Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D...

101
Finite Size Scaling and Stability of Atomic and Molecular Systems in Superintense laser fields Sabre Kais Department of Chemistry Birck Nanotechnology Center Purdue University West Lafayette, IN 47907

Transcript of Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D...

Page 1: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Finite Size Scaling and Stability of

Atomic and Molecular Systems

in Superintense laser fields

Sabre Kais

Department of Chemistry

Birck Nanotechnology Center

Purdue University

West Lafayette, IN 47907

Page 2: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Finite Size Scaling and Quantum Criticality

(1) Introduction: Criticality and Finite Size Scaling

(2) Finite Size Scaling in Quantum Mechanics:

How it works

(3) Stability of Matter:

(a) Atoms

(b) Molecules

(c) Quantum Dots

(4) Stabilization in Superintense Laser Fields

(5) Future Work: Open Problems

Page 3: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Phase Transitions

Classical: Classical phase transitions are driven by thermal energy fluctuations

Like the melting of an ice cube:

Solid GasLiquid

P

T

SolidLiquid

Gas

CP

Quantum: Quantum phase transitions, at T=0, are driven by the Heisenberg uncertainty principle

Like the melting of a Wigner crystal: Two dimensional electron layer trapped in a quantum well

crystalWigner liquid Fermi

Page 4: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Quantum Phase Transitions

Transitions that take place at the absolute zero of temperature, T=0, where crossing the phase boundary means that the quantum ground state energy , of the system changes in some fundamental way.

This is accomplished by changing some parameter in the Hamiltonian of the system .

We shall identify any point of non-analyticity in the ground state energy , as a quantum phase transition.

)(0 E

)(0 H

C

Page 5: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Phase Transition

Free energy: f[K]=-kBT log[Z]

Coupling Constants: {K1, K2; KD}

As a function of [K], f[K] is analytic almost everywhere

Possible non-analyticities of f[K] are points (DS=0), lines (DS=1), planes (DS=2), …

Regions of analyticity of f[K] are called phases

Partition Function

Page 6: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Phase Transitions

First-order:

is discontinuous across a phase boundaryiKf

Continuous Phase Transition:

All are continuous across the phase boundary. But, second derivatives or higher derivatives are discontinuous or divergent

iKf

Page 7: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

G

T

T

GS

T

CTT

2

2

T

GTCV

T

T

T

First-order transition Continuous transition

Page 8: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Phase Transitions

P

TCT

CP

SolidLiquid

Gas

CP

T

CT

Liquid

Phase One

Gas

Phases Two

327.0

CTTCritical

ExponentOrder

Parameter

Page 9: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Critical Exponents

The critical exponents describe the nature of the singularities in various measurable

quantities at the critical point ],,,,,[

In the limit CTT

Heat Capacity:

Order Parameter:

Susceptibility:

Equation of State:

Correlation Length:

Scaling Laws:

Fisher:

Rushbrooke:

Widom:

Josephson:

)2(

22

)1(

2d

CTTC ~

CTTM ~

CTT~

1~ HM

CTT~

Page 10: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Universality Classes

Near a second-order phase transitionmacroscopic quantities show a universal

scaling behavior that is characterized by critical exponents that depend only on general properties of the

system, such as

its dimensionality, symmetry of the order parameter, or

range of interaction.

Accordingly, phase transitions are classified in terms of universality classes.

Page 11: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Critical Exponents],,,,,[

Exponent TH EXPT MFT ISING2 ISING3 HEIS3

0-0.14 0 0 0.12 -0.14

0.32-0.39 ½ 1/8 0.31 0.3

1.3-1.4 1 7/4 1.25 1.4

4-5 3 15 5

0.6-0.7 ½ 1 0.64 0.7

0.05 0 ¼ 0.05 0.04

2 2.00 ±0.01 2 2 2 2

1 0.93 ±0.08 1 1 1

1 1.02 ±0.05 1 1 1 1

1 4/d 1 1 1

2

)(

)2(

d )2(

TH. Theoretical values (from scaling laws); EXPT. Experimental values (from a variety of systems); MFT. Mean field theory; ISINGd. Ising model in d dimension; HEIS3. classical Heisenberg model. D=3

Kenneth G. Wilson (1982)

Page 12: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Renormalization Group

The Nobel Prize in Physics 1982

"for his theory for critical phenomena in connection with phase transitions"

Kenneth G. Wilson

Cornell University

Page 13: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Finite Size Scaling

In statistical mechanics, the finite size scaling method provides a

systematic way to extrapolate information obtained from a finite

system to the thermodynamic limit

Importance

The existence of phase transitions is associated with singularities

of the free energy. These singularities occur only in the

thermodynamic limit.

