Search for narrow six-quark states

30
Search for narrow six-quark states L.V. Fil’kov, (1) V.L. Kashevarov, (1,2) M. Ostrick (2) (1) P.N. Lebedev Physical Institute , Moscow EMIN - 2012 (2) Institut fur Kernphysik, University of Mainz

description

Search for narrow six-quark states. L.V. Fil’kov, (1) V.L. Kashevarov, (1,2) M. Ostrick (2). (1) P.N. Lebedev Physical Institute , Moscow. (2) Institut fur Kernphysik, University of Mainz. EMIN - 2012. Supernarrow six-quark states. 6-quark state. nucleon. (dibaryon). - PowerPoint PPT Presentation

Transcript of Search for narrow six-quark states

Page 1: Search for narrow six-quark states

Search for narrow six-quark states

L.V. Fil’kov,(1) V.L. Kashevarov,(1,2) M. Ostrick(2)

(1) P.N. Lebedev Physical Institute , Moscow

EMIN - 2012

(2) Institut fur Kernphysik, University of Mainz

Page 2: Search for narrow six-quark states

Supernarrow six-quark states

D N N ~ 10 100 MeV

6-quark states, decay of which into two nucleons is forbidden by thePauli exclusion principle.

M < 2mN + m D → + NN

+ d

* Wide dibaryons : ~ 10 100 MeV* Narrow dibaryons : ~ 1 1 MeV* Supernarrow dibaryons : << 1 keV

6-quark statenucleon (dibaryon)

eV

(-1)T+S P = +1

Page 3: Search for narrow six-quark states

1. A construction of an adequate QCD model.

2. Astrophysics: an evolution of compact stars.

3. Quark-gluon plasma: specific signals of a production of QGP with the big baryon dencity.

4. Nuclear physics: a formation of SND-nuclei; a region stability of neutron-rich nuclei.

Page 4: Search for narrow six-quark states

1. P.J.G. Mulders et al. (1980)

MIT bag model: D(T=0; JP = 0─, 1─, 2─; M=2110 MeV), D(1; 1─; M=2200 MeV)

M > 2mN + m D NN

2. V.B. Kopeliovich (1993)

Chiral soliton model: D(T=1; JP = 1+; M 1940 MeV),≃

D(0; 2+; M 1990 MeV)≃3. T. Krupnovniskas et al. (2001)

Canonically quantized biskyrmion model: M < 2mN + m

one dibaryon with J=T=0, two dibaryons with J=T=14. L.V. Fil’kov (2003)

Mass formula for SND: T=1, J=1±

M=1904 (J=1-), 1924 (1+), 1943 (1-),

1962 (1+), 1982 (1-), 2001 (1+)

Page 5: Search for narrow six-quark states

D(T=0, JP=0+ ), D(0, 0─), D(T=1, J =1+), D(1,1─)

D N

NX

d if T = 0

31S0 if T = 1X = {

M(GeV)

1.90

1.91

1.93

1.96

1.98

2.00

(1,1+

) (eV)

0.51

1.57

6.7 25.6

48 81

(1,1─

) (eV)

0.13

0.39

1.67

6.4 12 20

Page 6: Search for narrow six-quark states

p1+d→p2+pX1

MpX1: ±, ±, ±

SD: 6.0 7.0 6.3

< 5 MeV (experimental resolutions) if X1 = n → MX1 =

mn

if X1 = + n → MX1

mn

Simulation of mass MX1 spectra gave:MX1 = 965, 987, 1003 MeV

Experiment:MX1= ±, ±, ±

X1= + n

L.V. Fil’kov, V.L. Kashevarov, E.S. Konobeevski et al. Phys. Rev. C61, 044004

(2000); Eur.Phys.J. A12, 369 (2001); INR (Moscow)

Page 7: Search for narrow six-quark states

pp d1 pp

A.S. Khrykin et al. Phys. Rev. C 64, 034002 (2001)

Tp= 216 MeV, E10 MeV,

MMeV T=2

Uppsala pp-bramsstralung data(H. Calen, et al., Phys. Lett. B427, 248 (1998)):

upper limit 10 nb.

Page 8: Search for narrow six-quark states

p d p pX p d p dX1

Research Center for Nuclear Physics (Japan)H. Kuboki et al. Phys. Rev. C 74, 025203 (2006)

1. No resonance structure in the missing mass spectra of pX and dX1 was observed.

2. No resonance structure in missing mass spectra of X. (It is at variance also with the results of the work of B. Tatischeff et al. (Phys. Rev. Lett. 79, 601 (1997))

INR: beam intensity 0.1 nA RCNP: beam intensity (15 – 20) nA

Page 9: Search for narrow six-quark states
Page 10: Search for narrow six-quark states

A. Cichocki, PhD (2003)

B. Norum et al. (LEGS)

E= 210 – 340 MeV

P= 99%

= 25 – 14 nb

Page 11: Search for narrow six-quark states

SEARCH FOR NARROW SIX-QUARK STATES IN THE REACTIONS d NN

Page 12: Search for narrow six-quark states
Page 13: Search for narrow six-quark states

The energy and angular distributions of the nucleons from

the decay of SNDs

The distributions over the angle between the final nucleons and over the relative difference of energies of these nucleons

M=1904 MeV M=1926 MeV M=1942 MeV M=1982 MeV

Page 14: Search for narrow six-quark states

The energy and angular distributions of the photons from the decay of SNDs

M=1904 MeV M=1926 MeV M=1942 MeV M=1982 MeV

Page 15: Search for narrow six-quark states

Background

Page 16: Search for narrow six-quark states

d → D(1,1) , (b,c,d) for M=1904, 1942, 2000 MeV

d → D(1,1)

Page 17: Search for narrow six-quark states

d → D(1,1) , (b,c,d) for M=1904, 1942, 2000 MeV

d → D(1,1)

Page 18: Search for narrow six-quark states
Page 19: Search for narrow six-quark states

GEANT simulation of SND

Page 20: Search for narrow six-quark states

GEANT simulation of p andn mass spectrum; (a) – without an influence of the detectors.

(a)

(b)

(c)

Page 21: Search for narrow six-quark states

d0 +pnMAMI (Preliminary)

MM(,0) – md (MeV)

Red lines are SND peak positions from INR experiment

V. Kashevarov, 8th Crystal Ball@MAMI Collaboration Meeting, Glasgo, March 27-29, 2006

Page 22: Search for narrow six-quark states

Conclusion

Page 23: Search for narrow six-quark states
Page 24: Search for narrow six-quark states

d → 0 D(1,1) , (b,c,d) for M=1904, 1942, 2000 MeV

d → 0 D(1,1)

Page 25: Search for narrow six-quark states

The Two Arm Mass Spectrometer (TAMS). S0, S1, S2, and S3 are start

detectors; F0, F1, F2, and F3 are stop E detectors; D0 is a BGO detector;

D1, D2, and D3 are full absorption E detectors.

Page 26: Search for narrow six-quark states

(a) – 33o, (b) – 35o , (c) – 37o

Page 27: Search for narrow six-quark states

GEANT simulation of p mass spectra.

Page 28: Search for narrow six-quark states

JLAB

Page 29: Search for narrow six-quark states

A. Cichocki, PhD (2003) B. Norum et al. (LEGS)

E210-340 MeV

=25-14 nb

P99%

Page 30: Search for narrow six-quark states

B. Norum et al. (LEGS)

E=210-340 MeV=90

=25 -14nb

A.Cichocki, PhD (2003)

P= 99%