SDH Marconi

72
Training Document SDH 1 SDH Synchronous Digital Hierarchy

Transcript of SDH Marconi

Page 1: SDH Marconi

Training Document SDH1

SDHSynchronous Digital Hierarchy

Page 2: SDH Marconi

Training Document SDH2

WHAT is SDH ?•Background and motivation for SDH•Limitation of today’s high capacity network•Advantages of SDH

Page 3: SDH Marconi

Training Document SDH3

Definition of SDHSDH is stands for

Synchronous Digital Hierarchyand is :

•An International Standard for a high capacity optical telecommunication network

•A synchronous digital transport system aimed at providing a more simple, economical, and flexible telecommunications network infrastructure.

Page 4: SDH Marconi

Training Document SDH4

Changing Network Requirements

TODAY TOMORROW

POINT TO POINTTRANSMISSION

TELECOMMUNICATIONNETWORKING

SUPPORTED BY SUPPORTED BY

MANUAL APPROACHTO NETWORK MANAGEMENT

AND MAINTENANCE

COMPUTER-BASEDINTEGRATED NETWORK

MANAGEMENT AND MAINTENANCE

FASTER PROVISIONING OFCIRCUITS AND SERVICES

CUSTOMER NEEDS

Page 5: SDH Marconi

Training Document SDH5

PDH Systems Worldwide

2048 kbit/s

64 kbit/s

x 4

x 30/31x 24

x 3

x 7x 5

x 3

Japan USA-ANSI

Europe -ETSI

primary rate

.

.

.

32064 kbit/s

x 3

97728 kbit/s

397200 kbit/s

x 4

x 4

34368 kbit/s

139264 kbit/s

x 4

564992 kbit/s

x 4

8448 kbit/s

44736 kbit/s

274176 kbit/s

x 6

1544 kbit/s

6312 kbit/s

x 4

Page 6: SDH Marconi

Training Document SDH6

Limitations of Today’s High Capacity Network

• Inflexible, and expensive for telecommunication networking -based on step-by-step asynchronous multiplexing

•Extremely limited network management and maintenance support capabilities - no spare signal capacity in plesiochronous frame structures

• Higher rate line systems are proprietary. -no possibility of inter-working

2/88/34

34/140MUX

2 Mbit/s channels

2/88/34

34/140MUX

2 Mbit/s channels

2/88/34

34/140MUX

2/88/34

34/140MUX

2 Mbit/s channels

140Mbit/s 140Mbit/s

Page 7: SDH Marconi

Training Document SDH7

Advantages of SDH ( I )• Designed for cost effective, simplified add & drop Function - Compared to the older PDH system, low bit rate channels can be easily extracted from and inserted into the high-speed bit streams in SDH. It is now no longer necessary to apply the complex and costly procedure of demultiplexing then re-multiplexing the plesiosynchronous structure.

140 Mbit/s

34 Mbit/s

2 Mbit/s

STM-1

FDDI

ATM

STM-N

• Reliability -Modern SDH networks include various automatic back-up circuit and repair mechanisms which are designed to cope with system faults and are monitored by management. As a result, failure of a link or an NE does not lead to failure of the entire network.

Page 8: SDH Marconi

Training Document SDH8

Advantages of SDH ( II )• High Transmission rates -Transmission rates of up to 10Gbps can be achieved in modern SDH systems making it the most suitable technology for backbones-the superhighways in today’s telecommunication networks.

10 Gbit/s

155 Mbit/s

622 Mbit/s

2.5 Gbit/s

STM-1 STM-16 STM-64STM-4• Future-proof platform for new services -SDH is the ideal platform for a wide range of services including POTS, ISDN, mobile radio, and data communications (LAN, WAN, etc.). It is also able to handle more recent services such as video on demand and digital video broadcasting via ATM.

Page 9: SDH Marconi

Training Document SDH9

Advantages of SDH ( III )

• Interconnection -SDH makes it much easier to set up gateways between different network providers and to SONET systems. The SDH interfaces are globally standardized, making it possible to combine NEs from different manufacturers into a single network thus reducing equipment costs. -The trend in transport networks is toward ever-higher bit rates, such as STM-256 (time division multiplex, TDM). The current high costs of such NEs however are a restricting factor. The alternative lies in dense wavelength division multiplexing (DWDM), a technology enabling the multiple use of single mode optical fibers. As a result, a number of wavelengths can be used as carriers for the digital signals and transmitted simultaneously through the fibers.

• Provide built-in signal capacity for advanced network management and maintenance capabilities -With SDH, network providers can react quickly and easily to the requirements of their customers. For example, leased lines can be switched in a matter of minutes. The network provider can use standardized network elements (NE) that can be controlled and monitored from a central location via a telecommunications management network (TMN) system.

