scalar and vector penalty projection methods

download scalar and vector penalty projection methods

of 43

Transcript of scalar and vector penalty projection methods

  • 7/30/2019 scalar and vector penalty projection methods

    1/43

    Numerical Flow Models for Controlled Fusion - April 2007

    Vector and scalar penalty-projection methodsfor incompressible and variable density flows

    Philippe AngotUniversit de Provence, LATP - Marseille

    with M. Jobelin [PhD, 2006], J.-C. LatchJ.-P. Caltagirone and P. Fabrie

    Porquerolles, April 19 - 2007

  • 7/30/2019 scalar and vector penalty projection methods

    2/43

    Motivations and objectives

    Work focusing on the constraint of free divergence

    How to deal efficiently with the free-divergence constraint withfractional-step methods (prediction-correction steps) ?

    How to circumvent the major drawbacks of the usual projection

    methods including a scalar correction step for the Lagrangemultiplier with solution of a Poisson-type equation ?

    Example of fluid-type models with pressure as Lagrangemultiplier

    solution of unsteady incompressible Navier-Stokes equations in theprimitive variables (velocity and pressure)

    Introduction 2

  • 7/30/2019 scalar and vector penalty projection methods

    3/43

    Outlines

    1 Projection methods for incompressible flows

    2 Scalar penalty-projection methods

    3 Vector penalty-projection methods

    4 Conclusion and perspectives

    Introduction 3

  • 7/30/2019 scalar and vector penalty projection methods

    4/43

    Outlines

    1 Projection methods for incompressible flowsNon-homogeneous incompressible flowsSemi-implicit method (linearly implicit)Fractional-step and projection methods

    2 Scalar penalty-projection methods

    3 Vector penalty-projection methods

    4

    Conclusion and perspectives

    Projection methods for incompressible flows 4

  • 7/30/2019 scalar and vector penalty projection methods

    5/43

    Navier-Stokes problem for incompressible flows

    Incompressible and variable density flows of Newtonian fluidsNavier-Stokes equations with mixed boundary conditions :

    Dirichlet on D and open (outflow) B.C. on N

    t+ u = 0 in ]0, T[

    ut + (u )u (u) + p = f in ]0, T[ u = 0 in ]0, T[u = uD on D]0, T[

    pn + (u) n = fN on N]0, T[ = 0, and u = u0 in {0}

    (u) = [(u + uT)], or u (for a constant viscosity)For an homogeneous fluid with constant density, we set = 1.

    Projection methods for incompressible flows Non-homogeneous incompressible flows 5

  • 7/30/2019 scalar and vector penalty projection methods

    6/43

    Semi-implicit method (linearly implicit)

    Semi-discretization in time with low or high-order BDFschemes

    for all n IN such that (n + 1)t T :

    Dn+1

    t+ u,n+1n+1 = 0 in

    n+1Dun+1

    t+ (u,n+1

    )un+1

    (un+1) + pn+1 = fn+1 in un+1 = 0 in

    un+1 = un+1

    Don

    D

    pn+1n + (un+1) n = fn+1N on N

    Resolution of an elliptic problem in space (at each timestep) by methods of finite elements, finite volumes, DGM...

    Projection methods for incompressible flows Semi-implicit method (linearly implicit) 6

  • 7/30/2019 scalar and vector penalty projection methods

    7/43

    Semi-implicit method : coupled solver

    Algebraic formulation of the Navier-Stokes system inf-sup stable discretization in space or with stabilization...

    q

    tMU

    n+1 + A(Un, Un1)Un+1 + BTPn+1

    = F(Un, Un1, fn+1, fn+1N , un+1D )

    BUn+1 = G(un+1D )

    Projection methods for incompressible flows Semi-implicit method (linearly implicit) 7

  • 7/30/2019 scalar and vector penalty projection methods

    8/43

    Semi-implicit method : coupled solver

    Algebraic formulation of the Navier-Stokes system inf-sup stable discretization in space or with stabilization...

    q

    tMU

    n+1 + A(Un, Un1)Un+1 + BTPn+1

    = F(Un, Un1, fn+1, fn+1N , un+1D )

    BUn+1 = G(un+1D )

    Saddle-point problem at each time step : efficient solver ?