Yang and Lee Phys. Rev. 87, 404 (1952)

The Nobel Prize in

Physics 1957

Page 14: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Finite-size effects in Statistical Mechanics

Cv

TC T

N'''

N

N'

N''

Page 15: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

manifested are effects size-Finite1 y

behavior like-Bulk1 y

occur toexpected are effects Critical1~y

system. infinite theoflength n correlatio

theis where,)(N y variablescaled FSS

form in the offunction a asy singularit

a developsK quantity amical thermodyna If

cN

NKK ~)(lim

Page 16: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

lengthn correlatio for the particularin and

cN

N~)(lim)(

thatassumes ansatz FSS the

)()(~)( yfKK KN

bemust )( of

behavior theso ,analytical also is K N, finite

aFor function. analyticalan is )( where

K

N

K

yf

yf

yyfy

K0

~)(

Page 17: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

cat that followsIt

thereforeand

NNK cN ~)(

c

(q)(q)

at singular also is

)(K ),K( of derivativeqth theis )(K If

q

cq

q

q

KKd

d

~)()( )(

N

NK qc

qN

;

~)( )()(

Page 18: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

.length n correlatio the toFSSapply can We

. around

regular ishich function w scaling a is where K

c

as expressed becan

)(K and aroundexpansion Taylor a has

it ,in function analyticalan is )(K Since

Nc

N

NNNK cKN ),(~)( 1

Page 19: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

bygiven is N and N sizes of

systems finitefor equation (PR)ation renormaliz

ogicalphenomenol thedeveloped eNightingal

NNN cN ),(~)( 1

NN

NN

)()(

Page 20: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

as written becan point fixed at thethen

length,n correlatio theof definition theUsing

. true the toconverge tosizes infinite oflimit

in the }{ points of succession that the

expected isIt ).(at point fixed a has and

c

)(

NN,

NN,

N

NNN

NNNN

NNN

NNN

E

E

E

E

)(

)(

)(

)(),()(

0

),()(1

),()(0

),()(1

Page 21: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Statistical Mechanics

Classical Quantum

Phase Transitions

Free Energy F(Ki)=-KBT log(Z)

Phase Transitions

T 0Ground State ……: )(0 iE

Critical Phenomena

Correlation Length )(~ CTT

Critical Phenomena

Mass Gap of H

)(~1

CE

Finite Size ScalingThermodynamic Limit

N

Finite Size ScalingNumber of Basis Functions

M

Applications Applications

Page 22: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

In the present approach, the finite size corresponds not to the

spatial dimension, as in statistics, but to the number of elements

in a complete basis set used to expand the exact eigenfunction of a

given Hamiltonian.

Quantum Mechanics

M

n

nn

n

nn aa00

(Variational Calculations)

)(

Classical

N )(

Quantum

M

Phys. Rev. Letters 79, 3142 (1997)

Page 23: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Finite Size Scaling: Quantum Mechanics

In order to apply FSS to quantum mechanics problems, let us consider the following Hamiltonian of the form

VHH 0

termdependent - is V andt independen- is where 0 H

For a given complete orthonormal λ-independent basis set , the ground state eigenfunction has the following expansion

}{ n

n

nna )(

Page 24: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

The Nth-order approximation for the energies are given by the eigenvalues of the matrix H(N),}{

)(Ni

(N)

i{i}

(N)

λ ΛE min

The corresponding eigenfunction are given by

)(

)()()(

NM

n

nN

nN

a

The expectation value of any operator O

N

mn

mnN

mN

nN

OaaO,

,)()()(

)( )(

The FSS ansatz

CO

NNFOO ~

)(

Page 25: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

)ln(

ln),;(

)()(

NN

OONN

NN

O

The curves intersect at the critical point

),;(),;( NNNN COCO

In order to obtain the critical exponent for the energy

),;( NNCH

Hellmann-Feynman Theorem

VHE

)1(for equation an gives VO

Page 26: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Finite Size Scaling: Quantum Mechanics

