Scribble regulates an EMT polarity pathway through ......Scrib regulates junctions through EMT...

10
Journal of Cell Science Scribble regulates an EMT polarity pathway through modulation of MAPK-ERK signaling to mediate junction formation Imogen A. Elsum 1 , Claire Martin 1 and Patrick O. Humbert 1,2,3,4, * 1 Cell Cycle and Cancer Genetics, Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia 2 The Sir Peter MacCallum Department of Oncology, Melbourne, Australia 3 Department of Pathology, University of Melbourne, Parkville, Australia 4 Department of Molecular Biology and Biochemistry, University of Melbourne, Parkville, Australia *Author for correspondence ([email protected]) Accepted 23 May 2013 Journal of Cell Science 126, 3990–3999 ß 2013. Published by The Company of Biologists Ltd doi: 10.1242/jcs.129387 Summary The crucial role the Crumbs and Par polarity complexes play in tight junction integrity has long been established, however very few studies have investigated the role of the Scribble polarity module. Here, we use MCF10A cells, which fail to form tight junctions and express very little endogenous Crumbs3, to show that inducing expression of the polarity protein Scribble is sufficient to promote tight junction formation. We show this occurs through an epithelial-to-mesenchymal (EMT) pathway that involves Scribble suppressing ERK phosphorylation, leading to downregulation of the EMT inducer ZEB. Inhibition of ZEB relieves the repression on Crumbs3, resulting in increased expression of this crucial tight junction regulator. The combined effect of this Scribble-mediated pathway is the upregulation of a number of junctional proteins and the formation of functional tight junctions. These data suggests a novel role for Scribble in positively regulating tight junction assembly through transcriptional regulation of an EMT signaling program. Key words: Polarity, Scribble, ERK, Tight junctions, EMT, Mammary epithelium Introduction The formation and maintenance of apically located tight junctions is key for the establishment of correct tissue architecture and epithelial cell polarity. Major functions attributed to tight junctions include the regulation of paracellular permeability and a ‘fence’ or physical barrier function to control the diffusion of lipids and proteins within the plasma membrane thus contributing to the organization of the apical and basal domains (Ebnet, 2008; Shin et al., 2006). There are three evolutionary conserved polarity complexes; the Scribble, Par and Crumbs complexes that act as regulators of apical-basal polarity. Members of each of these complexes have been reported to play important roles in establishment and maintenance of tight junctions (Chen and Macara, 2005; Fogg et al., 2005; Hurd et al., 2003; Ivanov et al., 2010; Joberty et al., 2000; Lemmers et al., 2004; Michel et al., 2005; Qin et al., 2005; Shin et al., 2005; Straight et al., 2004; Stucke et al., 2007; Suzuki et al., 2001; Suzuki et al., 2009). Most of these studies have focused on the Par and Crumbs complexes, which are intimately associated with tight junctions however, more recently an important role for the Scribble complex has also emerged. Scribble knockdown in MDCK cells results in a delay in tight junction assembly and impaired recruitment of E-cadherin to the membrane (Qin et al., 2005), and loss of Scribble in human colon cells has been shown to impair tight junction assembly (Ivanov et al., 2010). Members of the Scribble complex, Scribble, Discs Large (Dlg) and Lethal Giant Larvae (Lgl), were all identified in Drosophila melanogaster as neoplastic tumor suppressors, with loss of function disrupting apical basal polarity and junctional integrity, and inducing inappropriate proliferation and tissue overgrowth (Bilder and Perrimon, 2000; Mechler et al., 1985; Woods and Bryant, 1991). Since then, Scribble has been implicated in numerous cellular processes including proliferation, differentiation, apoptosis, stem-cell maintenance, migration and vesicle trafficking (Elsum et al., 2012; Humbert et al., 2008). Human Scribble is a functional homologue of Drosophila Scribble (Dow et al., 2003) and is a target for ubiquitin-mediated degradation by the human papilloma virus (HPV) E6 proteins and E6AP protein ligase (Nakagawa and Huibregtse, 2000). HPV is frequently associated with cervical carcinomas, which often show decreased Scribble expression (Nakagawa et al., 2004). Other oncogenic viruses such as human T-cell leukemia virus type 1 (HTLV-1) Tax, a causative agent for adult T-cell leukemia, are known to target Scribble (Elsum et al., 2012; Javier and Rice, 2011; Okajima et al., 2008). Additionally, mislocalization or deregulated Scribble expression has been reported in a variety of epithelial cancers (Gardiol et al., 2006; Kamei et al., 2007; Navarro et al., 2005; Ouyang et al., 2010; Pearson et al., 2011; Vaira et al., 2011; Zhan et al., 2008). The mechanism by which Scribble influences tumorigenesis is unclear, yet may lie in the interactions with oncogenic signaling cascades such as Ras, Wnt and GPCR signaling (Humbert et al., 2008). Tight junctions are recognized to have important roles in acting as signaling platforms in a variety of cellular processes (Balda and Matter, 2008; Balda and Matter, 2009; Farkas et al., 3990 Research Article

Transcript of Scribble regulates an EMT polarity pathway through ......Scrib regulates junctions through EMT...

  • Journ

    alof

    Cell

    Scie

    nce

    Scribble regulates an EMT polarity pathway throughmodulation of MAPK-ERK signaling to mediatejunction formation

    Imogen A. Elsum1, Claire Martin1 and Patrick O. Humbert1,2,3,4,*1Cell Cycle and Cancer Genetics, Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia2The Sir Peter MacCallum Department of Oncology, Melbourne, Australia3Department of Pathology, University of Melbourne, Parkville, Australia4Department of Molecular Biology and Biochemistry, University of Melbourne, Parkville, Australia

    *Author for correspondence ([email protected])

    Accepted 23 May 2013Journal of Cell Science 126, 3990–3999� 2013. Published by The Company of Biologists Ltddoi: 10.1242/jcs.129387

    SummaryThe crucial role the Crumbs and Par polarity complexes play in tight junction integrity has long been established, however very few

    studies have investigated the role of the Scribble polarity module. Here, we use MCF10A cells, which fail to form tight junctions andexpress very little endogenous Crumbs3, to show that inducing expression of the polarity protein Scribble is sufficient to promote tightjunction formation. We show this occurs through an epithelial-to-mesenchymal (EMT) pathway that involves Scribble suppressing ERK

    phosphorylation, leading to downregulation of the EMT inducer ZEB. Inhibition of ZEB relieves the repression on Crumbs3, resulting inincreased expression of this crucial tight junction regulator. The combined effect of this Scribble-mediated pathway is the upregulationof a number of junctional proteins and the formation of functional tight junctions. These data suggests a novel role for Scribble in

    positively regulating tight junction assembly through transcriptional regulation of an EMT signaling program.

    Key words: Polarity, Scribble, ERK, Tight junctions, EMT, Mammary epithelium

    IntroductionThe formation and maintenance of apically located tight junctions

    is key for the establishment of correct tissue architecture and

    epithelial cell polarity. Major functions attributed to tight junctions

    include the regulation of paracellular permeability and a ‘fence’ or

    physical barrier function to control the diffusion of lipids and

    proteins within the plasma membrane thus contributing to the

    organization of the apical and basal domains (Ebnet, 2008; Shin

    et al., 2006).

    There are three evolutionary conserved polarity complexes; the

    Scribble, Par and Crumbs complexes that act as regulators of

    apical-basal polarity. Members of each of these complexes have

    been reported to play important roles in establishment and

    maintenance of tight junctions (Chen and Macara, 2005; Fogg

    et al., 2005; Hurd et al., 2003; Ivanov et al., 2010; Joberty et al.,

    2000; Lemmers et al., 2004; Michel et al., 2005; Qin et al., 2005;

    Shin et al., 2005; Straight et al., 2004; Stucke et al., 2007; Suzuki

    et al., 2001; Suzuki et al., 2009). Most of these studies have

    focused on the Par and Crumbs complexes, which are intimately

    associated with tight junctions however, more recently an

    important role for the Scribble complex has also emerged.

    Scribble knockdown in MDCK cells results in a delay in tight

    junction assembly and impaired recruitment of E-cadherin to the

    membrane (Qin et al., 2005), and loss of Scribble in human colon

    cells has been shown to impair tight junction assembly (Ivanov

    et al., 2010).

    Members of the Scribble complex, Scribble, Discs Large (Dlg)

    and Lethal Giant Larvae (Lgl), were all identified in Drosophila

    melanogaster as neoplastic tumor suppressors, with loss of

    function disrupting apical basal polarity and junctional integrity,

    and inducing inappropriate proliferation and tissue overgrowth

    (Bilder and Perrimon, 2000; Mechler et al., 1985; Woods

    and Bryant, 1991). Since then, Scribble has been implicated

    in numerous cellular processes including proliferation,

    differentiation, apoptosis, stem-cell maintenance, migration and

    vesicle trafficking (Elsum et al., 2012; Humbert et al., 2008).

    Human Scribble is a functional homologue of Drosophila Scribble

    (Dow et al., 2003) and is a target for ubiquitin-mediated

    degradation by the human papilloma virus (HPV) E6 proteins

    and E6AP protein ligase (Nakagawa and Huibregtse, 2000). HPV

    is frequently associated with cervical carcinomas, which often

    show decreased Scribble expression (Nakagawa et al., 2004).

    Other oncogenic viruses such as human T-cell leukemia virus type

    1 (HTLV-1) Tax, a causative agent for adult T-cell leukemia, are

    known to target Scribble (Elsum et al., 2012; Javier and Rice,

    2011; Okajima et al., 2008). Additionally, mislocalization or

    deregulated Scribble expression has been reported in a variety of

    epithelial cancers (Gardiol et al., 2006; Kamei et al., 2007; Navarro

    et al., 2005; Ouyang et al., 2010; Pearson et al., 2011; Vaira et al.,

    2011; Zhan et al., 2008). The mechanism by which Scribble

    influences tumorigenesis is unclear, yet may lie in the interactions

    with oncogenic signaling cascades such as Ras, Wnt and GPCR

    signaling (Humbert et al., 2008).

    Tight junctions are recognized to have important roles in

    acting as signaling platforms in a variety of cellular processes

    (Balda and Matter, 2008; Balda and Matter, 2009; Farkas et al.,

    3990 Research Article

    mailto:[email protected]

  • Journ

    alof

    Cell

    Scie

    nce

    2012; González-Mariscal et al., 2008; Steed et al., 2010; Yanget al., 2012). In turn, components of numerous intracellular

    signaling pathways including G-proteins, PLCc and PKC havebeen implicated in the regulation and maintenance of tightjunction integrity (Nunbhakdi-Craig et al., 2002; Nusrat et al.,1995; Stuart and Nigam, 1995; Terry et al., 2011; Walsh et al.,

    2001; Ward et al., 2002). Of note, tight junction regulationis among the plethora of cellular processes the Ras MAPK(mitogen activated protein kinase)-ERK (extracellular-signal-

    regulated kinase) pathway is involved in. The MAPK-ERKcascade involves a series of phosphorylation events to regulatemachinery controlling physiological processes such as

    proliferation, growth, apoptosis and migration (Dhillon et al.,2007; Shaul and Seger, 2007). The role MAPK-ERK signalingplays in tight junction integrity appears complex and contextdependent. In intestinal cells, MAPK-ERK activation results in

    increased expression of crucial tight junction proteins (Yanget al., 2005). In Caco2 cells, MAPK-ERK signaling regulatesoxidative-stress-induced disruption of tight junctions in a manner

    that is dependent on their differentiation state (Aggarwal et al.,2011; Basuroy et al., 2006). In Ras transformed MDCK cells,inhibition of the MAPK-ERK pathway restores tight junctions

    (Chen et al., 2000) and expression of a constitutively active Raf-1in a rat epithelial cell line promotes downregulation of the tightjunction proteins Occludin and Claudin1 (Li and Mrsny, 2000).