    Fully-coupled solver with efficient multigrid preconditioner :Kortas, PhD 1997 - Cihl and Angot, 1999

    Augmented Lagrangian method with iterative Uzawa algorithm :Fortin and Glowinski, 1983 - Khadra et al., IJNMF 2000

    Projection methods using the Helmoltz-Hodge-Leraydecomposition of L2()d

    Projection methods for incompressible flows Semi-implicit method (linearly implicit) 7

  • 7/30/2019 scalar and vector penalty projection methods

    9/43

    Fractional-step and projection-type methods

    Projection scheme with scalar pressure-correction[Chorin, 1968 - Temam, 1969 - Goda, 1979 - Van Kan, 1986]See recent review : [Guermond, Minev, Shen, CMAME 2006]

    Prediction step

    n+1

    Dun+1

    t+ (u,n+1 )un+1

    (un+1) + pn = fn+1

    un+1 = un+1D on D

    pnn + (un+1) n = fn+1N on NProjection step

    qn+1u

    n+1 un+1t

    + = 0

    n = 0 on D (necessary since u n = u n) = 0 on N (sufficient by orthogonal projection onto H)

    un+1 = 0

    t

    n+1

    = q un+1

    Pressure-correction step : pressure increment

    pn+1

    = pn

    + Projection methods for incompressible flows Fractional-step and projection methods 8

    i l d j i h d

  • 7/30/2019 scalar and vector penalty projection methods

    10/43

    Fractional-step and projection-type methods

    Algebraic formulation for the Navier-Stokes system

    q

    tMU

    n+1 + AUn+1 + BTPn = F

    L =q

    tBUn+1 G

    Pn+1 = Pn +

    MUn+1 = MU

    n+1 +t

    qBT

    Projection methods for incompressible flows Fractional-step and projection methods 8

    F ti l t d j ti t th d

  • 7/30/2019 scalar and vector penalty projection methods

    11/43

    Fractional-step and projection-type methods

    Major drawbacks of the incremental projection methods

    Time order of the splitting error ?i.e. error between the numerical solutions of the implicit (orsemi-implicit) method and the fractional-step method

    n = 0 on D

    existence of an artificial pressure boundary layer in space

    = 0 on N convergence in time and space spoiled for outflow boundaryconditions : splitting error varying like O(t1/2) (pressure) and nomore negligible (for both velocity and pressure) with respect to thetime and space discretization error

    Pressure-correction step strongly dependent on density and viscosityfor non-homogeneous flows convergence very poor for large ratios of 1000.

    Projection methods for incompressible flows Fractional-step and projection methods 8

    N i l t t

  • 7/30/2019 scalar and vector penalty projection methods

    12/43

    Numerical tests

    Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.Velocity error (discrete L2(0, T; L2()d) norm) versus time step t

    1e-4 1e-3 1e-2 1e-1Pas de temps

    1e-7

    1e-6

    1e-5

    1e-4

    1e-3

    1e-2

    normeL2erre

    urvitesse

    semi implicite

    Time convergence in O(t2)Stagnation threshold = space discretization error in O(h

    2

    )Projection methods for incompressible flows Fractional-step and projection methods 9

    N i l t t

  • 7/30/2019 scalar and vector penalty projection methods

    13/43

    Numerical tests

    Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.Velocity error (discrete L2(0, T; L2()d) norm) versus time step t

    1e-4 1e-3 1e-2 1e-1Pas de temps

    1e-7

    1e-6

    1e-5

    1e-4

    1e-3

    1e-2

    normeL2erre

    urvitesse

    semi implicite

    incrementale

    Time convergence in O(t2)Stagnation threshold = space discretization error in O(h

