Scaling up renewable energy deployment in island regions: insights and lessons

46
Scaling Up Renewable Energy Deployment in Island Regions: Insights and Lessons Webinar in Partnership with Leonardo Energy and The Clean Energy Regulators Initiative (CERI) 12 th of February 2015

Transcript of Scaling up renewable energy deployment in island regions: insights and lessons

Scaling Up Renewable Energy Deployment in Island Regions: Insights and Lessons Webinar in Partnership with Leonardo Energy and The Clean Energy Regulators Initiative (CERI) 12th of February 2015

Brief Bio

Toby  Couture  is  Founder  and  Director  of  E3  Analytics,  an  international  renewable  energy  consultancy  based  in  Berlin.   He  has  advised  over  thirty  governments  around  the  world  on  the  economic,  financial,  and  policy  aspects  of  renewable  energy  development,  including  both  in  on-­‐‑grid,  off-­‐‑grid,  and  island  regions.  Prior  to  founding  E3  Analytics,  Toby  was  Energy  &  Financial  Markets  Analyst  at  the  U.S.  National  Renewable  Energy  Laboratory  (NREL)  in  Colorado.  He  now  lives  and  works  in  Berlin.  

http://www.e3analytics.eu/

Overview

1.  The  Role  of  RE  Targets

2.  Designing  Net  Metering  Policies  in  Island  Regions

3.  Designing  Feed-­‐‑in  Tariff  Policies  in  Island  Regions

4.  Utility-­‐‑led  Approaches  to  RE  Development 5.  Designing  Bankable  PPAs  for  Island  Regions

6.  Concluding  Remarks

 1.  The  Role  of  RE  Targets

The Role of RE Targets

•  Targets  have  become  a  defining  feature  of  the  global  RE  landscape

•  146  countries  in  the  world  with  RE  targets  as  of  early  2015

•  Targets  send  a  clear  signal  to  investors,  and  help  mobilize  stakeholders,  and  allocate  resources  more  efficiently

à  see  forthcoming  IRENA  report

115

120

125

130

135

140

145

countries with policy targets

countries with support policies

2013 2014

+6

+11

Source: REN21 Global Status Report (GSR) 2014

Rationales for RE Targets

•  Increasing  energy  security  /  Diversifying  the  fuel  mix

•  Reducing  fossil  fuel  consumption   •  Improving  energy  access •  Mitigating  climate  change  and  other  

environmental  risks  (fuel  spills) •  Macro-­‐‑economic  benefits  (i.e.,  job  

creation) •  Increasing  private  sector  investment •  Etc.  

Island  Regions  and  RE  Targets  

•  A  growing  number  of  island  regions  in  particular  are  adopting  ambitious  RE  Targets: §  Tokelau  (100%) §  Tuvalu  (100%) §  Cape  Verde  (50%  -­‐‑  100%)   §  Samsø  (100%) §  El  Hierro  (100%) §  Bonaire  (100%) §  Hawaii  (40%) §  Etc.  

100%  Report:  h^p://bit.ly/1C9Bs9K     Tokelau:  h^p://ecogeneration.com.au/news/powering_the_pacific/078578/ Bonaire:  h^p://www.edinenergy.org/bonaire.html  

RE  Targets  

à  In  order  to  achieve  targets,  governments  need  clear  policies,  and  strategies

Overview  of  Three  Primary  Policy  Options

1.  Net  Metering/Net  Billing

2.  Feed-­‐‑in  Tariffs

3.  Utility-­‐‑led  RE  Development  

2.  Designing  Net  Metering  Policies  in  Island  Regions

Q:  What  is  Net  Metering?

Policy  allowing  customer-­‐‑sited  RE  projects  to  produce  electricity  onsite  to  offset  their  onsite  consumption.   NM  enables  the  customer  to  “run  the  meter  backwards”  by  exporting  power  back  to  the  grid.   Typically  does  not  involve  a  cash  payment:  credit  only. Excess  generation  can  typically  be  rolled  over  up  to  12  months

Q:  What  is  Net  Metering?

Source: FPL

What is the difference between Net Metering and Net Billing?

Net  Metering:   the   same   meter   rolls   backward,   and   the   customer   gets   a  credit  at  the  same  price  as  the  electricity  purchased.