Page 10: SDH Marconi

Training Document SDH10

Synchronous Network Structure

2Mbit/s 34Mbit/s 140Mbit/s STM-1 STM-4

STM-1 / STS-3c Gateway to SONET

TM

DXC

ADMADM ATMSwitch

STM-4/162Mbit/s

34Mbit/s

140Mbit/s

STM-1

LAN

2Mbit/s

ADM

STM-1

STM-1, STM-4

2Mbit/s

8Mbit/s34Mbit/s

140Mbit/s

ADM : Add Drop MultiplexerDXC : Digital Cross ConnectTM : Terminal MultiplexerDSC: Digital Switching CenterLAN: Local Area Network

DSC

Page 11: SDH Marconi

Training Document SDH11

STM-1 Frame Structure

Page 12: SDH Marconi

Training Document SDH12

STM-1 Frame

270 columns9 rows

capacity:270 bytes x 9= 2430 Bytes

frame length:125 µs

Pointer

RSOH

MSOH

1 91

9

9 lines Payload

270 bytes

0 125 µs

Page 13: SDH Marconi

Training Document SDH13

Frame Structure of the STM-1 Signal

• SOH Area– operational functions– monitoring functions

– control functions

• AU-Pointer– shows the beginning of the virtual

container of the highest level

• Payload Area– transport of the data

270 bytes

Pointer

RSOH

MSOH

1 91

9

9 li

nes

Payload

0 125 µs

Page 14: SDH Marconi

Training Document SDH14

Functions and characteristics of the Section Overhead (SOH)

• includes operation, monitoring and controlling functions

• each byte is equivalent to an 64-kbit/s channel• in regenerators only the first three lines are

accessable• in multiplexers the last five lines are accessable• preserves the connections from the point of creation

until the point of decomposition

Pointer

RSOH

MSOH

1 91

9

9 li

nes

Payload

0 125 µs

270 bytes

Page 15: SDH Marconi

Training Document SDH15

Structure of the RSOH Frame Alignment

(A1, A2)

Section Trace (J0 Identfication of regenerator source)

Parity check(B1 calculated by regenerator and multiplexers)

Data communication channels(D1...D3, F1 between regenerators)

Voice communication channels(E1 between regenerators)

B1 E1

D1 D2

D4

D7

D5

D8

S1 Z1 Z1 Z2 Z2 M1 E2

D9

D6

K2

D3

F1

A2 J0A1 A1 A1 A2 A2

B2 B2 B2 K1

H3H1 H3 H3H2

D10 D11 D12

RSOH

MSOH

AU pointer

9

9

1

1

Page 16: SDH Marconi

Training Document SDH16

Structure of the MSOH

Automatic protection switching (K1, K2 Bytes)

Data communication channels (D4 to D12 between multiplexers)

Clock source information (S1)

Remote Error Indication (M1)

Voice communications channels (E2 between multiplexers)

Parity Check (B2)

B1 E1

D1 D2

D4

D7

D5

D8

S1 Z1 Z1 Z2 Z2 M1 E2

D9

D6

K2

D3

F1

A2 J0A1 A1 A1 A2 A2

B2 B2 B2 K1

H3H1 H3 H3H2

D10 D11 D12

RSOH

MSOH

AU pointer

9

9

1

1

Page 17: SDH Marconi

Training Document SDH17

STM-1 FRAME(to ITU-T

G.707)270 COLUMS(BYTES)

AU POINTER

MSOH

RSOH

C-4 (DATA PAYLOAD)

261 COLUMS(BYTES)1 9

Payload Areatransport of the data

AU-Pointer– shows the beginning of the

virtual container of the highest level

PATH OVERHEAD (POH)

Page 18: SDH Marconi

Training Document SDH18

STM-1 FRAME(to ITU-T

G.707)270 COLUMS(BYTES)

AU POINTER

MSOH

RSOH

C-4 (DATA PAYLOAD)

261 COLUMS(BYTES)1 9

260 COLUMS(BYTES)

Low RateTributary

Signal

VC PathOverHead

TUPointer

ContainerVirtual container

Low Order POH

Tributary SignalTributary Unit Frame

Page 19: SDH Marconi

Training Document SDH19

Structure of the POH

B3

C2

H4

F3

N1

J1

F2

G1

K3

POH

9

1

VC-4/ VC-3 POH

J2

N2

V5

K4

VC-12/ VC-11 POH

Parity check B3, V5/ BIP-2 calculat by path terminating point.

Alarm and performance information (V5, G1)

Signal label C2/V5

Multiframe indication for TUs (H4)

User communications channel between path elements (F2, F3)

Identification of the Path Source (Path Trace J1, J2)

Higher order path automatic protection switching.(K3,K4)

Tandem Connection monitoring (TCM) function. (N1,N2)

HO-POHHO-POH LO-POHLO-POH

Page 20: SDH Marconi

Training Document SDH20

Functions and characteristics of the Path Overhead (POH)

• includes path trace identifier, alarm signals and operational signals

• secures the transport of a container to the desired destination

Pointer

RSOH

MSOH

1 91

9

9 lin

es

Payload

0 125 µs

PO

H

270bytes

Page 21: SDH Marconi

Training Document SDH21

SynchronousMultiplexer

SynchronousMultiplexer

MultiplexerSection

MultiplexerSection

RegeneratorSection

Regenerator

Section

RegeneratorSection

RegeneratorSection

Path Section

SDH Network Section

Page 22: SDH Marconi

Training Document SDH22

SDH POINTERS

Page 23: SDH Marconi

Training Document SDH23

Difference between PDH and SDHtransport techniques

technique with frame memory (PDH)

technique with pointer processing (SDH)

Signal4

Signal1

Signal2

Signal3

transportoverhead

t = 0

t=T

t = 0

transportoverhead

t=T

Page 24: SDH Marconi

Training Document SDH24

Signal Processing

PointerPointerPayload

POH

VC-nSOH

VC - Virtual ContainerPOH - Path OverheadSOH - Section Overhead

STM-1 Signal

Page 25: SDH Marconi

Training Document SDH25

Why do we needpointer actions?