    2

    )Projection methods for incompressible flows Fractional-step and projection methods 9

    O tli

  • 7/30/2019 scalar and vector penalty projection methods

    14/43

    Outlines

    1 Projection methods for incompressible flows

    2 Scalar penalty-projection methodsPenalty-projection methodsNumerical experimentsAnalysis of the scalar penalty-projection method for the Stokes problem

    3 Vector penalty-projection methods

    4

    Conclusion and perspectives

    Scalar p enalty-projection methods 10

    Penalty projection methods

  • 7/30/2019 scalar and vector penalty projection methods

    15/43

    Penalty-projection methods

    [Jobelin et al., JCP 2006] : prediction step with augmentedLagrangian for r > 0 and consistent projection step by scalar

    pressure-correction

    [Shen, 1992] : r = 1/t2 with a different correction of pressure

    [Caltagirone and Breil, 1999] : r > 0 with a singularprojection operator...

    Scalar p enalty-projection methods Penalty-projection methods 11

    Penalty projection methods

  • 7/30/2019 scalar and vector penalty projection methods

    16/43

    Penalty-projection methods

    Penalty-prediction step : augmentation parameter r

    0

    n+1Dun+1

    t+ (u,n+1 )un+1

    (un+1)

    r un+1 + pn = fn+1un+1 = un+1D on D

    pnn + (un+1) n = fn+1N on NProjection step

    qn+1u

    n+1 un+1t

    + = 0

    n = 0 on D (necessary since u n = u n) = 0 on N (sufficient by orthogonal projection onto H)

    un+1 = 0

    t

    n+1

    = q un+1

    Pressure-correction step : consistent pressure increment

    pn+1

    = pn

    r un+1

    + = pn+1

    + Scalar p enalty-projection methods Penalty-projection methods 11

    Penalty projection methods

  • 7/30/2019 scalar and vector penalty projection methods

    17/43

    Penalty-projection methods

    Algebraic formulation for the Navier-Stokes system

    q

    tMU

    n+1 + rBTM1pl

    BUn+1 G

    + BTPn

    +AUn+1 = F

    L =q

    t BUn+1

    G

    Pn+1 = Pn + rM1pl

    BUn+1 G

    +

    MUn+1 = MU

    n+1 +t

    qBT

    Preconditioning the prediction step by one iteration ofaugmented Lagrangian and consistent scalar projection r = 0 : incremental projection method

    Scalar p enalty-projection methods Penalty-projection methods 12

    Penalty projection methods

  • 7/30/2019 scalar and vector penalty projection methods

    18/43

    Penalty-projection methods

    Algebraic formulation for the Navier-Stokes system

    q

    tMU

    n+1 + BT (rM1pl

    BUn+1 G

    + Pn)

    Pn+1

    +AUn+1 = F

    L = qt

    BUn+1 G

    Pn+1 = Pn + rM1pl

    BUn+1 G

    Pn+1+

    MUn+1 = MUn+1 + tq

    BT

    Preconditioning the prediction step by one iteration ofaugmented Lagrangian and consistent scalar projection

    r = 0 : incremental projection method

    Scalar p enalty-projection methods Penalty-projection methods 12

    Penalty-projection methods

  • 7/30/2019 scalar and vector penalty projection methods

    19/43

    Penalty-projection methods

    Direct implementation with the algebraic formulation or not...Why ?

    Continuous term corresponding to the penalization Tp = r

    u vBut Tp does not generally vanish for a velocity field with zero discrete

    divergence !It depends on the spatial discretization...

