 2 ) = ( 0.5, 1.0 ) Q

fµ,

rµ(

2 ) = ( 1.0, 1.0 ) Qf

µ, r

µ(

F. Berghaus (UVic) Quark Substructure June 12, 2012 25 / 16

Appendix Systematics

PDF Fit Error

Errors fully correlated across χLarge (∼ 20%) effectabsorbed by normalizationVariation of error across χ is∼ 4%Prior:

significance of PDF errorfollows GaussianUse same sign error bars toabsorb asymmetry

χ1 10

-0.2

-0.1

0

0.1

0.2

0.3

Relative Error on d2σ/dχdmjj

F. Berghaus (UVic) Quark Substructure June 12, 2012 26 / 16

Appendix Summary

Table to Calculated Exclusion Limits

ATLAS Work In Progress

StatQ = −2 ln L(n|Λ)

L(n|Λ)q = −2 ln L(n|Λ)

L(n|Λ=inf)

obs [TeV] exp [TeV] obs [TeV] exp [TeV]CLs+b 5.60 5.48 5.85 5.70CLs 5.36 5.31 5.54 5.47

As presented above

F. Berghaus (UVic) Quark Substructure June 12, 2012 27 / 16

Appendix References

Bibliography I

The ATLAS Collaboration“Search for New Phenomena in Dijet Mass and AngularDistributions”47th Rencontres de Moriond on Electroweak Interactions andUnified TheoriesATLAS-CONF-2012-038

S. Chatrchyan et al. [CMS Collaboration],“Search for quark compositeness in dijet angular distributions frompp collisions at sqrt(s) = 7 TeV,”JHEP 1205, 055 (2012)[arXiv:1202.5535 [hep-ex]]

F. Abe et al. [CDF Collaboration],“Measurement of dijet angular distributions at CDF,”Phys. Rev. Lett. 77, 5336 (1996)

F. Berghaus (UVic) Quark Substructure June 12, 2012 28 / 16

Appendix References

Bibliography II

V. M. Abazov et al. [D0 Collaboration],“Measurement of dijet angular distributions at s**(1/2) = 1.96-TeVand searches for quark compositeness and extra spatialdimensions,”Phys. Rev. Lett. 103, 191803 (2009)

J. Gao et al“Next-to-leading QCD effect on the quark compositeness search atthe LHC”Phys. Rev. Lett. 106, 142001 (2011)

T. Junk“Confidence level computation for combining searches with smallstatistics”Nuclear Instruments and Methods 434, Pages 435-443 (1999)

F. Berghaus (UVic) Quark Substructure June 12, 2012 29 / 16

Appendix References

Bibliography III

M. Cacciari and G. P. Salam, Phys. Lett. B 641, 57 (2006)[hep-ph/0512210].

S. Catani and M. H. Seymour, Nucl. Phys. B 485, 291 (1997)[Erratum-ibid. B 510, 503 (1998)] [arXiv:hep-ph/9605323].

T. Carli, D. Clements, A. Cooper-Sarkar, C. Gwenlan, G. P. Salam,F. Siegert, P. Starovoitov and M. Sutton, Eur. Phys. J. C 66, 503(2010) [arXiv:0911.2985 [hep-ph]].

F. Berghaus (UVic) Quark Substructure June 12, 2012 30 / 16