Science Exam Notes - · PDF...

37
Syed Kamran Gordon Graydon Memorial Secondary School Grade 9 Science Exam Notes

Transcript of Science Exam Notes - · PDF...

Page 1: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

     

Syed  Kamran  Gordon  Graydon  Memorial  Secondary  School  

Grade  9    Science  Exam  Notes  

Page 2: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Table  of  Contents  

Introducing  Ecosystems  ...............................................................................................  6  

Life  on  Planet  Earth  ......................................................................................................  6  

Bioaccumulation  ..........................................................................................................  7  

Cycles  of  Matter  in  Ecosystems  ....................................................................................  7  

Energy  in  Ecosystems  ...................................................................................................  8  

Food  Webs  ...................................................................................................................  8  

Ecological  Pyramids  ......................................................................................................  9  

Biomass  and  Fossil  Fuels  ..............................................................................................  9  

Biotic  and  Abiotic  Influences  on  Ecosystems  ..............................................................  10  

Symbiosis  ...................................................................................................................  11  

Ecological  Succession  .................................................................................................  11  

Importance  of  Bio-­‐Diversity  .......................................................................................  12  

Matter  .......................................................................................................................  13  

Physical  Changes  of  Matter  ........................................................................................  13  

Types  of  Properties  ....................................................................................................  14  Chemical  and  Physical  Properties  ....................................................................................................................  14  Qualitative  and  Quantitative  Properties  .......................................................................................................  14  Conversion  of  Mass  ....................................................................................................  14  

Energy  ........................................................................................................................  15  

WHMIS  ......................................................................................................................  15  

MSDS  .........................................................................................................................  15  

HHPS  ..........................................................................................................................  15  

The  GUESSS  Method  ..................................................................................................  16  

Mass  and  Volume  ......................................................................................................  16  

Density  ......................................................................................................................  16  

Buoyancy  ...................................................................................................................  17  

Particle  Theory  of  Matter  ...........................................................................................  17  

Classification  of  Matter  ..............................................................................................  17  

Atomic  Theory  ...........................................................................................................  18  Dalton’s  Atomic  Theory  –  The  Ball  Model:  1800’s  ....................................................................................  18  Thomson’s  Discovery  of  Electrons  (Cathode  &  Anode  Experiment)  ................................................  18  Thomson’s  Model  ....................................................................................................................................................  18  Ernest  Rutherford’s  Gold  Foil  Experiment  –  1911  ...................................................................................  18  Bohr  Planetary  Model  –  1912  ............................................................................................................................  19  

Page 3: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Isotopes  .....................................................................................................................  19  Naming  Isotopes  ......................................................................................................................................................  19  Atomic  Mass  ..............................................................................................................................................................  19  Atomic  Structure  ........................................................................................................  20  Atomic  Number  ........................................................................................................................................................  20  Mass  Number  ............................................................................................................................................................  20  Atomic  Notation  .......................................................................................................................................................  20  Periodic  Table  of  Elements  .........................................................................................  21  Mendeleev  –  Concept  of  Periodic  Table  ........................................................................................................  21  The  Current  Periodic  Table  .................................................................................................................................  21  Elements  ......................................................................................................................................................................  21  Valence  Electrons  ....................................................................................................................................................  21  Main  Categories  of  the  Periodic  Table  ...........................................................................................................  21  Groups  and  Periods  ................................................................................................................................................  22  Classes  ..........................................................................................................................................................................  22  Ions  ............................................................................................................................  23  Introduction  ...............................................................................................................................................................  23  Cations  .........................................................................................................................................................................  23  Anions  ..........................................................................................................................................................................  23     Why  does  this  occur?  ........................................................................................................................................  23  Naming  Ions  ...............................................................................................................................................................  23  Chemical  Symbols  ......................................................................................................  24  Counting  Atoms  in  Compounds  ........................................................................................................................  24  Combining  Capacity  ...............................................................................................................................................  24  Building  a  Molecule  ................................................................................................................................................  24  Naming  Compounds  ...............................................................................................................................................  25  Double  and  Triple  Bonds  ............................................................................................  25  

Drawing  Diagrams  ......................................................................................................  25  Bohr-­‐Rutherford  Diagram  ...................................................................................................................................  25  Bohr-­‐Rutherford  Ion  Diagram  ...........................................................................................................................  25  The  Cell  ......................................................................................................................  26  Electric  Current  ........................................................................................................................................................  26  Circuit  ........................................................................................................................  26  Components  ...............................................................................................................................................................  26  Types  of  Circuit  ........................................................................................................................................................  27  Current  ......................................................................................................................  27  

Voltage  (Potential  Difference)  ....................................................................................  27  

Power  ........................................................................................................................  27  

Electrical  Resistance  ...................................................................................................  28  Loads  .............................................................................................................................................................................  28  Conductors  .................................................................................................................................................................  28  Wires  .............................................................................................................................................................................  28  Superconductors  .....................................................................................................................................................  28  Safety  ........................................................................................................................  29  

Page 4: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Circuit  Breakers  .......................................................................................................................................................  29  Fuses  .............................................................................................................................................................................  29  Wall  Outlets  ...............................................................................................................................................................  29  GFCI  ...............................................................................................................................................................................  29  Surge  Protector  ........................................................................................................................................................  29  Human  Conductivity  and  Resistance  ..........................................................................  29  Resistance  of  human  body  ..................................................................................................................................  29  Direct  and  Alternating  current  ...................................................................................  30  Alternating  Current  ................................................................................................................................................  30  Direct  Current  ...........................................................................................................................................................  30  Electricity  flowing  to  your  house  ................................................................................  30  

Electrical  Production  ..................................................................................................  30  Non-­‐renewable  Resources  ..................................................................................................................................  30  Fossil  Fuels  ..................................................................................................................................................................  30  Nuclear  .........................................................................................................................................................................  31  

Renewable  Resources  ...........................................................................................................................................  31  Solar  ..............................................................................................................................................................................  31  Wind  ..............................................................................................................................................................................  31  Hydro-­‐electric  Electricity  .....................................................................................................................................  31  Tidal  Energy  ...............................................................................................................................................................  32  

Electricity  Production  in  Canada  ......................................................................................................................  32  The  Future  ..................................................................................................................................................................  32  Nuclear  Fusion  ..........................................................................................................................................................  32  Geo-­‐Thermal  ..............................................................................................................................................................  32  

Static  Electricity  .........................................................................................................  32  Insulators  ....................................................................................................................................................................  32  Conductors  .................................................................................................................................................................  32  Laws  of  Electric  Charges  .............................................................................................  33  

Electrostatic  Series  .....................................................................................................  33  

Charging  .....................................................................................................................  33  Friction  ........................................................................................................................................................................  33  Contact  .........................................................................................................................................................................  33  Induction  .....................................................................................................................................................................  33  Semiconductors  .........................................................................................................  34  

Grounding  ..................................................................................................................  34  

Lighting  ......................................................................................................................  34  

Circuit  Diagrams  .........................................................................................................  34  

The  Universe  ..............................................................................................................  35  

Distance  in  Space  .......................................................................................................  35  Astronomical  Unit  (AU)  ........................................................................................................................................  35  Light  Year  ....................................................................................................................................................................  35  Galaxies  .....................................................................................................................  35  

Page 5: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Spiral  .............................................................................................................................................................................  35  Elliptical  .......................................................................................................................................................................  35  Irregular  Galaxies  ....................................................................................................................................................  36  Constellations  ............................................................................................................  36  

Our  Solar  System  .......................................................................................................  36  Sun  .................................................................................................................................................................................  36  Mercury  .......................................................................................................................................................................  36  Venus  ............................................................................................................................................................................  36  Earth  .............................................................................................................................................................................  36  Mars  ..............................................................................................................................................................................  36  Jupiter  ...........................................................................................................................................................................  36  Saturn  ...........................................................................................................................................................................  37  Uranus  ..........................................................................................................................................................................  37  Neptune  .......................................................................................................................................................................  37  Poor  old  Pluto  ...........................................................................................................................................................  37  Best  of  wishes  on  the  Exam  :D!!  .................................................................................  37        

Page 6: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Ecology  Notes  

Introducing  Ecosystems  Ecosystem:   All   the   living   and   non-­‐living   organisms   of   a   certain   region   or   area  interacting.    Example   of   ecosystems   include:   Forests,   Swamps,   and   Coral   Reefs.   Living  Components  of  an  ecosystem  are  called  Biotic  and  non-­‐living  are  abiotic.  Population:  All  the  individuals  of  a  single  species  in  a  certain  region  or  area  make  a  population.  Community:   Individuals   from   all   populations   of   a   certain   region   or   are   form   the  community.  This  does  not  include  abiotic  factors.    Characteristics  of  an  Ecosystem:     Organisms:  Organisms  vary  from  ecosystem  to  ecosystem.     Temperature  Range:  The  weather  patterns  of  each  ecosystem,  depicts  what  organisms   live   there.     Precipitation:  The  amount  of   rain  and  snow   fall   controls   the  climate  of  an  ecosystem.  Sustainability:   Sustainability   is   the   ability   to   maintain   ecological   balance;   today  most  ecosystems  are  sustainable.  This  means  that  their  characteristics  will  remain  the   same   over   a   long   period   of   time.   Human   actions   can   disturb   the   biotic   and  abiotic   factors   of   an   ecosystem,   thus   reducing   its   sustainability.   Some   actions   can  damage  an  ecosystem  to  a  point  where  it  is  no  longer  sustainable.  E.g.  Oil  Spills.    Man-­‐Made  Ecosystems:  Most  ecosystems  are  not  mad  made,  however  ecosystems  such  as  parks  are  mad  made.  These  ecosystems  require  constant  management  and  are  usually  not   sustainable.   i.e.   If  you   left  a   farm   for   three  years  would   it   look   the  same  when  you  came  back.    