    Hence

    Introduction of an additional error due to the space discretization

    Error which increases with the augmentation parameter r > 0

    Scalar p enalty-projection methods Penalty-projection methods 13

    Numerical experiments

  • 7/30/2019 scalar and vector penalty projection methods

    20/43

    Numerical experiments

    Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.Velocity error (discrete L2(0, T; L2()d) norm) versus time step t

    1e-4 1e-3 1e-2 1e-1Pas de temps

    1e-7

    1e-6

    1e-5

    1e-4

    1e-3

    1e-2

    normeL2erreurvitesse

    semi implicite

    incrementale

    Time convergence in O(t2)Stagnation threshold = space discretization error in O(h

    2

    )Scalar p enalty-projection methods Numerical experiments 14

    Numerical experiments

  • 7/30/2019 scalar and vector penalty projection methods

    21/43

    Numerical experiments

    Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.Velocity error (discrete L2(0, T; L2()d) norm) versus time step t

    1e-4 1e-3 1e-2 1e-1Pas de temps

    1e-7

    1e-6

    1e-5

    1e-4

    1e-3

    1e-2

    normeL2erreurvitesse

    semi implicite

    incrementaler=1

    Time convergence in O(t2)Stagnation threshold = space discretization error in O(h

    2

    )Scalar p enalty-projection methods Numerical experiments 14

    Numerical experiments

  • 7/30/2019 scalar and vector penalty projection methods

    22/43

    Numerical experiments

    Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.Velocity error (discrete L2(0, T; L2()d) norm) versus time step t

    1e-4 1e-3 1e-2 1e-1Pas de temps

    1e-7

    1e-6

    1e-5

    1e-4

    1e-3

    1e-2

    normeL2erreurvitesse

    semi implicite

    incrementaler=1r=10

    Time convergence in O(t2)Stagnation threshold = space discretization error in O(h

    2

    )Scalar p enalty-projection methods Numerical experiments 14

    Numerical experiments

  • 7/30/2019 scalar and vector penalty projection methods

    23/43

    Numerical experiments

    Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.Velocity error (discrete L2(0, T; L2()d) norm) versus time step t

    1e-4 1e-3 1e-2 1e-1Pas de temps

    1e-7

    1e-6

    1e-5

    1e-4

    1e-3

    1e-2

    normeL2erreurvitesse

    semi implicite

    incrementaler=1r=10r=100

    Time convergence in O(t2)Stagnation threshold = space discretization error in O(h

    2

    )Scalar p enalty-projection methods Numerical experiments 14

    Numerical experiments

  • 7/30/2019 scalar and vector penalty projection methods

    24/43

    Numerical experiments

    Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.Pressure error (discrete L2(0, T; L2()) norm) versus time step t

    1e-4 1e-3 1e-2 1e-1Pas de temps

    1e-6

    1e-5

    1e-4

    1e-3

    1e-2

    1e-1

    normeL2erreu

    rpression

    semi implicite

    incrementaler=1r=10r=100

    Stagnation threshold = space discretization error in

    O(h2)

    Scalar p enalty-projection methods Numerical experiments 15

    Numerical experiments

  • 7/30/2019 scalar and vector penalty projection methods

    25/43

    p

    Artificial pressure boundary layer : Stokes with Dirichlet B.C.on a disk

    incremental projectionph pL() = 1.5 102

    penalty-projection r=1ph pL() = 2.8 103

    Scalar p enalty-projection methods Numerical experiments 16

    Numerical experiments

  • 7/30/2019 scalar and vector penalty projection methods

    26/43

    p

    Artificial pressure boundary layer : Stokes with Dirichlet B.C.on a disk

    penalty-projection r=100ph pL() = 2.8 104

    implicit schemeph pL() = 1.8 104

    Scalar p enalty-projection methods Numerical experiments 16

    Numerical experiments

  • 7/30/2019 scalar and vector penalty projection methods

    27/43

    p

    Stokes with open boundary condition at a channel outflowVelocity error (discrete L2(0, T; L2()d) norm) versus time step t