• neighbouring network elements (NEs) may have different bitrates

• in one NE the frequency of input fin may differ from the output fout

Pointer

RSOH

MSOH

1 91

9

9 li

nes

Payload

0 125 µs

PO

H

270bytes

Page 26: SDH Marconi

Training Document SDH26

Tasks of the Pointer• the pointer shows the begin of the Virtual

Container within the higher structure• adaptation of the bitrate of the VC to the

velocity of the tranport channel (AU, TU)• a flag within the pointer signals the

changes made• kind of stuffing will be signalized also

PointerPointerPayload

POHVC-nSOH

STM-1 Signal

Page 27: SDH Marconi

Training Document SDH27

AU4-PointerAU4-Pointer:

- Bytes H1, H2, H3- Byte H3 includes don’t care informationRange:0 <= X <= 782fin < foutpositive justification:- add three bytes behind H3- new pointer value = old pointer value + 1 - the new pointer value will be fixed for at least two STM-1 frames

H1H2H3

H1H2H3

VC-4

STM-1

STM-1

PointerPointer

begin of the VC-4

Page 28: SDH Marconi

Training Document SDH28

AU4-Pointer

AU4-Pointer:

fin > fout

negative justification:

- fill H3 with payload information- new pointer value = old pointer value - 1- the new pointer value will be fixed for at least two STM-1 frames

H1H2H3

H1H2H3

VC-4

STM-1

STM-1

H1H2H3STM-1

VC-4

Page 29: SDH Marconi

Training Document SDH29

SDH Multiplexing Structure and Frame Format

Page 30: SDH Marconi

Training Document SDH30

Mapping In SDH

Page 31: SDH Marconi

Training Document SDH31

Multiplexing Elements

virtual container

container

administration unit

synchronous transport module N

synchronous transport module

tributary unit group

tributary unit

POH

PTR

PTR

SOH

C-n n=1,2,3,4 bitratesG.702

VC-n m=1,2 C1, C2 n=3,4 C3, C4

TU-n n=1,2,3,4 VC-n

TUG-2 TU-1, -2

AU-n n=3,4 VC-n

STM-1 AU-n, n=3,4

STM-n N=4,16 AU-n, n=3,4

element abbreviation payload

Page 32: SDH Marconi

Training Document SDH32

SDH Multiplexing / Mapping for 2Mbit/s.

Page 33: SDH Marconi

Training Document SDH33

R: Fixed Stuff Bits

D: Data-Bits (of 2Mb/s Tributary-Signal)

O: Overhead-Bits (For future use)

C1, C2: Justification Indication-Bits-C1 = ‘0’ -> S1 = Data-Bit-C1 = ‘1’ -> S1 = Stuff-Bit-C2 = ‘0’ -> S2 = Data-Bit-C2 = ‘1’ -> S2 = Stuff-Bit

S1, S2: Actual Justification-Bits-Justification is indicated by C1, C2(Majority-Vote out of 3)

Justification –Capacity+/- 1 Bit every 500 µs -> +/- 2000 Bits (~+/- 1000 ppm)

Speed of C-12Speed of C-12136 Byte x 8 Bit / 500 136 Byte x 8 Bit / 500 µµs = 2.176 MBit/ss = 2.176 MBit/s

Container C-12 (Asynchronous Mapping for 2 MBit/s)

R R R R R R R RD D D D . . . .

. . . . D D D D

. . 256 x D . .

C1 C2 O O O R R R

R R R R R R R R

D D D D . . . .

. . . . D D D D

. . 256 x D . .

C1 C2 O O O R R R

R R R R R R R R

D D D D . . . .

. . . . D D D D

. . 256 x D . .

C1 C2 O O O R R S1

R R R R R R R R

S2 D D D D . . .

. . . . D D D D

. . 255 x D . .

R R R R R R R R

Blo

ck 1

Blo

ck 2

Blo

ck 3

Blo

ck 4

136

Byt

es (

500

µs)

1 Byte

STM-N AUG AU-4 VC-4 TUG-3 TUG-2 TU-12 VC-12 C-12 2Mbit/s

Page 34: SDH Marconi

Training Document SDH34

SDH Multiplexing Elements -(Container (C

• basic unit for tributary signals of the PDH• synchronous to the STM-1 signal• adaptation of bitrates through positive stuffing

in case of plesiochronous tributary signals• adaptation of synchronous tributaries through

fixed stuffing bits• bit stuffing mechanism

Page 35: SDH Marconi

Training Document SDH35

Virtual Container VC-12 / Mapping of C-12 into VC-12

V5

140

Byt

es

(500

µs)

1 Byte

J2

N2

K4

#1

#2

#35

#36

#37

#70

#71

#72

#105

#106

#107

#140

C-12

Block 1

C-12

Block 2

C-12

Block 3

C-12

Block 4

BIP-2 REI RFI Signal Label RDI

BIP-2: Bit Interleaved Parity 2

REI: Remote Error Indication (Old name FEBE)

RFI: Remote Failure Indication

Signal Label: Specifies the content of the VC

RDI: Remote Defect Indication (Old name=FERF)

J2: Repetitively transmitted 16-Byte Framecontaining a Path Access Point Identifier

N2: Used for Tandem Connection Monitoring

K4: APS-Channel: Automatic Protection Switching Signaling

Spare: For Future use

Speed of VC-12: 140 Byte x 8 Bit/500 Speed of VC-12: 140 Byte x 8 Bit/500 µµs= 2.240 Mbit/ss= 2.240 Mbit/s

