SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics...

54
Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation Workshop Results using sBOOM 5 th January, 2020, Orlando, FL, USA AIAA SciTech 2020

Transcript of SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics...

Page 1: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

Sriram K. Rallabhandi

Aeronautics Systems Analysis Branch

NASA Langley Research Center

Hampton, VA 23681

SBPW3: Propagation Workshop Results using sBOOM

5th January, 2020, Orlando, FL, USAAIAA SciTech 2020

Page 2: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 2

• Summary of Cases Analyzed • Boom Propagation Code Details • Cases

• Ground Signatures • Loudness metrics

• Highlights • Summary

Outline

5 January 2020

Page 3: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 3

Summary of Cases Analyzed

5 January 2020

• NASA trimmed low-boom concept - C25P

– Required runs with measured atmospheric profiles

– Lateral cut-off analysis – Optional focus boom simulations

Page 4: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 3

Summary of Cases Analyzed

5 January 2020

• NASA trimmed low-boom concept - C25P

– Required runs with measured atmospheric profiles

– Lateral cut-off analysis – Optional focus boom simulations

• NASA-Lockheed Low-Boom Flight Demonstrator (LBFD): A variant of X-59 QueSST

• Required runs with measured and standard atmospheres

Page 5: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 4

sBOOM • Propagation based on lossy Quasi-1D Burgers equation

Propagation Prediction Code: sBOOM

5 January 2020

𝜕𝑝𝜕𝜎

=𝜕𝐵𝜕𝜎

𝐵𝑝 +

𝛽Ω2𝜌0𝑐3

0 ( 𝑐0

𝑣𝑔 ) 𝜕𝑝2

𝜕𝜏+

𝛿Ω2

2𝜌0𝑐30 ( 𝑐0

𝑣𝑔 ) 𝜕2𝑝𝜕𝜏2

+ ∑𝜈

𝑚𝜈

2𝑐0

𝑡𝜈Ω2

1 + 𝑡𝜈Ω𝜕𝜕𝜏

( 𝑐0

𝑣𝑔 ) 𝜕2𝑝𝜕𝜏2

𝐵 =𝜌𝑐𝑆0𝐷2

0

𝜌0𝑐0𝑆𝐷2

𝑐𝑣𝑔0

𝐷0𝑐0𝑣𝑔

𝐷

 ,  𝑣𝑔 = 𝑐 . �̄� + �̄� , D = 1 +�̄� . �̄�

𝑐,  Ω =

1𝐷

𝑑𝑥𝑑𝑡

= �̄� + 𝑐2𝑞𝐷𝑑𝑞𝑑𝑡

= − [ ∇𝑐𝑐𝐷

+  3

∑𝑖=1

𝑞𝑖 ∇𝑤𝑖] 𝑞 =�̄�

𝑐 + �̄� . �̄�

• Ray Path Equations:

Page 6: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 4

sBOOM • Propagation based on lossy Quasi-1D Burgers equation

Propagation Prediction Code: sBOOM

sBOOM is under active development. Contact [email protected] to get a copy of sBOOM

• Features and capabilities • Under-track, off-track signatures with

winds • Acceleration, turn-rates, climb-rates,

maneuvers and focus predictions by interfacing with Lossy Nonlinear Tricomi Equation (LNTE)

• Design friendly sensitivities and adjoint error estimates

5 January 2020

𝜕𝑝𝜕𝜎

=𝜕𝐵𝜕𝜎

𝐵𝑝 +

𝛽Ω2𝜌0𝑐3

0 ( 𝑐0

𝑣𝑔 ) 𝜕𝑝2

𝜕𝜏+

𝛿Ω2

2𝜌0𝑐30 ( 𝑐0

𝑣𝑔 ) 𝜕2𝑝𝜕𝜏2

+ ∑𝜈

𝑚𝜈

2𝑐0

𝑡𝜈Ω2

1 + 𝑡𝜈Ω𝜕𝜕𝜏

( 𝑐0

𝑣𝑔 ) 𝜕2𝑝𝜕𝜏2

𝐵 =𝜌𝑐𝑆0𝐷2

0

𝜌0𝑐0𝑆𝐷2

𝑐𝑣𝑔0

𝐷0𝑐0𝑣𝑔

𝐷

 ,  𝑣𝑔 = 𝑐 . �̄� + �̄� , D = 1 +�̄� . �̄�

𝑐,  Ω =

1𝐷

𝑑𝑥𝑑𝑡

= �̄� + 𝑐2𝑞𝐷𝑑𝑞𝑑𝑡

= − [ ∇𝑐𝑐𝐷

+  3

∑𝑖=1

𝑞𝑖 ∇𝑤𝑖] 𝑞 =�̄�

𝑐 + �̄� . �̄�

• Ray Path Equations:

