S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the...

18
REFERENCES* [1] Ariel, N.Z. and Nadezhina, Yeo D., Dimensionless characteristics of tur- bulence for various stratification conditions, Izv. AN SSSR. Fizika atmos fery i okeana, 12, 802-809 (1976). [2] Benioff, H., Press, F. and Smith, S., Excitation of the free oscillations of the Earth by earthquakes, in Free OsciUations of the Earth (trans!. from English), Mir, Moscow, 133-159 (1964). [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl. AN SSSR 172, 1315-1317 (1967). [4] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of tidal wave propagation in the World Ocean, Izv. AN SSSR. Fizika atmosfery i okeana, 5, 1309-1317 (1969). [5] Bubnov, M.A., On the solvability of tidal dynamics problems in a homo- geneous ocean, Chislenniye metody mekhaniki sploshnoi sredy, 8, 5-19 (1977). [6] Bubnov, M.A., On the solvability of tidal dynamics problems in a stratified ocean. Preprint, Computer Center SO AN SSSR, Novosibirsk, 25 pp. (1977). [7] Vager, B.G. and Kagan, B.A., Dynamics of the turbulent boundary layer in a tidal flow, Izv. AN SSSR. Fizika atmosfery i okeana, 5, 168-179 (1969). [8] Vager, B.G. and Kagan, B.A., Vertical structure and turbulence regime in the stratified boundary layer of a tidal flow, Izv. AN SSSR. Fizika atmos fery i okeana, 7, 766-777 (1971). [9] Garland, G.H., The Earth's Shape and Gravity (trans!. from English) Mir, Moscow, 195 pp. (1967). [10] Goldreich, P. and Soter, S., Q in the solar system, in Tides and Resonances in the Solar System (trans!. from English) Mir, Moscow, 248-272 (1975). [11] Golitsin, G.S. and Dikii, L.A., Free oscillations of a planetary atmospheres depending on the planet rotational velocity, Izv. AN SSSR. Fizika atmosfery i okeana, 2,225-235 (1966). [12] Gordeev, R.G., Kagan, B.A. and Rivkind, V.Ya., Numerical solution of the tidal dynamics equations in the World Ocean, Dokl. AN SSSR, 209, 340-343 (1973). [13] Gordeev, R.G., Kagan, B.A. and Rivkind, V.Ya., Estimation of the tidal energy dissipation rate in the open ocean, Okeanologiya, 14,226-229 (1974). [14] Gordeev, R.G., Kagan, V.A. and Rivkind, V.Ya., Numerical experiments on tidal dynamics in the World Ocean, Izv. AN SSSR. Fizika atmosfery i okeana, 11, 162-174 (1975). * References [1] - [74] are in Russian.

Transcript of S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the...

Page 1: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

REFERENCES*

[1] Ariel, N.Z. and Nadezhina, Yeo D., Dimensionless characteristics of tur­bulence for various stratification conditions, Izv. AN SSSR. Fizika atmos­fery i okeana, 12, 802-809 (1976).

[2] Benioff, H., Press, F. and Smith, S., Excitation of the free oscillations of the Earth by earthquakes, in Free OsciUations of the Earth (trans!. from English), Mir, Moscow, 133-159 (1964).

[3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl. AN SSSR 172, 1315-1317 (1967).

[4] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of tidal wave propagation in the World Ocean, Izv. AN SSSR. Fizika atmosfery i okeana, 5, 1309-1317 (1969).

[5] Bubnov, M.A., On the solvability of tidal dynamics problems in a homo­geneous ocean, Chislenniye metody mekhaniki sploshnoi sredy, 8, 5-19 (1977).

[6] Bubnov, M.A., On the solvability of tidal dynamics problems in a stratified ocean. Preprint, Computer Center SO AN SSSR, Novosibirsk, 25 pp. (1977).

[7] Vager, B.G. and Kagan, B.A., Dynamics of the turbulent boundary layer in a tidal flow, Izv. AN SSSR. Fizika atmosfery i okeana, 5, 168-179 (1969).

[8] Vager, B.G. and Kagan, B.A., Vertical structure and turbulence regime in the stratified boundary layer of a tidal flow, Izv. AN SSSR. Fizika atmos­fery i okeana, 7, 766-777 (1971).

[9] Garland, G.H., The Earth's Shape and Gravity (trans!. from English) Mir, Moscow, 195 pp. (1967).

[10] Goldreich, P. and Soter, S., Q in the solar system, in Tides and Resonances in the Solar System (trans!. from English) Mir, Moscow, 248-272 (1975).

[11] Golitsin, G.S. and Dikii, L.A., Free oscillations of a planetary atmospheres depending on the planet rotational velocity, Izv. AN SSSR. Fizika atmosfery i okeana, 2,225-235 (1966).

[12] Gordeev, R.G., Kagan, B.A. and Rivkind, V.Ya., Numerical solution of the tidal dynamics equations in the World Ocean, Dokl. AN SSSR, 209, 340-343 (1973).

[13] Gordeev, R.G., Kagan, B.A. and Rivkind, V.Ya., Estimation of the tidal energy dissipation rate in the open ocean, Okeanologiya, 14,226-229 (1974).

[14] Gordeev, R.G., Kagan, V.A. and Rivkind, V.Ya., Numerical experiments on tidal dynamics in the World Ocean, Izv. AN SSSR. Fizika atmosfery i okeana, 11, 162-174 (1975).

* References [1] - [74] are in Russian.

Page 2: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

310 References

[15J Gotlib, V.Yu. and Kagan, B.A., On the parameterization of shelf effects in the modelling of ocean tides, Izv. AN SSSR. Fizika atmosfery i okeana, 15, 425-434 (1979).

[16] Gotlib, V.Yu and Kagan, B.A., The modelling of tides in the World Ocean with shelf effects accounted for, Dokl. AN SSSR, 251, 710-713 (1980).

[17J Gotlib, V.Yu. and Kagan, B.A., Resonance periods of the World Ocean, Dokl. AN SSSR, 252,725-728 (1980).

[18] Gotlib, V.Yu. and Kagan, B.A., On the resonance excitation of semidiurnal tides in the World Ocean, Izv. AN SSSR. Fizika atmosfery i okeana, 17, 502-512 (1981).

[19] Gotlib, V.Yu. and Kagan, B.A., On the role of shelf effects in the formation of semidiurnal tides in the World Ocean, Izv. AN SSSR. Fizika atmosfery i okeana, 18, 859-869 (1982).

[ 20] Jeffreys, H., The Earth. Its origin, history and physical constitution (transl. from English), Izd-vo inostr. lit-ry, Moscow, p. 484 (1960).

[211 Dikii, L.A., Theory of the Earth's Atmosphere Oscillations, Gidrometeoizdat, Leningrad, p. 195 (1969).

[ 22] Duvanin, A.I., Tides in the sea, Gidrometeoizdat, Leningrad, p. 390 (1960). [ 23] Kagan, B.A., Hydrodynamic Models of Tidal Movements in the Sea.