Network Operator Byte N2

APS Channel Spare

Path Trace J2

STM-N AUG AU-4 VC-4 TUG-3 TUG-2 TU-12 VC-12 C-12 2Mbit/s

Page 36: SDH Marconi

Training Document SDH36

SDH Multiplexing Elements -Virtual Container- VC

• creation through addition of the POH

• is transported through the network as one unit

• if the VC contains several VCs, it will have a pointer area

• multi container payload through concatenation

VC-12VC-12

41

9

Page 37: SDH Marconi

Training Document SDH37

N N N N S S P P

V1 (TU-Pointer #1)

144

Byt

es

(500

µs)

V1+V2 N: New Data Flag (NDF) -Flag NOT active -> NNNN = ‘0110’ -Flag active -> NNNN = ‘1001’ (Inverted)

S: Size Indication -For TU-12 SS=’10’

P: 10-Bit Pointer Value -Range for TU-12 is 0….139 -Points to that Cell, Where the VC-12 starts (Location of V5)

V3 Used for justification -Incase of Negative Pointer Justification, this Byte is used as Auxiliary-Cell

V4 Reserved (For future Use)

Tributary Unit TU-12

V2 (TU-Pointer #2)

Cell #105

Cells #106… #138

Cell #139

Cells #1… #33

Cell #0

V3 (TU-Pointer #3)Cell #34

Cell #35

V4 (TU-Pointer #4)Cell #69

Cell #70

Cells #36… #68

Cells #71… #103

Cell #104 Speed of TU-12: 144 Byte x 8 Bit/500 Speed of TU-12: 144 Byte x 8 Bit/500 µµs= 2.304 Mbit/ss= 2.304 Mbit/s

P P P P P P P P

STM-N AUG AU-4 VC-4 TUG-3 TUG-2 TU-12 VC-12 C-12 2Mbit/s

Page 38: SDH Marconi

Training Document SDH38

Important Facts:

–The TU-12 must be locked to the Higher-Order VC (VC-3 or VC-4)

–The 10-Bit TU-Pointer points to that cell, where the V5-Byte Of the VC-12 is located (Start of VC-12)

–The VC-12 can float within the TU-12 since both may have Different Clock rates

– If the incoming VC-12 is too fast, the excess data is carried By V3. The V5-Byte moves 1 cell up in the TU-12 and the pointer value decrements by 1-> Negative Pointer Justification

– If the incoming VC-12 is too slow, the byte immediately after V3 (Cell #35) is used as Stuff-Byte to stuff the excess transport capacity of the TU-12. The V5-byte moves 1 cell down in the TU-12 and the pointer value increments by 1.-> Positive Pointer Justification

Mapping of VC-12 into TU-12

V1

V2

V3

V4

VC

-12

35 Byte

35 Byte

35 Byte

35 Byte

Page 39: SDH Marconi

Training Document SDH39

Under normal conditions the pointer is justified by 1 (Increase or Decreaseas soon as the phase different between the VC-12 and TU-12 exceeds8 Bits (1Byte). This is Indicated by inverting either the I or the D Bits of the10-Bit Pointer (Majority vote out of 5). If a random change of the pointer value becomes necessary, this is indicated by activating (inverting) the new Data Flag.

Pointer Justification on TU-12 Level

0 1 1 0 1 0 I D I D I D I D I D

Speed of TU-12:144 Byte x 8 Bit/500 µs= 2.304 Mbit/s

V1 V2V1

V2

Cell #105

Cell #139

Cell #0

V3Cell #34

Cell #35

Cell #69

Cell #70

Cell #104

V4

Inverted value of all D-Bits (Decrease)Indicates Negative JustificationInverted value of all I-Bits (Increase)Indicates Positive JustificationNegative Justification Opportunity

(Used to carry Data)

Positive Justification Opportunity(Used as Stuff-Byte)

New Data FlagSize

Page 40: SDH Marconi

Training Document SDH40

SDH Multiplexing Elements - Tributary Unit - TU

• creation through addition of a pointer to the VC

• slip free transmission of a VC also in case of plesiochronous behaviour of the network element

• the TU definition refers to the VC, the AU to STM-1

• identical to AU TU-12

Pointer

9

4

V5

2 Mbit/s 2 Mbit/s

--> C-12--> C-12

VC-12 POHVC-12 POH

41

1

Page 41: SDH Marconi

Training Document SDH41

Byte Interleaved Multiplexing of 3 x TU-12 into TUG-2 Multiframe

V1, 1

V2, 1

#105, 1

#139,1

#0, 1

V3, 1#139, 1

#35, 1

#69, 1

#70, 1

#104, 1

V4, 1

V1, 2

V2, 2

#105, 2

#139,2

#0, 2

V3, 2#139, 2

#35, 2

#69, 2

#70, 2

#104, 2

V4, 2

TU-12 #1 TU-12 #2 TU-12 #3

V1, 3

V2, 3

#105, 3

#139,3

#0, 3

V3, 3#139, 3

#35, 3

#69, 3

#70, 3

#104, 3

V4, 3

Column 1 2 3 4 5 6 7 8 9 10 11 12

V1,1 V1,2 V1,3 #105,1 #105,2 #105,3

#139,1 #139,2 #139,3

V2,1 V2,2 V2,3 #0,1 #0,2 #0,3

#34,1 #34,2 #34,3

V3,1 V3,2 V3,3 #35,1 #35,2 #35,3

#69,1 #69,2 #69,3

V4,1 V4,2 V4,3 #70,1 #70,2 #70,3

#104,1 #104,2 #104,3

TUG-2 multiframe

125

µs1

25 µ

s12

5 µs

125

µs

STM-N AUG AU-4 VC-4 TUG-3 TUG-2 TU-12 VC-12 C-12 2Mbit/s

Page 42: SDH Marconi

Training Document SDH42

1 2 3 4 5 6 7 8 9 10 11 12

Row 1Row 2Row 3Row 4Row 5Row 6Row 7Row 8Row 9

Column

TUG-2 #1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2476 77 78 79 80 81 82 83 84 85 86

