SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial...

25
SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar Regions Vladimir Papitashvili (Former Leader of the ICESTAR Planning Group) Space Physics Research Laboratory University of Michigan, U.S.A. Standing Scientific Group on Physical Sciences Report to SCAR Delegates October 3-9, 2004, Bremerhaven, Germany Allan Weatherwax 1 , Kirsti Kauristie 2 , Maurizio Candidi 3 , and ICESTAR Planning Group 1 Siena College, New York, U.S.A. 2 Finnish Meteorological Institute, Helsinki, Finland 3 CNR, Roma, Italy

Transcript of SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial...

Page 1: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy

Effects in Solar-Terrestrial and Aeronomy Research

Linking Near-Earth Space to Polar Regions

Vladimir Papitashvili(Former Leader of the ICESTAR Planning Group)

Space Physics Research LaboratoryUniversity of Michigan, U.S.A.

Standing Scientific Group on Physical Sciences

Report to SCAR Delegates

October 3-9, 2004, Bremerhaven, Germany

Allan Weatherwax1, Kirsti Kauristie2, Maurizio Candidi3, and ICESTAR Planning Group

1Siena College, New York, U.S.A.2Finnish Meteorological Institute, Helsinki, Finland

3CNR, Roma, Italy

Page 2: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

SCAR-supported ICESTAR Workshop Institut Oceanologique, Villefranche sur mer,

France, April 22-23, 2004

http://maggy.engin.umich.edu/mist/icestar/icestar.html (25 attendees)

Page 3: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

Science and Implementation PlanExpected duration:

2005 – 2009Expected SCAR funding:

US $75,000Endorsed by SCAR’s Standing Scientific

Group on Physical SciencesJuly 28, 2004

http://maggy.engin.umich.edu/mist /icestar/icestar.html

At the programme-planning Workshop, we outlined scientific backgrounds, goals, objectives, and potential implementation plans for establishing under the auspices of SCAR a five-year international scientific research programme for coordinated bi-polar research in the fields of STP and polar aeronomy

SCAR Scientific Research Programme

ICESTAR: Interhemispheric Conjugacy Effectsin Solar-Terrestrial and Aeronomy Research

Page 4: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

Challenge:Understand the geospace environment in the polar regions and its dynamical response to external forcing from solar activity

ICESTAR Main Goals:To identify and quantify mechanisms that control interhemi-spheric regional differences and/or commonalities in the electrodynamics of the Earth's magnetosphere – iono-sphere system and aeronomy of the upper atmosphere over the Arctic and Antarctic

and

To develop a “virtual data portal” linking together a large number of globally distributed geophysical databases, including both data serving applications and visualization tools; this will enable a systems view of the polar upper atmosphere and geospace

SCAR Scientific Research Programme

ICESTAR: Interhemispheric Conjugacy Effectsin Solar-Terrestrial and Aeronomy Research

(major advances in science significantly enhanced by this programme)

Vision of SCAR : (First SCAR Long-term Strategic Plan .” point 2.2)

“ ...exploration of the Antarctic region through scientific research and international cooperation .... to understand the nature of the region and its processes, the role of Antarctica in the Earth System, .... and to exploit the unique location of Antarctica for the scientific study of space weather, Sun-Earth interactions .. “

This is accomplished by ICESTAR through the investigation of the fundamental physical phenomena that determine the evolution of space weather, and the capability to forecast. ICESTAR is closely connected with the CAWSES program of SCOSTEP, the ILWS program of the world space agencies, and links to the IHY program.

