sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF...

74
1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient for the system under loads of short duration such as impact loads or for non-linear systems - Vector Superposition Methods: efficient for the system under loads of long duration or harmonic loads or various loads - Vector Superposition Methods/ a set of coupled equations are transformed into a set of uncoupled equations through use of the orthogonal vectors (Normal Modes) of the system Orthogonal Vectors - Normal Modes: orthogonal wrt k m and Mode Superposition (Normal Mode) Methods - Ritz Vectors: orthogonal wrt m - Lanczos Vectors: orthogonal wrt m - Mode Superposition Methods - Mode Displacement Method - Mode Acceleration Method §15.1 General Solution for Dynamic Response: Normal Mode Method Initial Value Problem ) ( p ku u c u m t = + + & & & (15.1) 0 0 u ) 0 ( u , u ) 0 ( u & & = = (15.2) ) ( ) ( ) ( t u t u t u p h + = where solution particular t u solution mogeneous h t u solution general t u p h : ) ( o : ) ( : ) ( :

Transcript of sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF...

Page 1: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

1

Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD

Dynamic Response

- Direct Integration Methods: efficient for the system under loads of short duration such as impact loads or for non-linear

systems - Vector Superposition Methods: efficient for the system under

loads of long duration or harmonic loads or various loads -

Vector Superposition Methods/ a set of coupled equations are transformed into a set of uncoupled equations through use of the orthogonal vectors (Normal Modes) of the system

Orthogonal Vectors

- Normal Modes: orthogonal wrt km and Mode Superposition (Normal Mode) Methods

- Ritz Vectors: orthogonal wrt m - Lanczos Vectors: orthogonal wrt m -

Mode Superposition Methods - Mode Displacement Method - Mode Acceleration Method

§15.1 General Solution for Dynamic Response: Normal Mode Method Initial Value Problem

)(pkuucum t=++ &&& (15.1) 00 u)0(u,u)0(u && == (15.2)

)()()( tututu ph +=

where

solutionparticulartu

solutionmogeneous htusolutiongeneraltu

p

h

:)(o :)(

:)(:

Page 2: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

2

0)mk( 2 =− rr φω (15.3)

)()()(11

ttutu r

N

rr

N

rr ηφ∑∑

==

== )()( ttu ηΦ= (15.1)

[ ]Nφφφ L21=Φ modal matrix (15.6) )(tη principal coordinates.

)()()()(111

tpkcmN

rrrr

N

rrr

N

rr =++ ∑∑∑

===

ηφηφηφ &&&

)()()()( tptktctm =Φ+Φ+Φ ηηη & Pre-multiply by T

sφ and use the orthogonality of φ 0=r

Ts mφφ for sr ≠ ),..,,( 21 N

T MMMdiagm =ΦΦ 0=r

Ts cφφ for sr ≠ ),..,,( 21 N

T CCCdiagc =ΦΦ 0=T

rTs kφφ for sr ≠ ),..,,( 21 N

T KKKdiagk =ΦΦ Note that .and,wrt orthogonalis kcmφ Then

+)(m trTr ηφφ && +)(m tr

Tr ηφφ && )()(k tpt T

rrTr φηφφ =

)(tmt η&&ΦΦ + )(tct η&ΦΦ )()( tptk TT Φ=ΦΦ+ η Let

)()(mcm

r

r

tptPKCM

Trr

rTrr

rTr

rTr

φφφφφφφ

=

=

=

=

)()(),...,,(

),..,,(),..,,(

21

21

21

tptPKKKdiagkK

CCCdiagcCMMMdiagmM

Tr

NT

NT

NT

Φ=

=ΦΦ=

=ΦΦ=

=ΦΦ=

force modal)(stiffness modaldamping modal

mass modal

====

tPKCM

r

r

r

r

vector force modal)(matrix stiffness modalmatrix damping modal

matrixmassmodal

====

tPKCM

(15.9)

Then

)(tPKCM rrrrrrr =++ ηηη &&& )(tPKCM =++ ηηη &&& (15.8)

Page 3: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

3

r

rrrtrrr M

tP )(2 2 =++ ηωηωζη &&&

The transformation to principle coordinates has uncoupled the equations of motion (compare Eq. 15.8 with the original equation of motion, Eq. 15.1). initial conditions

)0()0( r

N

rru ηφ∑

=

= )0()0(u ηΦ=

)0()0( r

N

rru ηφ && ∑

=

= )0()0(u η&& Φ= (15.10)

)0()0( r

N

rr

Ts

Ts mmu ηφφφ ∑

=

= )0()0(muT ηΦΦ=Φ mT

=)0(muTrφ )0(rr

Tr m ηφφ )0(muTΦ )0(ηM=

Therefore

=)0(muTrφ )0(rrM η

Similarly =)0(umT

r &φ )0(rrM η& modal initial conditions

Nr

Mmum

Mmmu

rrTr

Tr

r

Tr

rrTr

Tr

r

,,2,1(0)um1)0()0(

mu(0)1)0()0(

Tr

K

&&

&

=

==

==

φφφ

φη

φφφ

φη (15.12)

:)0(),0( uu & Known

)(tPKCM rrrrrrr =++ ηηη &&& )(tPKCM =++ ηηη &&& (15.8) Uncoupled equations

)()()( ttt prhrr ηηη += Solution Mehods

- Duhamel integration methods for simple loads - Direct integration methods for complex loads

Page 4: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

4

§15.2 Mode-Displacement Solution for Response of Undamped MDOF Systems

∑∑==

==N

rrr

N

rr ttutu

11)()()( ηφ

≈)(tu ∑∑==

==N

rrr

N

rr ttutu

ˆ

1

ˆ

1)()(ˆ)(ˆ ηφ )(ˆˆ)(ˆ ttu ηΦ= (15.13)

[ ]N21

ˆ φφφ L=Φ (15.14) where NN <<ˆ (ex. )1000 ,50ˆ == NN To determine the number of modes used in the analysis, engineering experience and judgment are required.

)(ˆˆˆˆˆ tPKM rrrrr =+ ηη&& )(ˆˆˆˆˆ tPKM =+ ηη&& (15.15) By the Duhamel integration method

ττωτω

ωηω

ωηη

dtPM

ttt

r

t

rrr

rrr

rrr

)sin()(1

)sin()0(1)cos()0()(

0−

+

+=

&

(15.18)

The process of computing modal responses and substituting these, )(trη , back into Eq. 15.13 to obtain the approximate system response

will be called the mode-displacement method. Note The contribution of the higher modes is small. •Free Vibration )(tuh

0p(t) = (15.19)

)sin()0(1)cos()0()( ttt rrr

rrr ωη

ω

+ωη=η & (15.18)

Page 5: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

5

Nr

M

M

rr

Tr

rr

,,2,1

(0)um1)0(

mu(0)1)0(

Tr

K

&&

=

=

=

φη

φη

(15.12)

Example 13.5 Free Vibration

Initial Conditions

=

02

1 000

u)(u)(u

=

00

00

2

1

)(u)(u

&

&

=

=

11

, 1

2/1

1 φωmk

=

=

11

,32

2/1

2 φωmk

Solution a. r

TrrM φφ m= (1)

k k km m

1u 2u

=

−+

00

22

00

2

1

2

1

uu

kkkk

uu

mm

&&

&&

Page 6: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

6

[ ] mm

mM 2

11

00

111 =

= (2)

[ ] mm

mM 2

11

00

112 =

−=

b.

rr

Tr

r

r

Tr

r

M

M

ωφη

φη

(0)um)0(

mu(0))0(

&& =

= (3)