Life  on  Planet  Earth  The   Spheres   of   Earth:   The   earth   has   three   spheres   surrounding   it.   Unlike   the  moon,  the  Earth’s  gravity  is  strong  enough  to  hold  gases  close  to  the  surface.    

• Atmosphere:   Layer   of   gases   extending   upward   for   hundreds   of   kilometres,   and  consists   of   78%   nitrogen   (N2),   21%   oxygen   (O2)   and   the   remaining   1%   is   argon,  water   vapour,   CO2,   etc.   This   is   crucial   to   life   on   Earth,   and   acts   like   a   blanket  providing  moderate  temperatures.  

• Lithosphere:  The  rocky  outer  shell  of  Earth  containing  rocks  and  minerals.  It  is  50-­‐  150  km  in  thickness.    

• Hydrosphere:   All   the   water   on   the   Earth   (above   and   below   the   surface).   This  includes  all  oceans,  lakes,  ice,  clouds,  etc.    

The   Biosphere:  All   the   life   forms   that   exist  within   all   the   three   spheres   of   Earth  (Atmosphere,  Lithosphere,  Hydrosphere)  

Page 7: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Bioaccumulation  Bioaccumulation:  A  process   in  which  materials,  especially   toxins,  are   ingested  by  an  organism  at  a  rate  greater  than  they  are  eliminated.    Biomagnifications:   The process, in an ecosystem, in which a higher concentration of a substance in an organism is obtained higher up the food chain.

Cycles  of  Matter  in  Ecosystems  Biogeochemical   Cycles:   The   movement   of   matter   through   biotic   and   abiotic  factors.   Matter   cannot   be   made   or   destroyed.   Nutrients   are   produced   from  substances  already  in  the  environment.  They  are  four  main  biogeochemical  cycles:  

1. The  Water  Cycle:    2. The  Carbon  Cycle:  

Carbon  is  cycled  through  the  lithosphere,  atmosphere,  hydrosphere,  and  biosphere.  Carbon  is  an  important  element,  it  is  the  basic  building  block  of  living  things.  Carbon  is  recycled  by  photosynthesis  and  respiration.    

3. The  Nitrogen  Cycle:  The   series   of   processes   in   which   nitrogen   compounds   are   moved   through   and  abiotic   environment.   Nitrogen   is   taken   from   the   atmosphere   by   soil   bacteria   by  nitrogen   fixation   –   a  process   that   converts  nitrogen  gas   into  nitrogen   containing  compounds.   Nitrogen   is   than   available   to   producers,   which   animals   eat.  Decomposers  feed  on  dead  animals,  while  Denitrifying  bacteria  release  the  nitrogen  back  into  the  atmosphere.    

4. The  Phosphorus  Cycle:    Phosphorus  starts  in  rocks,  which  break  down  into  soil.  Plants  use  the  phosphorus  in   the   soil;   the   plants   are   eaten   by   animals,   which   are   decomposed   by   bacteria,  which  release  the  phosphorus  back  into  the  soil.    

Page 8: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Energy  in  Ecosystems  Types  of  Energy:    

• Radiant  Energy:  Energy  that  travels  through  empty  space.  o 70%   of   radiant   energy   from   the   Sun   is   absorbed   by   the   hydrosphere   and  

lithosphere,  and  converted  into  Heat.  § 51%  Absorbed  by  land  and  oceans    § 19%  Absorbed  by  Atmosphere  and  Clouds  

o 30%  of  the  radiant  energy  is  reflected  back  into  space.    • Light  Energy:  Visible  forms  of  radiant  energy  • Thermal   Energy:   The   form   of   energy   transferred   during   heating   and   cooling  

(warms  the  atmosphere,  evaporates  water,  produces  winds)  

Photosynthesis:  The  process  in  which  the  Sun’s  energy  is  converted  into  chemical  energy  (Glucose/Sugar).  This  occurs  only  in  producers,  an  organism  that  makes  its  own  energy  rich  food  compounds  using  the  Sun’s  energy.  Plants  use  chlorophyll  to  capture   light   energy.   The   formula   of   photosynthesis   is  !"#$%&  !"#$"!% + !"#$%!"#!!  !"!#$%

 !"#$% + !"#$%&.   In   oceans   algae   and   cyan   bacteria   use   chlorophyll   to  capture  light  energy  for  photosynthesis.    Cellular  Respiration:  The  process  by  which  sugar  is  converted  into  carbon  dioxide,  water  and  energy.  Organism  use  released  energy  for  any  of  the  activities  carried  out  by   its   cell.   The   formula   of   cellular   respiration   is  

!"#$% + !"#$%& !"#$%&  !"#$"!% + !"#$% + !"!#$%.  

Food  Webs  Ecological  Niches:  An  ecological  niche  is  simply  the  function  of  a  species  serves  in  its  ecosystem;  thus  no  two  species  have  the  same  ecological  niche.  Producers  vs.  Consumers  

• Producers:  These  are  always  plants  that  harness  the  sun’s  energy  with  chlorophyll.  • Consumers:  Living  things  that  eat  producers  in  addition  to  other  consumers.    

o Herbivore:  Animals  that  eat  only  plants  (producers)  o Carnivore:  Animals  that  eat  only  meat  (other  consumers)  o Omnivore:   Animals   that   eat   both   plants   and   meat   (producers   and  

consumers)  o Scavenger:  Animals  that  feed  on  the  remains  of  another  organisms.  

Food   Chain:   A   sequence   of   organisms,   each   feeding   on   the   next,   displaying   how  energy   is   following   from   one   organism   to   the   next.   E.g.   Pine   cone  àRed   Squirrel  àWeasel  àGoshawk.  Arrow  head   is  pointing   toward   the   consumer.  These   chains  are  not  exhaustive  and  simply  show  feeding  relationships.  If  one  link  of  a  food  chain  is  broken  it  would  result  in  numerous  problems  within  the  chain.        

Page 9: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Trophic  Level:  The  level  of  an  organism  in  an  ecosystem  depending  on  its  feeding  postion.  

• First  Trophic  Level:  Producers  e.g.  Plants  • Second   Trophic   Level:   Will   eat   producers   only   e.g.   Small   Animals   (primary  

consumers)  • Third   Trophic   Level:   Can   eat   primary   consumers   and   producers   e.g.   Mid-­‐sized  

animals  (secondary  consumers)  • Fourth  Trophic   Level:  Can  eat  primary,  secondary  consumers,  and  producers  e.g.  

Large  animals  (tertiary  consumers)  

Food   Webs:   A   visual   representation   that  much   accurately   displays  who   eat   who  within   a   community.   It   is   usually   highly   complex   as   organisms   feed   upon   several  species.  Similar   to   food  chains   the  arrow  points   from  the  organism  being  eaten   to  the  organisms  that  is  eating  it.  Food  webs  are  used  to  figure  out  what  may  happen  when  a  species  is  removed  or  added  to  an  ecosystem.  

Ecological  Pyramids  Ecological  Pyramids:  Pyramids  that  display  the  relationship  between  trophic  levels  in  ecosystems.  

• Energy:  Displays  energy  loss  between  trophic  levels;  only  about  10%  of  the  energy  is  passed  on  to  organisms  at  the  next  trophic  level.  Only  10%  of  the  energy  is  passed  on  because  organisms  use  90%  of  the  energy  for  cellular  respiration.  The  energy  is  released  as  heat  and  absorbed  by  the  ecosystem.    

• Numbers:  The  number  of  organisms  that  make  up  each  tropic   level.  This  pyramid  are  sometime  bigger  at  the  top.  

• Biomass:   Represents   the   mass   (weight)   of   all   the   living   organisms   within   that  trophic  level.  

Biomass  and  Fossil  Fuels  Biomass:   Biological   material   from   living,   or   previously   living   organisms.   This  material   is   usually   recycled     allowing   the   material   to   be   reused.   If   biomass   is  trapped  in  places  without  oxygen,  with  is  required  to  break  down  living  matter,  over  time  the  trapped  biomass  is  converted  into  fossil  fuels.    Burning  Fossil  Fuels:  The  burning  of  fossil  fuels  is  the  world’s  fastest  way  of  producing  energy.  Oxygen  is  used   to   produce   energy   and   Carbon   Dioxide.   Fossil   fuels   have   accumulated   for  millions  of  years,  but  in  recent  years  human  have  burned  significant  portion  of  the  Earth’s  reserves.  

• Suspicion:  Some  believe   that   the  CO2  being  released   is  responsible   for  Greenhouse  Effect.  

     

Page 10: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

 Global  Warming:    The  Greenhouse  Effect  is  predicted  to  be  causing  Global  Warming;  this  effect  states  rising   of   CO2   in   the   atmosphere   is   responsible   for   the   increase   in   temperature.  However,  this  has  not  been  proven  thus  far.    Fuel  from  Waste:    Some  bacteria  are  known  to  break  down  waste  into  sugar,  through  a  process  called  fermentation.   This   released   a   gas   called  methane   (CH4).   This   gas   is   then   collected  and  burn  to  generated  electricity.    Acid  Precipitation:  Acids  fall  to  the  earth  as  a  form  of  precipitation  (rain,  sleet  or  snow).    