Gidrometeoizdat, Leningrad, p. 219 (1968). [24J Kagan, B.A., On the properties of some difference schemes used in the

numerical integration of tidal dynamics equations, Izv. AN SSSR. Fizika atmosfery i okeana, 6,1190-1200 (1970).

[25] Kagan, B.A., On the reSistance law in tidal flow, Izv. AN SSSR. Fizika atmosfery i okeana, 8, 533-542 (1972).

[ 26] Kagan, B.A., The Global Interaction of Oceanic and Terrestrial Tides. Gidrometeoizdat, Leningrad, p. 45 (1977).

[27] Kagan, B.A., Dynamics of the ocean benthic boundary layer, Itogi nauki i tekhniki. Okeanologiya, 6, 81-139 (1981).

[ 28] Kagan, B.A., On the energy of gravitational tides in the atmosphere, Izv. AN SSSR. Fizika atmosfery i okeana, 17, 1209-1212 (1981).

[ 29] Kagan, B.A., On the changes in tidal energy dissipation in the Phanerozoic, Okeanologiya, 21, 973-978 (1981).

[ 30J Kagan, B.A., New problems of the ocean tide theory, Itogi nauki i tekhniki. Okeanologiya, 5, 78-116 (1979).

[ 31] Kagan, B.A. and Monin, A.S., Tides, in Physics of the Ocean, Vol. 2, Hydro­dynamics of the Ocean, Nauka, Moscow, 255-299 (1978).

[ 32] Kagan, B.A. and Polyakov, Ye.V., Global dissipation and energy exchange between oceanic and terrestrial tides, Izv. AN SSSR. Fizika atmosfery i okeana, 13,719-727 (1977).

[ 33] Kagan, B.A. and Polyakov, Ye.V., The influence of ocean tides on the tidal variations of gravity, Okeanologiya, 17, 980-985 (1977).

[ 34] Kagan, B.A., Rivkind, V.Ya. and Chernyaev, P.K., Fortnightly lunar tides in the World Ocean, Izv. AN SSSR. Fizika atmosfery i okeana, 12,449-452

Page 3: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

References 311

(1976). [ 35J Kazanski, A.B. and Monin, A.S., On the dynamic interaction between the

atmosphere and the Earth's surface, Izv. AN SSSR, ser. geofiz. No.5, 786-788 (1961).

[ 36] Kaula, W., Theory of SateUite Geodesy (trans!. from English), Nedra, Mos­cow, 161 p. (1966).

[ 37] Kitaigorodski, S.A., Physics of the Interaction of the Atmosphere and the Ocean, Gidrometeoizdat, Leningrad, 282 p. (1970).

[ 38] Kolesnikova, V.N. and Monin, A.S., On the spectra of oscillations of meteorological fields, Izv. AN SSSR. Fizika atmosfery i okeana, 1,653-669 (1965).

[39] Kolmogorov, A.N., The local structure of turbulence in an incompressive liquid at very high Reynolds numbers, Dokl. AN SSSR, 30, 299-303 (1941).

[40J Kuznetsov, M.V., Calculation of the secular deceleration of the Earth's rotation with the help of modern cotidal maps, Izv. AN SSSR. Fizika Zemii, No. 12,3-11 (1972).

[ 41] Ladyzhenskaya, O.A., Boundary Problems in Mathematical Physics, Nauka, Moscow, 407 p. (1973).

[ 42] Ladyzhenskaya, O.A. and Uraltseva, N.N., Linear and Quasilinear Equa­tions of the Elliptical Type, Nauka, Moscow, 576 p. (1973).

[ 43] Lamb, H., Hydrodynamics (trans!. from English), Gostekhizdat, Moscow, Leningrad, 928 p. (1947).

[ 44] Liusternik, L.A. and Sobolev, V.I., Elements of Functional Analysis, Nauka, Moscow, 520 p. (1964).

[ 45] Munk, W. and MacDonald, G., Rotation of the Earth (trans!. from English), Mir, Moscow, 384 p. (1964).

[ 46] Marchuk, G.!', The Methods of Computing Mathematics, Nauka, Novosi­birsk, 352 p. (1973).

[47J Marchuk, G.!., Numerical Solution of the Problems of Atmosphere and Ocean Dynamics, Gidrometeoizdat, Leningrad, 303 p. (1974).

[48J Marchuk, G.!. and Bubnov, M.A., On the method of isolating the barotropic component in the problems of ocean dynamiCS, Dokl. AN SSSR, 248, 836-839 (1979).

[49] Marchuk, G.!. and Bubnov, M.A., On the asymptotic behavior of the solu­tion of linear equations for baroclinic ocean dynamics over long time periods, Izv. AN SSSR. Fizika atmosfery i okeana, 16,211-218 (1980).

[ 50] Marchuk, G.!', Gordeev, R.G., Kagan, B.A. and Rivkind, V.Ya., A numerical method of solving the tidal dynamics equations and the results of its test­ing. Preprint, Computer Center SO AN SSSR, NovOSibirsk, 78 p. (1972).

[ 51] Marchuk, G.!. and Kagan, B.A., Ocean tides, Gidrometeoizdat, Leningrad, 295 p. (1977).

[52] Marchuk, G.I. and Protasov, A.V., Spectral methods of solving the problem of ocean dynamiCS, in Mathematical Models of Circulation in the Ocean, Nauka, NovOSibirsk, 161-179 (1980).

Page 4: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

312 References

[53] Melchior, P., The Earth Tides, (trans!. from English), Mir, Moscow, 482 p. (1968).

[54] Melchior, P., Physics and Dynamics of Planets, Pt. 1 (transl. from English), Mir, Moscow, 575 p. (1975).

[55] Monin, A.S., The Earth's Rotation and Climate, Gidrometeoizdat, Leningrad, 111 p. (1972).

[56] Monin, A.S. and Yag10m, A.M., Statistical Hydromechanics, Pt. 1, Nauka, Moscow, 639 p. (1965).

[57] Nekrasov, A.V., Tidal Waves in Marginal Seas, Gidrometeoizdat, Leningrad, 247 p. (1975).

[ 58] Alsop, L., Sutton, G. and Ewing, M., Free oscillations of the Earth observed on strain and pendulum seismographs, in Free Oscillation of the Earth (transl. from English), Mir, Moscow, 80-105 (1964).

[ 59] Pariyski, N.N., Kuznetsov, M.V. and Kuznetsova, L.V., On the influence of ocean tides upon the secular deceleration of the Earth's rotation, Izv. AN SSSR. Fizika Zemli No.2, 3-12 (1972).

[ 60] Pertsev, B.P., Estimation of the influence of sea tides on terrestrial tides at pOints remote from the oceans, in Terrestrial Tides and the Structure of the Earth's Interior, Moscow, Nauka, 10-22 (1967).

[ 611 Pertsev, B.P., The influence of sea tides on terrestrial tides in the frequency of the semidiurnal waves M 2 and S 2, in Slow Movements of the Earth's Crust, Nauka, Moscow, 12-18 (1972).

[ 62] Pertsev, B.P. and Ivanova, M.V., Corrections for sea tides in the frequency of M 2 and the gravimetric earth-tidal observations in Europe, Izv. AN SSSR. Fizika Zemli No. 12, 82-83 (1975).