Row 1Row 2Row 3Row 4Row 5Row 6Row 7Row 8Row 9

Column

NP

IT

UG

-3 S

TU

FF

TU

G-3

ST

UF

F

1 2 3

Row 1Row 2Row 3Row 4Row 5Row 6Row 7Row 8Row 9

Column

TUG-2 #212 1 2 3

Row 1Row 2Row 3Row 4Row 5Row 6Row 7Row 8Row 9

Column

TUG-2 #312 1 2 3

Row 1Row 2Row 3Row 4Row 5Row 6Row 7Row 8Row 9

Column

TUG-2 #712

Byte Interleaved Multiplexing of 7 x TUG-2 into 1 TUG-3

1--------------------------8

Row 1Row 2Row 3

Bit

NPI

1 0 0 1 X X 1 1

1 1 1 0 0 0 0 0

X X X X X X X X

TUG-3

STM-N AUG AU-4 VC-4 TUG-3 TUG-2 TU-12 VC-12 C-12 2Mbit/s

Page 43: SDH Marconi

Training Document SDH43

1 2 3 4 5 6

Row 1Row 2Row 3Row 4Row 5Row 6Row 7Row 8Row 9

Column

TUG-3 #284 85 86

TU

G-3

# 2

ST

UF

F

TU

G-3

# 2

ST

UF

FNP

I

1 2 3 4 5 6

Row 1Row 2Row 3Row 4Row 5Row 6Row 7Row 8Row 9

Column

TUG-3 #384 85 86

TU

G-3

# 2

ST

UF

F

TU

G-3

# 2

ST

UF

FNP

I

1 2 3 4 5 6

Row 1Row 2Row 3Row 4Row 5Row 6Row 7Row 8Row 9

Column

TUG-3 #184 85 86

TU

G-3

# 2

ST

UF

F

TU

G-3

# 2

ST

UF

FNP

I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 251 252 253 254 255 256 257 258 259 260 261

Row 1Row 2Row 3Row 4Row 5Row 6Row 7Row 8Row 9

Column

NP

I #1

VC

-4 P

ath

OH

VC

-4 S

tuff

Byte Interleaved Multiplexing of 3 x TUG-3 (Containing TUG-2s) into VC-4

NP

I #2

NP

I #3

TU

G-3

# 1

ST

UF

F

TU

G-3

# 2

ST

UF

F

TU

G-3

# 3

ST

UF

F

VC

-4 S

tuff

TU

G-3

# 1

ST

UF

F

TU

G-3

# 2

ST

UF

F

TU

G-3

# 3

ST

UF

F

VC-4

STM-N AUG AU-4 VC-4 TUG-3 TUG-2 TU-12 VC-12 C-12 2Mbit/s

Page 44: SDH Marconi

Training Document SDH44

SDH Multiplexing Elements - Tributary Unit Group - TUG

• multiplexing of several TUs into a VC

• identical to AUG

Page 45: SDH Marconi

Training Document SDH45

Administrative Unit AU-41 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 2

64

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Column 265

266

267

268

269

270

#522

#609

#696

#0

#87

#174

#261

#348

#435

#523

#610

#697

#1

#88

#175

#262

#349

#524

#611

#698

#2

#89

#176

#263

#350

#607

#694

#781

#85

#172

#259

#346

#433

#608

#695

#782

#86

#173

#260

#347

#434

#436 #437 #520 #521

H1 Y Y H2 1* 1* H3 H3 H3

AU-4Payload

N N N N S S P P P P P P P P P P

AU-4 Pointer

H1+H2 N: New Data Flag (NDF) -Flag NOT active -> NNNN = ‘0110’ -Flag active -> NNNN = ‘1001’ (Inverted)

S: Size Indication -Not Specified on AU-4 Level (Don’t care Bits)

P: 10-Bit Pointer Value -Range for TU-12 is 0….728 -Points to that Cell, Where the VC-4 starts

Y-Bytes: Stuff Byte (Value=93 hex)-Used as “H1” in AU-3 Pointer

1*-Bytes: Stuff Byte (Value=FF hex)-Used as “H2” in AU-3 Pointer

H3-Bytes: Used for justification- Incase of Negative pointerjustification, these bytes areused as Auxiliary-Cells

STM-N AUG AU-4 VC-4 TUG-3 TUG-2 TU-12 VC-12 C-12 2Mbit/s

Page 46: SDH Marconi

Training Document SDH46

Pointer Justification on AU-4 Level

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Column

H1 Y Y H2 1* 1* H3 H3 H3

0 1 1 0 1 0 I D I D I D I D I D

H1 H2

Inverted value of all D-Bits (Decrease)Indicates Negative Justification

Inverted value of all I-Bits (Increase)Indicates Positive Justification

New Data Flag Size

Under normal conditions the pointer is justified by 1 (Increase or Decrease) as soon as The phase different between the VC-4 and AU-4 exceeds (3 Byte). This is Indicated by inverting either the I- or the D-Bits of the 10-Bit Pointer (Majority vote out of 5) If a random change of the pointer value becomes necessary, this is indicated by activating (inverting the new Data Flag