• When  fossil  fuels  are  burned  they  release  undesirable  substances  • Nitrogen  Oxides  and  Sulfer  Dioxide,  are  released    and  combine  with  water  to   form  

compound  acids,  such  as  Nitric  Acid  &  Sulphuric  Acid)  • Acid  Precipitation  damages  many  things:  

o Forest  soils  lose  nutrients  killing  life.    o When  mixed  with  water  in  lakes  and  oceans,  it  damages  the  ecosystems  and  

kills  aquatic  life.    o In  addition,  acid  also  damages  stone  work.  

• Efforts  to  reduce  Acid  Precipitation  o Reduce  burning  of  fossil  fuels  o Improve   technologies   to    prevent  Nitrogen  Oxides  and  Sulfer  Dioxide   from  

escaping  power  plants.  o Rising  the  standard  for  factories  and  motor  vehicle  emissions.    

pH:  The  measure  of  acidity  and  basicity  of  a  substance.  • pH  7:  Neutral  e.g.  Pure  Water  and  Blood  • pH  below  7:  Acidic    e.g.  Vinegar  (pH:3)  • pH  above  7:  Basic  e.g.  Ammonia  (pH:12)  

Biotic  and  Abiotic  Influences  on  Ecosystems  Limiting  Factor:    Any  factor  that  places  a  limit  on  the  size  of  a  population,  this  can  be   biotic   or   abiotic.   These   factors   can   indirectly   effect   another   population   in   the  community.    

• Biotic  limiting  factor:  Amount  of  food  available  • Abiotic  limiting  factor:  Temperature,  and  availability  of  water.  

Tolerance:   Ability   of   an   organism   to   withstand   many   conditions   (abiotic   and  biotic).  If  the  organism  is  the  optimal  zone,  it  will  perform  the  best  and  thrive.    Carrying   capacity:   The   number   organisms   of   a   single   species   that   an   area   the  support  forever.        

Page 11: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Symbiosis  1. Mutualism:  Both  species  benefit  from  each  other.    2. Commensalism:  Both  species  benefit  (Taken  out  of  the  curriculum):P  3. Parasitism:  One  species  benefits  at  the  expense  of  another  species.  This  harms  the  

host,  however  does  not  kill  them.    

Predator  –  Prey  Relationship:  The  predator-­‐prey  relationship  act  to  regulate  the  population  of  each  species.  e.g.  If  there  are  more  predators  the  prey  population  will  decrease,  thus  also  bringing  down  the  predator  population  because  there  is  less  to  eat.    

− Predator:  Eats  plants  and  animals.  This  are  consumers  that  eat  other  organisms  − Prey:  The  organism  that  is  eaten  by  the  predator  

Population  Factors:  Factors  which  display  how  a  population  changes.  • Nataility  (Births)  • Mortality  (Deaths)  • Immigration  (Animals  coming  in)  • Emigration  (Animals  leaving)  

Population   Equation:  !"#  !"#$%&'(") = !"#  !"!#$%&'"( + !"#"$%#& + !""#$%&'#() −!"#$%&'$( −!"#$%&'#()  Exponential   Growth:   Rapid,   uncharacteristic   growth   which   occurs   for   a   short  period  of  time.  Usually  happens  when  a  species  is  introduced  into  a  new  ecosystem  that  has  lots  of  resources  or  when  predators  are  removed.  

Ecological  Succession  Ecological  Succession:  Gradual  changes,  in  the  types  of  species  that  live  in  an  area.  The   replacement   of   one   plant   community   by   another   through   natural   processes  over  time.  This  process  takes  over  100  years.    

• Primary   Succession:   Begins   in   a   place  without   soil,   due   to   flooding.   The   species  that  are   first   to  arrive  are   those  who  do  not  need  soil   to   survive.  These  are   called  Pioneer   Species.   These   species   help   break   down   rocks   into   smaller   pieces   to  produce   soil;   when   they   decompose   they   also   add   organic   matter   to   the   rock   to  make  soil.  As   the  small   species  die  off  more  plants  slowly  begin   to  grow.    Primary  Succession   would   look   similar   to   the   following:   Dune   grasses  à   Cottonwoodsà  Shrubsà  Oaks  à  Beeches  Maples.  As  more  plants  begin  to  grow  animals  also  begin  to  arrive  .  

• Secondary  Succession:  Starts  in  an  area  where  soil  is  already  present,  this  usually  occurs  after  a  forest  fire.  Unlike  Primary  Succession,  soil  is  already  present  so  there  is  no  need  of  Pioneer  Species.    

• Pond   Succession:   Organic   substances   will   build   up   at   the   bottoms   of   ponds   and  lakes  and  convert  the  pond  into  marsh  and  later  into  dry  land.  An  example  of  Pond  Succession  is:  Pond  à  Marsh  à  Dry  Land/Grasses  à  Shrubs  à  Forest.  

Page 12: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Terminology:  • Pioneer  Species:  The  first  species  to  start  the  process  of  succession.  • Climax  Community:  The  last  or  final  stage  in  succession  e.g.  Forest  is  matured.  

Importance  of  Bio-­‐Diversity  Biodiversity:  The  amount  of  life  in  a  particular  ecosystem,  this  is  measured  by  counting  all  the  species  and  is  referred  to  as  Species  Richness.  i.e.  Tropical  rainforest  have  the  highest  biodiversity  of  any  ecosystem.  Why  humans  value  biodiversity:  

• Different  trees  clean  the  air  we  breathe  • Animals  provide,  we  require  different  tasting  animals  J  • Stabilizes  and  moderates  the  climate  • Benefits  our  industries  such  as  forestry,  farming,  and  fishing  

At  Risk  Species:  • Vulnerable:  Any  species  that  is  at  risk  because  of  declining  numbers  in  population  • Threatened:  Any  species  that  is  likely  to  become  endangered  if  factor  that  make  it  

vulnerable  are  not  reversed.  • Extirpated:  The  species  no  longer  exists  in  one  of  its  previous  habitats  • Endangered:  The  species  is  very  close  to  extinction  in  a  large  area.    • Extinct:  The  species  cannot  be  located  anywhere  in  the  world.  

Keystone  Species:  Species  that  are  crucial  for  the  health  or  survival  of  other  species  e.g.  Bats.  These  species  are  hard  to  identify  until  an  ecosystem  fails  due  to  their  absence.    Natural  Causes  of  Extinction:  Extinction  of  species  that  have  not  been  blamed  on  humans.  

• Competition  with  other  organisms  • Environmental  disasters  • Climate  change  • Low  Reproduction  

Human  Cause  of  Extinction:  Extinction  of  species  which  is  blamed  upon  humans.  As  human  population  increases,  the  amount  of  species  remaining  declines.    

• Invasion  of  habitat  • Over  Hunting  • Pollution  

     

Page 13: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Chemistry  Notes  

Matter  Matter   is  everything;   it   is  around  us,  above  us  and  below  us.    We  ourselves  

are   made   up   of   matter.     It   is   defined   as   any   substance   that   has   both   mass   and  volume.  Matter  is  classified  into  three  states,  which  are  as  following:  

• Solids:   The  molecules   are   close   together   and   can   only  move   a   little   bit.   They  have  a  definite  shape  and  volume,  in  addition  are  not  compressible.    

• Liquids:   The  molecules   are   close   together,   but   are   free   to  move.   Liquids   have  the   ability   to   change   shape,   but   have   a   definite   volume.     You   can   compress  liquids  a  little  bit.    

• Gases:  The  molecules  are  far  apart  from  each  other,  and  are  free  to  move  as  they  wish.   Gas   has   no   particular   shape,   and   can   and   no   definite   volume.   Gases   are  also  compressible.  

Note:  Light,  heat,  and  types  of  energy  are  not  forms  of  matter.  

Physical  Changes  of  Matter  There  are  certain  processes  that  matter  undergoes  to  change  physical  state.  

• Ice  to  Gas:  Sublimation  • Gas  to  Ice:  Sublimation  • Liquid  to  Gas:  Evaporation  • Gas  to  Liquid:  Condensation  • Liquid  to  Solid:  Solidification  • Solid  to  Liquid:  Liquefaction    

                   

       

Page 14: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Types  of  Properties  Properties  of  substances  are  not  exclusive  to  one  list,  and  they  overlap.  i.e.  A  

chemical  property  can  also  be  a  qualitative  property.  

  Chemical  and  Physical  Properties  Chemical  Properties:  A  characteristic  is  deemed  a  chemical  property  

if  it  reacts  with  another  substance  to  create  a  new  substance.    Physical  Properties:    A  characteristic  is  deemed  a  physical  property  

if   it   does   not   produce   a   new   substance.     Some   examples   of   physical  properties  that  you  should  know  for  the  test  are  as  follows:  

• Hardness:  Measure  of  resistance  of  a  solid  being  scratched  • Ductility:  Ability  to  pulled  into  wires  • Malleability:  Ability  to  be  hammered  into  thin  sheets  • Crystal  Form:  Solid  form  of  minerals  where  you  see  a  definite  structure  

of  cube  or  blocks  with  a  regular  pattern  or  natural  shape  • Viscosity:  How  easily  a  liquid  moves  • Colour:  The  hue  of  light  related  of  a  substance  • Solubitlity:  Ability  to  dissolve  in  another  substance,  such  as  water  • Density:  Amount  of  matter  per  unit  area.  