à NM  traditionally  involved  only  one  bi-­‐‑directional  meter

Net  Billing:  the  rate  at  which  customers  are  credited  is  different  from  the  

rate  they  pay:  can  be  higher  or  lower,  or  linked  to  time-­‐‑of-­‐‑day  

à Net   Billing   traditionally   involved   two   different   meters   (one   to  

meter  consumption,  the  other  to  meter  output)

Neither   of   these   distinctions   is   universally   applicable:   too   many  

exceptions;  terms  are  used  in  different  ways.

Q: How to determine the appropriate rate to credit excess

generation under a Net Metering policy?

Three  basic  options:

1.  Compensation  below  the  retail  rate  (E.g.  Palau  @  50%  of  avoided  costs)

2.  Compensation  at  the  retail  rate  (E.g.  Many  U.S.  States)

3.  Compensation   above   the   retail   rate   (E.g.   Previous   policy   in  Queensland,  Australia  @  AUS  $0.44/kWh)

Q: How to determine the appropriate rate to credit excess

generation under a Net Metering policy?

Cost  of  distributed  technologies  such  as  solar  PV  are  below  retail  rates  +  often  below  utilities’  avoided  costs  of  generation

Many  utilities  and  regulatory  agencies  are  concerned  that  traditional  

net  metering  may   lead   to   “over-­‐‑compensation”  and/or   cost-­‐‑shifting  

b/w  customers

Q: Why should island utilities encourage customer-owned and

sited generation?

When  customer-­‐‑sited  generation  is:  

1.  cheaper  than  utility  avoided  costs   and/or  

2.  when  electricity  tariffs  are  below  cost  recovery,  

encouraging   customer-­‐‑owned   and   sited   generation   produces   net  

benefits  (and  savings)  both  to  society  and  to  the  utility.

Q: “But, if I design a Net Metering

policy in an island with high retail

rates, won’t my customers “jump on

the bandwagon” and leave the

utility with decreasing revenues

with which to service fixed costs,

and potentially threaten the utility’s

solvency?”

All  Net  Metering  policies  include  various  forms  of  caps

Cap  or  Limit  Type Description  and  Example

1.  Caps  on  project  size  (kW)

Most  NM  policies  include  limits  on  project  size.  

à Philippines:  100kW  cap  on  each  system

à Vanuatu’s  recent  proposal  would  cap  systems  at  19.8kW.

2.   Caps   on   total   program   size  (e.g.  5%  of  peak  demand,  or  #  

of  MW)

Most  NM  policies  include  caps  on  total  program  size.

à  Hawaii:  cap  at  2.5%  of  total  load  (under  review)

à  The  Cook  Islands:  600kW  max  total  installed  capacity

3.  Caps  on  max  allowable  level  of  distribution  level  

penetration  on  a  per-­‐‑circuit  

basis

Caps  on  the  max  PV  penetration  level  on  distribution  circuits  to  restrict  new  applications  in  certain  grid  regions.  

à  Hawaii:  15%  limit;  5%  is  reserved  for  systems  <10kW

4.   Caps   based   on   a   %   of  annual  onsite  load

Arizona:  system  size  limit  of  125%  of  the  customer’s  average  load  in  the  previous  3  years*.  

Net Metering in Island Regions

Net  Metering   involves   “compensation   rate”   considerations,   but   also  other  design  issues:

-­‐‑  Access  to  the  grid  (What  is  the  permi^ing  procedure?)

-­‐‑  System  size  (How  large  can  customer-­‐‑sited  systems  be?)

-­‐‑  Customer  classes  (Residential,  Commercial,  Industrial?)

-­‐‑  Roll-­‐‑over  (How  long  can  excess  generation  be  rolled  over?)  

-­‐‑  Fixed  charges  (What  kinds  of  fixed  charges  are  there?  Can  the  

NM   credits   wipe   out   fixed   charges   as   well   as   consumption  charges?)

-­‐‑  Etc.  

Net Metering in Island Regions

Each  Net  Metering  policy  is  a  unique  package  of  policy,  regulatory,  and  administrative  provisions.  

The  challenge  for  Net  Metering  policies  in  island  regions  is  to  design  

them   in   a   way   that   encourages   customer-­‐‑sited   generation   in   a  

controlled   way,   while   delivering   savings   for   both   society,   and   the  utility.  