    Although the precise mechanisms remain unclear, these andnumerous other examples illustrate that MAPK-ERK signalingcan influence junction dynamics.

    Epithelial-to-mesenchymal transition (EMT) signaling is

    among the numerous pathways mediated by MAPK-ERKsignaling. Recently ERK2 was shown to regulate theexpression of ZEB through Fos related antigen-1 (Fra1) (Shin

    et al., 2010). The zinc finger transcription factors ZEB1 andZEB2 (also known as dEF1 and SIP1 respectively) are classicexamples of EMT-induced transcriptional regulators that are

    activated during tumor cell dissemination and invasion(Schmalhofer et al., 2009; Spaderna et al., 2008). They havebeen shown to suppress tight junction proteins includingOccludin, Claudins, Tricellulin, JAM and ZO3 (Aigner et al.,

    2007; Comijn et al., 2001; Peinado et al., 2007; Vandewalle et al.,2005), as well as several polarity proteins, such as Crumbs3,PATJ and Lgl2, through direct binding to E-boxes in the

    promoter regions (Aigner et al., 2007; Spaderna et al., 2008).Fra1, a member of the Fos family and a key component of theAP-1 transcriptional complex, is reported to be involved in tumor

    progression and invasion in a variety of different human tumorcell lines (Young and Colburn, 2006). Furthermore, activation ofthe MAPK-ERK pathway is known to increase expression of

    Fra1 with ERK-mediated phosphorylation stabilizing Fra1 topromote efficient activity (Hoffmann et al., 2005; Treinies et al.,1999; Young et al., 2002).

    We have previously shown that Scribble mediates MAPK-

    ERK signaling both in vitro and in vivo (Dow et al., 2008;Pearson et al., 2011). Here we demonstrate the existence of apathway that encompasses both polarity and signaling molecules

    to regulate tight junction formation through regulation of MAPK-ERK activity. Using MCF10A cells, a mammary epithelial cellline that despite forming desmosomes and adherens junctions,

    lack tight junctions under standard tissue culture conditions(Underwood et al., 2006), we show that increased expression ofScribble promotes the formation of functional tight junctions. We

    provide evidence for a pathway in which Scribble regulatesMAPK-ERK signaling which in turn mediates the expression of

    the EMT inducer ZEB via Fra1. Inhibition of Fra1 leads to areduction in ZEB levels and consequently an increase in thepolarity protein Crumbs3, an essential component of tight

    junctions. The data presented here show a novel role forScribble in positively regulating tight junction assemblythrough modulation of an EMT signaling and transcriptionalprogram.

    ResultsScribble promotes tight junction formation

    To study the effect of aberrant Scribble expression in MCF10Acells, stable lines were generated by retroviral transduction in

    which human Scribble was knocked down or overexpressed.Extensive microarray analysis was performed to investigate howScribble expression affects the global transcriptional programme

    (I.A.E., unpublished data). We found that cells ectopicallyexpressing Scribble (ScribOE) at levels approximately ten-foldgreater than vector controls (Fig. 1B) had a strong cell adhesion

    signature. DAVID bioinformatics analysis (http://david.abcc.ncifcrf.gov/) showed enrichment in the KEGG ‘cell adhesionmolecules’ pathway with a P-value of 7.961022. Examination ofthe gene list (supplementary material Table S1) indicated manyproteins associated with desmosomes and tight junctions,including Occludin and Claudin1, were upregulated by Scribbleoverexpression (Fig. 1A). Western blot analysis confirmed this

    upregulation occurred at a protein level (Fig. 1B).

    ZO1, a scaffolding protein associated with tight junctions, can

    be used as a marker of junction integrity. We found localizationof ZO1 to be dramatically altered by Scribble overexpression(Fig. 1C) yet total expression levels remained unchanged(Fig. 1B). Consistent with previous reports (Fogg et al., 2005),

    vector control MCF10A cells displayed a diffuse pattern of ZO1,with punctate staining around the membrane. In contrast, ScribOE

    cells displayed smooth, continuous ZO1 staining, typical of intact

    tight junctions, and quantification of ZO1 staining showed asignificant 3.3-fold increase in unbroken continuous stainingin ScribOE cells compared to control cells (Fig. 1C).

    Immunostaining for other tight junction markers, Occludin andClaudin1, also showed an increase in continuous staining inScribOE cells, supporting the ZO1 staining (Fig. 1C). It isinteresting to note that despite being a stable population with all

    cells expressing Scribble, only a subset of the ScribOE cellslocalize ZO1, Occludin or Claudin1 to junctions. The patchynature of the rescued tight junction protein localization is

    puzzling, however we observed this in stable cell linesexpressing Scribble as well as following use of chemicalinhibitors and siRNA (see below). This suggests that additional

    extrinsic factors such as high cell confluency may also enhanceZO1 restoration in ScribOE cells at a population level.

    To functionally characterize Scribble-mediated promotion of

    adhesion, we carried out a range of assays including transmissionelectron microscopy (TEM), transepithelial resistance (TER)and size-selective assessment of tight junction paracellular

    permeability using fluorescently labelled dextrans (PPFD).Analysis of the microstructure of the epithelial sheet inMCF10A vector and ScribOE cells using TEM revealed an

    increase in adhesion and cell junctions in ScribOE cells(supplementary material Fig. S1A). Additionally, we carriedout TER measurements to determine the ion permeability of

    Scrib regulates junctions through EMT signaling 3991

    http://david.abcc.ncifcrf.gov/http://david.abcc.ncifcrf.gov/

  • Journ

    alof

    Cell

    Scie

    nce

    assayed junctions. ScribOE cells were found to have a modest yet

    significant increase in TER when grown for 13 days on transwell

    filters (Fig. 1D). As vector control and wild-type MCF10A cells

    lack tight junctions, readings were similar to the blank wells.

    However, Scribble overexpressing cells recorded values ,1.5-foldhigher than vector cells. MDCK cells, which form complete, intact

    tight junctions, were used as a positive control and produced TER

    readings close to 500 ohms.cm2 (data not shown). Tight junctions

    regulate diffusion of ions and molecules both by charge and size

    and so, to effectively measure tight junction functionality, both

    must be measured. TER assays determined the diffusion of ions

    and to assay size diffusion we performed size-selective assessment

    of tight junction paracellular permeability using fluorescently

    labelled dextrans (PPFD) (Matter and Balda, 2003). Vector control

    and ScribOE cells were grown for 13 days on transwell filters prior

    to addition of fluorescently labeled 70 kDa Rhodamine and 4 kDa

    FitC dextran molecules (Fig. 1E). As the experimental values in a

    sample group varied despite the trends between sample groups

    remaining consistent, the data has been shown here as the change

    in fluorescent diffusion in the ScribOE cells relative to the vectorcells. A significant difference was seen in the diffusion of thelarger 70 kDa molecule yet not the smaller 4 kDa suggesting that

    the rudimentary tight junctions formed in cells overexpressingScribble are more successful in blocking larger molecules. AsMDCK cells have well-formed tight junctions, they were used as apositive control and showed values close to zero across both sizes

    of dextran.

    Inhibition of MAPK-ERK signaling promotes tightjunction assembly

    We have previously shown that Scribble overexpression suppressesMAPK activity in MCF10A cells in the context of oncogenic Ras

    (RasV12) (Dow et al., 2008). We carried out biochemical analysison ScribOE cells to further look at how altered Scribble expressionalone can influence MAPK signaling. We found that in resting

    cells, Scribble overexpression suppresses phosphorylation atmultiple tiers of the MAPK-ERK pathway including MEK andERK [Fig. 2A(i)]. Upon EGF stimulation, the phosphorylation

    Fig. 1. Scribble promotes adhesion and cell

    junctions. (A) MCF10A cells stably expressing

    Scribble (ScribOE) or vector control were analysed by

    microarray as described in the Materials and Methods.

    Ectopic Scribble expression resulted in upregulation of

    numerous tight junction and desmosome proteins.

    (B) Cell lysates from MCF10A cells stably expressing

    Scribble or vector control analysed by western blotting

    and probed for the indicated antibodies including tight

    junction markers. (C) MCF10A stable cell lines were

    grown to confluency and (i) stained for the tight

    junction markers ZO1, Occludin and Claudin1.

    (ii) Quantification of ZO1 staining was carried out as

    described in Materials and Methods. Error bars

    represent s.d., n54. P-values were calculated using a

    paired Student’s t-test. Scale bar: 20 mm.(D) Measurements of transepithelial resistance

    (ohms.cm2) on cells stably expressing Scribble or vector

    control, grown for 13 days on transwell filters. Error

    bars represent s.d., n56, P-values were calculated using

    a paired Student’s t-test. (E) Size-selective assessment

    of tight junction paracellular permeability on cells

    stably expressing Scribble or vector control using

    fluorescently labelled dextrans. Cells were grown for 13

    days on transwell filters prior to addition of

    fluorescently labeled 70 kDa-dextran–Rhodamine

    (pink) and 4 kDa-dextran–FitC (green) as described in

    the Materials and Methods. Error bars represent s.d.,

    n53 with experiments performed in duplicate using two

    independent cell lines. P-values were calculated using a

    paired Student’s t-test.

    Journal of Cell Science 126 (17)3992

  • Journ

    alof

    Cell

    Scie

    nce

    response of MEK was also muted [Fig. 2A(ii)]. Given this, we were

    interested in looking at the role of MAPK signaling in tight junction

    formation in MCF10A cells. By using specific inhibitors against

    MEK1 (PD98059), PI3K (LY294002) and JNK (SP600125)

    (supplementary material Fig. S1B) we were able to assess the

    individual contributions of each of these pathways to tight junction

    formation. Of the tested pathways, only inhibition of the MEK arm

    was sufficient to promote tight junction formation (Fig. 2B).

    In agreement with these results, siRNA-mediated knockdown

    of ERK1 and ERK2 was found to promote the formation of

    tight junctions (Fig. 2C). Quantification of staining revealed a

    significant 3.8-fold increase in continuous ZO1 staining in

    siERK1/2 cells compared to the siControl [Fig. 2C(ii)]. No

    detectable differences were seen in ZO1 staining between cells

    individually transfected with siERK1 and siERK2 or combined

    transfections (supplementary material Fig. S1D). Further

    confirmation of tight junction formation was seen by staining

    for Occludin and Claudin1 in cells where both ERK1 and ERK2

    had been depleted (Fig. 4B).