Qualitative  and  Quantitative  Properties  Quantitative:  Properties  that  are  based  on  a  number  or  measurement  Qualitative:  Properties  that  are  descriptive  properties.    

 

Conversion  of  Mass  A  principal   in  science   is   that,  matter  cannot  be  made  or  destroyed  during  a  

chemical  change.    Consider  the  following  example:                                      

Butane + Oxygen → Carbon dioxide + Water 58 g 208 g 176 g 90 g

266 g 266 g

Page 15: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Energy  The  ability  to  do  to  work  and  this  comes  in  many  different  forms:  

• Heat  • Mechanical  

o Kinetic  o Potential  

• Electrical  • Sound  • Chemical  • Nuclear  • Electromagnetic  

WHMIS     WHMIS  stands  for  Workplace  Hazardous  Material  Information  System.    It   is  used  to  identify,  classify  products,  and  train  and  educate  workers.    There  are  eight  classes  of  Hazard  Symbols.    Which  are  as  follows:  

• Class  A:  Compressed  Gas  • Class  B:  Flammable  and  Combustible  Material  • Class  C:  Oxidizing  Material  • Class  D1:  Materials  Causing  Immediate  and  Serious  Toxic  Effects  • Class  D2:  Materials  Causing  other  Toxic  Effects  • Class  D3:  Biohazardous  Infectious  Material  • Class  E:  Corrosive  Material  • Class  F:  Dangerously  Reactive  Material  

MSDS  MSDS   stands   for  Material   Safety   Data   Sheet,   and   are   available   for   all   used  

chemicals  and  contain  important  information.    

HHPS  Hazardous   Household   Product   Symbols   are   found   on   all   potentially  

dangerous  household  products.  It  indicates  both  the  type  of  danger  and  the  degree  of  risk.      

   

         

Page 16: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

The  GUESSS  Method  This  is  kind  of  important  and  might  be  on  the  test,  but  anyways:     G:  Given     U:  Unknown     E:  Equation     S:  Substitute     S:  Solve     S:  Statement  

Mass  and  Volume     Mass:  Mass   is   a   physical   property   that   displays   the   amount   of  matter   and  object  contains.  It  is  measured  in  grams  and  kilograms.     Volume:   A   physical   property   that   represents   how   much   space   an   object  occupies.  It  is  measured  in  milliliters,  liters,  centimeters  cubed.  

Density  Density  is  a  quantitative  property  of  matter,  which  describes  how  much  mass  

per  unit  volume  a  substance  occupies.    Basically,  it’s  the  amount  of  mass  in  a  specific  amount  of  space.    Density  is  measured  in  grams/mL  Formula  for  Density:    Density  =  Mass/  Volume    In  order  to  find  the  density  of  a  submerged  object  under  water  we  use  the  formula:  %  !"#$%&'%(  (!"#$%  !"#$"%)  !  !"#$%&'  !"  !ℎ!  !"#$%  

**  Remember  the  triangle  for  the  formulas.        

Density  of  object  

%  submerged  (in  decimal)  

Density  of  Fluid  

Mass  

Density   Volume  

Page 17: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Buoyancy  Buoyancy  is  the  upward  force  upon  an  object  when  it  is  submerged  in  water.  

This   is  why   you  weigh   less   in  water   than   on   land,   because   buoyancy   pushes   you  upward.    

• Negatively  Buoyant:  Will  sink  • Positively  Buoyant:  Will  float  • Neutral  Buoyant:  Will  neither  sink  or  float,  it  will  hang  in  the  middle.    

Water  has   the  density  of  1g/mL,  meaning  anything   that  has  a  density  of   less   than  1g/mL  will  float  in  water.  

Particle  Theory  of  Matter  The  particle  theory  of  matter  covers  basic  laws:  

1. All  matter  is  composed  of  particles  2. The  particles   of   one   substance   are   the   same.  Different   substances   are  made  up   of  

different  particles.    3. There  are  attractive  forces  between  particles.  4. Particles  are  always  moving,  except  for  absolute  zero  J  5. The   more   energy   particles   have,   the   faster   they   move   and   the   higher   their  

temperature.    **  Temperature  is  a  measure  of  speed  of  the  particles.    

Classification  of  Matter  All  matter  in  the  universe  can  be  classified  into  two  basic  categories.:  

1. Mixtures:   Consists   of   two   or   more   substances   mixed   together,   not   chemically  bonded.  

a. Homogeneous:   The   mixture   has   one   phase   and   has   identical   properties  throughout.  

b. Heterogeneous:  The  mixture  has  more  than  one  phase,  and  does  not  look  the  same  throughout  the  object.    

2. Pure   Substances:   Matter   that   consists   of   one   substance,   chemically   bonded   or  alone.    

a. Elements:  Any  element  on  the  periodic  table  of  elements  b. Compounds:  Two  or  more  elements  chemically  bonded.    

 

   

Page 18: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Atomic  Theory    To  generalize  the  size  of  an  atom,  lets  take  the  Size  of  Earth  :  Soda  Can  =  Soda  

Can  :  Atom.  All  elements  have  atoms;  they  are  the  smallest  particles  that  still  carry  properties  of  their  elements.  It  is  possible  to  view  an  atom  under  scanning  electron  microscopes.  The  Greek  philosopher  Democritus  (460  B.C  –  370  B.C)  was  the  first  to  suggest  the  existence  of  atoms.  As  time  progressed  so  did  the  Atomic  Theory.    

Dalton’s  Atomic  Theory  –  The  Ball  Model:  1800’s  • Dalton   referred   to   the   atom   as   a   small,   hard,   indestructible   sphere   that  

cannot  be  subdivided.    • Atoms  of  different  elements  have  different  properties.  • The  atom  is  the  smallest  particle  of  any  element.    

Thomson’s  Discovery  of  Electrons  (Cathode  &  Anode  Experiment)  • When   there   are   low   gas   pressures,   a   ray   is   emitted   from   the   negatively  

charged  cathode.  • The  ray  then  moves  to  the  positively  charged  anode.    • Thomson  suggested   the  rays  were  made  up  of  negatively  charged  particles  

found   in   the   atoms,   and   later   said   that   all   atoms   have   negatively   charged  particles.    

• These  are  now  called  electrons  (e-­‐)  

Thomson’s  Model    • Thomson   believed   that   atoms   did   not   have   any   charge,   and   since   his  

particles  were  negatively  charged  then  there  also  must  be  positively  charged  particles  within  the  atom.    

• Thomson   concluded   that   electrons   were   embedded   like   raisins   in   a  positively  charged  “Bun”,  thus  its  was  called  the  “Raisin  Bun”  model.    

Ernest  Rutherford’s  Gold  Foil  Experiment  –  1911  • Alpha  particles  (+  charged)  –  The  alpha  particles  were  fired  at  a  thin  sheet  of  

gold   foil,   and   particles   that   hit   on   the  detecting  screen  (film)  are  recorded.    

• Rutherford   expected   that   the   particles  would   go   through   but   some   might   be  diverted,   however   some   particles   collided  and  rebounded  off  something  very  dense.  

• Rutherford  concluded  that  most  of  the  atom  is   empty   space,   it   contains   a   small   dense,  positively  charged  nucleus  at  the  center,  and  has  negatively  charged  electrons  that  revolve  around  the  nucleus.              

Page 19: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Bohr  Planetary  Model  –  1912  • In   1912,   Neils   Bohr   thought   that   if   the   electrons  were   negatively   charged  

and   the   nucleus   positively,   why   don’t   they   attract   and   collide.   (Opposites  attract).    

• By   passing   different   amounts   of   current   through   hydrogen   gas,   Bohr  observed   that   different   coloured   light   were   given   off.   He   concluded   that  electrons  could  gain  energy  by  absorbing  light  (quantum).    

Isotopes     Dalton  believed   that  all  atoms  of  an  element  were   the  same  (identical),  but  that   was   later   discovered   to   be   incorrect.   Atoms   of   the   same   element   can   have  different   number   of   neutrons.   Frederick   Soddy   proposed   the   idea   of   isotopes   in  1912.   Isotopes   are   atoms   of   the   same   element   having   different   masses,   due   to  varying  number  of  neutrons.    

  Naming  Isotopes  When   naming   isotopes  we   put   the  mass   number   after   the   name   of   the  

element.  • Carbon  –  12  =  carbon  with  an  atomic  mass  of  12  (6p+,  6no)  • Carbon  –  14  =  carbon  with  an  atomic  mass  of  14  (6p+,  8no)  • Note  the  number  of  protons  does  not  change  only  the  number  of  neutrons.    

Atomic  Mass  When   calculating   the   atomic   mass   of   an   element,   we   are   actually  

concerned   about   the   average   atomic  mass   of   all   its   kinds   of   atoms.   This   is  measured   in   Atomic  Mass   Unit   (amu).     To   calculate   the   atomic  mass   of   an  element,   we   need   the   atomic   mass   of   all   its   different   atoms   and   their  percentage  of  abundance.  Look  at  the  following  example:  

   • Isotope  10X:  

    mass  =  10.012  amu       relative  abundance  =  19.91%  =  0.1991  

• Isotope  11X:  mass  =  11.009  amu  relative  abundance  =  80.09  %  =  0.8009  

• Element  X:  10.012  ×  0.1991 = 1.993  !"#  (Isotope  10X’s  mass  times  abundance)  10.012  ×  0.8009 = 8.817  !"#  (Isotope  11X’s  mass  times  abundance)  !"#$%&  !"##  !"  !"#$#%&  !   = 1.993+ 8.817 = 10.810    

To  watch  a  cool  atom  video:  http://www.youtube.com/watch?v=0kUSqHYcF8g  (My  Science  ISU  video).            