Negative Justification Opportunity(Used to carry Data)

Positive Justification Opportunity(Used as Stuff-Byte)

Page 47: SDH Marconi

Training Document SDH47

Administrative Unit Group AUG

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Column

Capacity of AUG: 1 x AU-4 (European standard)

Payload

AU-Pointer(s)

267

268

269 270

STM-N AUG AU-4 VC-4 TUG-3 TUG-2 TU-12 VC-12 C-12 2Mbit/s

Page 48: SDH Marconi

Training Document SDH48

SDH Multiplexing Elements - Administrative Unit Group - AUG

• multiplexing of several AUs into a STM-N

Page 49: SDH Marconi

Training Document SDH49

D E F GBA

GFEDCBAGFEDCBAGFEDCBA

C

a b c

TUG

TU POINTER

TU

VCC

PLESIOCHRONOUSSTREAM

STUFF ANDJUSTIFICATION BITS

PATHOVERHEAD

a b c

HIGHER LEVEL VC

AU

STM-1

ADMINISTRATIVEUNIT (AU)POINTERS

SOH

POH

SOH = SECTION OVERHEAD

VC = VRITUAL CONTAINER

POH = PATH OVERHEAD

TUG = TRIBUTARY UNIT GROUP

9 Byte 261 Bytes

9 B

ytes

STRUCTURE OF STM-1

FRAME

Page 50: SDH Marconi

Training Document SDH50

SDH Multiplexing / Mapping for 140Mbit/s.

Page 51: SDH Marconi

Training Document SDH51

How to integrate plesiochronous signals?into the synchronous transport module

synchronoustransport module

administrationunit

virtualcontainer

container

Path Overhead

Pointer

Section Overhead

plesiochronousSignal (140Mbit/s)

VC-4

AU-4/ AUG1

STM-1

C-4

Page 52: SDH Marconi

Training Document SDH52

Asynchronous Mapping for 140 MBit/s into C-4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D C R R R C R R R C R R R C R R R C R C

260 Bytes

13 Bytes

Note: Only 1 of 9 Subframes is shown (1 Subframe=20 Blocks = 1 Row of a C-4)

Block

R: Fixed Stuff Bits

D: Data-Bits (of 140Mb/s Tributary-Signal)

O: Overhead-Bits (For future use)

C: Justification Indication-Bits C = ‘0’ -> S = Data-Bit C = ‘1’ -> S = Stuff-Bit

S: Actual Justification-Bits Justification is indicated by C-Bits (Majority-Vote out of 5)

D D D D D D D D D D D . . . 96 x D . . . D D D

Byte 1 Byte 2……13

D-Block

C-Block

R-Block

C R R R R R O O D D D . . . 96 x D

R R R R R R R R D D D . . . 96 x D

D D D D D D S R D D D . . . 96 x D

. . . D D D

. . . D D D

. . . D D D S-Block

Page 53: SDH Marconi

Training Document SDH53

Virtual Container VC-4 (C-4 Structure)

1 2 3 4 5 6 7 8

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Column

Speed of VC-4261 x 9 Byte x 8 Bit / 125 µs = 150.336 MBit/s

C4

259

260

261

J1

B3

C2

G1

F2

H4

F3

K3

N1

VC-4 Path Overhead (Higher Order POH)

STM-N AUG AU-4 VC-4 C-4

Page 54: SDH Marconi

Training Document SDH54

Administrative Unit AU-41 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 2

64

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Column 265

266

267

268

269

270

#522

#609

#696

#0

#87

#174

#261

#348

#435

#523

#610

#697

#1

#88

#175

#262

#349

#524

#611

#698

#2

#89

#176

#263

#350

#607

#694

#781

#85

#172

#259

#346

#433

#608

#695

#782

#86

#173

#260

#347

#434

#436 #437 #520 #521

H1 Y Y H2 1* 1* H3 H3 H3

AU-4Payload

N N N N S S P P P P P P P P P P

AU-4 Pointer

H1+H2 N: New Data Flag (NDF) -Flag NOT active -> NNNN = ‘0110’ -Flag active -> NNNN = ‘1001’ (Inverted)

S: Size Indication -Not Specified on AU-4 Level (Don’t care Bits)

P: 10-Bit Pointer Value -Range for TU-12 is 0….728 -Points to that Cell, Where the VC-4 starts

Y-Bytes: Stuff Byte (Value=93 hex)-Used as “H1” in AU-3 Pointer

1*-Bytes: Stuff Byte (Value=FF hex)-Used as “H2” in AU-3 Pointer

H3-Bytes: Used for justification- Incase of Negative pointerjustification, these bytes areused as Auxiliary-Cells

STM-N AUG AU-4 VC-4 C-4

Page 55: SDH Marconi

Training Document SDH55

STM#1

AU-4VC-4

C-4

Payload

POH

AU-PTR

R-SOH

M-SOH

AU Administrative UnitVC Virtual ContainerC Container

270 Bytes9 1

3

1

5

STM-1 Frame

Page 56: SDH Marconi

Training Document SDH56

SDH Multiplexing / Mapping for 34Mbit/s.