[ 63] Petrovski, I.G., Lectures on Equations with Partial Derivatives, Fizmatigiz, Moscow, 400 p. (1961).

[64] Polyakov, Ye.V., Estimation of the additional gravitaitonal potential as a factor influencing the global tides in the ocean, Okeanologiya 15, 966-969 (1975).

[65] Proud man, J., Dynamic Oceanography (transl. from English), Izd-vo inostr. lit-ry, Moscow, 418 p. (1957).

[ 66] Protasov, A.V., Numerical method of solving the problem of free oscilla­tions in the World Ocean in barotropic appoximation, Meteorologiya i gidro­logiya No.6, 57-66 (1979).

[ 67] Slobodetski, L.N., Estimations in L2 of solutions of linear elliptic and para­bolic systems. 1. Estimations of solutions for an elliptic system, Vestnik LGU, ser. matem. i astron. No.7, 28-47 (1960).

[68] Sobolev, S.L., Some Applications of Functional Analysis in Mathematical Physics, Izd-vo SO AN SSSR, Novosibirsk, 255 p. (1962).

[69] Solonnikov, V.A., On the boundary problems common for systems elliptic in the sense of A. Douglas-L. Nirenberg, 1, Izv. AN SSSR, ser. matem. 28, 665-706 (1964).

[ 70] Townsend, A.A., The Structure of Turbulent Shear Flow (transl. from

Page 5: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

References 313

English), Izd-vo inostr. lit-ry, Moscow, 399 p. (1959). [ 71] Tiron, K.D., Sergeev, Yu.N. and Michurin, A.N., Tidal map of the Pacific,

Atlantic and Indian Oceans, Vestnik LGU, ser. geograf. No. 24, 123-135 (1967).

[ 721 Charney, G., What determines the thickness of the planetary boundary layer in a neutrally stratified atmosphere?, Okeanologiya, 9, 143-145 (1969).

[ 73J Chapman, S. and Lindzen, R., AtTTWspheric Tides, (trans!. from English), Mir, Moscow, 295 p. (1972).

[74J Schlichting, H., Entstehung der Turbulenz, (trans!. from German), Izd-vo inostr.lit-ry, Moscow, 203 p. (1962).

[ 75] Accad, Y. and Pekeris, C.L., The K 2 tide in oceans bounded by meridians and parallels, Proc. Roy. Soc., London A278, 110-128 (1964).

[76] Accad, Y. and Pekeris, c.L., Solution of the tidal equations for the M 2 and S 2 tides in the world oceans from a knowledge of the tidal potential alone, Phil. Trans. Roy. Soc., London, A290, 235-266 (1978).

[ 77] Agnew, D.C. and Farrell, W.E., Self-consistent equilibrium ocean tides, Geophys. J. Roy. Astron. Soc .. 55, 171-181 (1978).

[ 78] Allen, J.R.L., Large transverse bedforms and the character of boundary­layers in shallow-water environments, Sedimentology 27, 317-323 (1980).

[ 79] Anderson, D.L. and Hart, R.S., Q of the Earth, J. Geophys. Res. 83,5869-5882 (1978).

[80] Anwar, H.O. and Atkins, R., Turbulence measurements in simulated tidal flow, J. Hydr. Div., ASCE 106, 1173-1239 (1980).

[ 811 Armi, L., The dynamics of the bottom boundary layer of the deep ocean, in Bottom Turbulence, Proc. 8th Intern. Liege CoUoq. Ocean Hydrodyn. (ed. J.C.J. Nihoul), Elsevier Sci. Pub!. Co., 153-164 (1977).

[ 82] Baines, P.G., The generation of internal tides by flat-bump topography, Deep-Sea Res. 20, 179-205 (1973).

[ 83] Bartels, J., Gezeitenkrafte, in Handbuch der Physik, 48, 734-774 (1957). [ 84] Bell, T.H., Topographically generated internal waves in the open sea, J. Geo­

phys. Res. 80, 320-327 (1975). [ 85] Bell, T.H., Statistical features of sea-floor topography, Deep-Sea Res. 22,

883-892 (1975). [ 86] Bennett, A.F., Parametric representation of tidal shallows, Geophys. J. Roy.

Astron. Soc., 38, 389-396 (1974). [ 87] Bowden, K.F., Some observations of turbulence near the sea bed in a tidal

current, Quart. J. Roy. Meteorol. Soc., 81, 640-641 (1955). [ 88] Bowden, K.F., Measurements of turbulence near the sea bed in a tidal

current, J. Geophys. Res., 67, 3181-3186 (1962). [ 89] Bowden, K.F., Physical problems of the benthic boundary layer, Geophys.

Surveys, 3, 255-296 (1978). [90] Bowden, K.F. and Fairbairn, L.A., A determination of the frictional forces

in a tidal current, Proc. Roy. Soc., London, A214, 371-393 (1952).

Page 6: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

314 References

[ 911 Bowden, K.F. and Fairbairn, L.A., Measurements of the turbulent fluctua­tions and Reynolds stresses in a tidal current, Proc. Roy. Soc., London, A237, 422-438 (1956).

[ 92] Bowden, K.F. and Howe, M.R., Observations of turbulence in a tidal current, 1. Fluid Mech. 17,271-284 (1963).

[ 93] Bretreger, K. and Mather, R.S., Modelling ocean-loading effects on tidal gravity in Australia, Geophys. 1. Roy. Astron. Soc., 52,241-257 (1978).

[ 94] Brosche, P. and Siindermann, J., On the torque due to the tidal friction of the oceans and adjacent seas, in Rotation of the Earth, (eds P. Melchior and S. Yumi), 235-239 (1972).

[ 95] Brown, P.J., Kelvin-wave in a semiinfinite canal, J. Marine Res. 31, 1-10 (1973).

[ 96] Busch, N.E., On the mechanics of atmospheric turbulence, in Workshop on Micrometeorology, (ed. D.A. Haugen), Amer. Meteorol. Soc., 1-65 (1973).

[ 97] Bye, J.A.T. and Heath, R.A., The New Zealand semidiurnal tide, 1. Marine Res., 33, 423-442 (1975).

[ 98] Cartwright, D.E., Tides and waves in the vicinity of Saint Elena, Phil. Trans. Roy. Soc., London, A270, 603-646 (1971).

[99] Cartwright, D.E., Oceanic tides, Rep. Progr. Phys., 40, 665-708 (1977). [100] Cartwright, D.E., Analyses of British Antarctic survey tidal records, Br.

Antarct. Surv. Bull., No. 49, 167-179 (1979). [101] Cartwright, D.E. and Edden, A.C., Corrected tables of tidal harmonics, Geo­

phys. J. Roy. Astron. Soc., 33, 253-264 (1973). [102] Cartwright, D.E., Edden, A.C., Spencer, R. and Vassie, J.M., The tides of the

northeast Atlantic Ocean, Phil. Trans. Roy. Soc., London, A298, 87-139 (1980).

[103] Cartwright, D.E. and Tayler, R.I., New computations of the tide-generating potential, Geophys. J. Roy. Astron. Soc., 23, 45-47 (1971).

