S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

16
Study of proton-induced fission of actinides based on the measurements of fission fragment's characteristics by Multi-Wire Proportional gas Counters (MWPC) S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval Institut de Physique Nuclaire, UCL, Louvain-la-Neuve, Belgium

description

Study of proton-induced fission of actinides based on the measurements of fission fragment's characteristics by Multi-Wire Proportional gas Counters (MWPC). S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval Institut de Physique Nuclaire, UCL, Louvain-la-Neuve, Belgium. - PowerPoint PPT Presentation

Transcript of S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

Page 1: S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

Study of proton-induced fission of actinides based on the measurements of fission

fragment's characteristics by Multi-Wire Proportional gas Counters (MWPC)

S. Isaev, R. Prieels, Th. Keutgen,

Y. El Masri, J. Van Mol, M. Delval

Institut de Physique Nuclaire,

UCL, Louvain-la-Neuve, Belgium

Page 2: S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

General scheme of the experimental set-up

FARADAY

GJ 1

GJ 2

MWPC 1

MWPC 2

Actinide’starget

DEMONliquid-scintillator cells

Proton beam

MWPC 1,2large active area X,YMulti Wire Proportional Counters

GJ 1,2Microchannel-Sidiode assembly

Counters forradioactivity control

Page 3: S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

MWPC experimental set-up(top view)

actinide’starget

Proton beam

MWPC-1 position

MWPC-2 position

MASK

MASK

Yanode

Yanode

Xanode

Xanode

Cathode

Cathode

45º

-135º

30cm

30cm

60cm

60cm

Yi1

Yi2

Xi1 Xi2

T0i

Page 4: S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

Calibration of anode's signal

Y

X

Y12

Y11

X11 X12

MASK

X11-X12 [ch.] Y11-Y12 [ch.]

X1[mm]=A*(X11-X12)[ch]+B

X1[

mm

]

X11-X12[ch]

Y1[

mm

]

Y11-Y12[ch]

Y1[mm]=C*(Y11-Y12)[ch]+D

Page 5: S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

Calibration of cathode's signal

T01=Toffset+D/vT01~=Toffset+D~/vD~=2·D

for the same solid angle limitation:Toffset=2·T01 – T01~

30cm 60cm

0º<Θ<1º

1º<Θ<2º

2º<Θ<3º3º<Θ<4º4º<Θ<5º

T01~

T01

T01

T01 T01

T01

T01~

T01~T01~T01~

Page 6: S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

Monitoring of cyclotron time-characteristics

Observation of gamma-peakby DEMON’s detector(liquid scintillator)

ΔTγ= ΔToffset1ch(MWPC)=0.5ns1ch(DEMON)=1.0ns

Tγ(DEMON)

Page 7: S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

Coincidence of cathode’s signals

MWPC-1Min<T01<Max

MWPC-2Min<T02<Max

T01 T02

Page 8: S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

Anode’s signals association: delay-line conditions

Const-1<{X11+X12-2·T01+Anorm}

T01 – cathode fast signalX11, X12 – anode signals from both edges of delay-line

X11 X12T01

T01

{X11+X12-2·T01+Anorm}<Const-2

Page 9: S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

Fission event reconstruction: MWPCs->LAB(Dekart)

Xmwpc2

Xmwpc1

Ymwpc2

Ymwpc1YLAB

XLAB

ZLAB

θ1=45º

θ2=-135º

{X2,Y2,T2}

{X1,Y1,T1}

X(Y)1=(X(Y)11-X(Y)12)·A+B ; T1=T01·0.5+Toffset-1

X(Y)2=(X(Y)22-X(Y)21)·A+B ; T2=T02·0.5+Toffset-2

D2

D1

L2

L1

2)2(1

2)2(1

2)2(1)2(1 DYXL )2(1)2(1)2(1 TLv LAB

X 2LAB

Z2LAB

Y2

LA

B

X 1LAB

Z1LAB

Y1

LA

B

Fission fragment #1X1

LAB=D1·Sinθ1-X1·Cosθ1

Z1LAB=D1·Cosθ1+X1·Sinθ1

Y1LAB=Y1

Fission fragment #2X2

LAB=D2·Sinθ2+X2·Cosθ2

Z2LAB=D2·Cosθ2-X2·Sinθ2

Y2LAB=Y2

Page 10: S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

Fission event reconstruction (LAB): Dekart->Polar

YLAB

XLAB

ZLAB

L2

L1

X 2LAB

Z2LAB

Y2

LA

B

X 1LAB

Z1LAB

Y1

LA

B

θ1s

θ2s

φ1s

φ2s

-180º<φs<180º0º<θs<180º

θ1s

φ1s

θ1s=arcCos(Z1

LAB/L1)φ1

s=arcTan(Y1LAB/X1

LAB)

θ2s=arcCos(Z2

LAB/L2)φ2

s=arcTan(Y2LAB/X2

LAB)

)2(1)2(1)2(1 TLv LAB

Page 11: S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

Center-mass coordinates

mp, vp

M, v=0 Mc, vc.m.

v2LAB

m2

m1

v1LAB v1

CM

v2CM

vcm

θ1s

θ2s

ψ1

ψ2

Known values:θ1

s, θ2s, v1

LAB, v2LAB

Velocity of center of mass:

SLABSLAB

SSLABLAB

mc SinvSinv

Sinvvv

2211

2121..

