SABER Ozone v1.07 1.27 um and 9.6 um

36
SABER Ozone v1.07 1.27 um and 9.6 um 22 nd SABER Meeting February 2007 Logan, UT

description

SABER Ozone v1.07 1.27 um and 9.6 um. 22 nd SABER Meeting February 2007 Logan, UT. SABER Ozone v1.07. Brief discussion of 1.27 um algorithm changes Discussion of 9.6 um algorithm changes Day 1.27 um ozone and atomic oxygen Comparison of 1.27, 9.6 um ozone Day and night 9.6 um ozone. - PowerPoint PPT Presentation

Transcript of SABER Ozone v1.07 1.27 um and 9.6 um

Page 1: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER Ozone v1.07 1.27 um and 9.6 um

22nd SABER Meeting

February 2007

Logan, UT

Page 2: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER Ozone v1.07

• Brief discussion of 1.27 um algorithm changes

• Discussion of 9.6 um algorithm changes

• Day 1.27 um ozone and atomic oxygen

• Comparison of 1.27, 9.6 um ozone

• Day and night 9.6 um ozone

Page 3: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER Ozone v1.07

• Overview of changes to the algorithm from v1.06– Consistency of Einstein A values and spectral line

parameters– Improved blending of weak and strong line retrievals

(75 km)– Using Woods-Rottman solar model at all relevant

wavelengths• SEE data not always same version and calibration

– Bug in initialization of O derivation removed– Agreement between “research” codes

• L-b-L research code reproduces SABER radiances with SOPS electronic temperatures as inputs

• Research version of O model reproduces SOPS version

Page 4: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER – O2(1) Airglow

4 July 2002

Page 5: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER – Ozone from O2(1) at 1.27 um

4 July 2002

Page 6: SABER Ozone  v1.07  1.27 um and 9.6 um

Energy Deposition Rates due to UV Absorption

4 July 2002

Page 7: SABER Ozone  v1.07  1.27 um and 9.6 um

Departure from Local Thermodynamic Equilibrium

)/(exp TkEg

g

n

n

l

u

l

u −=

The relative populations of the upper and lower states of a transitionare often written as :

Under LTE, T = TK, the kinetic temperature

Under non-LTE, T ≠ TK, but some other temperature

The daytime O2(1) is an exceptionally strong case of non-LTEoccurring in the Earth’s atmosphere

Page 8: SABER Ozone  v1.07  1.27 um and 9.6 um

Effective “Temperature” of O2(1) Transition

4 July 2002

Page 9: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER – Daytime Atomic Oxygen

Atomic Oxygen Derived from Ozone via Photochemical Balance

4 July 2002

Page 10: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER – Atomic Oxygen

4 July 2002

Page 11: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER O3 9.6 umv1.06 to v1.07

• SABER 9.6 um ozone in v1.06 consistently larger than 1.27 um ozone (see .pdf file)

• “Kink” evident in ratio of 9.6 to 1.27 ozone at 75 km – traced to BandPak tables for 1.27 um and removed in v1.07

• Validation of v1.07 ozone from 1.27 um, and consistency of O derived from the 1.27 um ozone, pointed to issues with the 9.6 um retrieval

• Physical Quenching rates in v1.06 (and all prior versions) found to be too large by ~ 2 to ~ 3 times

• Differences due to “time evolution” of rates and improvements in measurement and theory of rates

V1.07 9.6 um O3 is not “tuned” in any way to match 1.27 um O3

Page 12: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER O3 9.6 um -- v1.06 to v1.07• Rates in v1.06 and prior obtained from U. Michigan in late 1999 just prior to

delivery of O3 Tvib model to GATS

• Rates v1.06 derived from Monte Carlo model, and fit to laboratory values at lowest vibrational levels

• However, lab values taken from those prevalent in late 1980’s, and consistent with those used in LIMS analysis (Solomon et al., 1986)

– In part due to not accounting for large CO2 laser band emission

• Contemporary rates (mid- to late 1990’s) are much smaller

• Javier Martin-Torres and Manuel Lopez-Puertas developed a consistent set of rate coefficients for analyzing MIPAS data based on newer rates and modeling -- Primarily Javier’s thesis

• These rates are substantially smaller than v1.06 SOPS; now in SOPS 1.07

• Smaller rates larger Tvibs less ozone

Page 13: SABER Ozone  v1.07  1.27 um and 9.6 um

Six different cases are considered. They are (in ascending order of E):