=

=

=

=

00

00

00

(0)um

000

0mu(0)

00

mm

muumm

&

(4)

[ ]

[ ]2

011

21mu(0))0(

20

1121mu(0))0(

0

02

22

0

01

11

umumM

umumM

T

T

−=

==

=

==

φη

φη (5)

=1

12

)0( 0uη

[ ]

[ ] 000

1121mu(0))0(

000

1121mu(0))0(

2

22

1

11

=

==

=

==

mM

mMT

T

φη

φη

&

&

(5)

=00

)0(η&

)sin()0(1)cos()0()( ttt rrr

rrr ωηω

ωηη &

+= (15.18)

)cos()0()( tt rrr ωηη =

)(tη =

tt

22

11

cos)0(cos)0(

ωηωη

Page 7: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

7

=

− t

tu

2

10

coscos

2 ωω

)()( ttuh ηΦ=

=

− t

tu

2

10

coscos

21111

ωω

[ ]

[ ])cos()cos(2

)(

)cos()cos(2

)(

210

2

210

1

ttutu

ttutu

ωω

ωω

+

=

=

•Particular Solution )(tup for harmonic load IF tΩ= cosPp(t) Harmonic Loads (15.19)

tP T Ω= cosP)((t) φ (15.20a) tFP rr Ω= cos(t) (15.20b)

PrTrF φ= (15.20c)

)(tPKCM rrrrrrr =++ ηηη &&& Assuming tYt rr Ω= cos)(η

Ω−

=

2)/(11

rr

rr K

FYω

(15.21)

tKFt

rr

rr Ω

Ω−

= cos

)/(11)( 2ω

η (15.21)

tKFt

rr

rN

rr Ω

ωΩ−

φ= ∑

=

cos)/(1

1)(u2

ˆ

1p (15.22)

Page 8: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

8

rr

rr KK

FD PTrφ=≡ modal static deflection (15.23)

§12.4 Response of an Undamped 2-DOF System to Harmonic Excitation: Mode-Superposition Example 12.6 the steady-state response )(tup

.

tP

uu

kuu

m Ω

=

−+

cos

03112

2001 1

2

1

2

1

&&

&&

the natural frequencies and modes are

Mode 1 mk /21 =ω

Mode 2 )/(252

1 mk=ω

k k k2

mm2

1u2u

1p

tPp Ω= cos11

Page 9: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

9

Solution

[ ]

−==Φ

211

1121 φφ (1)

[ ] )()(2

121 ttu ηηη

φφ Φ=

= (2)

+=

−=

21

21

2

1

2

1

21

211

11

ηη

ηη

ηη

uu

(3)

)]()()([ tpkmT =Φ+ΦΦ ηη&& (4) pkm TTT Φ=ΦΦ+ΦΦ ηη )()( &&

PKM =+ ηη&& (5) pPkKmM TTT Φ=ΦΦ=ΦΦ= ,, (6)

=

−=

23003

211

11

200

211

11m

mm

M (7)

=

−=

415003

211

11

32

211

11k

kkkk

K (8)

tPP

tP

P Ω

−= coscos

0211

11

1

11 (9)

tPP

km Ω

=

+

cos

415003

23003

1

1

2

1

2

1

ηη

ηη&&

&&Uncoupled Equations (10)

tPkm Ω=+ cos33 111 ηη&& (11a) tPkm Ω=+ cos)4/15()2/3( 122 ηη&& (11b)

tYY

tt

Ω

=

cos)()(

2

1

2

1

ηη

tY Ω= cos11η (12a) tY Ω= cos22η (12b)

21

12

11 )/(1

)3/1(33 ωΩ−

=Ω−

=Pk

mkPY (13a)

Page 10: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

10

22

12

12 )/(1

)15/4()2/3()4/15( ωΩ−

=Ω−

=Pk

mkPY (13b)

[ ] )()(2

121 ttu ηηη

φφ Φ=

= (2)

=

−=

2

1

2

1

211

11

ηη

uu

tYY

Ω

− cos

211

11

2

1

tYY

YY

uu

Ω

+=

cos21

21

21

2

1

tUU

uu

Ω

=

cos2

1

2

1

Ω−

Ω−

=

Ω−

+

Ω−

=

22

12

1

12

22

12

1

11

)/(115/4

21

)/(13/

)/(115/4

)/(13/

ωω

ωω

kPkPU

kPkPU

(15a)

(15b)

Page 11: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

11

Example 15.1

tP Ωcos1

3u

4u

2u

1u

23 =m

34 =m

22 =m

./inseck1 21 −=m

.k/in8001 =k

16002 =k

24003 =k

32004 =k

Page 12: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

12

−−−−−

−−−

=

=

−−−

−−−

=

63688.070797.043761.023506.000000.115859.053989.049655.044817.000000.109963.077910.0

15436.090145.000000.100000.1

882.55079.41660.29294.13

,10

12279.368746.187970.017672.0

3000020000200001

,

73003520

02310011

32 ωω

mk

Solution a.

rrrrTr MKM 2

r ,m ωφφ == (1)

=

23506.049655.077910.00000.1

3000020000200001

23506.049655.077910.00000.1

1

T

M

695.507)87288.2(78.176

87288.2

1

1211

1

===

=

KMK

4.374,1164239.343.736836658.439.191517732.2

695.50787288.2

44

33

22

11

==

====

==

KMKMKMKM

(2)

b.

=

000

P

1P

(3)

Page 13: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

13

PrTrF φ= (4)

14

13

12

11

15436.090145.0

PFPF

PFPF

=

−==

=

(5)

c.

)1(cos)/()( 2r

rrr r

tKFt−

Ω=η (6)

rrr ω

Ω= (7)

d.

∑=

=N

rrr ttu

ˆ

111 )()( ηφ (8)

e.

)]79.3122/(1)[4.11374()cos15436.0)(15436.0(

)]46.1687/(1)[43.7368()cos90145.0)(90145.0(

)]70.879/(1)[39.1915()cos)(0.1(

1ˆ)]72.176/(1)[695.507(

)cos)(0.1()(

21

21

21

21

1

Ω−Ω

+

=

Ω−Ω−−

+

=

Ω−Ω

+

=

Ω−

Ω=

tP

N

tP

NtP

NtPtu

(9)

80.2851,402.53,3.1179.44,6486.6,5.0

23

21

=Ω=Ω=Ω

=Ω=Ω=Ω

ωω

Constant C in tCPtu Ω= cos)( 11

)10(987.4)10(228.5)10(630.3)10(301.13.1)10(291.3)10(289.3)10(176.3)10(626.25.0)10(604.2)10(602.2)10(492.2)10(970.10

4ˆ3ˆ2ˆ1ˆ

33333

33331

3333

−−−−

−−−−

−−−−

−−−−=Ω

====

ωω

NNNN

Page 14: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

14

Example 15.2: Example 15.1 Compute rF and rD

=

=

1111

,

0001

ba PP

Solution a.

00000.1

0001

23506.049655.077910.000000.1

P11 =

==

T

aT

aF φ (1a)

51071.2

1111

23506.049655.077910.000000.1

P11 =

==

T

bT

bF φ (1b)

06931.0,15436.076801.0,90145.007713.0,00000.151071.2,00000.1

44

33

22

11

==

−=−=

−==

==

ba

ba

ba

ba

FFFFFFFF

(2)

b.

r

rr K

FD = (3)

)10(6094.0),10(3571.1)10(0423.1),10(2234.1)10(4027.0),10(2209.5)10(9453.4),10(9697.1

34

34

33

33

32

32

31

31

−−

−−

−−

−−

==

−=−=

−==

==

ba

ba

ba

ba

DDDDDDDD

(4)

Page 15: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

15

Example 12.3 assumed-modes model (Ex. 11.9) Solve for the natural frequencies and modes of this model, and sketch the modes. Use the notation 2211 , uquq →→ .