[104] Cartwright, D.E., Zetler, B.D. and Hamon, B.V., Pelagic tidal constants, IAPSO Publ. Sci., No. 30, 65 p. (1979).

[105] Clarke, A.J. and Battisti, D.S., The effect of continental shelves on tides. Deep-Sea Res., 28, 665-682 (1981).

[106] Colborne, D.C., The diurnal tide in an ocean bounded by two meridians, Proc. Roy. Soc., London, A131, 38-52 (1931).

[107] Corkan, R.H. and Doodson, A.T., Free tidal oscillations in a rotating square sea, Proc. Roy. Soc., London, A215, 147-162 (1952).

[108] Darwin, G.H., On the correction to the equilibrium theory of tides for the continents, Proc. Roy. Soc., London, 40, 303-315 (1886).

[109] Darwin, G.H., On the dynamical theory of the tides of long period, Proc. Roy. Soc., London, A41, 319-336 (1886).

[110) Defant, A., Physical Oceanography, Vol. 2, Pergamon Press, 598 p. (1961). [111] Dietricht, G., Die Schwingungssysteme der halb-und eintagigen Tiden in den

Ozeanen, Ven5ffentl. Inst. Meereskunde Univ. Berlin, A41, 68 S (1944). [112) Doodson, A.T., The harmoniC development of the tide-generating potential,

Page 7: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

References 315

Proc. Roy. Soc., London, Al00, 305-329 (1921). [113] Doodson, A.T., Tides in oceans bounded by meridians. 2. Ocean bounded. by

complete meridian: diurnal tides, Phil. Trans. Roy. Soc., London, A235, 290-333 (1935).

[114] Doodson, A.T., Tides in oceans bounded by meridians. 3. Ocean bounded by complete meridian: semidiurnal tides, Phil. Trans. Roy. Soc., London, A237, 311-373 (1937).

[115] Doodson, A.T., Tides in oceans bounded by meridians. 4. Series solutions in terms of angular width of ocean: semidiurnal tides in narrow oceans, Phil. Trans. Roy. Soc., London, A238, 477-512 (1940).

[116] Douglas, R.C. and Goad, C.G., The role of orbit determination in satellite altimeter data analysis, Boundary-Layer Meteorol., 13,245-251 (1978).

[117] Estes, R.H., A computer software system for the generation of global ocean tides including self-gravitation and crustal loading effects. Final Report. Business and Technol. Systems, Inc., Seabrook, 60 p. (1977).

[118] Estes, R.H., A simulation of global ocean tide recovery using altimeter data with systematic orbit error, Marine Geodesy, 3,75-139 (1980).

[119] Farrell, W.E., Deformation of the Earth by surface loads, Rev. Geophys. Space Phys., 10,761-797 (1972).

[120] Farrell, W.E., Earth tides, ocean tides and tidal loading, Phil. Trans. Roy. Soc., London, A274, 253-259 (1973).

[121] Filloux, J.H., Tidal pattern and energy balance in the Gulf of California, Nature, 243, 217-221 (1973).

[122] Gallagher, B.S. and Munk, W.H., Tides in shallow water: spectroscopy, TeUus, 23, 346-363 (1971).

[123] Garrett, C.J.R., Tidal resonance in the Bay of Fundy and Gulf of Maine, Nature, 238,441-443 (1972).

[124] Garrett, C.J.R., Normal modes of the Bay of Fundy and Gulf of Maine, Can. J. Earth Sci., 11,549-556 (1974).

[125] Garrett, C.J.R., Tides in gulfs, Deep-Sea Res., 22, 23-35 (1975). [126] Garrett, C.J.R., Mixing in the ocean interior, Dyn. Atmosph. Oceans, 3,239-

265 (1979). [127] Garrett, C.J.R. and Greenberg, D., Predicting change in tidal regime: The

open boundary problem, J. Phys. Oceanogr., 7,171-181 (1977). [128] Garrett, C.J.R. and Toulany, B., A variable-depth Green's functions for

shelf edge tides, J. Phys. Oceanogr., 9,1258-1272 (1979). (129] Gates, W.L. and Nelson, A.B., A new (revised) tabulation of the Scripps

topography on a 10 global grid. Pt. 2. Ocean depths. Rep. prepared. for Defence Adv. Res. Project Agency, R-1277 IARPA, 132 P. (1975).

[130] George, C.B. and Sleath, J.F.A., Oscillatory laminar flow above a round bed, in Proc. 16th Coastal Eng. Cont., Hamburg 1fJ78, Vol. 1, New York, 898-910 (1979).

[131] Gill, A.E., A simple model for showing effects of geometry on the ocean tides, Proc. Roy. Soc., London, A367, 549-571 (1979).

Page 8: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

316 References

[132] Goad, C.C. and Douglas, B.C., Lunar longitude deceleration and tidal parameters estimated from satellite orbital perturbation. Preprlnt. U.S. Dept. Comm., NOAA, 18 p. (1977).

[133] Go1dsbrough, G.R., The dynamical theory of the tides in a polar basin, Proc. London Math. Soc., 14,31-66 (1913).

[134] Goldsbrough, G.R., The dynamical theory of the tides in a zonal ocean, Proc. London Math. Soc., 14,207-229 (1914).

[135] Goldsbrough, G.R., The tides in oceans on a rotating globe, 1, Proc. Roy. Soc., London, A117, 692-718 (1927).

[136] Go1dsbrough, G.R., The tides in oceans on a rotating globe,S, Proc. Roy. Soc., London, A200, 191-200 (1949).

[137] Gordeev, R.G., Kagan, B.A. and Po1yakov, E.V., The effects of loading and self -attraction on global ocean tides: The model and the results of a numer­ical experiment, J. Phys. Oceanogr., 7,161-170 (1977).

[138] Gordon, C.M., Intermittent momentum transport in a geophysical boundary layer, Nature, 248, 392-394 (1974).

[139] Gordon, C.M. and Dohne, C.F., Some observations of turbulent flow in a tidal estuary, J. Geophys. Res., 78,1971-1978 (1973).

[140] Grive1 Pino, F., On the cotida1 configuration along the Pacific coast of Mex­ico, Geofis. Intern., 10, 17-35 (1970).

[141] Grive1 Pino, F. and Groves, W., Sobre 1a configuration cotidal de 1a marea en e1 Pacifico Ecuatoria1, Geofis. Intern., 9, 79-82 (1969).

[142] Groten, E. and Brennecke, J., Global interaction between earth and sea tides, J. Geophys. Res., 78, 8519-8526 (1973).

[143] Groten, E. and Brennecke, J., Global sea tide effects of Oland K 1 consti­tuents in Earth tide gravity observations, Riv. Ita1. Geofis., 23, 133-136 (1974).

[144] Groves, G.W. and Munk, W.H., A note on tidal friction, J. Marine Res., 17th Anniv. Vol., 199-214 (1958).

[145] Groves, G.W. and Reynolds, R.W., On an orthogonalized convolution method of tide prediction, J. Geophys. Res., 80, 4131-4138 (1975).