VHH 0

)(

)()()(

NM

n

nN

nN

a

The FSS ansatz

CO

NNFOO ~

)(

)ln(

ln),;(

)()(

NN

OONN

NN

O

The curves intersect at the critical point

),;(),;( NNNN COCO

Page 27: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Short Range Potentials Yukawa Potential

r

eH

r

2

2

1)(

Basis Set

)()()2)(1(

1),( ,

)2(2/

mllnr

n YrLelnln

r

Where is the Laguerre polynomial of degree n and order 2 and are the spherical harmonic functions of the solid angle

)(, mlY

)()2( rL ln

Hamiltonian

Page 28: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

839903.0C

Yukawa

VH

H 839908.0exact

C

Phys. Rev. A 57, R1481 (1998)

Page 29: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Finite Size Scaling with Gaussian Basis Sets

The main idea is to use Gaussian basis sets to do FSS calculations

for large atomic and molecular systems.

The basis-set is an over-complete set of Gaussian functions:

kji

ijkkji zyxrCx )exp();( 2

,,

Where Cijk are the normalization constants and βis a free

parameter.

Page 30: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

GaussiansSlater

Page 31: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality
Page 32: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality
Page 33: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Finite Size Scaling Data Collapse

)(~

CC

O

CON

NFOO

~

/

0~)(

xxF

x

/~

NO

NN

)(~ /1/CN

NGNO

)(~ /1/0 CNGNE

Page 34: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Data Collapse

1 ,2

/1NC

Chem. Phys. Letters 319, 273 (2000)

~/

0 GNE /1NC

Page 35: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.82 0.86 0.90 0.94 0.98

840.0c

)Re(

)Im(

56

4N

11

Yukawa 4N

Chem. Phys. Letters 423, 45 (2006)

Page 36: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Quantum Mechanics

Complex Angular

Momentum

Complex Time

Complex Energy

Complex Charge

ReggeTheory

InstantonMethod

Rotation Complex

Coordinates

Variation Method

Scattering Amplitude

Tunneling ResonancesStability

of Ions

Page 37: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Two Electrons Atoms

1221

22

21

11

2

1

2

1)(

rrrH

2112 rrr r12

r2

r1

e-

e-

Z

ZC=0.911

ET=-0.5

He like system

)(gsE

H like +e-

ZC=0.911

H- He Z

Z

1

Page 38: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Finite Size Scaling procedure

Hamiltonian:

Basis Set:

Hamiltonian Matrix:

Renormalization Equation:

ZrrrH

1 ;

11

2

1

2

1

1221

2

2

2

1

kji

krrijrrjikji rerrerrC

,,

12

21

21,, 2

12121

Nkji

10 E ,E s,Eigenvalue Leading

1

0

1

0

1

)1(

)1(

)(

)(

NN

NE

NE

NE

NE

Page 39: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

097.1C

Phys. Rev. Letters 80, 5293 (1998)

Page 40: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

-0.10

-0.06

-0.02

0.02

0.06

0.10

1.08 1.10 1.12 1.14 1.16 1.18 1.20

096.1c

)Re(

)Im(

5

67

4N

11

Helium

4N

Page 41: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

C

C

C

Conditional Probability

Page 42: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Critical Charges and Stable Atoms and Ions

N=2

0.91 Z

N=3

2.08 Z

N=4

2.85 Z

H- He

H-- He- Li

He-- Li- Be

Page 43: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Int. J. Quantum Chem. 75, 533 (1999)

Surcharge Se=N-ZC

Page 44: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Do doubly charged negative atomic ions exist

in the gas phase?

NO

What is the smallest object that can bind two

extra electrons?

This is a challenge for

experiment and theory!