Solution Assumed modes

)()()()(),( 2211 tuxtuxtxu ψψ +=

Lxx =)(1ψ

2

2 )(

=

Lxxψ

)()(),( 2

2

1 tuLxtu

Lxtxu

+

= (12)

=

+

00

4333

312151520

60 2

1

2

1

uu

LEA

uuAL&&

&&ρ (1)

)cos(2

1

2

1 αωφφ

=

tuu

(2)

=

00

12151520

4333

2

12

φφ

µ i (3)

22

2

20 ii EL ωρµ

=

0)153()124)(203( 2222 =−−−− iii µµµ 03)(26)(15 222 =+− ii µµ (5)

6090.1,1243.030

496262 =±

=iµ (6)

Lx

),( txu

Page 16: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

16

=

=

=

=

ρµ

ρω

ρµ

ρω

EEL

EEL

18.3220)(

486.220)(

22

22

21

21

=

ρω EL exact 467.2)( 2

1 (8a)

=

ρω EL exact 21.22)( 2

2 (8b)

0153203 2

21

2 =−+− )i(i

)i(i )()( φµφµ (9)

)()(

i

i

)i(

i 2

2

1

2

153203µµ

φφβ

−−

−=

(10)

381.1

453.0136.1514.0

2

1

−=

−=−=

β

β

=

453011

2

1

.

)(

φφ

=

381112

2

1

/

)(

φφ

)cos()cos( 22

)2(

2

111

)1(

2

1

2

1 αωφφ

αωφφ

+−

=

ttuu

[ ]

−−

=)cos()cos(

22

1121 αω

αωφφ

tt

)()(),( 2

2

1 tuLxtu

Lxtxu

+

= (12)

=

)()(

2

12

tutu

Lx

Lx

= [ ]

−−

)cos()cos(

22

1121

2

αωαω

φφtt

Lx

Lx

(11a)

(7a)

(7b)

Page 17: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

17

=

−−

)cos()cos(11

22

11

21

2

αωαω

ββ tt

Lx

Lx

=

+

+

2

2

2

1 Lx

Lx

Lx

Lx ββ

−−

)cos()cos(

22

11

αωαω

tt

=[ ])()( 21 xx φφ

−−

)cos()cos(

22

11

αωαω

tt

)cos()cos()( 222111 αωφαωφ −+−= ttx = ),(),( )2()1( txutxu +

2

)(

+

=

Lx

Lxx ii βφ (15)

)cos()(),()(iii

i txtxu α−ωφ= (14)

)cos(),(2

)(iii

i tLx

Lxtxu α−ω

β+

= (13)

§15.3 Mode-Acceleration Solution for Response of Undamped MDOF Systems

)(pkuum t=+&& (15.24) The mode-acceleration solution is based on the following.

)ump(ku 1 &&−= − (15.25) )ump(ku~ 1 &&−= − (15.26)

Page 18: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

18

rr

N

rηφ &&∑

=

−− −=ˆ

1

11 mkpk (15.27)

rr

N

rηφ

ω&&∑

=

−=

ˆ

12r

1 1pk (15.28)

The first term in the above equation is the pseudo static response, while the second term gives the method its name, the mode-acceleration method. Example 15.3: Example 15.1 a. b. c.

)10(

31250.031250.031250.031250.031250.072917.072917.072917.031250.072917.035417.135417.131250.072917.035417.160417.2

ka 31 −−

==

Solution a.

rr

N

rtpatu ηφ

ω&&1

ˆ

12r

1111

1cos)(~ ∑=

−Ω= (1)

rr

N

rtpatu ηφ

ω&&1

ˆ

12r

2

1111 cos)(~ ∑=

Ω+Ω= (2)

)]79.3122/(1)[4.11374()cos15436.0)(15436.0)(79.3122/(

3ˆ)]46.1687/(1)[43.7368(

)cos90145.0)(90145.0)(46.1687/(

2ˆ)]70.879/(1)[39.1915()cos)(0.1)(70.879/(

1ˆ)]72.176/(1)[695.507()cos)(0.1)(72.176/(

)cos)(10(60417.2)(~

21

2

21

2

21

2

21

2

13

1

Ω−ΩΩ

+

=

Ω−Ω−−Ω

+

=

Ω−ΩΩ

+

=

Ω−ΩΩ

+

Ω= −

tP

NtP

NtP

NtPtPtu

(3)

b. 80.2851and,197.44,0 222 =Ω=Ω=Ω

Page 19: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

19

Constant C in tCPtu Ω= cos)( 11

)10(987.4)10(207.5)10(506.2)10(044.53.1)10(291.3)10(291.3)10(288.3)10(261.35.0)10(604.2)10(604.2)10(604.2)10(604.20

4ˆ3ˆ2ˆ1ˆ

33333

33331

3333

−−−−

−−−−

−−−−

−−−=Ω

====

ωω

NNNN

c. Use Eq. 15.18 to obtain a general expression for )(trη&& to substitute Into the mode-acceleration equation, Eq. 15.28. Thus

ττωτωωηωωηωη

dtPMM

tPttt

r

t

rr

r

r

r

rrrrrrr

)(sin)()(sin)0(cos)0()(

0

2

−−+

−−=

&&&

(15.29)

Alternative form

ττωττ

ω

ωηωωηωη

dtPddtP

M

ttt

r

t

rrrr

rrrrrrr

)(cos)]([cos)0(1sin)0(cos)0()(

0

2

−−+

−−=

&&&

(15.30).

§15.4 Mode-Superposition Solution for Response of Certain Viscous damped Systems

srsTr ≠= ,0cφφ proportional damping (15.31)

NrtPM r

rrrrrrr ,,2,1),(12 2 K&&& =

=++ ηωηωζη (15.32)

rTr

rrrr

rr MM

C φφωω

ζ c2

12

== (15.33)

te

te

dtePM

t

drt

rrrrdr

drt

r

drtt

rdrr

r

rr

rr

rr

ωηωζηω

ωη

ττωτω

η

ωζ

ωζ

τωζ

sin)]0()0([1

cos)0(

)(sin)(1)( )(

0

−−

+

+

+

= ∫

&

(15.34)

Page 20: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

20

21 rrdr ζωω −= (15.35) mode-displacement solution

∑∑==

==N

rrr

N

rr ttutu

ˆ

1

ˆ

1)()(ˆ)(ˆ ηφ

ignores completely the contribution of the modes from )1ˆ( +N to N . mode-accerleration solution

)umucp(ku 1 &&& −−= − (15.36)

∑∑=

=

−− −=N

rrr

N

rrr ttt(t

ˆ

1

1

11 )(mk-)(ck)p(k)u~ ηφηφ &&& (15.37)

The resulting mode-accerleration solution is

∑∑==

−=

N

rrr

r

N

rrr

r

r ttt(tˆ

12

ˆ

1

1 )(1-)(2)p(k)u~ ηφω

ηφωζ

&&& (15.38)

tFM

tPpFor

rr

rrrrrr Ω

=++

Ω=

cos12

cos

2ηωηωζη &&& (15.39)

PrTrF φ= (15.20c)

ti

r

rrrrrrrr

ti

eMF

PepFor

Ω

Ω

=++

=

222

ωηωηωζη &&& (15.40)

steady-state response (see Eq. 4.30) ti

rFr eFH rr

ΩΩ= )(/ηη (15.41) where )(/ Ωrr FH η is the complex frequency response function for principal coordinates, given by