Case 1: Exchange of stretching.................. (100-001) Case 2: Asymmetric Stretching to Bending........ (001-010) Case 3: Symmetric Stretching to Bending......... (100-010) Case 4: Loss of Bending......................... (010-000) Case 5: Loss of Asymmetric Stretching........... (001-000) Case 6: Loss of Symmetric Stretching............. (100-000)

200*

321321 )(),(E

casei eTKwwwwvvvTk

−×=− ∏

The collisional rates are computed after the expression

∏ *iw just consider the vibrational modes involved in the change

SABER O3 9.6 Collisional Model (O2, N2)

Page 14: SABER Ozone  v1.07  1.27 um and 9.6 um

Process Energy (cm-1) OLD NEW (Kcase)

(100-001) 61.0 6.959 x 10-12

(001-010) 341.1 3.804 x 10-14

(100-010) 402.1 1.809 x 10-14

(010-000) 701.0 3.422 x 10-14

(001-000) 1042.1 1.183 x 10-14

(100-000) 1103.1 6.116 x 10-15

3333.0

8.2313102.1 TeT

−− ×××

78.011 300

1015.1 ⎟⎠

⎞⎜⎝

⎛×× −

T

3333.0

8.2313102.1 TeT

−− ×××

3333.0

0.51121083.3 TeT

−− ×××

300101.3 15 T

×× −

300101.3 15 T

×× −

SABER v1.06 (OLD) and 1.07 (NEW) Rate Coefficients

010, 001, 100 levels only

Page 15: SABER Ozone  v1.07  1.27 um and 9.6 um

Process Energy (cm-1) OLD NEW (Kcase) @300 K

(100-001) 61.0 6.959 x 10-12 1.15 x 10-11

(001-010) 341.1 3.804 x 10-14 5.935 x 10-14

(100-010) 402.1 1.809 x 10-14 5.935 x 10-14

(010-000) 701.0 3.422 x 10-14 3.255 x 10-14

(001-000) 1042.1 1.183 x 10-14 3.1 x 10-15

(100-000) 1103.1 6.116 x 10-15 3.1x10-15

SABER v1.06 (OLD) and 1.07 (NEW) Rate Coefficients

010, 001, 100 levels only

For T = 300 K

Page 16: SABER Ozone  v1.07  1.27 um and 9.6 um

Quenching of O3(001) statev1.06 to v1.07

V1.07V1.06

Page 17: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER v1.07 Daytime Ozone

Page 18: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER v1.07 Daytime Ozone

Page 19: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER v1.07 Daytime Ozone

Page 20: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER v1.07 Daytime Ozone

Page 21: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER v1.07 Daytime Ozone

Page 22: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER v1.07 Daytime Ozone

Page 23: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER v1.07 Daytime Ozone

Page 24: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER v1.07 Daytime Ozone

Page 25: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER v1.07 Daytime Ozone

Page 26: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER v1.07 Daytime Ozone

Page 27: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER v1.07 Daytime Ozone

Page 28: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER 9.6 um Ozone Day and Night

Page 29: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER 9.6 um Ozone Day and Night

Page 30: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER 9.6 um Ozone Day and Night

Page 31: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER 9.6 um Ozone Day and Night

Page 32: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER 9.6 um Ozone Day and Night

Page 33: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER 9.6 um Ozone Day and Night

Page 34: SABER Ozone  v1.07  1.27 um and 9.6 um

SABER 9.6 um Ozone Day and Night

Page 35: SABER Ozone  v1.07  1.27 um and 9.6 um

Some Remaining Issues

• Validation of both ozones vs. climatology and other correlative measurements

• Error analyses of both ozones – how well do they agree within their respective error bars?– Must take care to compare away from morning terminator

• Sensitivity to other transfer (v-v with O2(v))?

• Sensitivity to quasi-nascent distribution– Can be estimated with Tvib modeling

• Potential for new O-O3(v) quenching rate (Castle/Dodd NSF proposal) – 2 years away – important above 85 km

Page 36: SABER Ozone  v1.07  1.27 um and 9.6 um

Some Remaining Issues

• Need also to check SOPS Tvib O3 model at night– “Steady State” from daytime not valid– Mix of chemically pumped and “ambient” ozone generally requires

provision of O and O3 profiles to the Tvib model– Contrast with daytime when Tvib is independent of O3 and O when

ozone is in steady state– Only an issue above 80 km at night --

• Comparisons of 1.27 and 9.6 ozone daytime– Must be done away from sunrise by ~ 2 hours (time constant issue)– Lower altitude of 1.27 um retrieval limited by O2 opacity and solar zenith

angle

• Conclusion– V1.07 demonstrates, for the first time, a consistent set of mesospheric

ozone profiles derived from 2 distinct measurements