Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5...

26
Scaling Dynamics in Energy Technologies Historical Evidence & Implica:ons Charlie Wilson IIASA (Interna:onal Ins:tute for Applied Systems Analysis) Presenta:on to Harvard ETIP April 2009 For further details: [email protected]

Transcript of Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5...

Page 1: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

ScalingDynamicsinEnergyTechnologies

HistoricalEvidence&Implica:ons

CharlieWilsonIIASA(Interna:onalIns:tuteforAppliedSystemsAnalysis)

Presenta:ontoHarvardETIPApril2009

Forfurtherdetails:[email protected]

Page 2: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

Industryscaling:e.g.,nuclearpower

GrossTotals(2100)~25,000,000MW~25,000units~1MW/unit

GrossTotals(2000)~400,000MW~525units

~0.8MW/unit

Page 3: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

Unitscalinge.g.,windpower

150m

power≈ bladelength^2windspeed^3

Page 4: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

ResearchOutline

Technologicalgrowththatis:(i)  bothrapidandextensive(ii)  occursatmul:plelevels:

•  thetechnologyunit(&/orplant)•  theindustryasawhole

Whatarethehistoricaldynamicsofunitscalingandindustryscalingfordifferentenergytechnologies?

(2)  ResearchQues.on

(1)  Defini.onofScaling

(3) MethodologicalIssuesforaTechnologyMeta‐Analysis

‐‐>Uselogis.cparameters(deltaT&K)tocomparescalingdynamicsacrosstechnologiesandlevels.

Technologydiffusionchangesover:me

Technologydiffusionchangesoverspace

Technological‘capacity’hasspecificunits

Variablesofinterestareratesandextents

‘Levels’ofinterestareunitandindustry‐‐>UseMWascommon

capacitymetric

Page 5: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

KeyLogis:cParameters

y=K1+e‐b.(t‐tmax)

K~extent

(satura:ondensity)

deltaT

90%K

~rate

10%K

Page 6: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

Diffusiondynamicschangefromcoretorim“…accelera:onofdiffusionspeed[deltaT]anddecreaseinul:matediffusionlevels[K]asafunc:onofthe‘learning:me’[fromthebeginningofthediffusionprocess]”

(Grübler1990)

Page 7: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

AvailableHistoricalDataGlobal Core Periphery1

(ex.Comm) Periphery2 Rim Notes

Power–Nuclear

Installedcapacitydata

Power–Coal

Installedcapacitydata

Power–Gas

Installedcapacitydata

Power–Wind

Denmarkascoremarket

Refineries () () () () () Processingcapacitydata

JetAircraT ()()

Boeingonly

(Iljushin,Tupolev…)

()Airbusonly

Boeing,McD,Airbusonly

MotorVehicles

() () () () Produc:onnotusedata

CFLs () Salesnotusedata

Also:PrimeMovers(USonly);Helicopters(UnitScaleonly)

InsufficientTimeSeriesData:SolarPV;MobilePhones.

Page 8: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

IndustryCapacityScaling

CoalPowerGenera:on:Capacity

Addi:ons&GrossTotals

(N.B.Same:mescale,

differenty‐axis)

core periphery1(ex.Comm)

periphery2 rim

Page 9: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

UnitCapacityScaling:NewJetAircrarModels(Boeing)

max.unitcapacity(fron:er)

av.unitcapacity

Page 10: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

UNITSCALEECONOMIESRateofscalingofmax.unitcapacity

UNITSCALEFLEXIBILITYMax.–averagerateofunitscaling

nuclear>coal>gas

gas>>coal>nuclear

K=1493MW/unitK=1307MW/unitK=998MW/unit

K=316MW/unitK=1076MW/unitK=137MW/unit

Page 11: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

KeyFindings:Historicalpayernsofscalinginenergytechnologies

–  Industryscalingisini:atedandsustainedbymoreunitnumbersnotlargerunitsizes.

–  Unitscaleeconomies,ifavailable,tendtobecapturedearly.

–  Unitscaleeconomiesdonotdiffusespa:allyfromcoretorimmarkets.

–  Therela:onshipbetweentherateandextentofindustryscalingisconsistentacrosstechnologies,andover:me.

…Implica,onsforTechnologyPolicy

…Implica,onsforLowCarbonScenarios

Page 12: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

Ifunitscaleeconomiesareavailable,unitscalingisfasterthanindustryscaling

dT:Averageunitcapacity

dT:Maximumunitcapacity

dT:Totalindustrycapacityunitscale

economies scaleinvariant

Page 13: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

(1)Ini.algrowthinunitnumbers–experimenta.on!