)2()1(/1)()( 2/

rrr

rFr

rirKHH rr ζ

η+−

=Ω≡Ω (15.42)

)cos()2()1(

/)(

solutionofpart real the take ,cos

222 r

rrr

rrr t

rrKFt

tPpFor

αζ

η −Ω+−

=

Ω=

(15.43a)

Page 21: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

21

)1(2tan 2

r

r

rr

−=

ζα (15.43b)

∑=

=Φ=N

rrr tt(t

1)()()u ηφη (15.44)

tiN

r rrrr

Trr e

rirKt Ω

=∑

+−

=

12 )2()1(

1P)(uζ

φφ (15.45)

∑=

+−

=Ω≡Ω

N

r rrrr

jrirPuij

rirKHH jir

12/

)2()1(1)()(

ζφφ

(15.46)

)cos()2()1(

1P)(u

cosFor

122 r

N

r rrrr

Trr t

rrKt

tPp

αζ

φφ−Ω

+−

=

Ω=

∑=

(15.47)

A plot of Eq. 15.46 on the complex plane is referred to as a complex frequency response plot.

∑=

+−−

=

N

r rrr

r

r

jririj

rrr

KHR

1222

2

)2()1()1()(ζ

φφ (15.48a)

∑=

+−

=

N

r rrr

rr

r

jririj

rrr

KHI

1222 )2()1(

2)(ζ

ζφφ (15.48b)

Complex frequency response functions (sometimes called transfer function) as given by Eq. 15.46 are frequently employed in determining the vibrational characteristics of a system experimentally.

Page 22: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

22

Example 15.4

0628.0,6284.01,217,987

cos11

=′===′=

Ω=

ccmkk

tPp

Solution a.

=

′+′−

′−′++

′+′−

′−′++

0)()(

)()(

00

1

2

1

2

1

2

1

puu

kkkkkk

uu

cccccc

uu

mm

&

&

&&

&&

(1)

=

′+′−

′−′++

00

)()(

00

2

1

2

1

uu

kkkkkk

uu

mm

(2)

tωφ cosu = (3)

=

′+′−

′−′+00

00

)()(

2

12

φφ

ωm

mkkk

kkk (4)

mkk

mk ′+

==2, 2

221 ωω (5)

=

=1

1,

11

21 φφ (6)

70.37,42.31

14211

1421,9871

987

21

22

21

==

====

ωω

ωω

1u 2u

c

c

c′ k

k

k′ 1p

m

Page 23: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

23

HzfHzf 00.62

,00.52

22

11 ====

πω

πω

(7)

b.

=Φ11

11 (8a)

=

=ΦΦ=2002

1111

1001

1111

mTM (8b)

=

=

=ΦΦ=

5080.1002568.1

7540.06284.07540.06284.0

1111

1111

6912.00628.00628.06912.0

1111

cTC

2842)2(14211974)2(987

2222

1211

===

===

MKMK

ωω

=

2842001974

K (8c)

c.

rr

rr M

ζ2

= (9)

0100.0)70.37)(2(2

5080.1

0100.0)42.31)(2(2

2568.1

2

1

==

==

ζ

ζ (10)

d.

∑=

Ω+Ω−

2

12 )/2())/(1(

1)(r rrrr

jririj

iKH

ωζωφφ

Ω+Ω−

+

Ω+Ω−

]70.37/)01.0(2[)70.37/(11

2842)1)(1(

]42.31/)01.0(2[)42.31/(11

1974)1)(1()(

2

211

i

iH

(11)

Page 24: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

24

]70.37/)01.0(2[)70.37/(1)10519.3(

]42.31/)01.0(2[)42.31/(1)10066.5(

2

4

2

4

11

Ω+Ω−×

+

Ω+Ω−×

=

i

iH

(12a)

Ω+Ω−

+

Ω+Ω−

]70.37/)01.0(2[)70.37/(11

2842)1)(1(

]42.31/)01.0(2[)42.31/(11

1974)1)(1()(

2

221

i

iH

]70.37/)01.0(2[)70.37/(1)10519.3(

]42.31/)01.0(2[)42.31/(1)10066.5(

2

4

2

4

21

Ω+Ω−×

Ω+Ω−×

=

i

iH

(12b)

e.

∑=

Ω+Ω−

Ω−

=

2

1222

2

))/(2())/(1())/(1()(

r rrr

r

r

jririj

KHR

ωζωωφφ

(13a)

∑=

Ω+Ω−

Ω−

=

2

1222 ))/(2())/(1(

)/(2)(r rrr

rr

r

jririj

KHI

ωζωωζφφ

(13b)

Page 25: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

25

f.

π2Ω

=f

Page 26: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

26

Page 27: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

27

Example 15.5

0031.0,6284.0,10,987 =′==′= cckk Solution a.

mkk

mk ′+

==2, 2

221 ωω (1)

73.31,42.31

10071

1007,9871

987

21

22

21

==

====

ωω

ωω

HzfHzf 05.52

,00.52

22

11 ====

πω

πω

(2)

b.

=Φ11

11,

=

2002

M (3a,b)

=

=

=ΦΦ=

2692.1002568.1

6346.06284.06346.06284.0

1111

1111

6315.00031.00031.06315.0

1111

cTC (3c)

2014)2(10071974)2(987

2222

1211

===

===

MKMK

ωω

=

2014001974

K (3d)

c.

rr

rr M

ζ2

= (4)

0100.0)73.31)(2(2

2692.1

0100.0)42.31)(2(2

2568.1

2

1

==

==

ζ

ζ (5)

d.

Page 28: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

28

Ω+Ω−

+

Ω+Ω−

]73.31/)01.0(2[)73.31/(11

2014)1)(1(

]42.31/)01.0(2[)42.31/(11

1974)1)(1()(

2

211

i

iH

]73.31/)01.0(2[)73.31/(1)10659.4(

]42.31/)01.0(2[)42.31/(1)10066.5(

2

4

2

4

11

Ω+Ω−×

+

Ω+Ω−×

=

i

iH

(6a)

]73.31/)01.0(2[)73.31/(1)10965.4(

]42.31/)01.0(2[)42.31/(1)10066.5(

2

4

2

4

21

Ω+Ω−×

Ω+Ω−×

=

i

iH

(6b)

e.

Page 29: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

29

f.

Page 30: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

30

Figure 15.2. Inertance Bode plot for a complex structure

Figure 15.2 is an inertance Bode plot, that is, Acceleration/Force as a function of frequency, of the response of a complex system with excitation at one point and response measured at another point.