The two electrons must be

separated by at least 5.6 Å

Page 45: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Model Potential for Spherical Molecular Dianions

Page 46: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Stability of Spherical Carbon Cluster Dianions

C60

The interaction potential of an electron at a

distance from a singly charged negative sphere of radius R and dielectric

constant ε

Page 47: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

2

60C

1

5.3

4.4

l

AR

Page 48: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

NC=79

RC~5.5

smsC 1.0~1)(2

60

Molecular Physics 100, 475 (2002)

Page 49: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Stability of Dianions of Fullerenes

C 60

C84

C 79

EA1 = + 2.65 eV

EA2 = - 0.3 eV

EA1 = + 3.14 eV

EA2 = + 0.44 eV

R = 5.6 Ac

_

_ _

_ _

Advances in Chemical Physics, Volume 125, 1 (2003).

Page 50: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Stability of Linear Dianions

RC=5.6 Å

-- CC-Be-CC

e- e-

g

1

BeC4--

BeC4-- BeC2

- + C2-

e- e-

Page 51: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Phase Transitions and Stability of Three Body Coulomb Systems

(M,Q)

(m,q) (m,q)(m,q)

(M,Q) (M,Q)

12

2

21

2122

21

1

2

1

2

1

r

Q

r

qQ

r

qQ

mH

12

21

21

22

21 111

22 rrrH

p H H

eHe He

2

-

qqQQ

Mm

mMu

Qquf

fuHH

frr

2

110

0

1

Mm

qQ

Page 52: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

or?

Molecule Atom

e- e-

e+

R

r1r2

e- e-

e+

r1r2

r12

Page 53: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

D

Three Body Coulomb Systems (ABA)

Particles Mass

e: electron 1

p: proton 1836.15

u: muon 206.76

d: deuteron 3670.5

t: tritium 5476.92

Stable )p( Stable )e(e ---

S. Kais, Phys. Rev. A 62, 06050 (2000)

Page 54: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Phase Transitions and Stability of Three Body Coulomb Systems

H2+

Charge density probability

2402.124.1 20 NC

States Bound

2402.1241.1 20 NC

Explosion Coulomb

Page 55: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

FSS for Critical Conditions for Stable Dipole Bound

AnionsThe Hamiltonian

Slater Basis Set:

Chem. Phys. Lett. 372,205 (2003)

-Z +ZR

e-

z

Page 56: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality
Page 57: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

H3C-CN

H2CCC

C3H4O3

C3H2O3

µ= 4.3 D

µ= 4.34 D

µ= 5.5 D

µ = 4.5 D

Ea=108 cm-

Ea=173 cm-

Ea=40 meV

Ea=20 meV

µc=0.655 a.u =1.625D without B.O =2.5D

Electron will be trapped with µc>2.5D

µc=0.655

a.u

Page 58: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

FSS for Critical Conditions for Stable Quadrupole Bound Anions

Hamiltonian: consists of a charge q at the origin and two charges –q/2 at

z = +1 & -1

Where β is the variational parameter used to optimize the numerical results

and is the Legendre polynomial of order l.

Slater Basis Set:

)(2 lP

q q=QR

Page 59: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Journal of Chemical Physics, 120, 8412 (2004)

Page 60: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Journal of Chemical Physics, 120, 8412 (2004)

qc=1.46 a.u

qc=3.9 a.u

2,,

2

qq

q

2,,

2

qq

q

KCl2- Qzz=10 a.u

K2Cl- Qyy=27 a.u

(BeO)2- (13,13,0.5)

CS2- Qzz=4 a.u

Page 61: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

FSS for Critical Conditions for Stable Dipole-Bond

DianionsThe Hamiltonian

Basis Set:

J. Chem. Phys. (in press, 2007)

-Q +Q

R

e- e-

Prolate spheroidal coordinates

ar br

Page 62: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

QR1

R2

Stability diagram for two electron dipole

-Q +Q

R

e- e-

Page 63: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Atomic & Molecular Stabilization by

Superintense Laser Fieldswith

Prof. Dudley HerschbachHarvard University

Page 64: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Multiply charged negative

atomic ions

in superintense laser fields

Page 65: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

The peak-power of pulsed lasers has increased by 12 ordersof magnitude during the past 4 decades.

QUESTION: What is the highest-level intensity presently possible?

ANSWER: The highest possible focused laser intensity =1019 W/cm2

This level of intensity can be achieved with femtosecond laser based on Chirped Pulse Amplification (CPA).

Superintense Laser Fields (I > a.u.)