Page 20: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Atomic  Structure  Atoms  are  the  building  blocks  of  all  matter;  they  are  composed  of  the  smaller  bits,  as  follows:    • Proton:   The  proton  has   a   positive   charge   has   a  mass   of   one   and   is   inside   the  

nucleus.    The  number  of  protons  determines  the  atomic  number.    • Electron:  The  electron  has  a  negative  charge  has  a  mass  of  zero  and  is  outside  

the  nucleus.  The  number  of  electrons  determines  the  ion.    • Neutron:  The  neutron  has  no  charge  has  a  mass  of  one  and  is  inside  the  nucleus.  

The  number  of  neutrons  determines  the  isotopes  of  the  element.    

Atomic  Number  Atoms   of   different   elements   differ   from   one   another   because   they  

contain  different  number  of  protons.    The  atomic  number  of  an  element  is  the  number   of   protons   in   the   nucleus.   In   addition  when   an   atom   is   in   normal  form,  the  number  of  protons  is  equal  to  the  number  of  electrons.    

Mass  Number  The   atomic   mass   of   an   element   is   determined   by   the   sum   of   the  

number  of  neutrons  and  number  of  protons.    This  refers  to  the  weight  of  the  atom   and   is   measured   in   Atomic   Mass   Unit   (amu).   There   are  6  ×  10!"  or  600,000,000,000,000,000,000,000  amu’s  in  one  gram.    

  Atomic  Notation  The  chemical  symbol  tells  us  what  atom  it  is;  this  is  usually  short  form  

however  sometimes  it  isn’t  because  they  were  named  in  Latin.  The  first  letter  is  always  a  Capital  Letter  and  is  followed  by  a  lower  case  letter.    

             

     

       

           

Page 21: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Periodic  Table  of  Elements  The  periodic  table  of  element  is  the  most  useful  tool  to  chemists,  and  you  in  

the   test.   It   has   a   ton   on   information   in   regards   to   all   the   known   elements.     The  periodic  table  organizes  elements  in  a  particular  so  that  you  can  determine  physical  and  chemical  properties  for  an  element  from  its  location  on  the  table.  You  can  also  predict  what  the  element  will  react  with  chemically.  *  Note:  You  are  given  a  periodic  table  of  elements  before  the  test  starts.  

Mendeleev  –  Concept  of  Periodic  Table    In   1869,   Dmitri   Ivanovitch   Mendeleev   created   the   first   accepted  

version  of  the  periodic  table  of  elements.  He  grouped  the  elements  according  to   their   atomic   mass,   as   he   did   he   found   that   the   families   had   similar  chemical  properties.  Blank  spaces  were  left  open  to  add  the  new  elements.    

  The  Current  Periodic  Table  Mendeleev  was  not   that   far   off   the   current   periodic   table,   today   the  

elements   are   put   in   rows   by   increasing  ATOMIC   NUMBER.   The   horizontal  rows  are  called  periods  and  are  labeled  from  1  to  7.  The  vertical  columns  are  called  groups  are  labeled  from  1  to  18.    

  Elements  Scientists  have  identified  92  naturally  occurring  elements  and  created  

about  26  others.  The  elements  alone  or  in  combinations,  make  up  our  bodies,  our  world,  our  sun,  and  in  fact,  the  entire  universe.    

  Valence  Electrons  Valence   electrons   are   the   number   of   electrons   at   the   outer   energy  

level   of   an   atom.   These   are   the   electrons   that   are   used   when   atoms   bond  together.  

Main  Categories  of  the  Periodic  Table      

Metals:   Metals   are   good   conductors   of   heat  and   electricity.   They   are   shiny,   ductile,   and  malleable.  Metal  corrode  in  water.    Non-­‐Metals:  Non-­‐metals  are  poor  conductors  of   heat   and   electricity.   They   are   not   ductile,  and   malleable.   Solid   non-­‐metals   are   brittle,  break   easily   and   are   dull.     Many   non-­‐metals  are  gases.    Metalloids:   Metalloids   have   properties   of  both   metals   and   non-­‐metals.   They   can   be  shiny   or   dull.   They   can   conduct   heat   and  electricity,   however   not   as   well   as   metals.   They   are   also   ductile,   and  malleable.    

 

Page 22: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

  Groups  and  Periods  Within  the  Periodic  table  of  elements,  elements  are  also  organized  via  

groups  and  periods.    Groups   (families):   Groups   are   the   vertical   columns   that   have   similar  properties.     Some   of   the   columns   have   been   given   special   names   to  distinguish  them.  All  elements  in  a  family  have  the  same  number  of  valence  electrons.    Periods:  Periods  are  the  horizontal  rows  that  do  not  have  similar  properties.  Sizes  of  atoms  decrease  as  we  move  left  to  right  across  a  period;  this  is  due  to  the   increasing   number   of   protons   in   the   nucleus,   resulting   in   a   stronger  electrical   attraction   between   the   nucleus   and   electrons.   In   addition   the  electronegativity  increase  as  you  move  left  to  right  across  a  period.  The  first  element   in   a   period   is   always   an   active   solid,   and   the   last   is   always   an  inactive  gas.    

Classes  There  are  many  classes  within  the  Periodic  table  of  elements;  most  of  

the  elements  have  similar  properties.    Hydrogen:  The  hydrogen  square  sits  atop  of  Group  1,  but  it  is  not  a  member  of   that   family.   It   is   a   gas   at   room   temperature.   It   has   one   proton   and   one  electron  in  its  electron  level.    Alkali  Metals:  The  alkali   family   is   found  in  the   first  column  of   the  periodic  table.   Atoms   of   the   alkali   metals   have   a   single   valence   electron.   They   are  shiny,  have  the  consistency  of  clay,  and  are  easily  cut  with  a  knife.  They  are  the  most   reactive  metals,   and   react   violently  with  water.   Alkali  metals   are  never   found   as   free   elements   in   nature,   however   always   bonded   with  another  element.    Alkaline   Earth   Metals:   Have   two   valence   electrons   and   are   never   found  uncombined  in  nature.    Transition  Metals:  They   are   good   conductors   of   heat   and   electricity.     Can  chemically  combine  with  oxygen  to  form  compounds.      

Groups  (families)   Periods  

Page 23: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Halogen   Family:  Halogens  have   seven  valence  electrons,  why   they  are   the  most  active.  They  are  never  found  free  in  nature.    Noble  Gases:  Noble  gases  are  colorless  and  extremely  unreactive.  They  outer  most  energy  level  is  full,  and  due  to  this  they  are  called  inert.  They  are  found  in  small  amounts  in  earth’s  atmosphere.    Rare   Earth   Elements:  The   thirty   rare  earth  elements  are  composed  of   the  lanthanide  and  actinide  series.  Most  of  these  elements  are  synthetic  or  man-­‐made.    

Ions  

  Introduction    Atoms  are  made  up  of  particles,  which  either  have  a  positive  charge  or  

negative   charge.  The  positive  or  negative   charges   cancel   each  other  out,   so  the  net  charge  in  an  atom  is  zero.  The  positively  charged  particle  is  called  a  proton,  and   the  negatively  charged  particle   is  called   the  electron.     In  atoms  the   protons   are   in   the   center   and   the   electrons   are   on   the   outside,   only  electrons   can   be   removed   from   atoms.   If   you   add   electrons   to   an   atoms   in  becomes  negatively  charged,  and  if  you  remove  them  they  become  positively  charged.  An  atom  with  a  positive  or  negative  charge  is  called  an  ION.    

Cations  Cations  are  ions  with  a  positive  charge.  If  an  atom  loses  an  electron  or  

more  it  is  called  cation.    

Anions  Anions  are  ions  with  a  negative  charge.  If  an  atom  gains  an  electron  or  

more  it  is  called  an  anion.  

  Why  does  this  occur?     All  atoms  want  to  become  stable,  and  in  order  to  become  stable  there  outer  most  energy  level  must  be   complete.   To   do   this   they   can   either   lose   an  electron  and  become  a  cation  or  gain  an  electron  and  become  anion.    The  atom  will  do  what  ever  is  easier,  in   other   words   it   would   prefer   losing   an   electron  instead  on  gaining  seven  in  the  following  case.    *  Note:  We  only  work  with  groups  1,  2,13,15,16,  and  17  when  dealing  with  ions.    

  Naming  Ions     Positive  Ions:  The  name  is  the  same  of  the  element  followed  by  ion.    

E.g.  Na+  =  Sodium  ion     Negative  Ions:  The  name  is  determined  by  removing  the  end  and  adding  ide.       E.g.  O-­‐  =  Oxide  ion  

Page 24: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Chemical  Symbols     All   the   elements   on   the   periodic   table   of   elements   have   a   single   symbol,  which   is  made  up   of   1   or   2   letters.   Just   as   a   single   symbol   is   used   to   represent   a  single  element,  multiple  symbols  can  used  to  represent  compounds.      