Page 31: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

31

§15.5 Dynamic Stresses by Mode-Superposition Mode Displacement Method

∑=

=N

rrr tt

ˆ

1)(s)(ˆ ησ (15.49)

Mode Acceleration Method

∑=

−=

N

rrr

r

ttˆ

12icpseudostat )(s1)(~ η

ωσσ && (15.50)

Example 15.6 Solution

)4~1( =iiσ : Story Shear

444

4333

3222

2111

)()()(

ukuukuukuuk

=

−=

−=−=

σσσσ

(1)

−−

=

4

3

2

1

4

33

22

11

4

3

2

1

00000

0000

uuuu

kkk

kkkk

σσσσ

(2)

][)(][

)()(

φηφσηφ

kstk

ttu

===

−−

=

4

3

2

1

4

33

22

11

4

3

2

1

00000

0000

φφφφ

kkk

kkkk

ssss

(3)

Page 32: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

32

−=

=

−−

=

=

02.203851.392807.2317

02.482

s,

50.226551.131874.185316.1521

s

35.140047.245

42.70470.879

s,

19.75258.62708.45272.176

s

43

21

(4)

§15.6 Mode-Superposition for Undamped Systems with Rigid-Body Modes skip

)()()(u)(u)(u ttttt EERRER ηη Φ+Φ=+= (15.51) pT

RRRM Φ=η&& (15.52a) pT

EEEEE KM Φ=+ ηη&& (15.52b)

R

rr

t Tr

rr

Nrt

ddM

t

,,2,1for )0()0(

)(p1)(0 0

K

&

=++

= ∫ ∫

ηη

τξξφητ

(15.53)

Mode-Displacement Method )(ˆˆ)()(u ttt EERR ηη Φ+Φ= (15.54)

∑=

==EN

rrrEE ttt

ˆ

1)(s)(ˆS)(ˆ ηησ (15.55)

Mode-Acceleration Method EEEE

TEEERR MKK ηη &&)(-p)(u 11 −− ΦΦΦ+Φ= (15.56)

EEEEERR MK ηη &&)ˆˆˆ-pu 1−Φ+Φ= a (15.57) One expression for the elastic flexibility matrix Ea is

TEEE K ΦΦ= −1a (15.58)

EEE pkuum =+&& (15.59a) RE umpp &&−= (15.59b)

pu 1R

TRRRRR M ΦΦ=Φ= −η&&&& (15.60)

pp R=E (15.61a) TRRR MmI ΦΦ−= −1R (15.61b)

Page 33: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

33

Epw a= (15.62) RRE cΦ−= ww (15.63)

0)w(m =Φ−Φ RRTR c (15.64)

mwMc 1 TR

-RR Φ= (15.65)

wm)wMI(w 1 TTR

-RRE R=ΦΦ−= (15.66)

pw EE a= (15.67) RR aa T

E = (15.68)

∑=

−=

EN

rrr

r

ttˆ

12icpseudostat )(s1)(~ η

ωσσ && (15.69)

Example 15.7 Solution a.

=

−−−

−+

000

110121

011

100010001

3

2

1

3

2

1

uuu

uuu

&&

&&

&&

(1)

Let tωφ cosu = . (2)

3u2u1u

11 =k

)(3 tp

12 =m

13 =m11 =m

12 =k

)(3 tp

t

0p

Page 34: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

34

=

−−−−−

−−

000

)1(101)2(1

01)1(

3

2

1

2

2

2

φφφ

ωω

ω (3)

0)34( 242 =+− ωωω (4) 3,1,0 2

322

21 === ωωω (5)

−=

−=

=

12

1,

101

,111

321 φφφ (6)

rTrr

TrrM φφφφ == m (7)

rrr MK 2ω= (8)

18,2,06,2,3

321

321

===

===

KKKMMM

(9)

b. 3 2, 1,,0)0()0( === rrr ηη && (10)

c. )(p)( ttP T

rr φ= (11) 033032031 )(,)(,)( ptpPptpPptpP ==−=−=== (12)

d.

018622

3

033

022

01

=+

−=+

=

tpp

p

ηηηη

η

&&

&&

&&

(13)

)cos1(18

)cos1(2

6

30

3

20

2

20

1

tp

tp

tp

ωη

ωη

η

=

−=

=

(14)

tp

tp

30

3

20

2

cos6

cos2

ωη

ωη

=

−=

&&

&&

(15)

e.

Page 35: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

35

rr

r ss

−=

=

3

2

1

2

1

110011

sφφφ

(16)

−−

=

−−

=33

s,11

s 32 (17)

f. )(s)(ˆ 22 tt ησ = (18a)

)(s)(s)(ˆ 3322 ttt ηησσ +=≡ (18b)

)cos1(11

2

)cos1(21

1ˆˆ

ˆ

20

20

2

1

tp

tp

ω

ωσσ

σ

=

−−

=

=

(19a)

)cos1(11

6

)cos1(11

2

30

20

2

1

tp

tp

ω

ωσσ

σ

+

=

=

(19b)

g.

=

32

30

0

icpseudostat2

1

p

p

σσ

(20)

2222

icpseudostat s1)(~ ηω

σσ &&

−=t (21a)

3323

2222

icpseudostat s1s1~ ηω

ηω

σσσ &&&&

−=≡ (21b)

tpp2

00

2

1 cos11

221

3~~

~ ωσσ

σ

=

=

0p

3/0p

3/0p

3/0p

Page 36: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

36

tptpp3

02

00

2

1

cos1

16

cos11

221

3

~

ωω

σσ

σσ

+

=

=≡

(22b)

Comparison of Maximum Spring Forces Computed by Mode-Displacement (M-D) Method and Mode-Acceleration (M-A) Method

333241.1166667.1000000.1/999933.0833333.0000000.1/

02

01

pp

Exactmode1mode1AMDM

σσ

−−

end • Review of Dynamic Response by Normal Mode Method

Dynamic Response Analysis )(][][][ tpukucum =++ &&&

Free vibration Analysis

]][][[]][[or ][][)(][)(or )()(

0][][

ΛΦ=Φ=Φ==

=+

mkmkttuttu

ukum

φλφηηφ

&&

Premultiply by T][Φ ][]][[][)(]][[][])][[][ pktcm TTTT Φ=ΦΦ+ΦΦ+ΦΦ ηηη &&&

][],][[][][ ],][[][][],][][][][ pPkKcCmM TTTT Φ=ΦΦ=ΦΦ=ΦΦ=

][Φ : Normal Mode If ][c is proportional damping matrix

iii

iiiiii

iiiiiiiiii

PM

PKCMPKdiagonalCdiagMdiag

12

][][][

2 =++

=++=++

ηωηωζη

ηηηηηη

&&&

&&&

&&&

Page 37: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

37

§15.7 Dynamic Response by Ritz Vectors

Combination of the Gram-Schmidt orthogonalization and inverse Iteration

- Reduction of System Order For m =1 to q

][][ 1 mm xmxk =+

1

1*

1 i

m

iimm xrxx ∑

=++ −= (1)

Let m1,2,..,i 0][ *

1 ==+mT

i xmx Premultiply (1) by ][ mx T

i , then ][ 1+= m

Tii xmxr

2/1*1

*1

*1

1 )][(

++

++ =

mm

mm xmx

xx

Go to Eq.(1)

],..,x ,[][ 21 qxxX = : Ritz vectors Use ][for ][ ΦX

][]][[][]][[][]][[][][ by yPremultipl

)(][][][][

pXqXKXqXCXqXMXX

tqXupuKuCuM

TTTT

T

=++

==++

&&&

&&&

][][][ pqKqCqI =++ &&&

Note

][]][[][][ IXMXM T == ][X are orthonormal wrt ][M

][ ,][ KC : full matrix, small order qxq matrix

Page 38: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

38

- Solution of the Reduced System

Free vibration analysis

]][[]][[or ][

0][][

Λ=

=

=+

ZZKzzK

qKqIλ

&&

][]][[][]][[][]][[][[Z] by Pr

)(][

pZZKZZCZZIZemultiply

tZq

TTTT

T

=++

=

ηηη

η

&&&

][][][ ** pCI =Λ++ ηηη &&&

][ - ][ ][ ][ *** ηηηη &&&& ijii CpdiagCdiagI =Λ++ Modify Numerical Solution If C is proportional damping matrix