Page 66: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

The electric field of a monochromatic plane wave can be written

)sinˆ tancosˆ()( 0 teteEtE yx

ti

rrtrp

N

i

i

j jii

i

1

1

1

2 1

)(

1

2

1

With ex and ey orthogonal to each other and to the propagation direction

)()()( 00 tEEtwhere

α0=E0/ω2, where E0 and ω are the amplitude and frequency of the

laser field.

Laser Atom Interaction

Moving frame of reference which follows the quiver motion of the classical electron

on.polarizaticircular toscorrespond π/4δ

onpolarizatilinear toscorrespond 0δ

Page 67: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

High Frequency Floquet Theory

Vo is the “dressed” Coulomb potential, is the time average of the shifted

Coulomb over one period of the laser

2

0 0

00)sinˆ tancosˆ(2

1),(

yx eear

draV

Hamiltonian of atomic system in super-intense laser fields

N

i

i

j ji

ioirr

arVpH1

1

1

02 1

,2

1

e-e termm laser tererm coulomb trm kinetic teH

frequency. theis andintensity beam averaged- time theis I where,2 Io

Ψ ) α ( E Ψ H 0Structure Equation:

Page 68: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Hydrogen atom in super-intense linear laser fields

J. H. Eberly, et al Science 262, 1229 (1993)M. Pont, et al. Phys. Rev. Lett. 61, 939 (1988)

Page 69: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

For linear polarization, the

“dressed” potential is the same

as that generated by a “linear

charge”: the trajectory α(t)

For circular polarization, the

“dressed” potential is the same

as that generated by a “circular

charge”.

Circular charge

0a

Charge density

0a

Linear charge

Linear Charge and Circular Charge

Page 70: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Prolate Spheroidal Coordinates

for Linear Polarization

z

YX ,

Page 71: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality
Page 72: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Basis Set (Linear Polarization)

eeimmqpmqp

222,, )1)(1()1(),,(

energy theoptimize toparameter a is

integers. negative-non are and ,

mqp

One-electron basis functions in elliptical

coordinates

:becomes basis theso 0,m state, groundFor

)1(

,, )1(),,( eqp

mqp

We used about 100 basis functions

Page 73: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality
Page 74: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality
Page 75: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

The electronic orbitals for the ground states. The presentation is given in a plane

passing through the axis of the field taken as polar axis z

Page 76: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Negative of the detachment energy of the ground state of He-, He2−, Li-,and

Li2− in a linearly polarized high-frequency laser field as a function of

α0=E0/ω2, where E0 and ω are the amplitude and frequency of the laser field.

Page 77: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

electrons N theof onedetach toneededenergy The

01 NN- EE energyDetachment

J. Chem. Phys. 124, 201108 (2006).

For example, when ultra-high-power KrF laser (5 eV photons) are used, the peak

intensity in the experiments should be I ≈ 1016W/cm2.

Page 78: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Oblate Spheroidal Coordinates

for Circular Polarization

z

YX ,

Page 79: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Basis Set (Circular Polarization)

0m

0m

0m

)sin(

)cos(

)1(),,(

)()1(),,(

12

1

1

,,

,,

m

m

e

Se

qpmqp

mqp

mqp

energy theoptimize toparameter a is

1;;1

,...l-l,-l mml qlnp

We used over 200 basis functions

Page 80: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality
Page 81: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Large-D stability in Linearly polarized

superintense laser fields

N

i

N

ij jiji

N

i

ii

N

i i zzzV

1 1222

1

0

12

)(

1),(

1

2

1

2

0 20

20

)(2),(

Sinz

dZzV

ii

ii

0 2z

2

1z

1

2e

1e

Dudley Herschbach, Harvard

Page 82: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Large D stability in super-intense circular

polarized laser fields

N

i

N

ij jiji

N

i

ii

N

i i rrrV

1 1222

1

0

12

)ˆˆ(

1)ˆ,(

1

2

1

2

0 20

20

20

)ˆˆ()ˆˆ(2)ˆ,(

SinerCoser

dZrV

yixii

ii

02̂r

2

1̂r

1

2e

1e

Page 83: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Negative of the detachment energy of the ground state of He-,H2− and He2− in a circularly

polarized high-frequency laser field as a function of α0=E0/ω2, where E0 and ω are the

amplitude and frequency of the laser field.