    Inhibition of Fra1 and ZEB1/2 promotes tight junction

    assembly

    ERK2 has been reported to regulate expression of the EMT

    inducer ZEB, through Fra1 (Shin et al., 2010). We investigated

    whether Scribble expression influences ZEB expression through

    such a pathway.

    Overexpression of Scribble resulted in a decrease in Fra1 at

    both the protein and mRNA level and a decrease in Fra1 was also

    seen upon knockdown of ERK1/2 (Fig. 3A). As ZEB has been

    shown to lie downstream of Fra1 (Shin et al., 2010), we looked at

    whether changes in upstream components such as Scribble or

    ERK could alter ZEB expression and consequently tight junction

    formation. Forced Scribble expression, siERK1/2 or siFra1 all

    resulted in downregulation of ZEB1 and ZEB2 (Fig. 3B). To test

    the functional consequences of these findings, MCF10A cells

    were depleted of Fra1 or ZEB1/2 using siRNAs (supplementary

    material Fig. S2) and stained for ZO1, Occludin and Claudin1

    (Fig. 3C,D). In all cases knockdown modulated tight junction

    formation and quantification of continuous ZO1 staining showed

    an approximate 1.5- and 3-fold increase for Fra1 and ZEB

    respectively compared to the controls.

    Given that EMT inducers are known to influence tight junction

    integrity (Aigner et al., 2007; Ikenouchi et al., 2003; Vandewalle

    et al., 2005) we were interested in investigating whether enforced

    Scribble expression resulted in altered expression of EMT

    inducers other than ZEB. We found that similarly to the

    changes in ZEB expression, Snail and Slug mRNA levels were

    reduced in ScribOE cells. However, unlike ZEB, depletion of

    Fig. 2. MAPK-ERK signaling regulates tight

    junction assembly in MCF10A cells.

    (A) (i) Western blot on lysates harvested from

    resting vector- and Scribble-expressing

    (ScribbleOE) stable MCF10A cell lines and probed

    for the indicated proteins. (ii) Representative

    western blot on lysates harvested from EGF

    stimulations of starved vector- and Scribble-

    expressing MCF10A cells probed for

    phosphorylated MEK (pMEK1/2) and total MEK.

    Quantitative densitometry analysis of pMEK

    relative to total MEK was calculated using ImageJ

    software and is shown on right. (B) Wild-type

    MCF10A cells treated for 48 hours with DMSO

    (control) or inhibitors against MEK1 (PD98059),

    PI3K (LY294002) or JNK (SP600125) and

    stained for ZO1. Scale bar: 20 mm.(C) (i) Immunofluorescence staining for ZO1,

    Occludin and Claudin1 in wild-type MCF10A

    cells 72 hours following transfection with

    siControl or siERK1/2. (ii) Quantification of ZO1

    staining was carried out as described in the

    Materials and Methods. Error bars represent s.d.,

    n54. P-values were calculated using a paired

    Student’s t-test. Scale bar: 50 mm.

    Scrib regulates junctions through EMT signaling 3993

  • Journ

    alof

    Cell

    Scie

    nce

    either Snail or Slug was insufficient to promote the formation of

    tight junctions (supplementary material Fig. S3). Together these

    data suggest a specific, functional role for the ZEB proteins in

    tight junction assembly in MCF10A cells.

    Crumbs3 is required for Scribble and MAPK-dependent

    tight junction formation

    Exogenous expression of Crumbs3 in MCF10A cells is sufficient

    to induce tight junction structures (Fogg et al., 2005). As several

    studies have identified Crumbs3 as a ZEB target (Aigner et al.,

    2007; Spaderna et al., 2008), we investigated the possibility of a

    ZEB dependent involvement for Crumbs3 in Scribble-mediated

    tight junction formation. We first confirmed that ectopic

    Crumbs3 expression induced tight junction structures. Stable

    MCF10A cell lines were generated using retroviral transduction

    to express Crumbs3 at levels ,15–20 times greater than vectorcontrols (supplementary material Fig. S2). Consistent with

    previous reports (Fogg et al., 2005), cells overexpressing

    Crumbs3 (Crumbs3OE) had smooth continuous ZO1 and

    Occludin staining compared to vector controls, indicative of the

    formation of tight junctions (supplementary material Fig. S4A).

    Additionally, TEM analysis demonstrated the presence of tight

    junctions in Crumb3OE cells yet only desmosomes were seen in

    vector control cells (supplementary material Fig. S4B). TER

    measurements showed an increase of more than 4-fold in

    Crumb3OE cells compared to control cells (supplementary

    material Fig. S4C). Size diffusion was assayed using PPFD and

    the percentage of molecules that had diffused through the tight

    junctions in the Crumb3OE cells were compared to the vector

    control cells. A larger and more significant difference was seen

    with the diffusion of the larger 70 kDa dextran molecule rather

    than the smaller 4 kDa molecule (supplementary material Fig.

    S4D). This is a similar trend as to what was observed in

    the ScribOE cells (Fig. 1E) and once more suggests that the

    Crumb3OE cells partially block larger molecules and the smaller

    dextran molecules to a lesser extent. We also looked at an earlier

    time point to address if there was a difference in the kinetics of

    tight junction formation in the ScribOE and Crumb3OE cells. We

    Fig. 3. Scribble and ERK1/2 regulate Fra1

    and ZEB1/2 transcription to mediate tight

    junction assembly. (A) (i) Western blot of

    MCF10A cells stably expressing Scribble or

    vector control probed for Fra1 and a-tubulin.

    Band density was calculated and normalised to

    a-tubulin using ImageJ software.

    Quantification is shown from four western

    blots using three independent cell lines.

    (ii) qRT-PCR for Fra1 mRNA in ScribOE cells

    and cells transfected with siERK1/2. Values

    are expressed relative to the appropriate vector

    or siControl cells. Error bars represent s.d.,

    n53. P-values were calculated using a paired

    Student’s t-test. (B) qRT-PCR for ZEB1 and

    ZEB2 mRNA in ScribOE cells, or cells

    transfected with siERK1/2 or siFra1. Values

    are expressed relative to the appropriate vector

    or siControl cells. Error bars represent s.d. P-

    values were calculated using a paired Student’s

    t-test. (C,D) Wild-type MCF10A cells were

    transfected with siControl and (C) siFra1 and

    (D) siZEB1/2, then 72 hours later stained for

    ZO1, Occludin and Claudin1. A quantification

    of continuous ZO1 staining, shown in upper-

    right panel of both C and D, was carried out as

    described in Materials and Methods. Scale bar:

    50 mm.

    Journal of Cell Science 126 (17)3994

  • Journ

    alof

    Cell

    Scie

    nce

    performed PPFD 3 days after plating onto transwell filters. Again

    there was a significant difference in the diffusion of the large 70 kDa

    dextran molecule but not the smaller 4 kDa molecule in both the

    ScribOE and Crumb3OE cells (supplementary material Fig. S5). There

    was a greater difference in the diffusion of both the small and large

    dextrans in the Crumb3OE cells than in the ScribOE cells suggesting

    that the former have more intrinsically intact tight junctions.

    To determine if Scribble expression or MAPK-ERK signaling

    influences Crumbs3 transcription via a Fra1/ZEB pathway we

    measured Crumbs3 mRNA in ScribOE cells, cells treated with

    siERK1/2, siFra1 or siZEB1/2. All conditions resulted in modest

    yet significant increases in Crumbs3 (Fig. 4A). Despite extensive

    efforts, we were unfortunately unable to measure the protein levels

    and localization of Crumbs3 in ScribOE cells, cells treated with

    siERK1/2, siFra1 or siZEB1/2 as the available commercial

    antibodies did not reliably detect endogenous Crumbs3. To test

    the requirement of Crumbs3 in the tight junction phenotype

    observed in ScribOE cells, siERK1/2, siFra1 and siZEB1/2 cells,

    we made use of siRNAs targeted against Crumbs3 (supplementary

    material Fig. S2). Co-transfection of siCrumbs3 in ScribOE,

    siERK1/2, siFra1 or siZEB1/2 cells abrogated the formation of

    tight junctions (Fig. 4B) indicative of an essential role for

    Crumbs3 in tight junction assembly in MCF10A cells. Of note,

    Scribble expression or localization was not altered in the presence

    of siCrumbs3 (data not shown). Taken together, our results support

    a model in which Scribble acts to regulate tight junction formation

    in MCF10A cells through a pathway involving MAPK-ERK

    signaling, expression of ZEB, Fra1 and Crumbs3 (Fig. 5).

    DiscussionActive EMT programs are known to deregulate the expression of

    many essential polarity and junction proteins, resulting in polarity

    Fig. 4. Crumbs3 is required for tight junction

    assembly downstream of ERK1/2, Fra1 and

    ZEB1/2. (A) qRT-PCR for Crumbs3 mRNA in

    MCF10A cells stably expressing Scribble or vector

    control transfected with siERK1/2, siFra1 or

    siZEB1/2. Values are expressed relative to the

    relevant control. Error bars represent s.d., n54–6.

    P-values were calculated using a paired Student’s t-

    test. (B) siControl cells, ScribOE cells, siERK1/2,

    siFra1 or siZEB1/2 cells were each co-transfected

    with siControl (top panel) or with siCrumbs3

    (bottom panel) and stained for ZO1 72 hours

    following transfection. Scale bar: 20 mm.

    Fig. 5. Scribble regulates tight junctions through a MAPK-

    ERKRFra1RZEBRCrumbs3 axis. Scribble suppresses MAPK-ERKsignaling, possibly through direct protein interactions, resulting in decreased

    ZEB expression through regulation of Fra1. Decreased ZEB expression leads

    to an increase in expression of the polarity protein Crumbs3, a crucial

    component of tight junctions (see text for further details).

    Scrib regulates junctions through EMT signaling 3995

  • Journ

    alof

    Cell

    Scie

    nce

    loss and junction dissolution (Godde et al., 2010; Moreno-Buenoet al., 2008; Peinado et al., 2007). In this study we build on this

    notion and have identified the polarity protein Scribble as a novelregulator of an EMT signaling and transcriptional pathwayinvolved in the establishment of tight junctions. We have shownthat Scribble-mediated suppression of MAPK-ERK signaling

    results in downregulation of the ZEB proteins through changes tothe expression of the gene product Fra1. Consequently, thepolarity protein Crumbs3 is transcriptionally upregulated leading

    to the formation of functional tight junctions. The data presentedhere also indicates that Scribble is likely to act on additionalpathways that regulate tight junction integrity to that described

    above as overexpression of Scribble also results in an increase inOccludin and Claudin1 expression (Fig. 1A), this effect is notseen upon Crumbs3 overxpression (Fogg et al., 2005). It ispossible that the upregulation of Occludin and Claudin1 and the

    upregulation of Crumbs3 are processes that lie parallel andseparately contribute to tight junction formation.