    1e-4 1e-3 1e-2 1e-1Pas de temps

    1e-9

    1e-8

    1e-7

    1e-6

    1e-5

    1e-4

    1e-3

    1e-2

    1e-1

    NormeL2erre

    urvitesse

    semi implicite

    incrementaler=1r=10r=100r=1000r=10000

    Time convergence in O(t2)Stagnation threshold = space discretization error in O(h

    2

    )Scalar p enalty-projection methods Numerical experiments 17

    Numerical experiments

  • 7/30/2019 scalar and vector penalty projection methods

    28/43

    Stokes with open boundary condition at a channel outflowPressure error (discrete L2(0, T; L2()) norm) versus time step t

    1e-4 1e-3 1e-2 1e-1Pas de temps

    1e-6

    1e-5

    1e-4

    1e-3

    1e-2

    1e-1

    1e+0

    normeL2erreu

    rpression

    semi implicite

    incrementale

    r=1r=10r=100r=1000r=10000

    Stagnation threshold = space discretization error in O(h2)Scalar p enalty-projection methods Numerical experiments 18

    Numerical experiments

  • 7/30/2019 scalar and vector penalty projection methods

    29/43

    Navier-Stokes open flow around a circular cylinder

    Taylor-Hood P2-P1 finite elementsScheme 2nd order in timeReynolds number : Re = 100 ( = 0.01)Unstructured mesh with 4200 elements

    Complete study of this configuration : see Khadra et al., IJNMF2000

    with FVM (MAC mesh) and iterative augmented Lagrangian algorithm.

    Splitting error varying as O( 1r

    )

    Scalar p enalty-projection methods Numerical experiments 19

    Numerical experiments

  • 7/30/2019 scalar and vector penalty projection methods

    30/43

    Navier-Stokes open flow around a circular cylinder

    1e+0 1e+1 1e+2 1e+3paramtre de pnalisation

    1e-5

    1e-4

    1e-3

    1e-2

    1e-1

    N

    ormeL2erreur

    defractionneme

    nt

    Pas de temps = 0.05 s

    Pas de temps = 0.02 s

    Pas de temps =0.01 s

    Pas de temps = 0.005 s

    Splitting error varying as O( 1r

    )

    Scalar p enalty-projection methods Numerical experiments 19

    Theoretical analysis for Stokes-Dirichlet problem

  • 7/30/2019 scalar and vector penalty projection methods

    31/43

    Unsteady homogeneous model problem with = 1 connected and bounded open domain of IRd, Lipschitz boundary ,T > 0

    u

    t u + p = f dans ]0, T[

    u = 0 dans

    ]0, T[

    u = 0 sur ]0, T[u(x, 0) = u0(x) dans

    u denotes the velocity vector, p the pressure field.

    For f L2(0, T; L2()d) and u0 V given, there exists a uniquesolution u L(0, T; H) L2(0, T; V) and p L2(0, T; L20())See [Temam, 1979 - Girault and Raviart, 1986]

    Scalar p enalty-projection methods Analysis of the scalar penalty-projection method 20

    Theoretical analysis for Stokes-Dirichlet problem

  • 7/30/2019 scalar and vector penalty projection methods

    32/43

    [Shen, 1992-95 - Guermond, 1996] : standard projection(pressure-correction form)[Guermond and Shen, 2003] : standard projection (velocity-correction)

    [Guermond and Shen, 2004] : rotational variant of [Timmermans et al.,1996]

    [Angot, Jobelin, Latch, Preprint 2006] : penalty-projection

    Analysis for small values of the penalty parameter r

    Theorem (Splitting error - fully discrete case in time and space)Energy estimates of splitting errors compared to Euler implicit scheme

    there exists c = c(, T , f , u0, h) > 0 such that : for 1 n N,

    nk=0

    t ||ek

    ||20

    12

    + n

    k=0t ||e

    k

    ||20

    12

    c min(t2

    ,

    t3/2

    r1/2 )

    n

    k=0

    t ||ek||20 12

    +

    n

    k=0

    t ||k||2012

    c max(1, 1r1/2

    )t3/2.