Page 7: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 5

Run Parameters

5 January 2020

• All azimuthal angles run in parallel • Computing platform:

• OSX running macOS Mojave (10.14.6) • CPU: 2.5 GHz i7 • RAM: 16GB, 1600 MHz DDR3

• NASA Langley mid-range computing facility • Single node of SGI ICE Altix Cluster

• No pre-processing of near-field data • Computational run times

• Typical run times for edge-to-edge carpet predictions • ~30 seconds wall-time @ sampling frequency = 100 KHz (16 azimuths) • ~130 seconds wall-time @ sampling frequency = 200 KHz (16 azimuths)

• Sampling frequency determined by adjoint-error correction approach by continuously embedding uniformly refined grid

• 100 KHz sufficient to resolve loudness BSEL to within 0.1 dB • 400 KHz sufficient to resolve loudness BSEL to within 0.02 dB

Page 8: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 6

Case1: Ground Signatures

5 January 2020

Page 9: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 7

Case1: Loudness Metrics

5 January 2020

Page 10: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 8

Case2: Ground Signatures

5 January 2020

Measured Atmosphere

Page 11: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 9

Case2: Ground Signatures

5 January 2020

Standard Atmosphere

Page 12: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 9

Case2: Ground Signatures

5 January 2020

Standard Atmosphere

For the measured atmosphere, carpet widths are larger by:

• 28.17 nm on +ve side • 14.03 nm on –ve side

Page 13: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 10

Case2: Loudness Metrics

5 January 2020

Page 14: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 11

• = (1.4121, 0.015681, 0.000359) • Diffraction boundary layer thickness (𝜹) = 682.45m

(𝑀, �̇�, �̈�)Case1: Optional Focus Analysis

5 January 2020

Flight Altitude

𝜹-tangent ray

caustic-tangent ray

(𝑀, �̇�, �̈�)(𝑀𝑛, �̇�𝑛, �̈�𝑛)

caustic

Page 15: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 11

• = (1.4121, 0.015681, 0.000359) • Diffraction boundary layer thickness (𝜹) = 682.45m

(𝑀, �̇�, �̈�)Case1: Optional Focus Analysis

5 January 2020

Flight Altitude

𝜹-tangent ray

caustic-tangent ray

(𝑀, �̇�, �̈�)(𝑀𝑛, �̇�𝑛, �̈�𝑛)

Near-field (Given)

caustic

Page 16: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 11

• = (1.4121, 0.015681, 0.000359) • Diffraction boundary layer thickness (𝜹) = 682.45m

(𝑀, �̇�, �̈�)Case1: Optional Focus Analysis

5 January 2020

Flight Altitude

𝜹-tangent ray

caustic-tangent ray

(𝑀, �̇�, �̈�)(𝑀𝑛, �̇�𝑛, �̈�𝑛)

Near-field (Given)

𝜹

caustic

Page 17: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 11

• = (1.4121, 0.015681, 0.000359) • Diffraction boundary layer thickness (𝜹) = 682.45m

(𝑀, �̇�, �̈�)Case1: Optional Focus Analysis

5 January 2020

Flight Altitude

𝜹-tangent ray

caustic-tangent ray

(𝑀, �̇�, �̈�)(𝑀𝑛, �̇�𝑛, �̈�𝑛)

Near-field (Given)

𝜹

caustic

Page 18: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 11

• = (1.4121, 0.015681, 0.000359) • Diffraction boundary layer thickness (𝜹) = 682.45m

(𝑀, �̇�, �̈�)Case1: Optional Focus Analysis

5 January 2020

Flight Altitude

𝜹-tangent ray

caustic-tangent ray

(𝑀, �̇�, �̈�)(𝑀𝑛, �̇�𝑛, �̈�𝑛)

Computational domain of Lossy NTE

Near-field (Given)