(2)Unitscaling(max.&average,i.e.,capturingscaleeconomies)

(3)Industryscalingsustainedbyunitnumbers

(1)

(2)

(3)

cf.nuclear,gas,aircra?,cars

industry–totalcapacityindustry–

totalno.ofunits

unit–av./max.size

Page 14: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

WindPower–Denmark(CoreMarket)

(2)Unitscalingdelayeddespitetechnicalscaleeconomies

(1)

(2)

industry–totalcapacity

industry–totalno.ofunits

unit–av.size

(1)Unitnumbersdriveindustrygrowth(longexperimenta:onphase)

Page 15: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

Dounitscalingdynamicsdetermineratesofindustryscaling?

x‐axis::melagfromunittoindustryscaling(measuredattmax)i.e.,largerforearlierunitscaling(e.g.,coal)

Ifunitscalingdrivesrateofindustryscaling,trendshouldbefromtoplertoboyomright…

y‐axis:rateofindustry

scaling

similarforfasterunitscaling

Page 16: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

Industryscalingisgenerallyfasterfortechnologieswithlargerunitsizesandlessunitnumbers

K(noofunits)

10^11to12

?

10^10to11

?

10^5to6

10^5

10^4

10^3

?

av.unitsize(MW)

10^‐6

?

10^‐1

10^0

10^1to2

10^1to2

10^2to3

10^3

10^4

CFLs&wind: (i)subs,tu,onnotdiffusion;(ii)lesscapitalintensive; (iii)globalmarkets(morerecent)

Page 17: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

Summary:DifferentRoutestoIndustryScaling

INDUSTRYSCALING

UNITNUMBERS

UNITCAPACITY

MARK

ETCHARA

CTER

ISTICS

SYSTEM

INTEGRA

TION

TECH

NOLO

GY

CHARA

CTER

ISTICS

scaleeconomies‐tech./ec.

process/retrofit‐able

flexibility/adaptability

modularity/notcapitalintensive

diffusionsubs:tu:on

produc:onscaling

complementarytechs&ins:tu:ons

globalmarkets

regionalmarkets

RefineriesCCS

NuclearWind

NatGasCHPCFLs/Wind

SolarPV

CFLsHybrids

ICECarsH2FCCars

earlyphasebuildout

spa.aldiffusionofscalefron.er

supportunitscaling

Page 18: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

Spa:alDiffusionofUnitScaling

Noconsistentevidencefor‘leapfrogging’

ofmaximumunitcapacityfromcoretorim

deltaT:Core≈Periphery

deltaT:Core<Periphery(Asia)>Rim

deltaT:Core≈Periphery(ex.USSR)≈Rim

faster?

Page 19: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

KeyFindings:Historicalpayernsofscalinginenergytechnologies

–  Industryscalingisini:atedandsustainedbymoreunitnumbersnotlargerunitsizes.

–  Unitscaleeconomies,ifavailable,tendtobecapturedearly.

–  Unitscaleeconomiesdonotdiffusespa:allyfromcoretorimmarkets.

–  Therela.onshipbetweentherateandextentofindustryscalingisconsistentacrosstechnologies,andover.me.

Page 20: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

Cross‐technologycomparisonsofindustryscalingneedtocontrolforgrowthintheoverallsizeof‘thesystem’

Capacity(K)isnormalisedintoacommoncross‐technologymetricofscale:

NormalisedK= MWcarryingcapacity Primaryenergyatt(max)

Industrysize(MW)–global

Page 21: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

Historicalrela:onshipbetweenEXTENTandRATEofindustryscalingisconsistentacrosstechnologies

Industrysize(MW)–coremarket

(NORM

ALISED)

GRE

ATER

EXT

ENT

SLOWERRATE

Page 22: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

EXTENT–RATErela:onshipforindustrysize(MW)‘accelerates’fromcoretorim

Page 23: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

UsingRATE‐EXTENTrela:onshiptotestscenarios:e.g.,nuclearpower–disconPnuousscalingatindustrylevel?

ScenarioFamiliesA2r:lowec.growth,lowtechchange,fossilfuelsB1:highec.growth,hightechchange,non‐fossilsB2:medec.growth,diversetechs,mixfuels

Page 24: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

NormalisedKvs.deltaTrela:onshipsfornuclearscenariosactuallyappearconserva:ve!

N.B.Eachscenarionormalizedbyitsownprojectedtotalprimaryenergyatt(max)

Historicaldata

Scenarios

Page 25: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

Why?2ordersofmagnitudehigherK…butmuchlongerdeltaTs

Page 26: Scaling Dynamics in Energy Technologies · 2020. 6. 24. · 10 ^ 11 to 12 ? 10 ^ 10 to 11 ? 10 ^ 5 to 6 10 ^ 5 10 ^ 4 10 ^ 3 ? av. unit size (MW) 10 ^ ‐6 ? 10 ^ ‐1 10 ^ 0 10 ^

TakeHomeMessages

•  Implica:onsforlowcarbontechnologies:–  Driveearlyindustryscalingbysuppor:ngbuildoutofunitnumbers

(notlargerunitsizes)–  Supportspa:aldiffusionofunitscalefron:er(whereappropriate).–  Validatescalingassump:onsinscenariosusinghistoricalrate‐extent

rela:onship.

•  Nextsteps:–  Integratescalingdynamicswithqualita:veconceptualframework.

•  Moreinfo:–  [email protected]

–  IIASAInterimReportavailablesoonwithalldata&analysis