Net  Metering  can  be  a  “win-­‐‑win-­‐‑win”  scenario

3.  Designing  FIT  Policies  in  Island  Regions

What are Feed-in Tariffs?

Three Key Elements:!!

!1. Clear price for electricity sold to the grid!!2. Clear, long-term contract!!3. Guaranteed access to the grid!

!à  Payment for 100% of generation!

à  100% export-oriented: no self-consumption !

à  Traditionally two separate meters; participants receive both a check and a bill!

What are Feed-in Tariffs?

à  Price locked in irrespective of utility avoided costs, fuel costs, or retail prices!

à  Provides a hedge against fuel price volatility!

à  Long-term contracts help improve bankability, and broaden participation!

! Source:  Couture  &  Gagnon  2010

What are Feed-in Tariffs?

-  FITs used in approximately 100 jurisdictions globally !

-  Responsible for ~ 45% of global wind power investment!

-  ~ 75% of global solar PV investment!!!!

Q: Why have FITs been successful?

FITs provide homeowners & investors what they need: !!à Attractive policy and regulatory conditions (stable LT

contracts) to invest in renewable energy projects!

à a clear cost-based price for electricity sold to the network over a pre-determined period!

à differentiated pricing by technology, and by project size, !

!

Q: “But, if I design a FIT policy in an

island state, won’t my customers all race

to become IPPs, gradually take over the

generation business, profit from long-

term contracts underwritten by the utility,

and leave the utility with decreasing

revenues with which to pay for fixed

costs and ensure system reliability?”

Like Net Metering, FIT policies are often

designed with multiple caps and controls in

order to limit market growth: e.g. project size,

total program size, etc.

T h e g o a l o f F I Ts i s

ultimately to diversify the

generation mix away from

non-renewable resources.

Q: Are FITs appropriate for island regions?

-  Policy challenges can be limited through good policy design !

-  Monitoring of project applications, and clear permitting procedures, can also eliminate the risks of runaway development!

!à As with all public policy, the keys are in the design, oversight, and overall structure of the policy. !

Q: How to set FIT rates for island regions with high avoided costs of generation?

Three  basic  options:

1.  Based  on  the  cost  of  generation:  i.e.  like  traditional  FITs

2.  Based  on  the  full  utility  avoided  costs

3.  Somewhere  in  between

Q: How to set FIT rates for island regions with high avoided costs of generation?

Examples:

•  Virgin  Islands:  Recently  adopted  FIT  policy  directs  the  Public  Service  Commission  to  develop  FIT  rates.  The  PSC’s  sets  rates  at  a  slight  discount  to  the  utility’s  avoided  cost  of  generation.  The  current  anticipated  rate  is  USD  $0.26/kWh.  

•  Hawaii:  FIT  policy  currently  ranges  from  USD  $0.189  to  $0.218/kWh,  depending  on  system  size  and  is  below  generation  costs  but  a^ractive  for  private  investment.  

•  Grenada:  “Standard  Offer”  Program:  Customers  can  connect  and  receive  one  of  two  options:  l  1)  fixed  FIT  of  USD  $0.17/kWh  over  10-­‐‑yrs;  or  2)  per  kWh  payment  based  on  the  utility’s  avoided  fuel  cost,  adjusted  annually

Q: Should the FIT rate be linked to utility avoided costs /

avoided fuel prices?

Pros:   •  Avoids  the  risk  of  locking  in  

high  priced  contracts  if  fuel  prices  decline  (overpayment)

E.g.  California  (mid-­‐‑1980s),  fuel  prices  collapsed  à  utilities  continue  paying  Standard  Offer  rates  far  higher  than  their  avoided  cost  of  supply

Cons:   •  Risk  of  increasing  fuel  

prices  à  Overpayment  and  “wealth  transfer”  

•  Risk  of  decreasing  fuel  

prices  à  underpayment  

Uncertainty  to  utilities  and  

customer/generators

Q: How to design FITs for island regions?

1.  Include appropriate oversight of the project application and permitting process!

2.  Introduce clear caps on total capacity installed!

3.  Revise the tariffs regularly (e.g. annually) !

4.  Implement a clear accounting and monitoring system!

Q: How to design FITs for island regions?