][ ][ ][ ** pdiagCdiagI ii =Λ++ ηηη &&&

)(][)(]][[)(][)( ttZXtqXtu ηη Φ=== ]][[][ ZX=Φ

Page 39: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

39

§15.8 Dynamic Response by Lanczos Vectors

Combination of the Gram-Schmidt orthogonalization and inverse Iteration

- Reduction of System Order For i = 2,3,…N

It can be shown that 01 =−iγ

],..,,[][ 21 NXXXX = Lanczos Vectors

and )(][

][][][][][][][][][

111

tqXuLet

pKuIuCKuMKpuKuCuM

=

=++

=++−−− &&&

&&&

Premultiply by MX T

Where

( ) 1

][

1

2/1

XX

XmX

XAssumeT

γ

γ

=

=

1][][ −= ii XmXk

iTii XmX ][ 21 −− =β

( ) 1

][

*

2/1**

ii

T

XX

XmX

γ

γ

=

=

)1(..... 212111* −−−−= −−−−−− iiiiiiii XXXXX γβα

iTii XmX ][ 11 −− =α

Nmorder small Matrix, lTridiagona that show can We

)MKX()MXX()XMKX(ˆ)MXMKX(

1

1T1T1T

<<=

=++

−−−

TMMKX

pqqCq

T

T&

System Reduced ][][][ pqIqCqT =++ &&&

Page 40: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

40

][]][[][][ IXMXM T == ][X are orthonormal wrt ][M

of order of m

Free vibration analysis

1]][[]][[or 1][

0][][

−Λ==

=+

ZZTzzT

qIqT

λ

&&

][][][]][[][]][[][[Z] by Pr

)(][

pZZZZCZZTZemultiply

tZq

TTTT

T

=++

=

ηηη

η

&&&

][][][ **1 pICdiag =++Λ − ηηη &&& Modify

If C is proportional damping matrix ][][][ **1 pICdiagdiag =++Λ − ηηη &&&

)(][)(]][[)(][)( ttZXtqXtu ηη Φ=== ]][[][ ZX=Φ

• Comparison of Vector Superposition Methods

- Both Ritz method and Lanczos method reduce the system

order using the inverse iteration and Rayleigh-Ritz method,

and compute the eigenpairs of the reduced system,

which are different from the eigenpairs of the original system.

- Both methods save computational time, while the accuracy of

pMKXpCXMKXC

T

T

1

1 Matrix Full −

=

=

Page 41: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

41

response is good enough for engineering purpose

- For the free vibration and dynamic response analysis,

the Rayleigh-Ritz method uses the Ritz vectors

],...,,[][ 21 NXXXX = , while Lanczos method uses ii βα and which

form the tridiagonal matrix ][T

- ir in Rayleigh-Ritz method and ii βα and in the Lanczos

methods are same. Theoretically we should have three non-zero

coefficients )1(,),1( +−= mmmiri for the thm Ritz vector, the

other coefficients are all zero.

Page 42: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

42

1. Cantilever beam

g(t) = sin7t

[email protected] m = 5 m

0 5 10 15 20time (sec)

-2

-1

0

1

2

g(t)

(kN

)

Geometry and loading configuration

Page 43: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

43

0 5 10 15 20Number of vectors

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

Erro

r

Ritz vector methodLanczos vector method

Mode displacement methodMode acceleration method

0 5 10 15 20Number of vectors

0

1

2

3

4

5

Com

putin

g tim

e (s

ec) Ritz vector method

Lanczos vector method

Mode displacement methodMode acceleration method

Page 44: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

44

2. Two-dimensional frame

[email protected] m = 61 m

10@

3.05

m =

30.

5 m

g(t)

0 5 10 15 20time (sec)

0

1

2

g(t)

(kN

)

Geometry and loading configuration

Page 45: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

45

0 6 12 18 24 30Number of vectors

1e-3

1e-2

1e-1

1e0Er

ror

Ritz vector methodLanczos vector method

Mode displacement methodMode acceleration method

0 6 12 18 24 30Number of vectors

0

20

40

60

80

Com

putin

g tim

e (s

ec) Ritz vector method

Lanczos vector method

Mode displacement methodMode acceleration method

Page 46: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

46

3. Multi-span continuous bridge(Dong-Jin bridge)

Connection element

Element for pot bearing

0 5 10 15 20 25 30 35 40Time (sec)

-4

-2

0

2

4

Acc

eler

atio

n (m

/sec

2 )

Geometry and loading configuration(El Centro earthquake)

Page 47: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

47

0 30 60 90Number of vectors

1e-12

1e-10

1e-8

1e-6

1e-4

1e-2

1e0Er

ror

Ritz vector methodLanczos vector method

Mode displacement methodMode acceleration method

0 30 60 90Number of vectors

0

500

1000

1500

2000

Com

putin

g tim

e (s

ec) Ritz vector method

Lanczos vector method

Mode displacement methodMode acceleration method

Page 48: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

48

Page 49: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

49

§15.8 State-Space Form of Differential Equations For structures with proportional and non-proportional damping Useful for the system with non-proportional damping

)(][][][ tPUKUCUM =++ &&&

=

+

0

)(0

00

tP

UU

MK

UU

MMC

&&&

& or

=

+

− 0

)(00

0

tPUU

KKC

UU

KM &

&

&&

][][ ***** PyKyM =+& State-Space Form of Dynamic Equations

=

=

=

=

0)(

00

][ 0

][M

**

**

tPP

UU

y

MK

KM

MC

&

Free vibration analysis

0][][ **** =+ yKyM &

)( * tyy η=

**

*

yUU

UU

y

UU

y

UUUUeUU

eUUt

t

λλ

λλλλ λ

λ

=

=

=

=

==

==

=

&&&

&&

&

&&&

&

Page 50: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

50

0])[*][( * =+ yKMλ

0])[][( ** =+ yKMλ eigenvalue problem Solution for y and λ

- Lee’s Method - Lanczos Method

Dynamic response analysis

)(][)( * tYty η=

],...,,[][ 221 NyyyY =

)()(]][[)(]][[ *** tPtYKtYM =+ ηη& )(][)(][][)(]][[][ *** tPYtYKYtYMY TTT =+ ηη&

)()(][)(][ tPtKdiagtMdiag =+ ηη&

ii

iiii M

tP )(=+ ηλη&

Page 51: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

51

• Solution of Eigenvalue Problem

0)()()( =++ txKtxCtxM &&& (

where M : Mass matrix, Positive definite C : Damping matrix K : Stiffness matrix )(tx : Displacement vector

Eigenanalysis Proportional Damping( CMKKMC 11 −− = ) (

low in cost straightforward Non-Proportional Damping

very expensive

CURRENT METHODS

Transformation methods QR method(Moler and Stewart) LZ method(Kaufman) Jacobi method(Veselic)

Lanczos methods Unsymmetric Lanczos method(Kim & Craig) Symmetric Lanczos method(Chen & Taylor)

Page 52: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

52

Vector iteration method(Gupta)

Subspace iteration method(Leung ) : efficient method • Lee’s Method

General eigenproblem

02 =++ φφλφλ KCM (3)

Eigenproblem of order 2n zBzA λ= (4)

where

−=

MK

A0

0,

=

0MMC

B (5)

=λφφ

z

ijj

Ti zBz δ= (6)

Newton-Raphson technique

( )( ) 1

0)1()1(

)1()1(

=

=−++

++

kj

Tkj

kj

kj

zBz

zBA λ (7)

)()()1(

)()()1(

kj

kj

kj

kj

kj

kj

zzz ∆+=

∆+=+

+ λλλ (8)

where )(k

jλ∆ , )( kjz∆ : unknown incremental values

Page 53: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

53

Introducing Eq.(8) into Eq.(7) and

Neglecting nonlinear terms ( ) )()()()()( k

jk

jkj

kj

kj rzBzBA −=∆−∆− λλ (9)