Page 5: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

The International Heliophysical Year http://ihy.gsfc.nasa.gov/

Links to international programmes outside Antarctica

(scientists from all over the world participate in these programs; ICESTAR will enhance the visibility of Antarctic research for all

those countries, within the community)

CAWSESClimate and Weather of the Sun-Earth System

A new SCOSTEP Program for 2004-2008

The International Living With a Star program

http://ilws.gsfc.nasa.gov/

ICESTAR: the SCAR program to identify the Antarctic contribution to IPY4 in the field of Solar-Terrestrial physics

Page 6: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

The ICESTAR Programme for the first time will focus on the quantification of various mechanisms that control the bi-polar (global and regional) differences and commonalities in the Earth’s magnetosphere-ionosphere coupling processes, and the corresponding upper atmospheric phenomena over both the Northern and Southern polar regions, with enhanced instrumentation, and superior coverage in Antarctica

These bi-polar (interhemispherically conjugate) phenomena might be intrinsic to the polar ionosphere/upper atmosphere, or might be caused by the long-term and/or abrupt changes in the near-Earth electromagnetic environment forced by the solar activity (i.e., geomagnetic storms and substorms)

It is suggested that during IPY4 (no delay!) SCAR will lead this new initiative in close collaboration with the countries which are involved in the Arctic research, and possibly with the International Arctic Science Committee (IASC)

Brief Outline (major advances, why SCAR? Why now?)

Page 7: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

SOHO LASCO images

What are we looking for?

Phenomena originate on the Sun: hot plasma

is emitted, the solar wind, particles,

protons and electrons mainly, which form

clouds of plasma that pervade the Solar System. At times

relavitistic particles, at much higher energies

are emitted as well (notice the fast tracks

detected by the instrument CCD).

This plasma hits the Earth, and the

interaction is the subject of solar-

terrestrial physics studies.

Page 8: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

SPACE WEATHER…to observe, study and forecast the effects of solar phenomena which…. ..may

endanger life in space and performance of space and terrestrial systems…

… is a part of solar terrestrial and space physics.

Intense flux of high energy electrons damages commercial satellites at synchronous orbit

Strong magnetic field variations couple inductively to long power lines and generate intense electric currents. Damage to system determines black-outs

interaction between the natural environment and human society

Page 9: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

An image taken by a SOHO instrument is featured on the cover of the July issue of National Geographic magazine. This is the dramatic introduction to a 32-page story on developments in solar science over the last decade called "The Sun: Living with a Stormy Star." The article features numerous images from SOHO and TRACE Picture credits: SOHO/EIT (ESA & NASA) Instrument: EIT (Extreme Ultraviolet Imaging Telescope)

Outreach: solar-terrestrial physics is present in the media, and will be

during IPY4

Page 10: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

V = 450 km/sN = 7 cm-3

B = 5 nT

The Earth magnetic field connects strongly the two hemispheres; strict symmetry is to be expected if the

magnetosphere determines processes; deviations from symmetry may be due to asymmetries in the ionospheric structure in the two hemispheres

Antarctica is a continent surrounded by oceans, and allows

dense arrays of

instruments all over the whole polar cap, where

the effects of solar

terrestrial physics

phenomena are most

prominent

Page 11: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

JB

-E•J 0

JB

The instantaneous value of the Interplanetary magnetic Field

(IMF), and its polarity determine the strength of the

interaction and move the interaction point along the

surface of the magnetopause; asymmetries between

hemispheres may follow

Radars allow studies of dynamics, irrespective of day or night conditions

Page 12: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

The dynamics of the auroral formations depends on the polarity of

the IMF, and is influenced by ionospheric dynamics and conditions

Page 13: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

Figure 4. The relative displacement of the onset locations (squares) and auroral features (diamonds) in the two hemispheres versus IMF measured by Wind (black) and ACE (grey). The triangle is the displacement (40 min at 59 magnetic latitude) during the 1 November 2001 substorm reported by Frank and Sigwarth [2003]. (a) DMLT versus qC (clock angle). (b) Dkm versus qC. (c) DMLT versus By. (d) Clock angle definition.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, 2004 N. Østgaard, et al.

Why are bipolar studies essential?

Page 14: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

Why do we need interhemispheric studies?

All-sky camera images of conjugate

auroraAll-sky camera images of non-

conjugate auroraSuch observations have

been possible with all-sky cameras during the short times when both auroral regions in the

two hemispheres are in the dark

Modern instrumentation, like the large arrays of radars will allow unconstrained observations. The SuperDARN array in Antarctica will be a

first for SCAR (no such coverage will be possible in the arctic for IPY4)

Why now?

Why SCAR?