    As mentioned previously, ERK2 has been shown to regulate

    the expression of ZEB through Fra1 (Shin et al., 2010). Shin andcolleagues demonstrated that ERK2, but not ERK1, specificallymediates upregulation of ZEB and induction of an EMT

    phenotype. Although we see no difference in efficacy of tightjunction formation with siERK1 vs siERK2 (supplementarymaterial Fig. S1D), we see a greater increase in Crumbs3

    expression and a greater decrease in Fra1 and Zeb1 expressionwith ERK2 depletion than ERK1 (data not shown). These resultsare therefore consistent with Shin et al. (Shin et al., 2010) andsuggest that ERK2 is playing a greater role than ERK1 in

    controlling the EMT phenotype, however this does not correlateto changes in tight junction integrity and suggests that otherpathways than EMT signaling contribute to aspects of tight

    junction integrity.

    What other Fra1 and Zeb targets may be involved in tightjunction regulation? Fra1 is part of the AP-1 transcriptional

    complex that interacts with several proteins includingretinoblastoma, SMAD3, SMAD4 and the p65 subunit of NFkB(Young and Colburn, 2006). In addition to MAPK signaling,regulation of ZEB expression has been linked to hormones, TGFband also of note, NFkB signaling (Chua et al., 2007; Dillner andSanders, 2004; Dohadwala et al., 2006; Peinado et al., 2007;Shirakihara et al., 2007). As overexpression of the NFkB subunitp65 in MCF10A cells results in increased expression of ZEB1 andZEB2 (Chua et al., 2007), these data suggest that ZEB and Fra1could mediate part of their effects through regulation of NFkBpathway. Nevertheless, we found that depletion of variouscomponents of the NFkB pathway in MCF10A cells had nodiscernible effect on tight junction formation (supplementary

    material Fig. S6). This data strengthens our hypothesis for aspecific role of the ERKRFra1RZEBRCrumbs3 pathway in tightjunction assembly (Fig. 5).

    Our laboratory has previously shown that Scribble suppresses

    Ras dependent transformation through inhibition of MAPKactivity (Dow et al., 2008). It is likely that in ScribOE MCF10Acells, Scribble-mediated suppression of MAPK-ERK signaling

    prevents stabilization of Fra1 and results in the decreased ZEBexpression reported here. This raises the question of how Scribbleis suppressing MAPK-ERK signaling. Recently a direct protein

    interaction between Scribble and ERK was reported (Nagasakaet al., 2010b). In this study the authors suggest that ERKactivation enhances the interaction between Scribble and ERK,

    the formation of such a Scribble–ERK complex then acts toinhibit MAPK activity. Varying phosphorylation sites within

    Scribble have been proposed to alter its ability to bind ERK andthe cellular localization (Nagasaka et al., 2010a; Yoshihara et al.,2011). Phosphorylation events within Scribble may therefore

    alter its function thus allowing it to function as a modulator ofsignaling and/or a scaffold. Scribble may act to differentiallyregulate several cellular processes in a manner that is dependenton the level of activity of particular signaling pathway. When

    Scribble is ectopically expressed, as reported here, the systemmay become saturated so that Scribble binds ERK, forming acomplex to alter downstream signaling events including

    inhibition of EMT programs while additionally functioning atother cellular levels to promote the formation of tight junctions.Such functions may include acting as a dynamic scaffolding

    molecule by interacting with known binding partners such asZO2, bPix and b-catenin (Audebert et al., 2004; Métais et al.,2005; Sun et al., 2009). Recently Scribble was shown to recruitthe phosphatase PHLPP1 to the cell membrane to negatively

    regulate AKT signaling (Li et al., 2011). We and others havepreviously shown that Scribble regulates the phosphorylationstatus of several components of MAPK signaling (Dow et al.,

    2008; Elsum and Humbert, 2013; Nagasaka et al., 2010b).Precisely how Scribble interacts with phosphatases to influencesignaling and junction dynamics is a question that needs to be

    further addressed.

    A key downstream consequence of the Scribble-mediatedsuppression of MAPK signaling demonstrated here is the

    increased expression of the apical polarity gene Crumbs3.Several studies performed in cell lines with eithermicrodeletions or low levels of endogenous Crumbs3 have

    shown that reconstituting with ectopic Crumbs3 is sufficient topromote the formation of tight junctions (Fogg et al., 2005; Karpet al., 2008; Rothenberg et al., 2010). Furthermore,

    downregulation of Crumbs3 by EMT inducers such as Snailresults in loss of tight junctions (Whiteman et al., 2008). Thefunctional role Crumbs3 plays in tight junctions is unclear yet itis likely to be involved in recruiting or stabilizing other protein

    complexes critical for tight junction formation.

    In summary, we have found that expression of Scribble in

    MCF10A cells results in the formation of tight junctions. Wehave provided evidence that Scribble acts via a MAPK-ERKRFra1RZEBRCrumbs3 axis to regulate tight junctions.Although this study has focused on tight junctions as a

    physiological read out, these findings have far broaderimplications regarding how Scribble and other polarity proteinsmay feed into the MAPK pathway and influence tumor

    progression through modulation of other processes where EMThas been implicated such as invasion and metastasis. Notably, thepresent study is among the first to describe how one polarity

    protein can transcriptionally regulate another. This is important inunderstanding how interactions and feedback within the polaritynetwork occur. This study and some of the examples outlined

    above, illustrate that a finely tuned balance between differentpolarity proteins is required for the correct establishment andmaintenance of tight junctions.

    Materials and MethodsReagents

    Immunostaining and western blotting were performed with the followingantibodies: rabbit anti-pAKT (ser473), anti-total AKT, anti-total ERK1/2, anti-total JNK, anti-pMEK1/2 (41G9) and mouse anti-pERK1/2 (Thr202/Tyr204),

    Journal of Cell Science 126 (17)3996

  • Journ

    alof

    Cell

    Scie

    nce

    anti-total MEK1/2 all purchased from Cell Signaling, Danvers, MA. Rabbit anti-Claudin1 (51-9000 Zymed, San Francisco, CA), rabbit anti-occludin (71-1500Zymed), rabbit H-Ras (MC57) (05-775 Upstate, Billerica, MA), rabbit anti-Fra1 (R-20) (sc605) and goat anti-Crumbs3 (C-15) (sc27904) (both purchased from SantaCruz, Santa Cruz, CA), mouse anti a-tubulin (B512) (T5168 Sigma, St Louis, MO)and mouse anti-ZO1 (339100, Invitrogen, Grand Island, NY). Mouse monoclonalanti-Scribble (7C6-D10) has been previously described (Dow et al., 2003). Inhibitorexperiments were performed using the MEK1 inhibitor PD98059 (20 mM) (P125Sigma Aldrich, St Louis, MO), the PI3K inhibitor LY294002 (20 mM) (440202,Merck, Germany) and the JNK inhibitor SP600125 (20 mM) (420119 Merck).

    Cell cultureMCF10A cells were maintained in DMEM:F12 (Dulbecco’s Modified EagleMedium: F12) supplemented with 5% donor horse serum (Gibco, NY), 10 mg/mlinsulin (Novo Pharmaceuticals, UK), 0.5 mg/ml hydrocortisone (Sigma Aldrich),20 ng/ml EGF (Cytolab Ltd, Switzerland), 100 ng/ml cholera toxin (SigmaAldrich), penicillin (100 U/ml) and streptomycin (100 U/ml) as previouslydescribed (Debnath et al., 2003). 293T cells were maintained in DMEMsupplemented with 10% foetal bovine serum, penicillin (100 U/ml) andstreptomycin (100 U/ml). All cultures were maintained at 37 C̊ in 5% CO2.

    Retroviral constructs and infectionFull length human Scribble was cloned into MSCV-IRES-GFP as previouslydescribed (Dow et al., 2003). The coding sequence of Crumbs3 had previouslybeen PCR amplified and cloned into MSCV-IRES-GFP vector using EcoRI sites.All constructs were verified by sequencing. Virus was generated by transfecting293T cells by calcium phosphate precipitation using the amphotrophic packagingvector RD114 and appropriate DNA constructs. Stable MCF10A cell lines weregenerated essentially as described previously (Debnath et al., 2003). CulturedMCF10A cells were infected with virus 30, 42 and 54 hours post transfection andallowed to recover for 24 hours before selection. To generate polyclonal stablepopulations, cells were either selected for one week in 2 mg/ml puromycin and/orsorted for GFP+ cells on a FACStar flow cytometer (Becton Dickinson, FranklinLakes, NJ). All stable cell lines were monitored and regularly checked forexpression and re-selected if necessary.

    EGF stimulationMCF10A cells were plated out at 7.56104 cells in 6-well dishes. 24 h later culturemedia was replaced with EGF-depleted media. Cells were cultured in EGF-depleted media for 48 h before replacing with pre-warmed media containing20 ng/ml EGF. Cells were harvested for protein analysis at designated timepoints.Quantification was performed by densiometry of immunoblot bands using ImageJsoftware (ImageJ, NIH USA).

    JNK kinase assayMCF10A cells were grown in 10 cm dishes till they reached 80% confluency. Cellswere UV irradiated (40 J/m2), washed in PBS and fresh media applied for 30 minbefore harvesting. JNK activity was assessed using a non-radioactive kinase assaykit (9810, Cell Signaling) according to the manufacturer’s instructions.

    Western blottingProtein concentrations from prepared whole cell lysates were determined using aLowry Protein Assay (BioRad, Hercules, CA) and resolved on pre-cast gradientgels (Invitrogen). Samples were transferred overnight at 4 C̊ and probed with therelevant antibodies. Proteins were visualised using LumiLight ECL reagents(Roche, Germany) according to the manufacturer’s instructions.

    RNA isolation, cDNA synthesis and qRT-PCRRNA was harvested using TRizol reagent (Invitrogen) and purified usingchloroform extraction and ethanol precipitation. RNA quality and concentrationwas measured using a Nanodrop ND-1000 spectrophotometer (ThermoScientific,Vic, Aust). cDNA was made from 2 mg of RNA using standard methods (Dowet al., 2008). Samples were run in triplicate on a StepOnePlus Real-Time PCRSystem (Applied Biosystems, Carlsbad, CA). All samples were normalized toGAPDH control (or L32 when using siGAPDH) and fold change between sampleswas calculated using the comparative C(T) method. Primers used for qRT-PCR arelisted in supplementary material Table S2. qRT-PCR experiments were performedon multiple independently derived cell lines and at least 3 independent siRNAtransfections. Statistics were calculated on results from 3–6 runs using GraphPadPrism data software (GraphPad version 5.0b).

    siRNA transfectionsAll siRNAs used were purchased from Dharmafect SMARTpool(ThermoScientific, Rockford, IL) and siGFP or siGAPDH were used as controls.Each siRNA pool contained four oligos targeting separate mRNA regions. Fordownstream protein or RNA applications MCF10A cells were plated out in 1.6 mlof antibiotic-free media at 1.16105 cells per well in a 6-well dish ,16 hours prior

    to transfection. Prior to transfection, siRNAs were diluted to a concentration of50 nM in 200 ml OpitiMEM and a lipid mix made using 3 ml of Dharmafect3 lipid(ThermoScientific) and 197 ml OptiMEM. For experiments using multiple siRNAs,the highest combined concentration was used to determine the concentration of thesiGFP or siGAPDH control. The lipid and siRNA mix were combined and allowed toduplex for 20 min before adding to cells. Cells were washed and fresh media appliedafter 24 hours. For RNA analysis, cells were harvested 48 hours followingtransfection and for protein analysis, cells were harvested 72 hours posttransfection. For downstream immunofluorescent staining MCF10A cells wereplated out in 400 ml of antibiotic-free culture media at 3.66104 cells per well ontosterile poly-L-lysine-coated coverslips (#354085, Becton Dickinson) in a 48-welldish ,20 hours prior to transfection. As above Dharmafect3 lipid(ThermoScientific) was used and complexed with the appropriate siRNAs at50 nM. Fresh media was applied after 24 hours. Cells were used for subsequentimmunofluorescent staining 72 hours post transfection.