[146] Hansen, W., The reproduction of the motion in the sea by means of hydro­dynamical numerical methods, Mitt. Inst. Meereskunde, Univ. Hamburg, No.5, 1-57 (1966).

[147] Harrison, J.c., Hendershott, M.C., Kuo, J.T., Mueller, I.I. and Zetler, B.D., Solid-earth and ocean tides. Rep. on the first GEOP Res. Conf., EOS Trans. Amer. Geophys. Union, 54, 96-100 (1973).

[148] Haurwitz, B. and Cowley, A.D., The lunar barometric tide, its global distri­bution and annual variation, Pure Appl. Geophys., 77, 122-150 (1969).

[149] Heath, R.A., Estimates of the resonant period and Q in the semidiurna1 tidal band in the North Atlantic and PaCific Ocean, Deep-Sea Res., A28, 481-493 (1981).

[150] Heathershaw, A.D., Bursting phenomena in the sea, Nature, 24B, 394-395 (1974).

Page 9: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

References 317

[15I] Heathershaw, A.D., The turbulent structure of the bottom boundary layer in a tidal current, Geophys. J. Roy. Astron. Soc., 58, 395-430 (1979).

[152] Heathershaw, A.D. and Simpson, J.H., The sampling variability of the Rey­nolds stress and its relation to boundary shear stress and drag coefficient measurements, Est. Coast. Mar. Sci., 6, 263-274 (1978).

[153] Heiskanen, W., Ober den Einfluss der Gezeiten auf die sakulare Accelera­tion des Mondes, Ann. Acad. Sci. Fennicae, A18, 1-84 (1921).

[154] Hay1, P.R. and Chrzanowski, P., A new determination of the constant of graVitation, J. Res. Nat. Bur. Stand., 29,1-31 (1942).

[155] Hendershott, M.C., The effects of solid Earth deformation on global ocean tides, Geophys. J. Roy. Astron. Soc., 29, 389-402 (1972).

[156] Hendershott, M.C., Ocean tides, £OS Trans. Amer. Geophys. Union, 54, 76-86 (1973).

[157] Hendershott, M.C., Numerical models of ocean tides, in The Sea: Ideas and Observations on Progress in the Study of the Seas, 6, 47-95 (1977).

[158] Hendershott, M.C. and Munk, W., Tides. Annual Rev. Fluid Mech., 2, 205-223 (1970).

[159] Hendershott, M.C., Munk, W.H. and Zetler, B.D., Ocean tides from SEASAT-A, in Seasat-A. Scientific contributions, NASA, Wash., D.C., 54-56 (1974).

[160] Hendershott, M.C. and Speranza, A., Co-oscillating tides in long, narrow bays; the Taylor problem reVised, Deep-Sea Res., 18,959-980 (1971).

[161] Hino, M., Sawamoto, M. and Takasu, S., Experiments on transition to tur­bulence in an oscillatory pipe flow, J. Fluid Mech., 75,193-207 (1976).

[162] Hough, S.S., On the application of harmonic analysis to the dynamical theory of the tides. II. On the general integration of Laplace's tidal equa­tions, Phil. Trans. Roy. Soc., London, A19l, 139-185 (1898).

[163] Ianniello, J.P., Tidally induced residual current in estuaries of constant breadth and depth, J. Mar. Res., 35,755-786 (1977).

[164] Irish, J., Munk, W. and Snodgrass, E., M 2-amphidrome on the northeast PaCific, Geophys. Fluid Dynamics, 2, 355-360 (1971).

[165] Jachens, R.C. and Kuo, J.T., The 0 1 tide in the North Atlantic Ocean as derived from land-based tidal gravity measurements, in Proc. 7th Symp. Earth Tides, (ed. G. Szadeczky-Kardoss), 165-175 (1976).

[166] Jackson, R.G., Sedimentological and fluid-dynamics implications of the tur­bulent bursting phenomenon in geophysical flows, J. Fluid Mech., 77, 531-560 (1976).

[167] Jeffreys, H., Tidal friction in shallow seas, Phil. Trans. Roy. Soc., London, A22l, 239-264 (1920).

[168] Jeffreys, H., Waves and tides near the shore, Geophys. J. Roy Astron. Soc., 16,253-257 (1968).

[169] Johns, B., The form of the velocity profile in a turbulent shear wave boun­dary layer, J. Geophys. Res., BO, 5109-5112 (1975).

[170] Johns, B., The modelling of tidal flow in a channel using a turbulence

Page 10: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

318 References

energy closure scheme, J. Phys. Oceanogr., 8,1042-1049 (1978). [171] Jonsson, I.G., A new approach to oscillatory rough turbulent boundary

layers, Ocean Eng., 7,109-152 (1980). [172] Kajiura, K., A model of the bottom boundary layer in water waves, Bul1.

Earthquake Res. Inst., 46, 75-123 (1968). [173] Kamphius, J.W., Friction factor under oscillatory waves, J. Waterways

Harb. Div. Am. Soc. Civ. Eng., 101, 135-144 (1975). [174] Keiller, D.C. and Sleath, J.F.A., Velocity measurements close to a rough

plate oscillating in its own plane, J. Fluid Mech., 73, 673-691 (1976). [175] Kerczek, C. and Davis, S.H., The stability of oscillatory Stokes layers, Stu­

dies in Appl. Math., 51, 239-252 (1972). [176] Kerczek, C. and Davis, S.H., Linear stability theory of oscillatory Stokes

layers, J. Fluid Mech., 62, 753-773 (1974). [177] Knopoff, L Q., Rev. Geophys., 2, 625-660 (1964). [178] Krohn, J., Brosche, P. and Sundermann, J., PaHiogezeiten und Erdrotation,

Geol. Rundschau, 70, 64-77 (1981). [179] Kuo, J.T. and Jachens, R.C., Indirect mapping of ocean tides by solving the

inverse problem for the tidal gravity observations, Ann. Geophys., Paris, 33,73-82 (1977).

[180] Kuo, J.T., Jachens, R.C., Ewing, M. and White, G., Transcontinental tidal gravity profile across the United States, Science, 168,968-971 (1970).

[18I] Lambeck, K., Tidal dissipation in the oceans: astronomical, geophysical and oceanographic consequences, Phil. Trans. Roy. Soc., London, A287, 545-594 (1977).

[182] Lambeck, K., The Earth's paleorotation, in Tidal Friction and the Earth's Rotation, (eds. P. Brosche and J. Sundermann), Springer-Verlag, 145-153 (1978).

[183] Lambeck, K., Cazenave, A. and Balmino, G., Solid earth and ocean tides estimated from satellite orbit analysis, Rev. Geophys. Space Phys., 12, 421-434 (1974).

[184] Laplace, P.S., Recherches sur plusieurs points du systeme du monde, Mem. Acad. Roy. Sci., Paris, 88, 75-182 (1775).

[185] Lesht, B.M., Benthic boundary-layer velocity profiles: dependence on averaging period, J. Phys. Oceanogr., 10,985-991 (1980).

[186] Liu, S.K. and Leendertse, J.J., A three-dimensional model tor estuaries and coastal seas. Vol. 6, Bristol bay simulations, Rand, R-2405-NOAA, 121 p. (1979).