𝜹

caustic

Page 19: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 12

Case1: Optional Focus Analysis

5 January 2020

𝜕2𝑃

𝜕�̄�2 − �̄�𝜕2𝑃𝜕𝜏2

+𝜇2

𝜕2𝑃 2

𝜕𝜏2+ [ 𝛼

𝜀2+ ∑

𝜈

𝜃𝜈 /𝜀2

1 + 𝜏𝜈𝜕 /𝜕𝜏 ] 𝜕3𝑃𝜕𝜏3

= 0

𝜇 = 2𝛽𝑃𝑎𝑐

𝜌0𝑐20 ( 𝑅𝑡𝑜𝑡𝑓𝑎𝑐

2𝑐0 )2/3

𝜀 = ( 2𝑐0

𝑅𝑡𝑜𝑡𝑓𝑎𝑐 )2/3

𝑅𝑡𝑜𝑡 ≈  𝑅𝑐𝑎𝑢 =2𝛿3𝑓2

𝑎𝑐

𝑐20

Lossy NTE Model Equation as developed by Joe Salamone for the NASA Scamp Project

Page 20: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 12

Case1: Optional Focus Analysis

5 January 2020

𝜕2𝑃

𝜕�̄�2 − �̄�𝜕2𝑃𝜕𝜏2

+𝜇2

𝜕2𝑃 2

𝜕𝜏2+ [ 𝛼

𝜀2+ ∑

𝜈

𝜃𝜈 /𝜀2

1 + 𝜏𝜈𝜕 /𝜕𝜏 ] 𝜕3𝑃𝜕𝜏3

= 0

𝜇 = 2𝛽𝑃𝑎𝑐

𝜌0𝑐20 ( 𝑅𝑡𝑜𝑡𝑓𝑎𝑐

2𝑐0 )2/3

𝜀 = ( 2𝑐0

𝑅𝑡𝑜𝑡𝑓𝑎𝑐 )2/3

𝑅𝑡𝑜𝑡 ≈  𝑅𝑐𝑎𝑢 =2𝛿3𝑓2

𝑎𝑐

𝑐20

Lossy NTE Model Equation as developed by Joe Salamone for the NASA Scamp Project

Incoming waveform

𝑃𝑎𝑐 = 50.05 Pa𝑓𝑎𝑐 = 6.32 Hz 

Page 21: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 12

Case1: Optional Focus Analysis

5 January 2020

𝜕2𝑃

𝜕�̄�2 − �̄�𝜕2𝑃𝜕𝜏2

+𝜇2

𝜕2𝑃 2

𝜕𝜏2+ [ 𝛼

𝜀2+ ∑

𝜈

𝜃𝜈 /𝜀2

1 + 𝜏𝜈𝜕 /𝜕𝜏 ] 𝜕3𝑃𝜕𝜏3

= 0

𝜇 = 2𝛽𝑃𝑎𝑐

𝜌0𝑐20 ( 𝑅𝑡𝑜𝑡𝑓𝑎𝑐

2𝑐0 )2/3

𝜀 = ( 2𝑐0

𝑅𝑡𝑜𝑡𝑓𝑎𝑐 )2/3

𝑅𝑡𝑜𝑡 ≈  𝑅𝑐𝑎𝑢 =2𝛿3𝑓2

𝑎𝑐

𝑐20

Lossy NTE Model Equation as developed by Joe Salamone for the NASA Scamp Project

Incoming waveform

𝑃𝑎𝑐 = 50.05 Pa𝑓𝑎𝑐 = 6.32 Hz 

Page 22: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 12

Case1: Optional Focus Analysis

5 January 2020

𝜕2𝑃

𝜕�̄�2 − �̄�𝜕2𝑃𝜕𝜏2

+𝜇2

𝜕2𝑃 2

𝜕𝜏2+ [ 𝛼

𝜀2+ ∑

𝜈

𝜃𝜈 /𝜀2

1 + 𝜏𝜈𝜕 /𝜕𝜏 ] 𝜕3𝑃𝜕𝜏3

= 0

𝜇 = 2𝛽𝑃𝑎𝑐

𝜌0𝑐20 ( 𝑅𝑡𝑜𝑡𝑓𝑎𝑐

2𝑐0 )2/3

𝜀 = ( 2𝑐0

𝑅𝑡𝑜𝑡𝑓𝑎𝑐 )2/3

𝑅𝑡𝑜𝑡 ≈  𝑅𝑐𝑎𝑢 =2𝛿3𝑓2

𝑎𝑐

𝑐20

Lossy NTE Model Equation as developed by Joe Salamone for the NASA Scamp Project

Incoming waveform

𝑃𝑎𝑐 = 50.05 Pa𝑓𝑎𝑐 = 6.32 Hz 

Page 23: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 12

Case1: Optional Focus Analysis

5 January 2020

𝜕2𝑃

𝜕�̄�2 − �̄�𝜕2𝑃𝜕𝜏2

+𝜇2

𝜕2𝑃 2

𝜕𝜏2+ [ 𝛼

𝜀2+ ∑

𝜈

𝜃𝜈 /𝜀2

1 + 𝜏𝜈𝜕 /𝜕𝜏 ] 𝜕3𝑃𝜕𝜏3

= 0

𝜇 = 2𝛽𝑃𝑎𝑐

𝜌0𝑐20 ( 𝑅𝑡𝑜𝑡𝑓𝑎𝑐

2𝑐0 )2/3

𝜀 = ( 2𝑐0

𝑅𝑡𝑜𝑡𝑓𝑎𝑐 )2/3

𝑅𝑡𝑜𝑡 ≈  𝑅𝑐𝑎𝑢 =2𝛿3𝑓2

𝑎𝑐

𝑐20

Lossy NTE Model Equation as developed by Joe Salamone for the NASA Scamp Project

Incoming waveform

𝑃𝑎𝑐 = 50.05 Pa𝑓𝑎𝑐 = 6.32 Hz 

Zbar=0.0: PL = 97.8 dB

Zbar=0.05: PL = 106.8 dB

Zbar=1.0: PL = 101.0 dB

Page 24: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 13

Case1: Optional Focus Analysis

5 January 2020

Page 25: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 14

• Lossy vs Lossless propagation • Signature Evolution • Modeling Non-linearity • Loudness build-ups • Loudness Gradients

Highlights

5 January 2020

Page 26: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 15