( ) 0)()( =∆ kj

Tkj zBz (10)

where

)()()()( kj

kj

kj

kj zBzAr λ−= (11)

( )(kjr : residual vector)

Page 54: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

54

Matrix form of Eqs.(9) and (10)

( )

−=

∆∆

−−

00

)(

)(

)(

)(

)()( kj

kj

kj

Tkj

kj

kj rz

zBzBBA

λλ

(12)

Note that coefficient matrix is - Symmetric - Nonsingular

Modified Newton-Raphson technique

( )

−=

∆∆

−−

00

)(

)(

)(

)(

)()0( kj

kj

kj

Tkj

kjj rz

zBzBBA

λλ

(13)

)()()1(

)()()1(

kj

kj

kj

kj

kj

kj

zzz ∆+=

∆+=+

+ λλλ (8)

NONSINGULARITY

Let jj λλ =)0( and jk

j zz =)( in Eq.(13), and consider

12,,2,1 +== niuFuE iii Kγ (14)

where

( )

−−=

0Tj

jj

zBzBBA

, (15)

(2n) (1)

Page 55: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

55

=

=

100000

100

MMC

BF (16)

Eigensolution of Eq.(14)

)(,1,1

,2,,2,1,0

,1

,1

jki

jjji jknk

zzzu

λλγ −−=

≠=

= K (17)

[ ] [ ] )(detdet2

1j

n

jkk

kFE λλ∏≠=

−−= (18)

≠ 0

[ ] [ ] [ ] [ ]MMIF detdetdetdet −=Q (19)

≠ 0

NUMERICAL EXAMPLES

Structures Cantilever beam with multi-lumped dampers Framed structure with a lumped damper

Analysis methods

Proposed method Subspace iteration method(Leung, 1995)

Comparisons

Solution time(CPU) Convergence

Page 56: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

56

2

)(2

)()()(

Error Normk

j

kj

kj

kj

zA

zBzA λ−= (20)

Computer

CONVEX with 100MIPS, 200MFLOPS

CANTILEVER BEAM WITH MULTI-LUMPED DAMPERS

Fig 1. Cantilever beam with multi-lumped dampers

TANGENTIAL DAMPER : c = 0.1 RAYLEIGH DAMPING : βα , = 0.001 YOUNG’S MODULUS : 1000 MASS DENSITY : 1 CROSS-SECTION INERTIA : 1 CROSS-SECTION AREA : 1 NUMBER OF EQUATIONS : 200 NUMBER OF MATRIX ELEMENTS : 696 MAXIMUM HALF BANDWIDTHS : 4 MEAN HALF BANDWIDTHS : 4

2 3

5

100 101

c

1

Page 57: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

Table 1. The Results of the Proposed Method for Cantilever Beam

Proposed Method Mode

Number

Error Norm of Starting Eigenpair (Lanczos method)

Number of Iterations

Eigenvalue Error Norm

1 2 3 4 5

0.872989E-04 0.763146E-03 0.437867E-04 0.605684E-02 0.420530E-00

1 1 1 1 1

-1.02232 ± i 3.95028

-1.18011 ± i 18.3991

-1.79640 ± i 39.6535

-2.87171 ± i 60.9945

-4.40255 ± i 82.2930

0.183316E-07 0.189217E-09 0.373318E-10 0.371279E-11 0.983166E-07

Table 2. CPU Time for the First Five Eigenpairs of Cantilever Beam

Method CPU time(in seconds) Ratio

Subspace Iteration Method Proposed method

(Lanczos method + Iteration scheme)

96.10 76.75

(10.55 + 66.20)

1.25 1.00

Page 58: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

Proposed Method

Subspace Iteration Method

0 1 2 3 4 5

Iteration Number

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

Erro

r Nor

m

Error Limit

Fig. 2. Error norm versus iteration number of

the first eigenpair

0 1 2 3 4 5 6 7

Iteration Number

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

Erro

r Nor

m

Proposed Method

Subspace Iteration Method

Error Limit

Fig. 3. Error norm versus iteration number of

the second eigenpair

Lanczos method

Lanczos method

Page 59: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

0 2 4 6 8 10

Iteration Number

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

Erro

r Nor

mProposed Method

Subspace Iteration Method

Error Limit

Fig. 4. Error norm versus iteration number of

the third eigenpair

0 2 4 6 8 10 12 14

Iteration Number

1E-121E-111E-10

1E-91E-81E-71E-61E-51E-41E-31E-21E-11E+0

Erro

r Nor

m

Proposed Method

Subspace Iteration Method

Error Limit

Fig. 5. Error norm versus iteration number of

the fourth eigenpair

Lanczos method

Lanczos method

Page 60: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

0 2 4 6 8 10 12 14 16

Iteration Number

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

Erro

r Nor

m

Proposed Method

Subspace Iteration Method

Error Limit

Fig. 6. Error norm versus iteration number of

the fifth eigenpair

Lanczos method

Page 61: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

FRAMED STRUCTURE WITH A LUMPED DAMPER

Fig 7. Framed structure with a lumped damper

HORIZONTAL DAMPER : c = 10.0 RAYLEIGH DAMPING : α β, = 0.001 YOUNG’S MODULUS : 500 MASS DENSITY : 1 CROSS-SECTION INERTIA : 1 CROSS-SECTION AREA : 1

NUMBER OF EQUATIONS : 267 NUMBER OF MATRIX ELEMENTS : 1326 MAXIMUM HALF BANDWIDTH S: 6

c

5

2

1

2

30

62

90

91

31 60

61

32

Page 62: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

Table 3. The Results of the Proposed Method for Framed Structure

Proposed Method Mode

Number

Error Norm of Starting Eigenpair (Lanczos method)

Number of Iterations

Eigenvalue Error Norm

1 2 3 4 5

0.169894E-05 0.274663E-04 0.193503E-01 0.732792E-01 1.000000E-00

1 1 1 1 2

-0.06543 ± i 7.44209

-0.39695 ± i 8.40284

-0.07532 ± i 11.7071

-0.71155 ± i 13.9090

-0.46457 ± i 20.0691

0.483552E-10 0.165798E-09 0.200729E-10 0.447537E-10 0.300293E-10

Table 4. CPU Time for the First Five Eigenpair of Framed Structure

Method CPU time(in seconds) Ratio

Subspace Iteration Method Proposed method

(Lanczos method + Iteration scheme)

204.74 173.51

(14.24 + 159.27)

1.18 1.00

Page 63: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

0 1 2 3 4 5 6 7 8 9

Iteration Number

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

Erro

r Nor

mProposed Method

Subspace Iteration Method

Error Limit

Fig. 8. Error norm versus iteration number of

the first eigenpair

0 2 4 6 8 10

Iteration Number

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

Erro

r Nor

m

Proposed Method

Subspace Iteration Method

Error Limit

Fig. 9. Error norm versus iteration number of

the second eigenpair

Lanczos method

Lanczos method

Page 64: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

0 2 4 6 8 10 12

Iteration Number

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

Erro

r Nor

mProposed Method

Subspace Iteration Method

Error Limit

Fig. 10. Error norm versus iteration number of

the third eigenpair

0 2 4 6 8 10 12 14

Iteration Number

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

Erro

r Nor

m

Proposed Method

Subspace Iteration Method

Error Limit

Fig. 11. Error norm versus iteration number of

the fourth eigenpair

Lanczos method

Lanczos method

Page 65: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

0 2 4 6 8 10 12 14 16 18

Iteration Number

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

Erro

r Nor

mProposed Method

Subspace Iteration Method

Error Limit

Fig. 12. Error norm versus iteration number of

the fifth eigenpair

Lanczos method

Page 66: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

§ 15.9 Estimation of Damping Ratio and Damping Matrix

Ref: Text §18.1 Damping in MDOF Systems Definition of orthogonal, classical, modal, or proportional damping

srsTr ≠= ,0Cφφ (18.1)