[187] Longman, I.M., Green's function for determining the deformation of the Earth under surface mass loads. 2. Computations and numerical results, J. Geophys. Res., 68, 485-496 (1967).

[188] Longuet-Higgins, M.S., On the trapping of wave energy around islands, J. Fluid Mech., 29, 781-821 (1967).

[189] Longuet-Higgings, M.S., The eigenfunctions of Laplace's tidal equations over a sphere, Phil. Trans. Roy. Soc., London, A262, 511-607 (1968).

Page 11: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

References 319

[190] Longuet-Higgins, M.S. and Pond, G.S., The free oscillations of fluid on a hemisphere bounded by meridians of longitude, Phil. Trans. Roy. Soc., Lon­don, A266, 193-223 (1970).

[191] Luther, B.S. and Wunsch, c., Tidal charts of the central Pacific Ocean, J. Phys. Oceanogr., 5,222-230 (1975). ·

[192] Margules, M., Luftbewegungen in einer rotierenden Spharoidschale, Sitzungsber Akad. Wiss. Wienn, 102, 11-56 (1893).

[193] Marsch, J.G., Douglas, B.C., Vincent, S. and Wall, D.M., Tests and com­parison of satellite-derived geoids with Sky lab altimeter data, J. Geophys. Res., 81, 3594-3598 (1976).

[194] McCammon, C. and Wunsch, c., Tidal charts of the Indian Ocean north of 15° S, J. Geophys. Res., 82, 5993-5998 (1977).

[195] McMurtree, R. and Webb, D.J., Tidal response functions around Australia from harmonic constants, Austral. J. Mar. and Freshwater Res., 26, 245-269 (1975).

[196] Menard, G., Marine Geology of the Pacific, McGraw Hill, New York, 271 p. (1974).

[197] Merkli, P. and Thomann, H., Transition to turbulence in oscillating pipe flow, J. Fluid Mech., 68, 567-575 (1975).

[198] Miles, J.W., Resonant response of harbors: an equivalent circuit analYSiS, J. Fluid Mech., 46, 241-266 (1971).

[199] Miller, G.R., The flux of tidal energy out of the deep ocean, J. Geophys. Res., 71, 2485-2489 (1966).

[200] Mulholland, J.D., Scientific achievement from ten years of lunar laser ranging, Rev. Geophys. Space Phys., 18,549-564 (1980).

[201] Munk, W.H., Abyssal recipes, Deep-Sea Res., 13, 707-730 (1966). [202] Munk, W.H., Once again - tidal friction. Quart. J. Roy. Astron. Soc., 9,

352-375 (1968). [203] Munk, W.H. and Cartwright, D.E., Tidal spectroscopy and prediction, Phil.

Trans. Roy. Soc., London, A259, 533-581 (1966). [204] Munk, W.H. and Zctler, B.D., Deep-sea tides: a program, Science, 158,884-

886 (1967). [205] Nishida, H., Improved tidal charts for the western part of the North Pacific

Ocean, Rep. Hydrogr. Res., 15,55-70 (1980). [206] Norris, L.H. and Reynolds, W.C., Turbulent channel flow with a moving

wavy boundary. Stanford Univ. Dep. Mech. Eng. Rep., FM-lO (1975). [207] Olbers, D.J., On the energy balance of small-scale internal waves in the

deep sea, Hamburger Geophys. Einzelschriften, 24, 91 S (1974). [208] Papa, L., The free oscillations of the Ligurian sea computed by the HN­

method, Dtsch. Hydroger. 2s., 30, 81-90 (1977). [209] Parke, M.E., Open ocean tide modelling, Proc. 5th GFfJP Conf., 1978, Dept.

Geodetic Sci. Rep. 280. The Ohio State University, Columbus, Ohio, 289-297 (1978).

[210] Parke, M.E. and Hendershott, M.C., M 2' S 2, K 1 models of the global ocean

Page 12: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

320 References

tide on an elastic earth, Marine Geodesy, 3, 379-408 (1980). [211] Pekeris, C.L. and Accad, Y., Solution of Laplace's equations for the M2-tide

in the World Ocean, Phil. Trans. Roy. Soc., London, A265, 413-436 (1969). [212] Pekeris, c.L. and Accad, Y., Dynamics of the liquid core of the Earth, Phil.

Trans. Roy. Soc., London, A273, 237-260 (1972). [213] Pertsev, B.P. and Ivanova, M.V., Spatial distribution of ocean-tide M2

corrections to tidal gravity measurements in the northern hemisphere, Proc. 7th Intern. Symp. on Earth Tides, (ed. G. Szadeczky-Kardoss), Akad. Kiado, Budapest, 391-396 (976).

[214] Petrie, B., M 2-surface and internal tides out the Scottian shelf and slope, J. Marine Res., 33, 303-323 (1975).

[215] Platzman, G.W., Ocean tides and related waves, in Lectures in Applied Mathematics, Mathematical Problems in the Geophysical Sciences, 14, 239-291 (1971).

[216] Platzmann, G.W., Two-dimensional free oscillations in natural basins, J. Phys. Oceanogr., 2,117-130 (1972).

[217] Platzman, G.W., Normal modes of the Atlantic and Indian Oceans, J. Phys. Oceanogr., 5, 201-222 (1975).

[218] Platzman, G.W., Normal modes of the World Ocean, Pt. 1. Design of a finite-element barotropic model, J. Phys. Oceanogr., 8, 323-343 (1978).

[219] Platzman, G.W., Curtis, G.A., Hansen, K.S. and Slater, R.D., Normal modes of the World Ocean, Pt. 2. Description of modes in the period range 8 to 80 hours, J. Phys. Oceanogr., 11,579-603 (1981).

[220] Pnueli, A. and Pekerls, C.L., Free tidal oscillations in rotating flat basins of the form of rectangles and of sectors of circles, Phil. Trans. Roy. Soc., Lon­don, A263, 149-171 (1968).

[221] Poincare, H., Lecons de Mecanique Celeste. 3. Theroe des marees, Cauthier­Villars, Paris, 469 p. 1910.

[222] Proudman, l., On the dynamical equations of the tides, Proc. London Math. Soc., 2nd ser., 18, 1-68 (1916).

[223] Proudman, l., The effect of coastal friction on the tides, Mon. Not. Roy. Astron. Soc., Geophys. Suppl., 5, 23-26 (1941).

[224] Proudman, J., The condition that a long-period tide shall follow the equili­brium law, Geophys. J. Roy. Astron. Soc., 3, 244-249 (1960).

[225) Pugh, D., Sea levels at Aldubra Atoll, Mombasa and Mahe, western equa­torial Indian Ocean, related to tides, meteorology and ocean circulation, Deep-Sea Res., A26, 237-258 (1979).

[226] Rao, D.B., Free gravitational oscillations in rotating rectangular basins, J. Fluid Mech., 25, 523-555 (1966).

[227) Rao, D.B., Mortimer, C.H. and Schwab, D.l., Surface normal modes of Lake Michigan: calculations compared with spectra of observed water level fluc­tuations, J. Phys. Oceanogr., 6, 575-586 (1976).