Outreach

Page 15: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

Two new radars to be installed at Dome-C to provide coverage over areas where access from equatorward land is not possible; this option is being studied by IFSI and LPCE.

There is a proposal to NSF for South Pole and China is considering the possibility to install a radar at Zhong Shan.

Dome C

South Pole

Zhong Shan

Page 16: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

Thus, it is important and timely to act now to study the polar regions in their interhemispheric context from observations in space and over the Arctic and Antarctic

ICESTAR: Outstanding Questionsmajor advances in science that will be enhanced by this programme

• How the states of Earth's magneto- sphere differ qualitatively and quanti-tatively under extreme, moderate, and quiet solar wind conditions?

• What is common and what is different in the solar-terrestrial and aeronomi-cal phenomena observed over both the Arctic and Antarctic?

• Does the auroral activity during sub-storms arise from instabilities in the ionosphere or does this aurora simply mirror plasma motions in the outer magnetosphere?

• To what extent are the ionized and neutral high-latitude upper atmo-spheric regions affected by mecha-nical and electrodynamic inputs from the lower atmosphere?

• How does the global electric circuit affect the ionosphere state? How is this circuit closed between the low and high latitudes?

Page 17: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

Emergence of New Datasets. The volume of experimental data have been increasing significantly in recent years. It is the right time to begin to create tools to examine the entire system as a whole utilizing all of the geospace data.

Emergence of Grid technology. The Grid is just starting to be defined, and has yet to find a real niche. The seamless sharing of data is one possibility, and the creation of visualization tools that can utilize globally distributed datasets will push the limits of the current technologies.

Rationale for the ICESTAR Scientific Research Programme (why now?)

Enable Easy Access to Distributed Data. Many research groups are creating data assimilation tools which require the use of as many data sources as possible. The ICESTAR data portal will enable these developments to grow.

Uniqueness of Antarctica. The Antarctic continent offers a unique vantage point for examining the near-earth space, spanning from the top of the troposphere, through the stratosphere, mesosphere, thermosphere and ionosphere, and into the magnetosphere.

Focused Science. ICESTAR is intended to both enable and to conduct focused scientific research on the upper atmosphere above the Antarctic and how that region of space ties in with the global system.

Page 18: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

ICESTAR will have four Thematic Action Groups (TAGs) specifically focusing on:

1. Quantifying and understanding the similarities and differences between the Northern and Southern polar upper atmospheres

2. Quantifying the atmospheric consequences of the global electric circuit and further understanding the electric circuit in the middle atmosphere

3. Quantifying the dynamics of the inner magnetospheric particles and fields and the consequences of those dynamics on the polar atmosphere

4. Creating a data portal that will integrate all of the polar data sets and modeling results; this data portal will enable the research to be conducted by the other TAGs

SCAR Scientific Research Programme

ICESTAR: Interhemispheric Conjugacy Effectsin Solar-Terrestrial and Aeronomy Research

Page 19: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

ICESTAR will deliver a wide variety of products ranging from a better scientific understanding of the polar atmosphere to a Web-based “virtual” data collection system:

1. A Web-based data portal that will enable scientists to create a systems view of the polar regions

2. Quantification of seasonal differences in the polar ionospheric conductance and its effects on magnetospheric, ionospheric, and thermospheric dynamics

3. Constrains on the models based on conjugate remote sensing of inner magnetospheric dynamics

4. Characterization of the basic state of the polar middle atmosphere

5. Quantification of the AC and DC global atmospheric circuit and its effects on the ionospheric state

6. Characterization of the spatial and temporal properties of mesoscale convection in the ionosphere

ICESTAR Deliverables

Page 20: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

2005–2006Start of the ICESTAR Programme: Collect information and coordinate observations at the existing instrumental arrays in the Arctic and Antarctic aiming specifically at interhemispheric studies, including global development of the magnetic storms and substorms over the polar regions; promote the deployment of new instruments where current gaps exist.

2007–2008Main Phase (coincides with IPY): Develop time-dependent models of the global electric circuits controlled by external drivers; couple these models with the potential input from atmospheric processes including global thunderstorms.