5. Publish annual reports on the progress of the policy (e.g. number of projects, total capacity installed, and total generation (MWh) supplied to the network, etc.) !!6. Include incentives for customer-sited storage systems to help smooth fluctuations in output and ease grid integration!!7. Enhance in-house forecasting capabilities!!8. Explore the use of “demand sinks”: e.g. desalination plants, heating/cooling loads, ice production, etc. to stabilize the grid and better align demand with supply!

4.  Utility-­‐‑led  Models  of  Developing  RE  on  Islands

Q: Rather than using a FIT or Net Metering, why don’t utilities in island regions build (or contract to own) renewable energy projects themselves?

Utility-led Models of RE Development

Three basic options:!!1.  Utility-owned and Financed (privatized): !A private utility finances the construction of the RE project and owns the

underlying asset. Typically earns a regulated rate of return on the investment.

Operations and maintenance (O&M) can be performed by the utility, or via

subcontract with a maintenance provider.

Example: HECO in Hawaii!

Utility-led Models of RE Development

!2. Utility-owned and Financed (public): !A public utility finances the construction of the RE project and owns the

underlying asset. Operations and maintenance can be performed by the

utility, or via subcontract with a maintenance provider, or the original EPC

team.

Example: Electra in Cape Verde:

Utility-led Models of RE Development

3. Utility-led, Privately-owned!The utility leads the procurement process, and buys power from independent

power producers (IPPs).

Example: Cayman Islands: utility buys IPP power via competitive tenders,

as well as via the island’s Feed-in Tariff policy. Projects are privately owned.

Ramea Island, Canada: utility buys IPP power from a small wind developer

via a bilateral contract. Project is privately owned; operated jointly with the

public utility.

How should utilities allocate PPAs?

Three basic options

As a result of a competitive solicitation, auction, or tender

As a result of launching a “standard offer”, or feed-in tariff

Through bilateral negotiations with a particular proponent

5.  Designing  Bankable  PPAs  on  Islands

A  PPA  is  a  long-­‐‑term  off-­‐‑take  agreement,  or  purchase  contract,  for  the  

sale  of  electricity  from  one  party  (the  developer)  to  another  (usually  a  

utility).  

-­‐‑  generally  structured  over  a  10  to  20  year  period.

à  The  goal  of  good  PPAs  is  to  provide  a  revenue  stream  to  the  

developer  that  is  sufficient  to  recover  their  costs  for  a  given  

project,  plus  a  reasonable,  risk-­‐‑adjusted  return  on  investment.  

à  This  is  what  constitutes  a  “bankable”  PPA.

What is a Power Purchase Agreement (PPA)?

1.  A  Fixed,  cost-­‐‑reflective  tariff

2.  Appropriate  currency  provisions

3.  Inflation  risk  protection  (e.g.  inflation  indexation  %/yr)

4.  Protection  against  dispatch  risk:  e.g.  “take  and  pay”,  guaranteed  

purchase

5.  Low  regulatory,  political,  and  legal  risks

6.  Protection  against  ‘force  majeure’  risks

7.  Dispute  resolution  mechanism

8.  Termination  clauses:  what  happens  when?  

9.  Low  interconnection  risk

Key Requirements for a Bankable PPA

Guidelines for Negotiating PPAs in Island Regions

1.  Seek  out  other  PPA  contracts  that  have  been  signed,  either  in  the  region,  or  globally  to  compare

2.  Identify  and  organize  the  contract  clauses  on  a  topical  basis  (e.g.  grid  connection,  payment  terms,  liquidated  damages,  etc.)

3.  Use  the  sample  PPA  contracts,  and  identify  any  clauses  that  are  missing,  or  that  need  to  be  adapted  to  the  local  island  context.  

4.  Hire  an  expert  with  experience  in  PPA  design  in  island  regions  to  either  participate  in  the  contract  negotiations,  to  draft  the  original  contract  draft,  or  to  review  the  final  draft  before  it  is  signed

Concluding  Remarks

Concluding Remarks

Despite  the  fact  that  RETs  are  increasingly  cheaper  than  conventional  supply  options  on  islands,  it  is  still  important  to  have  strong  policy  and  regulatory  frameworks  to  create  the  right  conditions  for  new  investments  to  occur.   à  Based  on  current  economics,  transitioning  to  renewable  energy  island  regions  should  produce  a  net  cost  saving  for  utilities,  and  for  society

Rarotonga  (Cook  Islands)

Thank you

Questions?