[228] Rao, D.B. and Schwab, D.l., Two-dimensional normal modes in arbitrary enclosed basins on a rotating Earth: application to Lakes Ontario and

Page 13: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

References 321

Superior, Phil. Trans. Roy. Soc., London, A281, 63-96 (1976). [229] Rayleigh, J., Notes on the theory of the fortnightly tides, Phil. Mag., 6,

136-141 (1903). [230] Gavino Rodriguez, J.H., Uber die Bestimmung von reibungslosen barotropen

Eigenschwingungen des Weltozeans mittels der Lanczos-Methode. Diss. Univ. Hamburg, 25 S (1981).

[231] Rona, P.A., Harrison, R.N. and Bush, S.A., Abyssal hills of the eastern con­trol North Atlantic, Marine Geology, 16,275-292 (1974).

[232] Rossiter, J.R., On the application of relaxation methods to oceanic tides, Proc. Roy. Soc., London, A248, 482-498 (1958).

[233] Schopf, T.J.M., Paleoceanography, Harvard Univ. Press, 341 p. (1980). [234] Schwab, D.J., Internal free oscillations in Lake Ontario, Limnology and

Oceanography, 22,700-708 (1977). [235] Schwiderski, E.W., Global ocean tides, Pt. 1. A detailed hydrodynamical

interpolation model. Naval Surface Weapons Center, Dahlgren Lab., Dahlgren, 88 p. (1978).

[236] Schwiderski, E.W., Ocean tides, Pt. 2. A hydrodynamical interpolation model, Marine Geodesy, 3, 219-255 (1980).

[237] Sleath, J.F.A., Velocity measurements close to the bed in a wave tank, J. Fluid Mech., 42,111-123 (1970).

[238] Sleath, J.F.A., Stability of laminar flow at seabed, J. Waterways Harb. Div. Amer. Soc. Civ. Eng., 100, 105-122 (1974).

[239] Soulsby, R.L., Similarity scaling of turbulence spectra in marine and atmos­pheric boundary layers, J. Phys. Oceanogr., 7, 934-937 (1977).

[240] Soulsby, R.L., Measurements of the Reynolds stress components close to a marine sand bank, Marine Geodesy, 42, 35-47 (1981).

[241] Sternberg, R.W., Friction factors in tidal channels with differing bed roughness, Marine Geology, 6, 243-260 (1 %8).

[242] Sternberg, R.W., Predicting initial motion and bedload transport of sedi­ment particles in the shallow marine environment, in Shelf sediment tran­sport, (eds. D.J.P. Swift, D.B. Duane and O.H. Pilkey), Dowden, Hutchinson and Ross., Inc., Stroudsburg, 61-82 (1972).

[243] Sternberg, R.W., Measurements of boundary-layer flow and boundary roughness over Campecha Bank, Yukatan, Marine Geology, 20, 25-31 (1976).

[244] Sterneck, R., Die Gezeiten der Ozeane, Sitzber. Akad. Wiss. Wien, 129, 131-150 (1920).

[245] Street, R.O., The tides in a hemispherical ocean bounded by a continental shelf along meridian, Mon. Not. Roy. Astron. Soc., Geophys. Suppl., 3, 163-167 (1933).

[246] Sundermann, J., The semi-diurnal principal lunar tide M 2 in the Bering Sea, Deutsch. Hydr. Zs., Jahr. 30, 91-101 (1977).

[247] Taylor, G.L, Tidal oscillations in gulfs and rectangular basins, Proc. London Math. Soc., 20,148-181 (1921).

Page 14: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

322 References

[248] Thomson, W. and Tait, P.G., Treatise of Natural Philosophy, Vol. 1, Pt. 2, 527 p. (1883).

[249] Torgrimson, G.M. and Hickey, B.M., Barotropic and baroc1inic tides over the continental slope and shelf off Oregon, J. Phys. Oceanogr., 9, 945-961 (1979).

[250] Trepka, L. von, Anwendung des Hydrodynamisch-Numerischen Verfahrens zur Ermittlung des Schelfeinflusses auf die Gezeiten in Modellkanalen und Modellozeanen, Mitt. Inst. Meereskunde, Univ. Hamburg, No.9, S. 65 U 967).

[251] Veno, T., Theoretical studies on tidal waves travelling over the rotating globe, Oceanogr. Mag., 15,99-111 U%4); Ibid., 16,47-51 (1964).

[252] Villain, C., Cartes des lignes cotidales dans les oceans, Ann. Hydrogr. Paris, 4,269-388 (1952).

[253] Wang, D.P. and Mooers, C.N.K., Evidence for interior dissipation and mix­ing during a coastal upwelling event off Oregon, J. Marine Res., 35, 697-713 (1977).

[254] Weatherly, G.L., A study of bottom boundary layer of the Florida current, J. Phys. Oceanogr., 2, 54-72 (972).

[255] Weatherly, G.L. and Van Leer, J.c., On the importance of stable stratifica­tion in the structure of the bottom boundary layer on the Western Florida Shelf, in Bottom turbulence. Proc. 8th Intern. Liege CoUoq. Ocean Hydrodyn. (ed. J.c.J. Nihoul), Elsevier Sci. Publ. Co., 103-122 U 977).

[256] Weatherly, G.L. and Martin, P.J., On the structure and dynamics of the oceanic bottom boundary layer, J. Phys. Oceanogr., 8,557-570 (978).

[257] Weatherly, G.L. and Wimbush, M., Near-bottom speed and temperature observations on the Blake-Bahama outer ridge, J. Geophys. Res., 85, 3971-3981 (1980).

[258] Webb, D.J., Evidence for a tidal resonance in the Coral Sea, Nature, 243, p. 511 (1973).

[259] Webb, D.J., Green's functions and tidal prediction, Rev. Geophys. Space Phys., 12, 103-116 (1973)

[260] Webb, D.J., A model of continental-shelf resonance, Deep-Sea Res., 23, 1-15 (1976).

[261] Webb, D.J., Tides and tidal friction in a hemispherical ocean centered at the equator, Geophys. J. Roy. Astron. Soc., 61, 573-600 U 980).

[262] Wimbush, M., The physics of the benthic layer, in The benthic boundary layer, (ed. LN. McCave). Plenum Publ. Co., 3-10 (1976).

[263] Wimbush, M. and Munk, W., The benthic boundary layer, in The Sea, Vol. 4, Pt. 1 (ed. A.E. Maxwell), John Wiley and Sons, Inc., 730-758 (971).

[264] Won, LJ., Kuo, J.T. and Jachens, R.C., Mapping ocean tides with satellites: a computer Simulation, J. Geophys. Res., 83, 5947-5%0 (978).

[265] Wubber, C. and Krauss, W., The two-dimensional seiches of the Baltic sea, Oceanologica Acta, 2, 435-446 (1979).

[266] Wunsch, C., The long-period tides, Rev. Geophys., 5, 447-475 (967).

Page 15: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

References 323

[267] Wunsch, c., Internal tides in the ocean, Rev. Geophys. Space Phys., 13, 167-182 (1975).