    Immunostaining and quantification

    MCF10A cells were grown on sterile coverslips prior to fixing in 100% ice-coldmethanol for 20 mins for ZO1 staining or 4% paraformaldehyde for 15 min atroom temperature followed by a 10 min permeabilization step in 1% SDS forOccludin and Claudin1 staining. Coverslips were washed in PBS before blockingin 2% BSA/PBS for 1 hour at room temperature. Samples were incubated withmouse anti-ZO1 (339100, Invitrogen), rabbit anti-occludin (71-1500, Zymed) orrabbit anti-claudin1 (51-9000, Zymed) overnight at 4 C̊. Coverslips were washedwith PBST before probing with secondary anti-mouse antibodies conjugated toAlexa 488 flurochromes (Molecular Probes, Grand Island, NY)). ProLong GoldAntifade containing DAPI (Invitrogen) was used to visualize nuclei. Images wereacquired on a FV1000 BX51 scanning confocal microscope (Olympus Corp,Japan) using a 406oil objective. To quantify tight junctions, continuous ZO1staining was assessed using MetaMorph 6.3 software (Molecular Devices Corp.,Downington, PA). Slides stained for ZO1 were viewed under a confocalmicroscope and multiple images taken randomly across the entire sample.Images were analyzed with MetaMorph software using the ‘Angiogenesis TubeFormation’ application. From the analysis, the value describing the ‘tube length/set’ was used as a measure of continuous ZO1 staining. This value was divided bythe number of cells in the image (determined by DAPI staining). For eachexperiment at least 1000 cells were analyzed across multiple images. Identicalanalysis was carried out for controls and values expressed as fold change relativeto control. Data was plotted and analyzed using GraphPad Prism data software(GraphPad version 5.0b).

    Transepithelial electrical resistance measurements

    Cells were seeded at 66105 per well onto polyester transwell filters (SigmaAldrich, CLS3450) and readings recorded every second day using a Millicell-ERS(MERS00001 Millipore, Billerica, MA) according to the manufacturer’sinstructions. Resistance was calculated as resistance of a unit area5resistance(V)6effective membrane area (cm2). Sample readings were measured in triplicatefor each reading. Media was replaced following each reading.

    Size-selective assessment of tight junction paracellular permeability

    Cells were seeded at 66105 or 26105 cells per well on polyester transwell filters(Sigma Aldrich, CLS3450) for 13 or 3 days. Media was replaced every 2 days andon the day indicated TER measurements were recorded and the media wasreplaced with 1 ml in the bottom well and 250 ml in the top well. Fluorescentlylabeled dextrans were added to the top well, 25 ml of 4 kDa FitC-Dextran (Sigma,FD-4) and 25 ml of 70 kDa Rhodamine-Dextran (Sigma, R-9379) and incubated at37 C̊ for approx 3 hours. Media from the bottom plate was aliquoted to 3 wells in ablack-walled 96-well plate and the following wavelengths; FitC (Exc: 485 nm,Em: 544 nm) and Rhodamine (Exc: 520 nm, Em: 590 nm) on a Bio-Stackautomated plate reader (BioTak, Millennium Science, Australia) (Matter andBalda, 2003). The average of the readings were taken as technical replicates andthe experiments were performed in biological repeats as indicated.

    Transmission electron microscopy

    Cells were grown to confluency before being fixed in 2% paraformaldehyde, 2.5%glutaraldehyde in 0.08 M Sorensen’s phosphate buffer/PBS for 30 mins, thenrinsed in PBS containing 5% sucrose. Post-fixation was carried out using 2%osmium tetroxide in PBS followed by dehydration through a graded series ofalcohols, two acetone rinses and embedding in Spurrs resin. Sections ,80 nmthick were cut with a diamond knife (Diatome, Switzerland) on an Ultracut-Sultramicrotome (Leica) and contrasted with uranyl acetate and lead citrate. Imageswere captured with a Megaview II cooled CCD camera (Olympus) on a JEOL1011 transmission electron microscope.

    Microarray experiments and analysis

    RNA integrity was assessed using a bioanalyzer (Agilent Technologies, USA) andRNA with a RNA integrity number (RIN) of 10 were used for microarray

    Scrib regulates junctions through EMT signaling 3997

  • Journ

    alof

    Cell

    Scie

    nce

    experiments. Microarray experiments were carried out using the GeneChip HumanGene 1.0 ST Array kit (Affymetrix, Santa Clara, CA) according to themanufacturer’s instructions. Quality control metrics were carried out usingExpression Console software (Affymetrix) and Partek software (PartekIncorporated, USA). Gene lists were generated using Tukey’s biweight 1 stepsummarisation and batch effect was applied to passage number and cell line.Pathway and gene ontology analysis was applied using the online DAVIDbioinformatics database (http://david.abcc.ncifcrf.gov).

    AcknowledgementsWe thank members of our laboratory for helpful discussions. Specialthanks to the Peter MacCallum Cancer Centre Microscopy Core, inparticular Stephen Asquith for preparation of the TEM samples. Wealso thank the Peter MacCallum Cancer Centre Microarray Core inparticular Dr Jason Li for help and advice with analysis.

    Author contributionsI.A.E. designed, planned and carried out the experiments, analyzedand interpreted the data and wrote the manuscript; C.M. assisted withexperimental work and approach, interpretation of data and editedthe manuscript; P.O.H. designed the experiment, sourced funding,provided reagents and mentorship, edited the manuscript.

    FundingThis study was supported by a project grant from the National Healthand Medical Research Council of Australia [grant numberAPP1004434 to P.O.H.]. I.A.E was supported by a Cancer CouncilVictoria Postgraduate Cancer Research Scholarship and P.O.H by aBiomedical Career Development Award from the National Healthand Medical Research Council of Australia.

    Supplementary material available online at

    http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.129387/-/DC1

    ReferencesAggarwal, S., Suzuki, T., Taylor, W. L., Bhargava, A. and Rao, R. K. (2011).

    Contrasting effects of ERK on tight junction integrity in differentiated and under-

    differentiated Caco-2 cell monolayers. Biochem. J. 433, 51-63.

    Aigner, K., Dampier, B., Descovich, L., Mikula, M., Sultan, A., Schreiber, M.,

    Mikulits, W., Brabletz, T., Strand, D., Obrist, P. et al. (2007). The transcription

    factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master

    regulators of epithelial polarity. Oncogene 26, 6979-6988.

    Audebert, S., Navarro, C., Nourry, C., Chasserot-Golaz, S., Lécine, P., Bellaiche, Y.,

    Dupont, J. L., Premont, R. T., Sempéré, C., Strub, J. M. et al. (2004). Mammalian

    Scribble forms a tight complex with the betaPIX exchange factor. Curr. Biol. 14, 987-

    995.

    Balda, M. S. and Matter, K. (2008). Tight junctions at a glance. J. Cell Sci. 121, 3677-

    3682.

    Balda, M. S. and Matter, K. (2009). Tight junctions and the regulation of gene

    expression. Biochim. Biophys. Acta 1788, 761-767.

    Basuroy, S., Seth, A., Elias, B., Naren, A. P. and Rao, R. (2006). MAPK interacts with

    occludin and mediates EGF-induced prevention of tight junction disruption by

    hydrogen peroxide. Biochem. J. 393, 69-77.

    Bilder, D. and Perrimon, N. (2000). Localization of apical epithelial determinants by

    the basolateral PDZ protein Scribble. Nature 403, 676-680.

    Chen, X. and Macara, I. G. (2005). Par-3 controls tight junction assembly through the

    Rac exchange factor Tiam1. Nat. Cell Biol. 7, 262-269.

    Chen, Y., Lu, Q., Schneeberger, E. E. and Goodenough, D. A. (2000). Restoration of

    tight junction structure and barrier function by down-regulation of the mitogen-

    activated protein kinase pathway in ras-transformed Madin-Darby canine kidney

    cells. Mol. Biol. Cell 11, 849-862.

    Chua, H. L., Bhat-Nakshatri, P., Clare, S. E., Morimiya, A., Badve, S. and

    Nakshatri, H. (2007). NF-kappaB represses E-cadherin expression and enhances

    epithelial to mesenchymal transition of mammary epithelial cells: potential

    involvement of ZEB-1 and ZEB-2. Oncogene 26, 711-724.

    Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel,

    E., Mareel, M., Huylebroeck, D. and van Roy, F. (2001). The two-handed E box

    binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol.

    Cell 7, 1267-1278.

    Debnath, J., Muthuswamy, S. K. and Brugge, J. S. (2003). Morphogenesis and

    oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional

    basement membrane cultures. Methods 30, 256-268.

    Dhillon, A. S., Hagan, S., Rath, O. and Kolch, W. (2007). MAP kinase signalling

    pathways in cancer. Oncogene 26, 3279-3290.

    Dillner, N. B. and Sanders, M. M. (2004). Transcriptional activation by the zinc-fingerhomeodomain protein delta EF1 in estrogen signaling cascades. DNA Cell Biol. 23,

    25-34.

    Dohadwala, M., Yang, S. C., Luo, J., Sharma, S., Batra, R. K., Huang, M., Lin, Y.,

    Goodglick, L., Krysan, K., Fishbein, M. C. et al. (2006). Cyclooxygenase-2-

    dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptionalrepressors ZEB1 and snail in non-small cell lung cancer. Cancer Res. 66, 5338-5345.

    Dow, L. E., Brumby, A. M., Muratore, R., Coombe, M. L., Sedelies, K. A., Trapani,

    J. A., Russell, S. M., Richardson, H. E. and Humbert, P. O. (2003). hScrib is afunctional homologue of the Drosophila tumour suppressor Scribble. Oncogene 22,9225-9230.

    Dow, L. E., Elsum, I. A., King, C. L., Kinross, K. M., Richardson, H. E. and

    Humbert, P. O. (2008). Loss of human Scribble cooperates with H-Ras to promotecell invasion through deregulation of MAPK signalling. Oncogene 27, 5988-6001.

    Ebnet, K. (2008). Organization of multiprotein complexes at cell-cell junctions.Histochem. Cell Biol. 130, 1-20.

    Elsum, I. A. and Humbert, P. O. (2013). Localization, Not Important in All Tumor-Suppressing Properties: A Lesson Learnt from Scribble. Cells Tissues Organs DOI:10.1159/000351472.

    Elsum, I., Yates, L., Humbert, P. O. and Richardson, H. E. (2012). The Scribble-Dlg-Lgl polarity module in development and cancer: from flies to man. Essays Biochem.53, 141-168.