  Counting  Atoms  in  Compounds     Most   of   the   elements   can   be   combined   in   many   different   ways   to   make  compounds.     E.g.   NaHCO3   is   composed   of   Na,   H,   C,   and   O.   In   order   to   show   the  number  of  atoms  in  a  compound  we  use  subscripts.    In  H2O,  we  have  two  Hydrogen  and  one  Oxygen  atom.  If  there  is  only  one  atom  of  an  element  one  is  not  written  in  the   subscript.   If   a   number   is   put   in   front   of   a   compound   like,   2H20,   you   must  multiply  that  number  by  the  each  element,  so  2H20  is  equal  to  H20  +  H20.  In  which  case  there  are  four  Hydrogen  atoms,  and  two  Oxygen  atoms.    

  Combining  Capacity     Atoms  can  only  make  a  specific  number  of  connections  with  other  atoms.  The  number  of  connections  an  atom  can  make  is  called  the  combining  capacity.  When  atoms  combine,  it  is  called  a  bond.    

Building  a  Molecule  Lets  take  two  elements,  Hydrogen  and  Oxygen,  if  we  want  to  want  to  bond  

them  we  need  to  know  their  combining  capacity.       Hydrogen:  

• Combining  capacity:  1  Oxygen:  

• Combining  capacity:  2  We  simply  switch  the  combining  capacities  and  write  them  as  subscripts  for  the  other  element.  So  we  write  H20.    1  is  not  written  in  subscripts.    

                 

 The  above  is  a  structural  diagram.  In  order  to  satisfy  a  compound  you  need  to  

make  the  right  number  of  connections.    *  Note:  You  will  be  given  a  list  of  common  combining  capacities  for  the  test.              

Page 25: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Naming  Compounds     Rules:  

1. Metals  combine  with  nonmetals  in  many  compounds  a. Metals  will  be  on  the  left,  when  ever  in  doubt  the  one  of  the  left  goes  

first  2. Write  the  name  of  the  metal  first  then  the  nonmetal  3. Change  the  ending  of  the  nonmetal  to  “ide”  E.g.  Aluminum  (metal)  and  Oxygen  (nonmetal)  Aluminum  Oxide  

Double  and  Triple  Bonds     Sometimes  atoms  make  more  than  one  bond  another  atom,  this  can  either  be  a  double  or  triple  bond.    

Drawing  Diagrams     There  are  a  couple  of  diagrams  you  need  to  be  able  to  draw  for  the  test.  They  are  as  follows.    

Bohr-­‐Rutherford  Diagram       Lets  take  an  element,  with  an  atomic  number  less  than  20.       Oxygen  

• Eight  Protons  • Seven  Neutrons  • Eight  Electrons  

 

 

Bohr-­‐Rutherford  Ion  Diagram         Lets  take  an  element,  with  an  atomics  number  less  than  20.     Oxide  (II)  ion    

• Eight  Protons  • Seven  Neutrons  • Ten  Electrons  

             

Page 26: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Electricity  Notes  

The  Cell  A  cell  stores  chemical  energy  and  transfers   this  energy  as  electrical  energy.  

Two  cells  are  connected  to  one  another  to  make  a  battery.  The  cell’s  chemical  energy  is  used  to  move  current  around  a  circuit.    

  Electric  Current     The   cell   is   responsible   to  produce   an   electric   current;   the   current   is  the   flow  of   electrons   from   the  negative   terminal   of   the   battery   back   to   the  positive  terminal.    Current  is  defined  as  the  flow  of  electrons  passing  through  a  point.  

Circuit  When   circuit   is   closed,   it   means   that   there   is   a   continuous   path   of   metal  

connecting   the   positive   and   negative   ends   of   the   cell   together,   in   which   case   all  components  will  light  up.  However  if  there  is  a  break  in  the  circuit,  it  is  known  as  an  open  circuit  where  the  current  cannot  flow  from  the  negative  side  to  the  positive.    

Components  There   are   many   components   within   circuit   that   you   will   encounter   when  drawing  electrical  diagram.    

1. Cell:  A  cell  is  the  power  source  of  a  circuit.  Two  cells  make  a  battery.      

2. Switch:  A  switch  breaks  a  path  within  a  circuit.    

 3. Lamp:  A  lamp  or  bulb  is  a  component  within  a  circuit.    

 4. Wires:  The  wire  is  the  transport  medium  of  electrons.    

 5. Fuses:   A   fuse   is   a  moderator,   which   burns   out   if  more   than   a   certain  

amount  of  electricity  passes  through  it.      

6. Resistor:  A  resistor  is  component  within  a  circuit,  which  restricts  the  flow  of  electrons.    

 7. Ammeter:   An   amp   meter   measures   the   current   a   circuit.   It   has   to   be  

connecter  in  series.    

8. Voltmeter:  A  voltmeter  measures  the  potential  difference  in  a  circuit.          

 

Page 27: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Types  of  Circuit     There  are  two  types  of  circuits  that  you  are  going  to  be  on  test:  

1. Series   Circuit:   The   components   are   connected   end   to   end,   one   after   an  other.   i.e.   They   make   a   simple   loop   for   the   current   to   flow.     If   any   the  components  blow  all  the  whole  circuit  will  not  work.    

2. Parallel   Circuit:  The  components  are  side  by  side.  This  way  the  current   is  split   to   take   different   paths   to   reach   each   component.   This   way   if   one  component  blows  the  other  will  stay  lit  up.    

Current  Current  is  the  flow  of  electricity  around  a  circuit,  this  runs  from  negative  to  

positive.     It   is   abbreviated   to   (I),   however  measured   in  Amps   (A).     Current   is   not  measured  in  the  number  of  electrons,  however  group  of  electrons,  which  are  called  coulombs.  One  coulomb   is  equal   to  6.25  ×  1018  electrons.  One  coulomb   is  equal   to  one   ampere.   In   order   to  measure   current   you   need   an   ammeter,  which   has   to   be  connected  in  series.  Within  a  series  circuit  the  current  is  same  all  around,  however  in  a  parallel  circuit  the  current  is  shared  between  all  paths.    

Voltage  (Potential  Difference)  The   amount   of   energy   each   electron  has  within   a   circuit   is   called  potential  

difference  (Voltage).  It  is  called  potential  difference  cause  it  has  the  potential  to  do  work.  When  an  electron  passes  through  a  light  bulb  it  enters  with  certain  amount  of  energy,  and  when  it  leaves  it  has  less,  because  the  energy  is  used  by  the  light  bulb.    Potential  difference  is  the  amount  of  energy  lost  from  one  point  and  another,  so  in  order   to   calculate   it   we   have   to   connect   a   voltmeter   in   parallel.    Within   a   series  circuit   voltage   is   shared   between   all   components,   however   is   a   parallel   circuit  voltage  is  same  at  all  parts.    

Power  Power   is  measured   in  Watts,   and   is   determined  by  multiplying   the  Voltage  

and   the   Amperage.     Electrical   energy   is   measured   by   multiplying   the   number   of  watts  by  time.    

 

*Remember  the  following  formula:                  

 

Watts

Voltage Amps

Page 28: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Electrical  Resistance     Resistance   is   the   inability  of  electrical   current   to  pass   through  a   substance.  When  electrical  current  is  resisted  it  is  usually  converted  into  heat,  light,  sound,  or  other   types   of   energy.   Some   substances   resist   the   flow   of   electrons,   such   as   light  bulb   filaments.   Light   bulb   filament   take   energy   from   the   electrons   and   convert   it  into   light   energy.   The   symbol   for   resistance   is   Ω   and   it   is   measured   in   ohms.  Resistance   is   in   direct   relation   with   current,   the   more   resistance   the   lower   the  current.    

  Loads  A   resistor   or   any   device   that   transforms   electrical   energy   into   heat,  

motion,  sound,  or  light.    

  Conductors  A   substance   that   carries   electrical   energy   without   much   or   any  

resistance  is  known  as  a  conductor.  Conductors  are  usually  used  in  wires,  to  allow  transfer  of  electricity.    

  Wires     Resistance  in  wires  is  determined  by  the  following  factors:  

1. The  type  of  material  2. The  length  (greater  the  length  the  greater  the  resistance)  3. The  diameter  (greater  the  diameter  the  lower  the  resistance)  4. The  temperature  (hotter  wires  have  greater  resistance)  

Superconductors  When   electric   current   can   flow   through   a   substance   with   zero  

resistance,  it  is  called  a  superconductor.  This  can  be  done  by  cooling  a  wire  to  absolute  zero,  which  increase  the  efficiency  of  the  wire  as  no  energy  is  lost.    

 *Remember  the  following  formulas:                

   

           

 

Voltage

Current Resistance

Series:  • IT=  I1=  I2  =  I3  • VT=  V1+  V2  +  V3  • RT=  R1+  R2  +  R3  

Parallel  • IT=  I1+  I2  +  I3  • VT=  V1=  V2  =  V3  • RT<  R1  RT  <  R2  RT<R3  •  

Page 29: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Safety     In   order   to   prevent   fires   from   occurring   within   houses   or   apartment  buildings   several   safety   features   have   been   installed   to   shutdown   the   electricity  system  from  allowing  too  much  electricity  to  flow.    

  Circuit  Breakers  Circuit   Breakers   are   a   newer  method   of   electricity   control   in   many  

houses.   They   trip   if   too   much   electricity   is   flowing   through   the   circuit,  although  you  simply  have  to  flip  the  switch  to  reset  them.      

  Fuses  Used   in   older   homes,   the   fuses  work   similar   to   the   Circuit   breakers  

except  they  melt  the  wire  inside.  In  order  to  reset  a  fuse  and  allow  electricity  to  flow  you  need  to  replace  the  fuse.    