[268] Wunsch, C. and Hendry, R., Array measurements of the bottom boundary layer and the internal wave field on the continental slope, Geophys. Fluid Dyn., 4, 101-145 (1972).

[269] Zahel, W., Die Reproduction gezeitenbedingter bewegungsvorgange im Wel­tozean mittels des Hydrodynamisch-Numerischen Verfahrens, Mitt. Insc. Meereskunde, Univ. Hamburg, No. 17, S. 50 (1970).

[270] Zahel, W., The diurnal K l-tide in the World Ocean - a numerical investiga­tion, Pure Appl. Geophys., 109, 1819-1825 (1973).

[271] Zahel, W., A global hydrodynamic numerica11°-model of the ocean tides; the oscillation system of the M 2-tides and its distribution of energy dissipa­tion, Ann. Geophys., Paris, 33, 31-40 (1977).

[272] Zahel, W., The influence of solid Earth deformations on semidiurnal and diurnal oceanic tides, in Tidal friction and the Earth's rotation, Ceds. P. Brosche and J. Sundermann), Springer-Verlag, 98-124 (1978).

[273] Zahe1, W., Mathematical modelling of global interaction between ocean tides and Earth tides, Phys. Earth Planet. Interiors, 21, 202-217 (1980).

[274] Zetler, B.D. and Cummings, R.A., Tidal observations near an amphidrome, Geophys. Surveys, 1, 85-88 (1972).

[275] Zetler, B.D. and Maul, G.A., Precession requirements for a spacecraft tide program, J. Geophys. Res., 76, 6601-6605 (1971).

[276] Zetler, B.D. and Munk, W.H., The optimum wiggliness of tidal admittance, J. Marine Res., 33,1-13 (1975).

[277] Zschau, J., Tidal friction in the solid Earth: Loading tides versus body tides, in Tidal friction and the Earth's rotation, Ceds. P. Brosche and J. Sundermann), Springer-Verlag, 62-94 (1978).

Page 16: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

INDEX

Altimetry, satellite 35-38 Amphidrom 19, 20, 22-24, 26, 41,

118-120, 122, 137, 138-141, 143, 148, 149, 164, 168, 169, 176, 192, 194

degenerate 22, 99, 122, 137, 169, 194 false 22, 24

Antinodal area 22, 24, 41,137,169 Antiresonance 28, 29 A-priori estimates 51-56

Boundary layer bottom 46, 235-308 Stokes 236-238, 249, 298

Chart, cotidal18, 19,24, 135 Constant, Doodson's 6, 229 Correction, Darwin's 7 Critical Reynolds number, 235, 237, 239,

242-244

Depth, resonance 129, 131, 132 Diffusion, turbulent energy 268, 276,

280,285,290,291 Dispersion of the waves 117 Dissipation,

tidal energy 26, 158, 172, 173, 178, 207-232

turbulent energy 240, 260, 268, 280, 290,294

Effect crustal loading 13, 15, 45, 92, 187,

189,196,207,219,228 self-attraction 13, 15,45,92, 187, 189,

196,207,219,228 (static) of the terrestrial tides 14, 184,

196,202 Equation

for tidal energy 205-207 turbulent energy 275, 276, 281, 284,

286,291,292

Factor gravimetric 39, 207 Love's reduction 175

Force attraction I, 2, 4, 12 Coriolis2,3,43,109, 121, 150,271 friction I, 4, 44, 91, 128, 158, 206,

208,215,216,227 gravity 2, 3 hydrostatic pressure 3, 205, 215, 216 tide-generating I, 3,4, 14,26, 39, 136,

175,206

Harmonics, spherical sectorial 6 tesseral6 zonal 6

Interaction, ocean and terrestrial tides 184-204,206,228

Intermittence of turbulence 254, 262

Lag angle of terrestrial tides 213, 230, 231

Latitude, critical 116 Law

power of -5/3 259, 261 resistance (linear) 91, 96, 160, 166,

170,185 resistance (quadratic) 46, 158,

295-308 velocity defect 299,300,301

Layer, logarithmic 247, 250, 251, 263, 270,278,284,289,298

Mean level of the ocean 35

Noise, tidal 11, 27, 28, 112 Number

Ekman's 267, 278 Love's 12, 14 Reynolds' (surface) 246

Page 17: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

326

Number (contd.) Rossby 266, 278, 299, 302, 306, 307

Parallax, equatorial 3 Parameter

Lamb's 93 noda1l1, 12 roughness 246--248, 299, 303

Parameterization, shelf effect 152-164 Period

astronomic 8, 9 free solid Earth oscillations 12 free ocean oscillations 19, 104-107

Perturbations, satellite orbit 30-35 Polarization of the waves 116 Potential

additive 12-17,30,31,88 attraction force 11 tidal 4-15, 31, 129 tidal gravitational 14, 206, 213

Problem, spectral 100 Production, turbulent energy 268

Quality factor 152,214,215

Radiation, shelf 151, 152 Radius, Rossby deformation 120 Ratio, Rayleigh's 88-92 Reflection

complete 124, 153 multiple 151 net 164

Resonance 26, 28, 29, 134, 151, 156, 164, 169, 183

Solvability 61-87, 182-184 Space, functional 47, 88 Spectrum

free oscillations 107-111 sea level oscillations 266 tidal potential 9 velocity 252, 253, 259-261

Stress, Reynolds' 249,259,261-264 Structure of turbulence 264, 265

Index

Sublayer, viscous 244, 245, 272, 280, 283,301

Surface, equipotential 7

Theorem existence 57-61 Squire's 237, 238 uniqueness 49-51

Tidal deformations of the solid Earth 12-15,31

evolution of the Moon-Earth system 229-233

Laplace's operator 88, 98, 101 measurements

deep water pressure 18, 19,23 gravimetric 39-41, 198 satellite 29-38 standard 18, 19, 135, 196

Tides atmospheric 45, 226--229 diurnal 6, 24-26, 129, 130, 131, 141,

142 equilibrium 7, 27, 130, 134,200,229 independent 160, 161 forced 43, 160, 161 long-period 16, 26,27,129,142,143 self-consistent equilibrium 14, 15, 44,

184 semi-diurnal 7, 20-23, 28, 129, 130,

131,137-139,176 terrestrial 12, 33, 34,40, 192,

194-199,206,213,217,230 Time

ephemeris 8, 209, 210 mean lunar 6, 8 mean solar 6, 8 siderea18

Torque, tidal forces 208, 209 Trapping of the waves 135, 151, 153, 154

Waves edge 173 intemal224-227, 229 gravitational 42, 94, 104, 109

Page 18: S2)3A978-94-009-2571-7%2F1.pdf · [3] Bogdanov, K.T. and Magarik, V.A., Numerical solution of the problem of semidiurnal tidal waves (M 2 and S2) propagation in the World Ocean, Dokl.

Index

Waves (contd.) Kelvin 94, 95, 99, 118-122, 126, 154,

166-170 Poincare 122-126, 154, 166-167 progressive 153, 155

resonant 19 Rossby 94, 95, 104, 112 standing 19, 99 Sverdrup 114-118, 124, 125

327