    Farkas, A. E., Capaldo, C. T. and Nusrat, A. (2012). Regulation of epithelialproliferation by tight junction proteins. Ann. N. Y. Acad. Sci. 1258, 115-124.

    Fogg, V. C., Liu, C. J. and Margolis, B. (2005). Multiple regions of Crumbs3 are

    required for tight junction formation in MCF10A cells. J. Cell Sci. 118, 2859-2869.

    Gardiol, D., Zacchi, A., Petrera, F., Stanta, G. and Banks, L. (2006). Human discs

    large and scrib are localized at the same regions in colon mucosa and changes in theirexpression patterns are correlated with loss of tissue architecture during malignantprogression. Int. J. Cancer 119, 1285-1290.

    Godde, N. J., Galea, R. C., Elsum, I. A. and Humbert, P. O. (2010). Cell polarity inmotion: redefining mammary tissue organization through EMT and cell polaritytransitions. J. Mammary Gland Biol. Neoplasia 15, 149-168.

    González-Mariscal, L., Tapia, R. and Chamorro, D. (2008). Crosstalk of tightjunction components with signaling pathways. Biochim. Biophys. Acta 1778, 729-756.

    Hoffmann, E., Thiefes, A., Buhrow, D., Dittrich-Breiholz, O., Schneider, H., Resch,

    K. and Kracht, M. (2005). MEK1-dependent delayed expression of Fos-relatedantigen-1 counteracts c-Fos and p65 NF-kappaB-mediated interleukin-8 transcriptionin response to cytokines or growth factors. J. Biol. Chem. 280, 9706-9718.

    Humbert, P. O., Grzeschik, N. A., Brumby, A. M., Galea, R., Elsum, I. and

    Richardson, H. E. (2008). Control of tumourigenesis by the Scribble/Dlg/Lglpolarity module. Oncogene 27, 6888-6907.

    Hurd, T. W., Gao, L., Roh, M. H., Macara, I. G. and Margolis, B. (2003). Directinteraction of two polarity complexes implicated in epithelial tight junction assembly.Nat. Cell Biol. 5, 137-142.

    Ikenouchi, J., Matsuda, M., Furuse, M. and Tsukita, S. (2003). Regulation of tightjunctions during the epithelium-mesenchyme transition: direct repression of the geneexpression of claudins/occludin by Snail. J. Cell Sci. 116, 1959-1967.

    Ivanov, A. I., Young, C., Den Beste, K., Capaldo, C. T., Humbert, P. O., Brennwald,

    P., Parkos, C. A. and Nusrat, A. (2010). Tumor suppressor scribble regulatesassembly of tight junctions in the intestinal epithelium. Am. J. Pathol. 176, 134-145.

    Javier, R. T. and Rice, A. P. (2011). Emerging theme: cellular PDZ proteins ascommon targets of pathogenic viruses. J. Virol. 85, 11544-11556.

    Joberty, G., Petersen, C., Gao, L. and Macara, I. G. (2000). The cell-polarity proteinPar6 links Par3 and atypical protein kinase C to Cdc42. Nat. Cell Biol. 2, 531-539.

    Kamei, Y., Kito, K., Takeuchi, T., Imai, Y., Murase, R., Ueda, N., Kobayashi,

    N. and Abe, Y. (2007). Human scribble accumulates in colorectal neoplasia inassociation with an altered distribution of beta-catenin. Hum. Pathol. 38, 1273-1281.

    Karp, C. M., Tan, T. T., Mathew, R., Nelson, D., Mukherjee, C., Degenhardt, K.,

    Karantza-Wadsworth, V. and White, E. (2008). Role of the polarity determinantcrumbs in suppressing mammalian epithelial tumor progression. Cancer Res. 68,4105-4115.

    Lemmers, C., Michel, D., Lane-Guermonprez, L., Delgrossi, M. H., Médina, E.,

    Arsanto, J. P. and Le Bivic, A. (2004). CRB3 binds directly to Par6 and regulates themorphogenesis of the tight junctions in mammalian epithelial cells. Mol. Biol. Cell15, 1324-1333.

    Li, D. and Mrsny, R. J. (2000). Oncogenic Raf-1 disrupts epithelial tight junctions viadownregulation of occludin. J. Cell Biol. 148, 791-800.

    Li, X., Yang, H., Liu, J., Schmidt, M. D. and Gao, T. (2011). Scribble-mediatedmembrane targeting of PHLPP1 is required for its negative regulation of Akt. EMBORep. 12, 818-824.

    Matter, K. and Balda, M. S. (2003). Functional analysis of tight junctions. Methods 30,228-234.

    Mechler, B. M., McGinnis, W. and Gehring, W. J. (1985). Molecular cloning oflethal(2)giant larvae, a recessive oncogene of Drosophila melanogaster. EMBO J. 4,1551-1557.

    Métais, J. Y., Navarro, C., Santoni, M. J., Audebert, S. and Borg, J. P. (2005). hScribinteracts with ZO-2 at the cell-cell junctions of epithelial cells. FEBS Lett. 579, 3725-3730.

    Michel, D., Arsanto, J. P., Massey-Harroche, D., Béclin, C., Wijnholds, J. and Le

    Bivic, A. (2005). PATJ connects and stabilizes apical and lateral components of tightjunctions in human intestinal cells. J. Cell Sci. 118, 4049-4057.

    Journal of Cell Science 126 (17)3998

    http://david.abcc.ncifcrf.govhttp://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.129387/-/DC1http://dx.doi.org/10.1042/BJ20100249http://dx.doi.org/10.1042/BJ20100249http://dx.doi.org/10.1042/BJ20100249http://dx.doi.org/10.1038/sj.onc.1210508http://dx.doi.org/10.1038/sj.onc.1210508http://dx.doi.org/10.1038/sj.onc.1210508http://dx.doi.org/10.1038/sj.onc.1210508http://dx.doi.org/10.1016/j.cub.2004.05.051http://dx.doi.org/10.1016/j.cub.2004.05.051http://dx.doi.org/10.1016/j.cub.2004.05.051http://dx.doi.org/10.1016/j.cub.2004.05.051http://dx.doi.org/10.1242/jcs.023887http://dx.doi.org/10.1242/jcs.023887http://dx.doi.org/10.1016/j.bbamem.2008.11.024http://dx.doi.org/10.1016/j.bbamem.2008.11.024http://dx.doi.org/10.1042/BJ20050959http://dx.doi.org/10.1042/BJ20050959http://dx.doi.org/10.1042/BJ20050959http://dx.doi.org/10.1038/35001108http://dx.doi.org/10.1038/35001108http://dx.doi.org/10.1038/ncb1226http://dx.doi.org/10.1038/ncb1226http://dx.doi.org/10.1038/sj.onc.1209808http://dx.doi.org/10.1038/sj.onc.1209808http://dx.doi.org/10.1038/sj.onc.1209808http://dx.doi.org/10.1038/sj.onc.1209808http://dx.doi.org/10.1016/S1097-2765(01)00260-Xhttp://dx.doi.org/10.1016/S1097-2765(01)00260-Xhttp://dx.doi.org/10.1016/S1097-2765(01)00260-Xhttp://dx.doi.org/10.1016/S1097-2765(01)00260-Xhttp://dx.doi.org/10.1016/S1046-2023(03)00032-Xhttp://dx.doi.org/10.1016/S1046-2023(03)00032-Xhttp://dx.doi.org/10.1016/S1046-2023(03)00032-Xhttp://dx.doi.org/10.1038/sj.onc.1210421http://dx.doi.org/10.1038/sj.onc.1210421http://dx.doi.org/10.1089/104454904322745907http://dx.doi.org/10.1089/104454904322745907http://dx.doi.org/10.1089/104454904322745907http://dx.doi.org/10.1158/0008-5472.CAN-05-3635http://dx.doi.org/10.1158/0008-5472.CAN-05-3635http://dx.doi.org/10.1158/0008-5472.CAN-05-3635http://dx.doi.org/10.1158/0008-5472.CAN-05-3635http://dx.doi.org/10.1038/sj.onc.1207154http://dx.doi.org/10.1038/sj.onc.1207154http://dx.doi.org/10.1038/sj.onc.1207154http://dx.doi.org/10.1038/sj.onc.1207154http://dx.doi.org/10.1038/onc.2008.219http://dx.doi.org/10.1038/onc.2008.219http://dx.doi.org/10.1038/onc.2008.219http://dx.doi.org/10.1007/s00418-008-0418-7http://dx.doi.org/10.1007/s00418-008-0418-7http://dx.doi.org/10.1042/bse0530141http://dx.doi.org/10.1042/bse0530141http://dx.doi.org/10.1042/bse0530141http://dx.doi.org/10.1111/j.1749-6632.2012.06556.xhttp://dx.doi.org/10.1111/j.1749-6632.2012.06556.xhttp://dx.doi.org/10.1242/jcs.02412http://dx.doi.org/10.1242/jcs.02412http://dx.doi.org/10.1002/ijc.21982http://dx.doi.org/10.1002/ijc.21982http://dx.doi.org/10.1002/ijc.21982http://dx.doi.org/10.1002/ijc.21982http://dx.doi.org/10.1007/s10911-010-9180-2http://dx.doi.org/10.1007/s10911-010-9180-2http://dx.doi.org/10.1007/s10911-010-9180-2http://dx.doi.org/10.1016/j.bbamem.2007.08.018http://dx.doi.org/10.1016/j.bbamem.2007.08.018http://dx.doi.org/10.1074/jbc.M407071200http://dx.doi.org/10.1074/jbc.M407071200http://dx.doi.org/10.1074/jbc.M407071200http://dx.doi.org/10.1074/jbc.M407071200http://dx.doi.org/10.1038/onc.2008.341http://dx.doi.org/10.1038/onc.2008.341http://dx.doi.org/10.1038/onc.2008.341http://dx.doi.org/10.1038/ncb923http://dx.doi.org/10.1038/ncb923http://dx.doi.org/10.1038/ncb923http://dx.doi.org/10.1242/jcs.00389http://dx.doi.org/10.1242/jcs.00389http://dx.doi.org/10.1242/jcs.00389http://dx.doi.org/10.2353/ajpath.2010.090220http://dx.doi.org/10.2353/ajpath.2010.090220http://dx.doi.org/10.2353/ajpath.2010.090220http://dx.doi.org/10.1128/JVI.05410-11http://dx.doi.org/10.1128/JVI.05410-11http://dx.doi.org/10.1038/35019573http://dx.doi.org/10.1038/35019573http://dx.doi.org/10.1016/j.humpath.2007.01.026http://dx.doi.org/10.1016/j.humpath.2007.01.026http://dx.doi.org/10.1016/j.humpath.2007.01.026http://dx.doi.org/10.1158/0008-5472.CAN-07-6814http://dx.doi.org/10.1158/0008-5472.CAN-07-6814http://dx.doi.org/10.1158/0008-5472.CAN-07-6814http://dx.doi.org/10.1158/0008-5472.CAN-07-6814http://dx.doi.org/10.1091/mbc.E03-04-0235http://dx.doi.org/10.1091/mbc.E03-04-0235http://dx.doi.org/10.1091/mbc.E03-04-0235http://dx.doi.org/10.1091/mbc.E03-04-0235http://dx.doi.org/10.1083/jcb.148.4.791http://dx.doi.org/10.1083/jcb.148.4.791http://dx.doi.org/10.1038/embor.2011.106http://dx.doi.org/10.1038/embor.2011.106http://dx.doi.org/10.1038/embor.2011.106http://dx.doi.org/10.1016/S1046-2023(03)00029-Xhttp://dx.doi.org/10.1016/S1046-2023(03)00029-Xhttp://dx.doi.org/10.1016/j.febslet.2005.05.062http://dx.doi.org/10.1016/j.febslet.2005.05.062http://dx.doi.org/10.1016/j.febslet.2005.05.062http://dx.doi.org/10.1242/jcs.02528http://dx.doi.org/10.1242/jcs.02528http://dx.doi.org/10.1242/jcs.02528

  • Journ

    alof

    Cell

    Scie

    nce

    Moreno-Bueno, G., Portillo, F. and Cano, A. (2008). Transcriptional regulation of cellpolarity in EMT and cancer. Oncogene 27, 6958-6969.