Page 57: SDH Marconi

Training Document SDH57

Asynchronous Mapping for 34 MBit/s into C-3

R R R R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R R R R

R R R R

R R R R R C R R R R R R R R R C

R R R R R C R R R R R R R R R C

R R R R R C R R R R R R R R R S

84 Bytes

4 Bytes 1 Byte

Note: Only 1 of 3 Subframes (3 Rows) are shown

Block

Blks 21….40

Blks 41….60

R: Fixed Stuff Bits

D: Data-Bits (of 34Mb/s Tributary-Signal

O: Overhead-Bits (For future use)

C1, C2: Justification Indication-Bits Cx = ‘0’ -> Sx = Data-Bit Cx = ‘1’ -> Sx = Stuff-Bit

S1, S2: Actual Justification-Bits Justification is indicated by C1, C2-Bits (Majority-Vote out of 5)

R R R R R R R R D D D . . . 24 x D . . . D D D

Byte 1 Byte 2 Byte 3 Byte 4

R-Block

R R R R R R C1C2 D D D . . . 24 x DC-Block

R R R R R R R RS-Block

R R R R R R R R-Block

. . . D D D

D D D D D D D DR R R R R R R S1 S2 D D D D D D D

Page 58: SDH Marconi

Training Document SDH58

Virtual Container VC-3

1 2 3 4 5 6 7 8

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Column

Speed of VC-385 x 9 Byte x 8 Bit / 125 µs = 48.960 MBit/s

C3

83 84 85

J1

B3

C2

G1

F2

H4

F3

K3

N1

VC-3 Path Overhead (Lower Order POH)

STM-N AUG AU-4 VC-4 TUG-3 TU-3 VC-3 C-3 34M

Page 59: SDH Marconi

Training Document SDH59

N N N N S S P P P P P P P P P P

H1+H2 N: New Data Flag (NDF) -Flag NOT active -> NNNN = ‘0110’ -Flag active -> NNNN = ‘1001’ (Inverted)

S: Size Indication -Not Specified on TU-3 Level (Don’t care Bits)

P: 10-Bit Pointer Value -Range for TU-3 is 0….764 -Points to that Cell, Where the VC-3 starts (Location of J1)

H3-Bytes: Used for justification- Incase of Negative pointerjustification, these bytes are used as Auxiliary-Cell.

Tributary Unit TU-3

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

1 2 3 4 5 6 7 8 9Column

TU-3Payload

83 84 85

H1

H2

H3

Fix

ed S

tuff

TU-3 Pointer

82

86

Page 60: SDH Marconi

Training Document SDH60

Pointer Justification on TU-3 Level

0 1 1 0 1 0 I D I D I D I D I D

H1 H2

Inverted value of all D-Bits (Decrease)Indicates Negative Justification

Inverted value of all I-Bits (Increase)Indicates Positive Justification

New Data Flag Size

Under normal conditions the pointer is justified by 1 (Increase or Decreases soon as The phase different between the VC-3 and TU-3 exceeds 1Byte. This is Indicated by inverting either the I- or the D-Bits of the 10-Bit Pointer (Majority vote out of 5)If a random change of the pointer value becomes necessary, this is indicated by activating (inverting the new Data Flag

1 2 3 4 5 6

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Column 85

H1

H2

H3

Fix

ed S

tuff

86

Positive Justification Opportunity(Used as Stuff-Byte)

Negative Justification Opportunity(Used to carry Data)

STM-N AUG AU-4 VC-4 TUG-3 TU-3 VC-3 C-3 34M

Page 61: SDH Marconi

Training Document SDH61

Tributary Unit Group TUG-3 (TU-3 Structure)

1 2 3 4 5 6 7 8

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Column 85

TU

-Poi

nte

r

86

Speed of TUG-385 x 9 Byte x 8 Bit / 125 µs = 48.960 MBit/s

84

TUG-3Payload

STM-N AUG AU-4 VC-4 TUG-3 TU-3 VC-3 C-3 34M

Page 62: SDH Marconi

Training Document SDH62

1 2 3 4 5 6

Row 1Row 2Row 3Row 4Row 5Row 6Row 7Row 8Row 9

Column

TUG-3 #284 85 86

TU

G-3

# 2

ST

UF

F

TU

G-3

# 2

ST

UF

F

1 2 3 4 5 6

Row 1Row 2Row 3Row 4Row 5Row 6Row 7Row 8Row 9

Column

TUG-3 #384 85 86

TU

G-3

# 2

ST

UF

F

TU

G-3

# 2

ST

UF

F

1 2 3 4 5 6

Row 1Row 2Row 3Row 4Row 5Row 6Row 7Row 8Row 9

Column

TUG-3 #184 85 86

TU

G-3

# 2

ST

UF

F

TU

G-3

# 2

ST

UF

F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 251 252 253 254 255 256 257 258 259 260 261

Row 1Row 2Row 3Row 4Row 5Row 6Row 7Row 8Row 9

Column

Byte Interleaved Multiplexing of 3 x TUG-3 (Containing TUG-3s) into VC-4

VC-4

H1

H2

H3

H1

H2

H3

H1

H2

H3

VC

-4 P

ath

OH

VC

-4 S

tuff

VC

-4 S

tuff

TU

G-3

# 1

ST

UF

F

TU

G-3

# 2

ST

UF

F

TU

G-3

# 3

ST

UF

F

H1

H2

H3

H1

H2

H3

H1

H2

H3

STM-N AUG AU-4 VC-4 TUG-3 TU-3 VC-3 C-3 34M

Page 63: SDH Marconi

Training Document SDH63

STM-1 Multiplexing and Pointer Structure

J1

RSOHRSOH

AU-4 PointerAU-4 Pointer

MSOHMSOHV

C-4

PO

HJ1

PO

HV

C-3

TU-3Pointer

TU-2Pointer

TU-12Pointer

NPI R

R R

1

9

9

9

9

9

9

9

9

2709

261

86

85

86

12124

STM-1STM-1

VC-4VC-4

TU-3TU-3

VC-3VC-3

TUG-3TUG-3

TU-2TU-2

VC-12VC-12(VC-11)(VC-11)