Rayleigh Damping a particular form of proportional damping, defined by

KMC βα += (a) The above C satisfies eq.(18.1) Let

( ) iiiTi KM ζωφβαφ 2=+

Since 1=i

Ti Mφφ 2

iiTi K ωφφ =

We get

iii ζωβωα 22 =+ (b) Using 11 and ζω , and 22 and ζω , which are known we compute βα and

1121 2 ζωβωα =+

2222 2 ζωβωα =+

In matrix form

=

22

11

22

21 2

11

ζωζω

βα

ωω

Solve for βα and and compute

KMC βα += From (b), for other damping ratios

Page 67: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

i

ii ω

βωαζ2

2+= i=3,4,..,N

Disadvantage of Rayleigh damping

It does not permit realistic damping to be defined for all the modes of interest

Page 68: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

68

Example 9.9 Compute βα and for Rayleigh damping in order that a direct step-by-step Integration can be carried out.

10.0 302.0 2

222

111

======

ξζωξζω

iii ξωβωα 22 =+ (b)

60.0)10,0)(3(2908.0)02,0)(2(24

==+==+

βαβα

(c)

0.104 336.0 =−= βα KMKMC 104.0336.0 +−=+= βα (d)

i

ii ω

ωξ2

104.0336.0 2+−= Ni ,..,3,2=

Example 9.10 Assume that the approximate damping to be specified for a MDOF System is as follows. Choose appropriate Rayleigh damping parameters .and βα

19;14.015;10.0

;7;04.03;03.0

;2;002.0

55

44

33

22

11

==

==

======

ωξωξωξωξωξ

iii ξωβωα 22 =+ (a)

Only two pairs of values determine .andβα Considering the spacing of the frequencies(see the figure below), we use

17;12.04;03.0

22

11

==

==

ωξωξ

(b)

Page 69: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

69

Figure 9.5 Damping as a function of frequency

08.428924.016

=+=+βα

βα

KMC βα += KM 01405.001498.0 += (c)

i

ii ω

ωξ2

01405.001498.0 2+−= Ni ,..,3,2=

Proportional Damping

)2(C rrrT ωζdiagC M=ΦΦ= (18.8)

1C −− ΦΦ= CT (18.9)

)(M rT diagM M=ΦΦ= (18.10a)

ΦΦ=ΦΦ== −−− 111 )M(I TMMM (18.10b)

MΦΦ 11 TM −− = (18.10c)

)M()M( C

11

1

T

T

MCMC

ΦΦ=

ΦΦ=−−

−−

(18.11)

MMdiagdiagMdiagM Trrrrr ΦΦ= −− 11 )( )2()( Mωζ

Page 70: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

70

∑=

=

N

r

Trr

r

rrωζ1

)M)(M(2C φφM

(18.12)

ssss

Ts ωζ M2C =φφ (18.13)

∑=

=

cN

r

Trr

r

rr

1)M)(M(2C φφωζ

M (18.14)

:cN No of specified damping ratios

∑−

=

+=

1

11 )M)(M(

ˆ2KCcN

r

Trr

r

rra φφωζM

Home Work (18.15)

where

c

c

N

Naωζ2

1 = (18.16a)

−=

c

c

N

rNrr ω

ωζζζ (18.16b)

++=

=

= NNNs

Ns

ccN

sN

c

s

c

c,),2(),1(,

,,2,1 value, specified

K

K

ωωζζ (18.17)

Example 18.1

01.021 == ζζ

660.29 294.13

2

1

==

ωω

Determine 43 and ζζ , and C Solution

882.55079.41

4

3

=

=

ωω

Page 71: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

71

a. From Eq. 18.15 Ta )M)(M(

ˆ2KC 111

111 φφωζ

+=

M (1)

where

2

21

2ωζ

=a (2a)

−=

2

1211

ˆωωζζζ (2b)

Thus,

41 107431.6

660.29)01.0(2 −×==a (3a)

31 105179.5

660.29294.1301.001.0ˆ −×=

−=ζ (3b)

=

=

70518.099310.055820.100000.1

23506.049655.077910.000000.1

3000020000200001

M 1φ (4)

−−−

−−−

=

73003520

02310011

800K (5)

−−−

−−−

=

80153.358258.105611.003601.058258.174760.299987.005071.0

05611.099987.074233.145988.003601.005071.045988.059051.0

C (6)

b. From Eq. 18.17b,

4,3,2

2 =

= ss

s ωωζζ (7)

Page 72: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

72

0188.0660.29882.5501.0

0138.0660.29079.4101.0

4

3

=

=

=

=

ζ

ζ (8)

Assume Rayleigh Damping 01.021 == ζζ 660.29 294.13 21 == ωω

882.55079.41

4

3

=

=

ωω

iii ξωβωα 22 =+

0.18359 )294.13(04656.0)01.0)(294.13(2

0004656.042.954

2

)294.1366.29)(294.1366.29()01.0)(366.16(2

)01.0)(660.29(2)660.29()01.0)(294.13(2)294.13(

2

2

2

=−=

==

+−=

=+

=+

α

β

βαβα

0.0138) with (compare 0118.0 2(41.079)

41.079)0.0004656(0.18359

20004656.018359.0

2

3

23

3

=

+=

+=

ωωξ

• Caughey series

srsTr ≠= ,0Cφφ Proportional Damping (18.1)

If CKMKCM 11 −− = , (18.2) then (18.1) is satisfied

Page 73: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

73

Assume that the p damping ratios )~1( pii =ξ are given to define C. Then a damping matrix that satisfies the relation is obtained using the Caughey series,

∑−

=

−=1

0

1 ][p

k

kk KMaMC (9.57)

where the coefficients )~1( pkk =α are calculated from the simultaneous equations. Note that with p=2, (9.57) reduces to Rayleigh damping, as specified as

KMC βα += and

++++= −

−32

13

210

21 p

ipiii

i aaaa ωωωω

ξ L (9.58)

Note that (9.57) satisfies (18.2)

Approximation of [C] Example 9.11 Approximation of [C]

)(][][][ tRUKUCUM =++ &&&

)(R210141

012

5.00

1.0

21

121

tUUU =

−−−

−+

+

&&& (a)

Page 74: sdvc.kaist.ac.krsdvc.kaist.ac.kr/course/ce514/ch15.pdf · 1 Chapter15. DYNAMIC RESPONSE OF MDOF SYSTEMS: MODE-SUPERPOSITION METHOD Dynamic Response - Direct Integration Methods: efficient

74

−−

=Φ6

42

;

211

21

210

21

211

21

2

Let ][ XU Φ=

)(][]][[][]][[][]][[][ tRXKXCXM TTTT Φ=ΦΦ+ΦΦ+ΦΦ &&&

=

+

−−

−−+

3

2

1

)X(6

42

)(X3.022.03.0

22.06.022.03.022.03.0

)(XRRR

ttt &&& (b)

where

)(R

21

21

21

10121

21

21

3

2

1

tRRR

−−

−=

Note that ]][[] ΦΦ CT is not diagonal Neglecting the off-diagonal elements of the coefficient matrix of )(tX&

=

+

+

3

2

1

)X(6

42

)(X3.000

06.00003.0

)(XRRR

ttt &&&

Note: Uncoupled equations