2009Closure or Renewal Phase: Consider termination or extension of the ICESTAR programme based on its progress and accomplishments.

ICESTAR Milestones

Page 21: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

ICESTAR Steering Committee

(Energy and Experience)

Chairman: Allan Weatherwax U.S.A. Ph.D. - 1995

Co-Chairwoman: Kirsti Kauristie Finland Ph.D. - 1997

TAG A Leader: Martin Fullekrug U.K. Ph.D. - 1994

TAG B Leader: Eftyhia Zesta U.S.A. Ph.D. - 1997

TAG C Co- Nikolai Østgaard Norway Ph.D. - 1999

Leaders: Scott Palo U.S.A. Ph.D. - 1994

TAG D Leader: Aaron Ridley U.S.A. Ph.D. - 1997

Lead Member: Brian Fraser Australia

Lead Member: Ruiyuan Liu P. R. China

Lead Member: Natsuo Sato Japan

SSG/PS Deputy Chair, ex officio: Maurizio Candidi (Italy)

SCAR Scientific Research Programme

ICESTAR: Interhemispheric Conjugacy Effectsin Solar-Terrestrial and Aeronomy Research

Page 22: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

The greatest challenge facing environmental science and policy is understanding the interactions between, and collective behavior of, the many component parts of the Earth system, including the interaction between the natural environment and human society.

Near-Earth space (geospace) is an integral part of the Earth system, providing the material link between the Sun and Earth, primarily through the polar regions, and posing a potential hazard to space-borne and ground based technology on which Society is increasingly dependent.

The Initial Outline Science Plan for the International Polar Year 2007–2008, issued by the ICSU’s IPY Planning Group in April 2004 (www.ipy.org), proposes five main science themes to address.

Although the IPY main focus will be to determine the present environ-mental status of the polar regions and their connections to the potential global climate changes, its Fifth Theme calls for:

“To use the unique vantage point of the polar regions to develop and enhance observatories studying the Earth’s inner core, the Earth’s magnetic field, geospace, the Sun and beyond.”

This is a major thrust of the proposed ICESTAR Programme.

ICESTAR: Summary and Thrust

Page 23: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

Budget cycle 2004–2006: $40,000

Spring 2005 ($10,000) Data portal specification meeting focusing on:

• Identification and metadata description of all available Antarctic data • Identification of all Web sites making data and metadata available

• Identification of available value-added products on-line and off-line

• Prioritization of data and products based on science goals

Year 2005 ($10,000) Creation of ICESTAR metadata catalogue on the ICESTAR Web portal

Summer 2006 ($10,000) ICESTAR Data Portal meeting, XXIX SCAR:

• Announcement to SCAR science community of metadata catalogue

• Strategy for linking existing on-line sites together and providing on-line services for all known geospace data and products

Year 2006 ($10,000) Development of the ICESTAR Data Portal

SCAR Scientific Research Programme

ICESTAR: Interhemispheric Conjugacy Effectsin Solar-Terrestrial and Aeronomy Research

Page 24: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

Budget cycle 2006–2008: $35,000

Spring 2007 ($15,000) ICESTAR Science Community Workshop:

• Workshop centered on using ICESTAR metadata and the data portal to tackle selected problems/event studies in TAG A-C science

• Note this will be good community project for the IPY-4

Summer 2008 ($10,000) ICESTAR Special Session, XXX SCAR:

• Presentation of full ICESTAR data portal capabilities and science outputs from the community workshop

Summer 2009 ($10,000) ICESTAR “Forward Look” Workshop:

• Review of ICESTAR achievements and way forward

Thus, the total requested SCAR funding for the proposed ICESTAR Programme is U.S. $75,000 for 5 years

SCAR Scientific Research Programme

ICESTAR: Interhemispheric Conjugacy Effectsin Solar-Terrestrial and Aeronomy Research

Page 25: SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research Linking Near-Earth Space to Polar.

Thank you for your attention

SCAR Scientific Research Programme ICESTAR: Interhemispheric Conjugacy

Effects in Solar-Terrestrial and Aeronomy Research

Linking Near-Earth Space to Polar Regions