  Wall  Outlets  Wall  outlets  are  made  out  of  plastic  primarily  because  plastic  does  not  

conduct   electricity.   In   addition   there   are   polarized   plugs,   requiring   the  person  to  but  the  plug  in  the  right  way,  and  lastly  the  have  a  ground  hole  for  additional  electricity.    

  GFCI  GFCI  also  known,  as  Ground  Fault  Circuit  Interrupter  is  a  device  used  

breaks  the  circuit  if  it  detects  that  the  current  between  the  energized  and  the  neutral  conductor  is  not  balanced.  (Meaning  the  current  is  flowing  else  were.  It  is  usually  put  in  bathrooms.)  

  Surge  Protector  A  surge  protector  is  a  device  used  to  protect  appliances  from  voltage  

spikes.  The  surge  protector  regulates  voltage  by  either  blocking  or  shorting  voltages  above  a  certain  threshold.    

Human  Conductivity  and  Resistance     Humans   can   be   electrocuted,   however   the   voltage   required   to   electrocute  someone   is   dependent  upon   the   current   through   the  body,   the   resistance   and   the  duration   of   the   current.   If   0.002   amps   passes   through   your   body   your   heart   is  disturbed,  and  if  0.02  amps  passes  through  you,  you  will  die.    

  Resistance  of  human  body  • Dry  conditions:  100,000  Ohms  • Wet  or  broken  skin:    1,000  –  5,000  Ohms  

High   voltages   can   break   down   skin,   reducing   resistance   to   500   ohms.   Skin  breaks  down  above  240  V  

Page 30: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Direct  and  Alternating  current     Direct  and  Alternating  current  is  the  two  methods  of  transferring  electricity  through  a  wire.  Each  has  it  advantages  and  disadvantages.  

  Alternating  Current     Alternating  current  is  when  electricity  when  electrons  hit  one  another  passing  energy  along.  This   allows   for  higher  voltage   to  be   transferred  over  long  distances,  has  less  copper  loss  than  DC,  and  is  cheaper  to  produce.  

Direct  Current     Direct  current  is  when  electricity  is  moving  in  one  constant  direction;  this  is  the  type  of  electricity  you  find  in  batteries  with  constant  positive  and  negative  terminals.    

Electricity  flowing  to  your  house     Coming   from  the  hydro  pole  are   three  wires,   two  black  and  one  white.  The  two  black  wires  carry  a  voltage  of  120  V,  while  the  white  wire  is  natural  which  is  a  way  for  the  electricity  to  go  back.    The  wires  coming  from  the  poles  go  to  the  electric  meter   outside   your   house,   which   is   calculates   the   amount   of   electricity   you   use.  From  the  electric  meter   the  wires  go   to   the  electrical  distribution  panel   located   in  your  basement.    

Electrical  Production     There  are  two  main  sources  of  electricity  production;  they  are  Renewable  or  Non  Renewable.  Renewable  sources  renew  themself  over  the  course  of  a   life  span,  while  non-­‐renewable  is  not  able  to  replenish  itself  within  a  lifetime.    

  Non-­‐renewable  Resources  Non-­‐renewable  resources  include  fossil  fuels,  such  as  oil,  coal  and  gas.  

Energy   is   released   from   the   combustion   of   these   substances,   and   this   is  relatively  cheap.  However  the  world  supply  is  decreasing  of  fossil  fuels.    

    Fossil  Fuels  Coal,   oil   and   natural   gas   are   called,     “fossil   fuels”.   This   is  

because  they  are  formed  from  the  remains  of  dead  plants  and  animals.              

1. Fossil  Fuels  are  burned  which  heats  water  and  produces  steam  

2. Steam  causes  turbine  to  spin.  

3. Which  causes  generator  to  create  electricity.    

Page 31: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Nuclear  Nuclear  energy  runs  from  the  power  of  Nuclear  Fission,  which  

is   a   nuclear   reaction.   In   this   reaction   uranium   atoms   are   split  releasing   atomic   energy.   This   has   radioactive   waste   problems,   and  waste   materials,   which   are   deadly   to   human   beings.     Reactors   use  Uranium  rods  as  fuel,  and  generate  heat  from  nuclear  fission.  Nuclear  fission   is   accomplished   by   a   slow   neutron   hitting   a   uranium   atom,  which   is   split   in   half   and   releases   energy.   A   seven   gram   fuel   pallet  produces   the  same  amount  of  energy  as  807  kg  of   coal,  667  L  of  oil,  and  476  m3  of  natural  gas.  

 

  Renewable  Resources  Renewable   resources   are   resources   that   can   replenish   themselves  

within  one’s  lifetime.    

    Solar     Solar   energy   is   radiated   energy   from   the   sun,   it   is   used   for  heating,  and  producing  some  electricity.  Photovoltaic  cells  are  used  to  directly  convert  sunlight  into  electricity.  This  power  can  be  stored  in  a  battery,   which   can   allow   for   power   later   on.   Solar   water   heating   is  used  to  heat  water  in  glass  panels,  under  direct  exposure  to  the  sun.    

    Wind     The   rising  of  hot  air  and   the   falling  of   cold  air   is   the  cause  of  wind;  this  energy  can  be  converted  into  mechanical  energy  and  finally  electrical  energy  by  the  use  of  windmills.  Open  flat  fields  are  excellent  areas  for  windmills.    

    Hydro-­‐electric  Electricity  Water  cycle  causes  precipitation  to  areas  of  high  altitude,  from  

which   the  water  makes   it   back   to   the   sea.  When   the  water   is   falling  down   it   is   converted   into   mechanical   energy   and   then   electrical.  Sometimes  dams  are  built   to   control  water   flow  and  allow   from   fast  speeds  of  water   to   turn   the  blades  of   the   turbine,  which   are  driving  the  generators.    

 

1. Fission  makes  heat.  2. Heat  water  to  make  

steam.  3. Steam  turn  turbine.  4. Turbine  turns  

generator.  5. Generator  makes  

electricity.      

Page 32: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

    Tidal  Energy  In   tidal   energy   the   motion   of   the   tides   is   harnessed.   This   is  

caused   by   the  moon’s   gravity   pulling   up   on   the   ocean’s   water.   It   is  similar  to  hydraulic.  The  only  modern  tidal  energy  generation  station  is  in  Nova  Scotia.    

  Electricity  Production  in  Canada  In  Canada  our  electricity  is  produced  by  Fossil  Fuels,  Nuclear  Energy  

and  Hydroelectricity.  We  do  not  harness  enough  solar  or  wind  power  in  this  country.  

 

   

 

 

 

The  Future  The  future  survival  of  human  beings  is  dependent  upon  the  investing  

in  new  technologies  such  as  Nuclear,  and  Geo-­‐Thermal.    

    Nuclear  Fusion  This   is   the   joining  of   two  particles   to   form  one   large  nucleus,  

nuclear  fusion  naturally  occurs  on  stars  such  as  the  Sun.    

    Geo-­‐Thermal     This  is  thermal  energy  from  below  the  earth’s  crust,  which  can  heat  water  into  steam,  which  turns  a  turbine  driving  a  generator.  This  can  also  be  used  for  heating  homes.    

Static  Electricity     Static   electricity   is   the   imbalance   of   positive   and   negative   charges,   when  atoms  lose  electrons  they  become  positively  charged  and  when  they  gain  electrons  they  become  negatively  charged.  Electrons  can  be  transferred  (or  stolen)  from  one  object  by  the  friction.  (Refer  to  Charging).  

  Insulators  Objects   or   materials   that   hold   their   electron   tightly   are   known   as  

insulators.  These  objects  do  not  allow  objects  to  move  through  them.  

  Conductors     Objects  or  materials  that  have  a  lose  hold  on  their  electrons,  and  allow  them   to   move   easily   from   one   atom   to   the   next.   Most   metals   are   great  conductors.    

Energy  Source   %  Supplied    Fossil  Fuels   26  %  Nuclear  Energy     50%  Hydroelectricity   22%  Other   2%  Total   100%  

Page 33: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Laws  of  Electric  Charges     Similar  to  the  laws  of  motion,  electric  charges  have  their  own  laws.  The  laws  are  as  follows.  

1. Opposite  charges  attract    2. Like  charges  repel  3. Positive   and   negative   charges   attract   neutral   objects   (remember   the   balloon  

experiment)  These  laws  are  commonly  exhibited  in  daily  life  such  as  a  taking  a  wool  hat  off  on  a  winter  day.  This  results   in  your  hair  sticking  up  because  electrons  are   transferred  from  your  hair  to  the  hat  making  them  positively  charged,  your  want  to  repel  from  one  another  and  stand  up.    

Electrostatic  Series     The   electrostatic   series   is   a   table   of   arranged  materials,  which   are  ordered  from   least   relative   hold   on   electrons   to   greatest   relative   hold   on   electrons.   There  will  be  questions  in  regards  to  electrostatic  series  on  the  test.  

Charging     There   are   three   ways   to   charge   objects   to   give   them   either   a   positive,  negative  or  neutral  charge.  The  three  methods  are  as  follows:  

  Friction  By   rubbing   to   two   objects   together   the   one   with   less   hold   on   its  

electrons  will  lose  its  electrons  and  become  positively  charged,  while  the  one  with  a  stronger  hold  on  electrons  will  gain  electrons  and  become  negatively  charged.  Both  surfaces  obtain  a  different  charge  after  being  rubbed.    Refer  to  the   electrostatic   series   to   determine  what   objects   have   a   stronger   hold   on  electrons.    