Highlights: Lossless vs Lossy

5 January 2020

Phi = 00

Page 27: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 15

Highlights: Lossless vs Lossy

5 January 2020

Phi = 00Phi = -400

Page 28: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 15

Highlights: Lossless vs Lossy

5 January 2020

Phi = 00Phi = -400Phi = 400

Page 29: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 15

Highlights: Lossless vs Lossy

5 January 2020

Phi = 00Phi = -400Phi = 400

Losses account for significant (~10-12 dB) reduction in loudness metrics

Page 30: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 16

Highlights: Signature Evolution

5 January 2020

Scaling factor: 1𝑃

Vertical Distance from Cruise AltitudeAircraft Length

Under-track

Page 31: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 16

Highlights: Signature Evolution

5 January 2020

Scaling factor: 1𝑃

Vertical Distance from Cruise AltitudeAircraft Length

Under-track

Page 32: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 16

Highlights: Signature Evolution

5 January 2020

Scaling factor: 1𝑃

Vertical Distance from Cruise AltitudeAircraft Length

Under-track

Page 33: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 16

Highlights: Signature Evolution

5 January 2020

Scaling factor: 1𝑃

Vertical Distance from Cruise AltitudeAircraft Length

Under-track

Near-field character maintained over long

distances

Page 34: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 17

Highlights: Signature Evolution

5 January 2020

Scaling factor: 1𝑃

Vertical Distance from Cruise AltitudeAircraft Length

Phi = 400

Page 35: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 17

Highlights: Signature Evolution

5 January 2020

Scaling factor: 1𝑃

Vertical Distance from Cruise AltitudeAircraft Length

Phi = 400

Page 36: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 17

Highlights: Signature Evolution

5 January 2020

Scaling factor: 1𝑃

Vertical Distance from Cruise AltitudeAircraft Length

Phi = 400

Page 37: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 18

Highlights: Modeling Non-linearity

5 January 2020

Acoustic Potential formulation vs Poisson Implementation

Page 38: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 18

Highlights: Modeling Non-linearity

5 January 2020

Acoustic Potential formulation vs Poisson Implementation

“Numerical Simulation of Shock Wave Focusing at Fold Caustics, with application to Sonic Boom”, Marchiano, R., Coulouvrat, F., Grenon, R., JASA, 114, 1758 (2003), doI: 10.1121/1.1610459

