Science A-36 Brief Overview and Intro (for those not in Tues. class…)

19
Sept. 20, 2007 1 Science A-36 Brief Overview and Intro (for those not in Tues. class…) Welcome to A-36! Course Staff: Professor Jonathan (“Josh”) Grindlay Jaimie Pineda (TF) Josh Younger (TF) Sam Quinn (Clay Telescope & Astro. Lab mgr.)

description

Science A-36 Brief Overview and Intro (for those not in Tues. class…). Welcome to A-36! Course Staff: Professor Jonathan (“Josh”) Grindlay Jaimie Pineda (TF) Josh Younger (TF) Sam Quinn (Clay Telescope & Astro. Lab mgr.). What’s A-36 all about?. Seeing Stars! - PowerPoint PPT Presentation

Transcript of Science A-36 Brief Overview and Intro (for those not in Tues. class…)

Page 1: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 1

Science A-36 Brief Overview and Intro(for those not in Tues. class…)

Welcome to A-36!

Course Staff:Professor Jonathan (“Josh”) Grindlay

Jaimie Pineda (TF)

Josh Younger (TF)

Sam Quinn (Clay Telescope & Astro. Lab mgr.)

Page 2: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 2

What’s A-36 all about?

Seeing Stars!

Observing, and actually measuring

the building blocks of the Universe

From the closest, the Sun

To the nearby young stellar cluster, the Pleiades

To star birth in Orion

And death in the Crab nebula and neutron star

And on to huge assemblies of stars, Galaxies

Page 3: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 3Dense star field in Milky Way

Page 4: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 4Telescope image of Sun, with sunspots

Page 5: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 5

Page 6: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 6Orion nebula: stellar nursery…

Page 7: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 7Crab Nebula: remnant of Supernova in 1054AD

Page 8: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 8

A spiral galaxy (M62; at d = 10Mpc ~35Mly) that is much like our own Milky Way Galaxy and contains ~1011 stars

Page 9: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 9

A-36 Evelabs will obtain and measure images of these objects with the new Clay Telescope

A “professional” 16in computer-controlled telescope, on Science Center roof…

Page 10: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 10

And in Daylabs we will measure the Sun with a Heliostat outside the 8th Floor Astro Lab….

Which beams the solar image into the Astrolab from a Tracking mirror outside to then reflect off 2 fixed mirrors in the lab to give an image or input to a spectrograph

Page 11: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 11

Allowing us to conduct some fundamental measurements of the Sun in Daylabs

• Using a sun dial to measure the march of the seasons and the actual radius of the Sun

• Measure Sun’s diameter in red vs. blue filters and deduce temperature structure of solar atmosphere

• Measure Sun’s rotation velocity and period and deduce the size of our Solar system, and so distance yardstick to the stars

Page 12: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 12

How is A-36 “run”?

• Two class meetings/week (lecture and discussions) to understand the stars and the readings

• Readings typically 1 chapter/week in assigned textbook Universe: Stars and Galaxies (Freedman and Kaufmann; 3rd ed.)

• Two lab meetings/week (DayLab and Evelab), ea. 1h, for hands-on actual observations. “Sections” if cloudy

What background/skills required?None! Course will use simple algebra, and explain all…

Page 13: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 13

See Syllabus for details…and fill out Lab Section Preference Form (in class; or email us the form)

• Learning style – hands on (unique in Core…)• Workload – not bad; 1 “extra” hour/week of lab…• Grading – Labs, final, midterm, participation, quizes

• Labs (Evelab and Daylab): section signup in Today’s class (pls. fill out form; OR download from website and email it to

[email protected] Sections announced on class website by next MONDAY

when labs begin. Sections “fine-tuned” next week…

• OPEN HOUSE for Daylab (right after class today, SC804) and for Evelab (TONIGHT, and Thurs.) 730-9pm on Science Ctr. roof top (8th floor; then 2 flights up stairs) to Clay Teles.

Page 14: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 14

Distance to Sun and Stars: Large…

• Astronomy is a “remote” observation and measurement science; can’t “go there” and study stars up close.

• But… we can measure (even precisely) physical distances, sizes, masses and composition of stars: the parsec (pc) is distance at which star’s parallax moves it by 1arcsec as viewed over 3months. See Fig.: Definition: 1pc = 1AU/1” = 3 x 1018cm

• Closest star (Proxima Cen) is at distance d = 1.3pc = 4.3lightyears = distance light travels at 186,000miles/sec over 4.3 years, given that 1 year = 3 x 107sec:d = 1.86 x 105 x 4.3 x 3 x 107 = 2.40 x 1013 miles = 3.93 x 1013 km = 3.93 x 1018cm

Page 15: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 15

Astronomically large distances and numbers…

• Earth at mean distance from Sun of 1 Astronomical Unit = 1 AU = 1.5 x 108 km = 1.5 x 1013 cm, which you will actually measure (approx.) in Daylab 3

• Closest star (Prox. Cen) at d = 1pc = 1AU/1arcsec, but with arcsec in radians (1” ~ 1/(2 x 105),

so 1pc ~ 2 x 105 AU = 3 x 1018 cm ~ 3.3 lightyears• Pleiades cluster at d ~100pc; Crab at d ~ 2kpc; our

entire Milky Way Galaxy has disk with radius ~15kpc and closest similar galaxy (Andromeda) at ~0.7Mpc

Page 16: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 16

Enough Intro… How do the Sun & Stars “move”?

• Sun and stars rise in East, set in West, for their daily diurnal motion with period of Earth’s rotation, 24h

• Earth orbits the Sun with period 1y; a given star (e.g. Vega) thus rises ~4min earlier each night since the Earth has moved by ~1degree since 1deg =1/360 of full circle is ~1/365 of a year and since 1deg = 4min of diurnal motion (check: 360o = 24h; so 15o = 1h…)

a few figures (from your text, ch. 2) may help…

Page 17: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 17

Diurnal vs. Sidereal motion

Earth’s rotation (24h) causes diurnal motion of Sunand stars, which rise earlier in Boston than in LA…

Earth’s orbit around Sun (365d) causes sidereal motion of stars (and planets) which “move” at local midnight so that Summer Triangle is overhead at midnight in June vs. Orion in December, as seen from Boston

Page 18: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 18

So how do we “see” the night sky?

• Stars (e.g. Vega) change in elevation (angle above horizon) as they rise and set; but in fact are rotating about north celestial pole (near Polaris) as you will measure/verify in Evelab 1

Easiest to think of a Celestial Sphere of the fixed stars, with Earth rotating “underneath”. You will deduce this from Simple elevation measurements over 2 weeks of Vega, Big Dipper star and a Casseiopia star and Polaris in EL1.

Page 19: Science A-36  Brief  Overview and Intro (for those not in Tues. class…)

Sept. 20, 2007 19

And why is summer hot? And reversed in N vs. S hemispheres?

• The Earth’s spin axis is tilted by 23.5o from plane of its orbit around Sun:

• Which also gives rise to

changing Sun elevation

you will measure in DL1