)(

Velocities of fragments in CM:

SLABmc

LABmc

CM

SLABmc

LABmc

CM

Cosvvvvv

Cosvvvvv

22..2

22

..2

11..2

12

..1

2)()(

2)()(

Page 12: S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

Determination of FF’s masses: first approximation

(v1LAB)┴

v2LAB

m2

m1

v1LAB

v1CM

v2CM

vcmθ1

s

θ2s

(v2LAB)┴

Momentum conservation perpendicular to the beam axis: (m10·v1

0)┴= (m20·v2

0)┴

m10

+m20=Mtarget+Mprojectile-Mpre

m10= Mtarget+Mprojectile-Mpre/ ( 1 + 1 / R )

m20= Mtarget+Mprojectile-Mpre / ( 1 + R )

R = (v20)┴ / (v1

0)┴

Conservation of charge’s density:MC’ / ZC’ = m1

0 / z10 = m2

0 / z20

Non-relativistic formula for kinetic energy:

E10= (1/2)·m1

0·(v10)2 E2

0= (1/2)·m20·(v2

0)2

Masses of FF, target nucleus and projectile:

z10= m1

0·ZC’/ MC’

z20= m2

0·ZC’/ MC’

Page 13: S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

Calculation of energy losses

Correction for thicknessd1=|d/Cos(θ1

S - θtarget)|d2=|d/Cos(θ2

S + θtarget)|

θ1S

θ2S

θtarget

Target

d

d1

d2

Correction of energy:E1

1= E10+E1

loss

E21= E2

0+E2loss

Velocities “in target”:02

12

12

01

11

11

2

2

mEv

mEv

Velocity of center of mass “in target”:

SS

SS

CM SinvSinv

Sinvvv

2121

11

2112

111 )(

Velocities of fragments in CM “in target”

SCMCM

CM

SCMCM

CM

Cosvvvvv

Cosvvvvv

212

1212

2112

111

1211

2111

2)()()(

2)()()(

Page 14: S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

Algorithm for FF mass determination

Known: v10, v2

0 – velocities “in MWPC”

1. First approximation “in MWPC”: m10, m2

0, z10, z2

0, E10, E2

0

2. Calculation of energy loss: E11=E1

0+ΔE1 & E22=E2

0+ ΔE2

Recalculation of velocities “in target” (using m10, m2

0): v11 and v2

1

3. Check the momentum conservation “in target”: (v11·m1

1)┴= (v21·m2

1)┴

Recalculate new masses m11, m2

1

4. Come back to the point of registration “in MWPC”: v10, v2

0

Set: m10 = m1

1, m20 = m2

1

Recalculation of E10, E2

0, z10, z2

0

Page 15: S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

Calculations of energy loss in reaction: 23892U(p,f)→105

41Nb+13452Te

1. SRIM – The Stopping and Range of Ions in Matter (J. Ziegler et. all) www.srim.org

2. Bethe-Bloch formula (by W. Leo)

2

2max

22

2

222 2

2ln2

I

Wvmz

A

ZcmrN

dx

dE eeea

3. Bethe-Bloch formula (by K. Krane)

2222

22

2

0

2

1ln2

ln4

4

I

cm

Acm

ZNze

dx

dE e

e

a

re – classical electron radius Z – atomic number of absorbing material

me – electron mass A – atomic weight of absorbing material

Na – Avogadro’s number I – mean excitation potential I = 9.76·Z + 58.8·Z-0.19

ρ – density of absorbing material z – charge of incident particle in units of eβ=v/c of the incident particle γ = 1/(1-β2)1/2

Wmax – maximum energy transfer in a single collision Wmax = 2·me·c2·(β · γ)2

Bohreff v

vzz 3/11

3/22 exp1

zv

vzz

Bohreff

Page 16: S. Isaev, R. Prieels, Th. Keutgen, Y. El Masri, J. Van Mol, M. Delval

Calculations of energy loss in reaction: 23892U(p,f)→105

41Nb+13452Te

ρtarget = 19.043 g/cm3 Dx = 180 μg/cm2

E

MeV

Leo Krane

SRIM presentzeff1 zeff

2 zeff1 zeff

2

80 2.80 4.83 2.82 4.86 2.34 2.37

136.5 5.32 6.58 5.34 6.62 2.84 2.85

E

MeV

Leo Krane

SRIM presentzeff1 zeff

2 zeff1 zeff

2

80 1.93 4.65 1.95 4.70 2.41 2.65

136.5 4.88 8.56 4.91 8.61 3.09 3.31

13452Te

10541Nb