    Scalar p enalty-projection methods Analysis of the scalar penalty-projection method 21

    Theoretical analysis for Stokes-Dirichlet problem

  • 7/30/2019 scalar and vector penalty projection methods

    33/43

    Analysis for large values of the penalty parameter r

    Theorem (Splitting error - fully discrete case in time and space)

    Energy estimates of splitting errors compared to Euler implicit scheme

    there exists c = c(, T , f , u0, h) > 0 such that : for 1 n N,

    ||en||0 + ||en||0 + n

    k=0 t ||ek||20

    12

    c t12

    r

    n

    k=0

    t ||ek||2012

    +

    n

    k=0

    t ||ek||20 12

    c tr

    ||n||h c1

    r1/2n

    k=0

    t ||k||20 12

    c 1r

    .

    Scalar p enalty-projection methods Analysis of the scalar penalty-projection method 22

    Theoretical analysis for Stokes-Dirichlet problem

  • 7/30/2019 scalar and vector penalty projection methods

    34/43

    n

    k=0t ||ek||20

    12

    : velocity splitting error en = un un

    discrete L2(0, T; L2()d) norm versus time step t

    1e-4 1e-3 1e-2 1e-1

    Pas de temps

    1e-8

    1e-7

    1e-6

    1e-5

    1e-4

    1e-3

    1e-2

    1e-1

    r = 0

    r = 1

    r = 5

    r = 10

    r = 50r = 100

    r = 500

    r = 1000

    Scalar p enalty-projection methods Analysis of the scalar penalty-projection method 23

    Theoretical analysis for Stokes-Dirichlet problem

  • 7/30/2019 scalar and vector penalty projection methods

    35/43

    n

    k=0

    t ||ek||20 12

    : velocity splitting error en = un un

    discrete L2

    (0, T; L2

    ()d

    ) norm versus penalty parameter r > 0

    1e+0 1e+1 1e+2 1e+3Paramtre de pnalisation

    1e-8

    1e-7

    1e-6

    1e-5

    1e-4

    1e-3

    1e-2

    Pas de temps: 0.1

    Pas de temps: 0.05

    Pas de temps: 0.025

    Pas de temps: 0.0125

    Pas de temsp: 0.00625

    Pas de temps: 3.125e-3

    Pas de temps: 1.563e-3

    Pas de temps: 7.813e-4

    Pas de temps: 3.906e-4

    Scalar p enalty-projection methods Analysis of the scalar penalty-projection method 23

    Theoretical analysis for Stokes-Dirichlet problem

  • 7/30/2019 scalar and vector penalty projection methods

    36/43

    n

    k=0

    t ||k||20 12

    : pressure splitting error n = pn pn

    discrete L2

    (0, T; L2

    ()) norm versus penalty parameter r > 0

    1e+0 1e+1 1e+2 1e+3Paramtre de pnalisation

    1e-7

    1e-6

    1e-5

    1e-4

    1e-3

    1e-2

    1e-1

    Pas de temps: 0.1

    Pas de temps: 0.05

    Pas de temps: 0.025

    Pas de temps: 0.0125

    Pas de temps: 0.00625

    Pas de temps: 3.125e-3

    Pas de temps: 1.563e-3

    Pas de temps: 7.813e-4Pas de temps: 3.906e-4

    Scalar p enalty-projection methods Analysis of the scalar penalty-projection method 23

    Outlines

  • 7/30/2019 scalar and vector penalty projection methods

    37/43

    1 Projection methods for incompressible flows

    2 Scalar penalty-projection methods

    3

    Vector penalty-projection methodsNew class of vector penalty-projection methodsAnalysis of the vector penalty-projection method for the Stokes problem