  Contact  Contact   is   the  most  common  type  of   transfer,  and   the  cause  of  static  

shocks.    This  occurs  when  two  objects  that  have  different  charges  touch  each  other  and  will  transfer  electrons  to  balance  themselves  evenly.    

  Induction  Induction   is   when   an   electric   charge   is   transferred   to   an   object  

without   direct   contact.   Induction   allows   you   to   give   objects   a   temporary  charge  by  splitting  them  into  two  differently  charged  portions,  or  completely  giving  a  charge  by  the  use  of  a  ground  wire.  If  you  bring  a  charged  rod  near  a  neutral   object   the   opposite   charge  will   face   the   rod,  while   the   like   charges  will  repel.  This  creates  an  induced  object.  If  you  attached  a  ground  wire  to  an  object  and  bring  a   charged  rod  near   it,   electrons  will   either   flow  out  of   the  object  or  into  the  object,  resulting  in  a  completely  charged  object.    

   

Page 34: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Semiconductors     Semiconductors  are  non-­‐metals  such  as  silicon;  they  allow  electrons  to  move  through  them  fairly  well.  Not  as  good  as  conductors  and  not  as  bad  as  insulators.    

Grounding     Grounding  is  a  process  where  you  remove  charges  from  an  object  and  return  it  to  neutral  state.  This  process  requires  you  to  connect  the  object  to  the  ground  via  a   conductor.  This   is  also  called  discharging.  Grounding  happens  because   the  earth  has   an   infinite   supply   of   electrons   and   it   doesn’t  matter   how  many   are   added   or  stolen.   The   earth   has   6.91   x   1096   electrons.   When   a   positive   object   is   grounded  electrons  are  taken  from  the  ground  and  added  to  the  object,  on  the  other  hand  if  a  negatively  charged  object  is  grounded,  electrons  will  flow  into  the  earth.  This  always  results  in  the  object  ending  up  as  neutral.    

Lighting       Storm   clouds   form   when   cold   and   hot   air   meet.   The   masses   of   air   churn  together  and   lighting   is   created.    Lighting  strikes  when  negative  charges   in  clouds  are  attracted  to  the  positive  charges  in  the  ground.    Lighting  take  the  easiest  path  so  it  usually  hits  the  highest  object.  Lighting  strikes  are  unavoidable  so  people  use  light  rods,  which  are  connected  to  the  ground.  This  allows  all  the  lighting  to  be  grounded.  

Circuit  Diagrams  You  will  have  to  solve  circuit  diagrams  on  the  test  so  here  is  an  example.          

                 For   resistor   1   the   voltage   is   4.5V,   and   the   current   is   0.45   A.   For   resistor   2,   the  current  is  0.13  A.  For  resistor  3  the  voltage  is  4.5  V  and  the  current  is  0.32  A.  If  you  have  trouble  understanding  how  to  solve  the  circuit  ask  before  the  exam.        

R2   = 35Ω

 V = 4.5 V  V=9.0 V

R1   = 10Ω

R3   = 14 Ω

Page 35: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

Space  Quiz  Notes  

The  Universe     The  universe  is  basically  everything;  this  includes  all  matter,  all  energy,  and  even  things  that  are  outside  of  Earth.  The  stud  of  things  outside  of  Earth  is  referred  to  humans  as  astronomy.    

Distance  in  Space     Distances   in   space   are  not  measure   in   the   same  units   as   they   are  on  Earth  due  to  the  fact  that  space  is  so  big.    If  we  were  just  to  look  at  the  distance  between  the  Earth  and  the  Sun  it  would  be  150  million  km,  for  two  object  that  are  relatively  close   in   perspective   of   the   whole   universe.   This   is   the   reason   scientists   chose   to  make  the  AU  or  astronomical  unit  along  with  light  year  to  measure  distance  within  space.    

  Astronomical  Unit  (AU)  An  astronomical  unit  is  defined  by  the  distance  between  the  Earth  and  

the  Sun,  which  is  150  million  km;  so  1  AU  is  150  million  km.  To  find  out  how  make  AU’s  a  distance  is,  divide  it  by  150  million  km.    

  Light  Year  Due   to   that   fact   that  distances   in   outer   space   are   enormous,  we  use  

light   years.   When   the   Astronomical   Unit   (AU)   becomes   too   small   of   a  reference   of   measurement   we   use   light   years.   A   light   year   is   basically  travelling  at  the  speed  of  light  for  one  year.  The  speed  of  light  is  300,000  km  per   second.  A  distance  of   one   light   year   is   equivalent   to  9,460,800,000,000  km.    Note:   It’s   practically   impossible   for   anything   except   light   itself   to   travel   at  light  speed.  Check  out  Einstein’s  theory  of  relativity  if  you’re  interested  about  speed  of  light.    

Galaxies  A  galaxy   is  system  of  stars  and  gases  held  together  by  a  gravitational   force,  

Edwin  Hubble  invented  this  system.  Galaxies  are  classified  in  three  main  types:  

  Spiral  Spiral   galaxies   look   like   a   pinwheel,   similar   to   a   large   plate,   with   a  

bulge  in  the  side.  Some  have  many  arms  spiraling  out  from  the  center.        

  Elliptical  Range  in  shape  from  a  either  a  perfect  sphere  to  a  weird  stretched  out  

ellipse.  These  contain  the  oldest  stars  in  the  universe  and  make  up  the  large  galaxies.  

Page 36: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

  Irregular  Galaxies  These   galaxies   are   the   odd   ones   out,   they   do   not   really   have   a  

category.     The   range   in   shape   and   size   and   are  made   up   of   newly   forming  stars  and  old  stars.    

Constellations     Stars   in   the   sky   that   form   a   shape   or   pattern   are   known   as   constellations.  Constellations  have  been  used   for   thousands  of  years   for  many  purposes.    Various  constellations  can  be  seen  from  different  parts  of  Earth.    

Our  Solar  System     Our  solar  system  is  comprised  of  the  sun,  eight  planets,  several  moons  and  numerous  comets  and  asteroids.    

  Sun  The   sun   is   the   largest   object   in   our   solar   system;   it   is   essentially   a  

large  ball  of  gas.  It  is  comprised  of  75%  hydrogen,  and  25%  helium.  The  sun  converts   hydrogen   into   helium   in   its   core,   where   the   temperature   is   15.6  million  Kelvin,  and  the  pressure  is  250  billion  atmospheres.    

  Mercury    Mercury  has   the   shortest   orbit   around   the   sun,   0.24   earth   years.   Its  

mass   is  0.05  times  Earth,  which  makes  it   that  8th   largest  planet   in  our  solar  system.  It  is  composed  of  a  rock  surface.    

  Venus  Venus  has  a  orbit  of  0.62  earth  years,  and  its  mass  is  0.82  times  Earth  

making  it  the  6th  largest  planet  in  the  solar  system.  Venus  is  also  the  brightest  planet.    

  Earth  Earth  is  the  3rd  planet  from  the  Sun.  It  has  one  moon  which  is  1/6  its  

mass.  Earth  takes  365.25  days  to  orbit  around  the  Sun,  and  is  the  only  planet  currently   known   to   inhabit   living   life   forms.     The   Earth   is   on   a   tilted   axis  (23.5o)  

  Mars  Mars   is  known  as   the   red  planet  due   to   its   iron  compositions.   It  has  

the  mass  of  0.11  times  Earth  and  takes  1.88  Earth  years   to  orbit   the  sun.   It  also  has  solid  carbon  dioxide  at  its  poles.  

  Jupiter  Jupiter   is   70%   of   the   mass   of   the   solar   system   outside   the   Sun.   Its  

mass  is  317.8  times  Earth  and  it  take  11.86  Earth  years  for  it  to  orbit  the  Sun.  It  is  not  a  solid  and  is  composed  of  hydrogen  and  helium.    

Page 37: Science Exam Notes - · PDF fileabiotic!environment.!Nitrogen!is!taken!from!the!atmosphere!bysoil!bacteriaby nitrogenfixation!–!aprocess!that!converts!nitrogen!gas!intonitrogen!containing

Syed  Kamran  

  Saturn  Similar  to  Jupiter,  Saturn  is  made  out  of  gas.  It  is  known  for  its  rings,  

which  are  made  of   ice.  Saturn   takes  29.46  Earth  years   to  orbit   the  Sun  and  has  the  mass  of  95.2  times  Earth.    

  Uranus  Uranus   is   made   out   gas,   and   is   the   4th   largest   planet   in   the   solar  

system.   It   is   flipped   on   its   side   and   has   smaller   rings   then   Saturn.   It   take  Uranus  84.01  Earth  years  to  orbit  the  Sun,  and  its  mass  is  14.5  times  Earth.  The  blue  colour  is  from  methane  gas  within  its  atmosphere.  

  Neptune  The   last   planet   in   the   solar   system,   and   is   composed   of   gas.   It   is  

similar  to  Uranus  however  is  a  slightly  darker  blue.  Its  rings  are  sometimes  visible.  Neptune  takes  164.8  years  to  complete  one  orbit  and  its  mass  is  17.1  times  Earth.    

  Poor  old  Pluto  Pluto  is  no  longer  a  planet  as  it  is  too  small.  There  are  many  other  

dwarf  planets  similar  to  Pluto  within  our  solar  system.  Pluto  is  smaller  than  the  moon.    

 

Best  of  wishes  on  the  Exam  :D!!