Page 84: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Linear

Page 85: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Circular

Page 86: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality
Page 87: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Do atoms in superintense laser fields behavelike diatomic molecules ?

Page 88: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Large-D stability of molecules in linearly polarized superintense laser field

RzVzV

),(),(

1

2

12,01,02

2

0 202

2

2

21,0

)cos()sin(2

1),(

Sinzx

dzV

RR

2

0 202

2

2

22,0

)cos()sin(2

1),(

Sinzx

dzV

RR

0

1e

z

x

z

0e

R

0E

Page 89: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

00

8.00

0.20

The laser polarization

along the molecular

axis (θ=0)

2H

Page 90: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

00

8.00

0.20

The laser polarization

is vertical to the

molecular axis (θ=90)

2H

Page 91: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

At the D→∞ limit

N

i

N

ijjijiji

N

i

iii

N

i ii zzyyxxzyxV

yxH

1222

1

0

122

1,,

1

2

1

2

02

222

0

)2sin()cos(2

),,(

dxydz

dqzyxV

As per D-Scaling method:

This is the problem to be minimized

2

d

Page 92: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Our Potential

• Potential generated by application of

Relativistic Trajectory in HFFT

• ν = 400

Page 93: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Alternate View

Page 94: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Trajectory

•The new relativistic trajectory used:

jifinejirel xxwheretxtxt ,)2sin()()cos( 00

•This trajectory was used within theHFFT potential, and the potentialtraces the equivalent parametric equation:

2/

)2,0(,)cos(,0),2sin(

0

2

d

ttdtd fine

•The curve reaches it’s maximum at t=π/4; the potential and electron density reach their extremes as well

Page 95: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Morphology

Page 96: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Summary

Symmetry breaking of electronic structure

configurations resemble classical phase transitions

Quantum phase transitions can be used to explain and

predict the stability of atoms, molecules and quantum

dots.

Atomic dianions are unstable in the gas phase

Multiply charged negative ions are stable in

superintense laser fields

(Intensity > 1 a.u. ~ 1016 W/cm2)

Page 97: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Future WorkCombining FSS with Ab Initio and DFT

Combining FSS with Finite Element Methods

New Classification of Chemical Reactions

FSS and Efimov Systems

Stability of Matter in Superintese Laser Fields

For more details See the review article:

• Sabre Kais and Pablo Serra, "Quantum Critical Phenomena and Stability of

Atomic and Molecular Ions", Int. Rev. Phys. Chem. Vol 19, 97-121 (2000).

• S. Kais and P. Serra, "Finite Size Scaling for Atomic and Molecular Systems",

Advances in Chemical Physics, Volume 125, 1-100 (2003).

Page 98: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Further Directions

Combinations of linearly polarized lasers can deliver more exotic potentials with the chance of binding even more electrons.

Two lasers fired in theY direction, linearly polarizedin the X and Z directions

Two lasers fired, in the X and Y directions, both polarized in the Z

Page 99: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Efimov States

Efimov State is a quantum mechanical stable bound state of three

particles, with any two particle subsystem is unstable. It was

proposed by Vitaly Efimov in 1970 theoretically

and was observed experimentally in 2006

for ultracold gas of caesium atoms.

Remove any one ring and the other two will fall apart.

Letter to: Nature 440, 315-318 (16 March 2006)

Evidence for Efimov quantum states in an ultracold gas of caesium atoms

T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange,

K. Pilch, A. Jaakkola, H.-C. Nägerl and R. Grimm

Page 100: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Acknowledgments

Coworkers:

Future Projects:

Funding:

Pablo Serra, Juan Pablo Neirotti, Jiaxiang Wang,

Ricardo Sauerwien, Alexei Sergeev , Qicun Shi and

Dudley Herschbach

Ross Hoehn, Jiaxiang Wang

(1) Office of Naval Research (ONR)

(2) American Chemical Society (ACS)

(3) National Science Foundation (NSF)

(4) Army Research Office (ARO)

Page 101: Sabre Kais Department of Chemistry Birck Nanotechnology ...Rushbrooke: Widom: Josephson: J Q(2 K) D 2E J 2 J E(G 1) Qd 2 D D C ~ T C E M ~ T C F J ~ T C M ~ H1G [ Q ~ T C. Universality

Thank You!