    4 Conclusion and perspectives

    Vector penalty-projection methods 24

    New class of vector penalty-projection methods

  • 7/30/2019 scalar and vector penalty projection methods

    38/43

    Work in progress with Caltagirone and FabrieA two-parameter family with vector projection step

    Penalty-prediction step : augmentation parameter r 0n+1

    Dun+1

    t+ (u,n+1 )un+1

    (un+1)

    r

    un+1

    + pn = fn+1

    un+1 = un+1D on D, and

    pnn + (un+1)

    n = fn+1N on N

    pn+1 = pnr un+1Vector projection step : penalty parameter 0 < t

    n+1

    q

    tun+1 + (u,n+1 )un+1

    (un+1)

    un+1 = un+1un+1 = 0 on D, and ( pn+1 pn)n + (un+1) n = 0 on NCorrection step :

    un+1 = un+1 + un+1, and pn+1 = pn+1 1

    un+1

    Vector penalty-projection methods New class of vector p enalty-projection methods 25

    New class of vector penalty-projection methods

  • 7/30/2019 scalar and vector penalty projection methods

    39/43

    Why does it work well ?

    Very nice conditioning properties of the vector penalty-correction

    step as 0 since the right-hand side becomes more and moreadapted to the left-hand side operator :only a few iterations (2 or 3) of MILU0-BiCGStab solver whateverthe mesh step h !

    Original boundary conditions not spoiled through a scalar projection

    stepPenalty-correction step quasi-independent on the density or viscositywhen 0 for non-homogeneous incompressible flows

    It is only an approximate projection scheme since

    un+1

    = 0

    But both the velocity divergence and the splitting error can bemade negligible with respect to the time and spacediscretization errors when 0cheap method for small values of r < 1 and 1015 (zero machine)

    Vector penalty-projection methods New class of vector p enalty-projection methods 26

    Analysis for Stokes-Dirichlet problem with r = 0

  • 7/30/2019 scalar and vector penalty projection methods

    40/43

    Error estimates of the one-parameter family : r = 0 and0 < tTheorem (Splitting error in the semi-discrete case)

    Energy estimates of splitting errors w.r. to Euler implicit scheme

    there exists C = C(, T , f , u0) > 0 such that : for 1 n N,

    ||en

    ||0 +

    n

    k=0

    t||

    ek

    ||2

    0 12

    C

    t

    n

    k=0

    t ||ek||2012

    C t

    ||n||0 +

    nk=0

    t ||k||2012

    C

    || un||0 = || en||0 C max1,

    t t.Vector penalty-projection methods Analysis of the vector p enalty-projection method 27

    Outlines

  • 7/30/2019 scalar and vector penalty projection methods

    41/43

    1 Projection methods for incompressible flows

    2 Scalar penalty-projection methods

    3 Vector penalty-projection methods

    4 Conclusion and perspectives

    Conclusion and perspectives 28

    Conclusion

  • 7/30/2019 scalar and vector penalty projection methods

    42/43

    Scalar penality-projection methods for incompressible flows

    Reduce the splitting error up to make it negligible

    Suppress pressure boundary layers for moderate values of r > 0

    Optimal convergence for r > 0 with open boundary conditions

    Generalization to dilatable and low Mach number flows :see [Jobelin et al., Preprint 2006]

    Require efficient preconditioning for large values of r multi-level preconditioner for FVM with MAC mesh :see [Kortas, PhD 1997].

    Conclusion and perspectives 29

    Perspectives

  • 7/30/2019 scalar and vector penalty projection methods

    43/43

    Vector penality-projection methods for incompressible andnon-homogeneous flows

    Small values of r < 1 are sufficient to get a good pressure field

    Approximate projection with a vector correction step all the cheaperthan 0Same convergence properties as beforeVector correction step all the less dependent on density or viscositythan 0Other numerical experiments (in progress)

    Error estimates : two-parameter class, Navier-Stokes, outflow B.C.,variable density flows...

    Conclusion and perspectives 30