VC-2VC-2

TUG-2TUG-2TU-12TU-12

34 Mbit/s, 45 Mbit/s --> C-334 Mbit/s, 45 Mbit/s --> C-3

140 Mbit/s --> C-4140 Mbit/s --> C-4

V5

2 Mbit/s 2 Mbit/s --> C-12--> C-12

VC-12 POHVC-12 POH

V5

6 Mbit/s --> C-26 Mbit/s --> C-2

VC-2 POH 12

4

R

Page 64: SDH Marconi

Training Document SDH64

STM-1 Signals as Transport Pipe

A STM-1 Signal Can Transport:

• One 140 Mbit/s PDH Signal

• Three 34 Mbit/s PDH Signals

• Sixty-three 2 Mbit/s PDH Signals

• Combinations, eg. twenty-one 2 Mbit/s and Two 34 Mbit/s PDH Signals

• ATM cells, FDDI, DQDB Protocols, etc.

Page 65: SDH Marconi

Training Document SDH65

SynchronousByte-interleavedmultiplexing

Page 66: SDH Marconi

Training Document SDH66

Error and Alarm Monitoring

Page 67: SDH Marconi

Training Document SDH67

Error and Alarm monitoring

Page 68: SDH Marconi

Training Document SDH68

Anomalies and defects in SDH

SDH Anomalies/Defects Detection criteria OH Byte

LOS Loss of signal Drop in incoming optical power level causes high bit error rate

OOF Out of frame A1, A2 errored for ≥ 625 µs A1,A2

LOF Loss of frame If OOF persists for ≥ 3 ms A1,A2

RS BIP Regenerator Section BIP Mismatch of the recovered B1Error Error (B1) and computed BIP-8 covers

the whole STM-N frame

RS-TIM Regenerator Section Mismatch of the accepted J0 Trace Identifier Mismatch and expected Trace Identifier in byte J0

Page 69: SDH Marconi

Training Document SDH69

Anomalies and defects in SDH

SDH Anomalies/Defects Detection criteria OH Byte

MS BIP Error Multiplex Section BIP Mismatch of the recovered B2 Error (B2) and computed N x BIP-24

covers the whole frame except RSOH

MS-AIS Multiplex Section K2 (bits 6, 7, 8) = 111 K2 Alarm Indication Signal for ≥ 3 frames

MS-REI Multiplex Section Number of detected B2 M1 Remote Error Indication errors in the sink

side encoded in byte M1 of the source side.

MS-RDI Multiplex Section K2 (bits 6, 7 8) = 111 for K2 Remote Defect Indication ≥ z frames

(z = 3 to 5)

Page 70: SDH Marconi

Training Document SDH70

Anomalies and defects in SDH

SDH Anomalies/Defects Detection criteria OH Byte

AU-AIS Administrative Unit All ones in the AU pointer H1, H2 Alarm Indication Signal bytes H1 and H2

AU-LOP Administrative Unit 8 to 10 NDF enable 8 to 10 H1, H2 Loss of Pointer invalid pointers

HP BIP Error HO Path BIP Error (B3) Mismatch of the recovered B3 and computed BIP-8 covers entire VC-n

HP-UNEQ HO Path Unequipped C2 = 0 for ≥ 5 frames C2

HP-TIM HO Path Trace Identifier Mismatch of the accepted J1 Mismatch and expected Trace Identifier in byte J1

Page 71: SDH Marconi

Training Document SDH71

HP-REI HO Path Number of detected B3 G1 Remote Error Indication errors in the sink side encoded in byte G1 (bits 1, 2, 3, 4) of the source side.

HP-RDI HO Path G1 (bit 5) = 1 for ≥ z G1 Remote Defect Indication frames (z = 3, 5 or 10)

HP-PLM HO Path Mismatch of the accepted C2 Payload Label Mismatch and expected Payload Label in byte C2

TU-LOM Loss of Multiframe H4 (bits 7, 8) multiframe H4 X = 1 to 5 ms not recovered for X ms

TU-AIS Tributary Unit All ones in the TU pointer V1-V4 Alarm Indication Signal bytes V1 and V2

Anomalies and defects in SDH

SDH Anomalies/Defects Detection criteria OH Byte

Page 72: SDH Marconi

Training Document SDH72

Anomalies and defects in SDH

SDH Anomalies/Defects Detection criteria OH Byte

TU-LOP Tributary Unit 8 to 10 NDF enable 8 to 10 V1,V2 Loss of Pointer invalid pointers

LP BIP Error LO Path BIP Error Mismatch of the recovered V5 and computed BIP-8 (B3) or BIP-2 (V5 bits 1, 2)

covers entire VC-n.

LP-UNEQ LO Path Unequipped VC-3: C2 = 0 for ≥ 5 frames V5 frames VC-m (m = 2, 11,

12): V5 (bits 5, 6, 7) = 000 for ≥ 5 multiframes

LP-TIM LO Path Trace Mismatch of the accepted V5 Identifier Mismatch and expected Trace Identifier in byte J1

(VC-3) or J2