    Nagasaka, K., Massimi, P., Pim, D., Subbaiah, V. K., Kranjec, C., Nakagawa, S.,Yano, T., Taketani, Y. and Banks, L. (2010a). The mechanism and implications ofhScrib regulation of ERK. Small GTPases 1, 108-112.

    Nagasaka, K., Pim, D., Massimi, P., Thomas, M., Tomaić, V., Subbaiah, V. K.,Kranjec, C., Nakagawa, S., Yano, T., Taketani, Y. et al. (2010b). The cell polarityregulator hScrib controls ERK activation through a KIM site-dependent interaction.Oncogene 29, 5311-5321.

    Nakagawa, S. and Huibregtse, J. M. (2000). Human scribble (Vartul) is targeted forubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and theE6AP ubiquitin-protein ligase. Mol. Cell. Biol. 20, 8244-8253.

    Nakagawa, S., Yano, T., Nakagawa, K., Takizawa, S., Suzuki, Y., Yasugi, T.,Huibregtse, J. M. and Taketani, Y. (2004). Analysis of the expression andlocalisation of a LAP protein, human scribble, in the normal and neoplasticepithelium of uterine cervix. Br. J. Cancer 90, 194-199.

    Navarro, C., Nola, S., Audebert, S., Santoni, M. J., Arsanto, J. P., Ginestier, C.,

    Marchetto, S., Jacquemier, J., Isnardon, D., Le Bivic, A. et al. (2005). Junctionalrecruitment of mammalian Scribble relies on E-cadherin engagement. Oncogene 24,4330-4339.

    Nunbhakdi-Craig, V., Machleidt, T., Ogris, E., Bellotto, D., White, C. L., 3rd and

    Sontag, E. (2002). Protein phosphatase 2A associates with and regulates atypicalPKC and the epithelial tight junction complex. J. Cell Biol. 158, 967-978.

    Nusrat, A., Giry, M., Turner, J. R., Colgan, S. P., Parkos, C. A., Carnes, D.,

    Lemichez, E., Boquet, P. and Madara, J. L. (1995). Rho protein regulates tightjunctions and perijunctional actin organization in polarized epithelia. Proc. Natl.Acad. Sci. USA 92, 10629-10633.

    Okajima, M., Takahashi, M., Higuchi, M., Ohsawa, T., Yoshida, S., Yoshida, Y.,

    Oie, M., Tanaka, Y., Gejyo, F. and Fujii, M. (2008). Human T-cell leukemia virustype 1 Tax induces an aberrant clustering of the tumor suppressor Scribble through thePDZ domain-binding motif dependent and independent interaction. Virus Genes 37,231-240.

    Ouyang, Z., Zhan, W. and Dan, L. (2010). hScrib, a human homolog of Drosophilaneoplastic tumor suppressor, is involved in the progress of endometrial cancer. Oncol.Res. 18, 593-599.

    Pearson, H. B., Perez-Mancera, P. A., Dow, L. E., Ryan, A., Tennstedt, P., Bogani,

    D., Elsum, I., Greenfield, A., Tuveson, D. A., Simon, R. et al. (2011). SCRIBexpression is deregulated in human prostate cancer, and its deficiency in micepromotes prostate neoplasia. J. Clin. Invest. 121, 4257-4267.

    Peinado, H., Olmeda, D. and Cano, A. (2007). Snail, Zeb and bHLH factors in tumourprogression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 7, 415-428.

    Qin, Y., Capaldo, C., Gumbiner, B. M. and Macara, I. G. (2005). The mammalianScribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J. Cell Biol. 171, 1061-1071.

    Rothenberg, S. M., Mohapatra, G., Rivera, M. N., Winokur, D., Greninger, P.,

    Nitta, M., Sadow, P. M., Sooriyakumar, G., Brannigan, B. W., Ulman, M. J. et al.(2010). A genome-wide screen for microdeletions reveals disruption of polaritycomplex genes in diverse human cancers. Cancer Res. 70, 2158-2164.

    Schmalhofer, O., Brabletz, S. and Brabletz, T. (2009). E-cadherin, beta-catenin, andZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 28, 151-166.

    Shaul, Y. D. and Seger, R. (2007). The MEK/ERK cascade: from signaling specificityto diverse functions. Biochim. Biophys. Acta 1773, 1213-1226.

    Shin, K., Straight, S. and Margolis, B. (2005). PATJ regulates tight junction formationand polarity in mammalian epithelial cells. J. Cell Biol. 168, 705-711.

    Shin, K., Fogg, V. C. and Margolis, B. (2006). Tight junctions and cell polarity. Annu.Rev. Cell Dev. Biol. 22, 207-235.

    Shin, S., Dimitri, C. A., Yoon, S. O., Dowdle, W. and Blenis, J. (2010). ERK2 but notERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependentsignaling events. Mol. Cell 38, 114-127.

    Shirakihara, T., Saitoh, M. and Miyazono, K. (2007). Differential regulation ofepithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymaltransition induced by TGF-beta. Mol. Biol. Cell 18, 3533-3544.

    Spaderna, S., Schmalhofer, O., Wahlbuhl, M., Dimmler, A., Bauer, K., Sultan, A.,Hlubek, F., Jung, A., Strand, D., Eger, A. et al. (2008). The transcriptionalrepressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res.68, 537-544.

    Steed, E., Balda, M. S. and Matter, K. (2010). Dynamics and functions of tightjunctions. Trends Cell Biol. 20, 142-149.

    Straight, S. W., Shin, K., Fogg, V. C., Fan, S., Liu, C. J., Roh, M. and Margolis,

    B. (2004). Loss of PALS1 expression leads to tight junction and polarity defects. Mol.Biol. Cell 15, 1981-1990.

    Stuart, R. O. and Nigam, S. K. (1995). Regulated assembly of tight junctions byprotein kinase C. Proc. Natl. Acad. Sci. USA 92, 6072-6076.

    Stucke, V. M., Timmerman, E., Vandekerckhove, J., Gevaert, K. and Hall,A. (2007). The MAGUK protein MPP7 binds to the polarity protein hDlg1 andfacilitates epithelial tight junction formation. Mol. Biol. Cell 18, 1744-1755.

    Sun, Y., Aiga, M., Yoshida, E., Humbert, P. O. and Bamji, S. X. (2009). Scribbleinteracts with beta-catenin to localize synaptic vesicles to synapses. Mol. Biol. Cell20, 3390-3400.

    Suzuki, A., Yamanaka, T., Hirose, T., Manabe, N., Mizuno, K., Shimizu, M.,

    Akimoto, K., Izumi, Y., Ohnishi, T. and Ohno, S. (2001). Atypical protein kinase Cis involved in the evolutionarily conserved par protein complex and plays a criticalrole in establishing epithelia-specific junctional structures. J. Cell Biol. 152, 1183-1196.

    Suzuki, T., Elias, B. C., Seth, A., Shen, L., Turner, J. R., Giorgianni, F., Desiderio,D., Guntaka, R. and Rao, R. (2009). PKC eta regulates occludin phosphorylationand epithelial tight junction integrity. Proc. Natl. Acad. Sci. USA 106, 61-66.

    Terry, S. J., Zihni, C., Elbediwy, A., Vitiello, E., Leefa Chong San, I. V., Balda,

    M. S. and Matter, K. (2011). Spatially restricted activation of RhoA signalling atepithelial junctions by p114RhoGEF drives junction formation and morphogenesis.Nat. Cell Biol. 13, 159-166.

    Treinies, I., Paterson, H. F., Hooper, S., Wilson, R. and Marshall, C. J. (1999).Activated MEK stimulates expression of AP-1 components independently ofphosphatidylinositol 3-kinase (PI3-kinase) but requires a PI3-kinase signal Tostimulate DNA synthesis. Mol. Cell. Biol. 19, 321-329.

    Underwood, J. M., Imbalzano, K. M., Weaver, V. M., Fischer, A. H., Imbalzano,A. N. and Nickerson, J. A. (2006). The ultrastructure of MCF-10A acini. J. Cell.Physiol. 208, 141-148.

    Vaira, V., Faversani, A., Dohi, T., Maggioni, M., Nosotti, M., Tosi, D., Altieri,

    D. C. and Bosari, S. (2011). Aberrant overexpression of the cell polarity modulescribble in human cancer. Am. J. Pathol. 178, 2478-2483.

    Vandewalle, C., Comijn, J., De Craene, B., Vermassen, P., Bruyneel, E., Andersen,

    H., Tulchinsky, E., Van Roy, F. and Berx, G. (2005). SIP1/ZEB2 induces EMT byrepressing genes of different epithelial cell-cell junctions. Nucleic Acids Res. 33,6566-6578.

    Walsh, S. V., Hopkins, A. M., Chen, J., Narumiya, S., Parkos, C. A. and Nusrat,

    A. (2001). Rho kinase regulates tight junction function and is necessary for tightjunction assembly in polarized intestinal epithelia. Gastroenterology 121, 566-579.

    Ward, P. D., Klein, R. R., Troutman, M. D., Desai, S. and Thakker, D. R. (2002).Phospholipase C-gamma modulates epithelial tight junction permeability throughhyperphosphorylation of tight junction proteins. J. Biol. Chem. 277, 35760-35765.

    Whiteman, E. L., Liu, C. J., Fearon, E. R. and Margolis, B. (2008). The transcriptionfactor snail represses Crumbs3 expression and disrupts apico-basal polaritycomplexes. Oncogene 27, 3875-3879.

    Woods, D. F. and Bryant, P. J. (1991). The discs-large tumor suppressor gene ofDrosophila encodes a guanylate kinase homolog localized at septate junctions. Cell66, 451-464.

    Yang, R., Harada, T., Li, J., Uchiyama, T., Han, Y., Englert, J. A. and Fink,M. P. (2005). Bile modulates intestinal epithelial barrier function via an extracellularsignal related kinase 1/2 dependent mechanism. Intensive Care Med. 31, 709-717.