Page 39: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 18

Highlights: Modeling Non-linearity

5 January 2020

Acoustic Potential formulation vs Poisson Implementation

“Numerical Simulation of Shock Wave Focusing at Fold Caustics, with application to Sonic Boom”, Marchiano, R., Coulouvrat, F., Grenon, R., JASA, 114, 1758 (2003), doI: 10.1121/1.1610459

Standard Atmosphere

Page 40: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 18

Highlights: Modeling Non-linearity

5 January 2020

Acoustic Potential formulation vs Poisson Implementation

“Numerical Simulation of Shock Wave Focusing at Fold Caustics, with application to Sonic Boom”, Marchiano, R., Coulouvrat, F., Grenon, R., JASA, 114, 1758 (2003), doI: 10.1121/1.1610459

Standard Atmosphere

Page 41: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 18

Highlights: Modeling Non-linearity

5 January 2020

Acoustic Potential formulation vs Poisson Implementation

“Numerical Simulation of Shock Wave Focusing at Fold Caustics, with application to Sonic Boom”, Marchiano, R., Coulouvrat, F., Grenon, R., JASA, 114, 1758 (2003), doI: 10.1121/1.1610459

Standard Atmosphere

Page 42: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 18

Highlights: Modeling Non-linearity

5 January 2020

Acoustic Potential formulation vs Poisson Implementation

“Numerical Simulation of Shock Wave Focusing at Fold Caustics, with application to Sonic Boom”, Marchiano, R., Coulouvrat, F., Grenon, R., JASA, 114, 1758 (2003), doI: 10.1121/1.1610459

Standard Atmosphere

As loudness levels get lower, significant impact of numerical implementation under windy conditions

Page 43: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 19

Highlights: Modeling Wind

5 January 2020

• Based on provided data, there is a large tailwind at the cruise altitude • Tailwind accounts for almost 10% of the speed of sound

Page 44: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 19

Highlights: Modeling Wind

5 January 2020

• Based on provided data, there is a large tailwind at the cruise altitude • Tailwind accounts for almost 10% of the speed of sound

Significant potential for input error

Page 45: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 20

Highlights: Loudness Build-up

5 January 2020

Page 46: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 20

Highlights: Loudness Build-up

5 January 2020

Loudness build-up plots show dominant portion to go after for OML shaping

Page 47: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 21

Highlights: Loudness Gradients

5 January 2020

Page 48: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 21

Highlights: Loudness Gradients

5 January 2020

Page 49: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 21

Highlights: Loudness Gradients

5 January 2020

Page 50: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 21

Highlights: Loudness Gradients

5 January 2020

Adjoint gradients provide a snapshot of what portions of the

near-field are important to minimize boom carpet loudness

Page 51: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 22

Summary• Near-field waveforms propagated using sBOOM • Lateral cut-off azimuths using standard atmospheres are usually quite different

from measured/realistic atmospheres • Lateral cut-off rays in realistic atmospheres can travel far • Could have low grazing angles

• Focus predictions show much higher loudness values than cruise booms (as expected)

• Different implementation of the underlying mechanisms seem to change the underlying characteristics of the ground signatures

• Poisson vs. Acoustic Potential solutions • Wind considerations • As loudness levels get lower, there is potential for numerical noise to

increase • Loudness build-up plots can localize the loudness dominating portions of the

signatures • Loudness gradients provide a snapshot to allow optimization of the OML

5 January 2020

Page 52: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 22

Summary• Near-field waveforms propagated using sBOOM • Lateral cut-off azimuths using standard atmospheres are usually quite different

from measured/realistic atmospheres • Lateral cut-off rays in realistic atmospheres can travel far • Could have low grazing angles

• Focus predictions show much higher loudness values than cruise booms (as expected)

• Different implementation of the underlying mechanisms seem to change the underlying characteristics of the ground signatures

• Poisson vs. Acoustic Potential solutions • Wind considerations • As loudness levels get lower, there is potential for numerical noise to

increase • Loudness build-up plots can localize the loudness dominating portions of the

signatures • Loudness gradients provide a snapshot to allow optimization of the OML

5 January 2020

Page 53: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 23

• NASA Commercial Supersonic Technology (CST) Project • Boom prediction workshop organizing committee

Acknowledgments

5 January 2020

Page 54: SBPW3 Propagation Workshop sBOOM Updated · 2020-02-05 · Sriram K. Rallabhandi Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681 SBPW3: Propagation

SBPW3: sBOOM results 5 January 2020