    Yang, Z., Xue, B., Umitsu, M., Ikura, M., Muthuswamy, S. K. and Neel,

    B. G. (2012). The signaling adaptor GAB1 regulates cell polarity by acting as aPAR protein scaffold. Mol. Cell 47, 469-483.

    Yoshihara, K., Ikenouchi, J., Izumi, Y., Akashi, M., Tsukita, S. and Furuse,M. (2011). Phosphorylation state regulates the localization of Scribble at adherensjunctions and its association with E-cadherin-catenin complexes. Exp. Cell Res. 317,413-422.

    Young, M. R. and Colburn, N. H. (2006). Fra-1 a target for cancer prevention orintervention. Gene 379, 1-11.

    Young, M. R., Nair, R., Bucheimer, N., Tulsian, P., Brown, N., Chapp, C., Hsu,

    T. C. and Colburn, N. H. (2002). Transactivation of Fra-1 and consequent activationof AP-1 occur extracellular signal-regulated kinase dependently. Mol. Cell. Biol. 22,587-598.

    Zhan, L., Rosenberg, A., Bergami, K. C., Yu, M., Xuan, Z., Jaffe, A. B., Allred,

    C. and Muthuswamy, S. K. (2008). Deregulation of scribble promotes mammarytumorigenesis and reveals a role for cell polarity in carcinoma. Cell 135, 865-878.

    Scrib regulates junctions through EMT signaling 3999

    http://dx.doi.org/10.1038/onc.2008.346http://dx.doi.org/10.1038/onc.2008.346http://dx.doi.org/10.4161/sgtp.1.2.13649http://dx.doi.org/10.4161/sgtp.1.2.13649http://dx.doi.org/10.4161/sgtp.1.2.13649http://dx.doi.org/10.1038/onc.2010.265http://dx.doi.org/10.1038/onc.2010.265http://dx.doi.org/10.1038/onc.2010.265http://dx.doi.org/10.1038/onc.2010.265http://dx.doi.org/10.1128/MCB.20.21.8244-8253.2000http://dx.doi.org/10.1128/MCB.20.21.8244-8253.2000http://dx.doi.org/10.1128/MCB.20.21.8244-8253.2000http://dx.doi.org/10.1038/sj.bjc.6601465http://dx.doi.org/10.1038/sj.bjc.6601465http://dx.doi.org/10.1038/sj.bjc.6601465http://dx.doi.org/10.1038/sj.bjc.6601465http://dx.doi.org/10.1038/sj.onc.1208632http://dx.doi.org/10.1038/sj.onc.1208632http://dx.doi.org/10.1038/sj.onc.1208632http://dx.doi.org/10.1038/sj.onc.1208632http://dx.doi.org/10.1083/jcb.200206114http://dx.doi.org/10.1083/jcb.200206114http://dx.doi.org/10.1083/jcb.200206114http://dx.doi.org/10.1073/pnas.92.23.10629http://dx.doi.org/10.1073/pnas.92.23.10629http://dx.doi.org/10.1073/pnas.92.23.10629http://dx.doi.org/10.1073/pnas.92.23.10629http://dx.doi.org/10.1007/s11262-008-0259-4http://dx.doi.org/10.1007/s11262-008-0259-4http://dx.doi.org/10.1007/s11262-008-0259-4http://dx.doi.org/10.1007/s11262-008-0259-4http://dx.doi.org/10.1007/s11262-008-0259-4http://dx.doi.org/10.3727/096504010X12767359114045http://dx.doi.org/10.3727/096504010X12767359114045http://dx.doi.org/10.3727/096504010X12767359114045http://dx.doi.org/10.1172/JCI58509http://dx.doi.org/10.1172/JCI58509http://dx.doi.org/10.1172/JCI58509http://dx.doi.org/10.1172/JCI58509http://dx.doi.org/10.1038/nrc2131http://dx.doi.org/10.1038/nrc2131http://dx.doi.org/10.1038/nrc2131http://dx.doi.org/10.1083/jcb.200506094http://dx.doi.org/10.1083/jcb.200506094http://dx.doi.org/10.1083/jcb.200506094http://dx.doi.org/10.1158/0008-5472.CAN-09-3458http://dx.doi.org/10.1158/0008-5472.CAN-09-3458http://dx.doi.org/10.1158/0008-5472.CAN-09-3458http://dx.doi.org/10.1158/0008-5472.CAN-09-3458http://dx.doi.org/10.1007/s10555-008-9179-yhttp://dx.doi.org/10.1007/s10555-008-9179-yhttp://dx.doi.org/10.1016/j.bbamcr.2006.10.005http://dx.doi.org/10.1016/j.bbamcr.2006.10.005http://dx.doi.org/10.1083/jcb.200408064http://dx.doi.org/10.1083/jcb.200408064http://dx.doi.org/10.1146/annurev.cellbio.22.010305.104219http://dx.doi.org/10.1146/annurev.cellbio.22.010305.104219http://dx.doi.org/10.1016/j.molcel.2010.02.020http://dx.doi.org/10.1016/j.molcel.2010.02.020http://dx.doi.org/10.1016/j.molcel.2010.02.020http://dx.doi.org/10.1091/mbc.E07-03-0249http://dx.doi.org/10.1091/mbc.E07-03-0249http://dx.doi.org/10.1091/mbc.E07-03-0249http://dx.doi.org/10.1158/0008-5472.CAN-07-5682http://dx.doi.org/10.1158/0008-5472.CAN-07-5682http://dx.doi.org/10.1158/0008-5472.CAN-07-5682http://dx.doi.org/10.1158/0008-5472.CAN-07-5682http://dx.doi.org/10.1016/j.tcb.2009.12.002http://dx.doi.org/10.1016/j.tcb.2009.12.002http://dx.doi.org/10.1091/mbc.E03-08-0620http://dx.doi.org/10.1091/mbc.E03-08-0620http://dx.doi.org/10.1091/mbc.E03-08-0620http://dx.doi.org/10.1073/pnas.92.13.6072http://dx.doi.org/10.1073/pnas.92.13.6072http://dx.doi.org/10.1091/mbc.E06-11-0980http://dx.doi.org/10.1091/mbc.E06-11-0980http://dx.doi.org/10.1091/mbc.E06-11-0980http://dx.doi.org/10.1091/mbc.E08-12-1172http://dx.doi.org/10.1091/mbc.E08-12-1172http://dx.doi.org/10.1091/mbc.E08-12-1172http://dx.doi.org/10.1083/jcb.152.6.1183http://dx.doi.org/10.1083/jcb.152.6.1183http://dx.doi.org/10.1083/jcb.152.6.1183http://dx.doi.org/10.1083/jcb.152.6.1183http://dx.doi.org/10.1083/jcb.152.6.1183http://dx.doi.org/10.1073/pnas.0802741106http://dx.doi.org/10.1073/pnas.0802741106http://dx.doi.org/10.1073/pnas.0802741106http://dx.doi.org/10.1038/ncb2156http://dx.doi.org/10.1038/ncb2156http://dx.doi.org/10.1038/ncb2156http://dx.doi.org/10.1038/ncb2156http://dx.doi.org/10.1002/jcp.20639http://dx.doi.org/10.1002/jcp.20639http://dx.doi.org/10.1002/jcp.20639http://dx.doi.org/10.1016/j.ajpath.2011.02.028http://dx.doi.org/10.1016/j.ajpath.2011.02.028http://dx.doi.org/10.1016/j.ajpath.2011.02.028http://dx.doi.org/10.1093/nar/gki965http://dx.doi.org/10.1093/nar/gki965http://dx.doi.org/10.1093/nar/gki965http://dx.doi.org/10.1093/nar/gki965http://dx.doi.org/10.1053/gast.2001.27060http://dx.doi.org/10.1053/gast.2001.27060http://dx.doi.org/10.1053/gast.2001.27060http://dx.doi.org/10.1074/jbc.M203134200http://dx.doi.org/10.1074/jbc.M203134200http://dx.doi.org/10.1074/jbc.M203134200http://dx.doi.org/10.1038/onc.2008.9http://dx.doi.org/10.1038/onc.2008.9http://dx.doi.org/10.1038/onc.2008.9http://dx.doi.org/10.1016/0092-8674(81)90009-Xhttp://dx.doi.org/10.1016/0092-8674(81)90009-Xhttp://dx.doi.org/10.1016/0092-8674(81)90009-Xhttp://dx.doi.org/10.1007/s00134-005-2601-9http://dx.doi.org/10.1007/s00134-005-2601-9http://dx.doi.org/10.1007/s00134-005-2601-9http://dx.doi.org/10.1016/j.molcel.2012.06.037http://dx.doi.org/10.1016/j.molcel.2012.06.037http://dx.doi.org/10.1016/j.molcel.2012.06.037http://dx.doi.org/10.1016/j.yexcr.2010.12.004http://dx.doi.org/10.1016/j.yexcr.2010.12.004http://dx.doi.org/10.1016/j.yexcr.2010.12.004http://dx.doi.org/10.1016/j.yexcr.2010.12.004http://dx.doi.org/10.1016/j.gene.2006.05.001http://dx.doi.org/10.1016/j.gene.2006.05.001http://dx.doi.org/10.1128/MCB.22.2.587-598.2002http://dx.doi.org/10.1128/MCB.22.2.587-598.2002http://dx.doi.org/10.1128/MCB.22.2.587-598.2002http://dx.doi.org/10.1128/MCB.22.2.587-598.2002http://dx.doi.org/10.1016/j.cell.2008.09.045http://dx.doi.org/10.1016/j.cell.2008.09.045http://dx.doi.org/10.1016/j.cell.2008.09.045

    Fig 1Fig 2Fig 3Fig 4Fig 5Ref 1Ref 2Ref 3Ref 4Ref 5Ref 6Ref 7Ref 8Ref 9Ref 10Ref 11Ref 12Ref 13Ref 14Ref 15Ref 16Ref 17Ref 18Ref 19Ref 20Ref 21Ref 22Ref 23Ref 24Ref 25Ref 26Ref 27Ref 28Ref 29Ref 30Ref 31Ref 32Ref 33Ref 34Ref 35Ref 36Ref 37Ref 38Ref 39Ref 40Ref 41Ref 42Ref 43Ref 44Ref 45Ref 46Ref 47Ref 48Ref 49Ref 50Ref 51Ref 52Ref 53Ref 54Ref 55Ref 56Ref 57Ref 58Ref 59Ref 60Ref 61Ref 62Ref 63Ref 64Ref 65Ref 66Ref 67Ref 68Ref 69Ref 70Ref 71Ref 72Ref 73Ref 74Ref 75Ref 76Ref 77Ref 78Ref 79Ref 80Ref 81Ref 82Ref 83Ref 84

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 150 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 200 /GrayImageDepth 8 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /FlateEncode /AutoFilterGrayImages false /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 600 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly true /PDFXNoTrimBoxError false /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox false /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (Euroscale Coated v2) /PDFXOutputConditionIdentifier (FOGRA1) /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /False

    /CreateJDFFile false /SyntheticBoldness 1.000000 /Description >>> setdistillerparams> setpagedevice