RP_NMR_2012

48
1 Nuclear Magnetic Resonance (NMR) T2 Spectrum Pore body distribution Porosity Bound water-Free water Capillary Pressure-NMR spectra Permeability Wettability

Transcript of RP_NMR_2012

Page 1: RP_NMR_2012

1

Nuclear Magnetic Resonance

(NMR)

T2 Spectrum

Pore body distribution

Porosity

Bound water-Free water

Capillary Pressure-NMR spectra

Permeability

Wettability

Page 2: RP_NMR_2012

2

Hydrogen nuclei behave as though they are tiny bar magnets; aligned with the

spin axis. In the absence of a field they are randomly oriented.

NMR

Coates et al., 1999

Page 3: RP_NMR_2012

3

42.58 /2

!"

# #f MHz Tesla 1 Tesla= 104 Gauss !"#$%&'()*+,-(.(/01(2"3''("$

temperate latitudes

Precessional frequency, f, depends on field strength and gyromagnetic

constant,!, of a nuclei.

NMR

Coates et al., 1999

David Price
David Price
David Price
David Price
David Price
David Price
David Price
Page 4: RP_NMR_2012

4

Net magnetization produced by aligned magnetic moments.

NMR

Coates et al., 1999

1

n

i

i

Net M m#

# # $

Page 5: RP_NMR_2012

5

Degree of proton alignment as a function of time

NMR

Coates et al., 1999

T1 decay

1/(1 )t T

z oM M e

%# %

David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
Page 6: RP_NMR_2012

6

Absorbs energy from B1 field at frequency, fo, change resonance states.

NMR

Coates et al., 1999

Page 7: RP_NMR_2012

7

Tipping the nuclei NMR

Coates et al., 1999

Page 8: RP_NMR_2012

8

Free Induction Decay (FID)

NMR

Coates et al., 1999

Page 9: RP_NMR_2012

9

1. Tipping

2. Precession

3. Flip 180

4. Precession

5. realignment

At a time 2& only those left in the plane realign.

NMR

Coates et al., 1999

CPMG Pulse sequence (Carr, Purcell, Meiboom, and Gill)

David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
Page 10: RP_NMR_2012

10

A 90o pulse followed by multiple 180o pulses creates a series of echo-spins.

NMR

Coates et al., 1999

Page 11: RP_NMR_2012

11

A single decaying exponential.

NMR

Coates et al., 1999

Page 12: RP_NMR_2012

12

Intercept = Porosity

Observed decays in real rocks. While they looks as if they can be fit with a

single exponential, they cannot!

NMR

Coates et al., 1999

Page 13: RP_NMR_2012

13

Primary Controls on T2 Decay

'2 2B 2D

1 S 1 1= + +

T V T T

Surface Relaxivity

Pore Fluid Viscosity Temperature

Pore Fluid Diffusivity

Magnetic Field Gradient

Mineralogy

Pore Surface to Volume Ratio

'sandstones ~ 9- 46 (m/s

David Price
David Price
David Price
David Price
David Price
David Price
Page 14: RP_NMR_2012

14

Material '((m/s)

Glass beads 5 - 11

Sandstone 0.37- 2.39

Quartz sand 0.013

Quartz 0.83

Silica sand 2.89 - 3.06

Sandstones 9.0 - 46

Fontainebleau ss 16

carbonate 5

clays 1.8-3.3

NMR Surface relaxivities

Dunn et al., 2002; Cheng and Vinegar, 1994; Matteson et al., 1998

David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
Page 15: RP_NMR_2012

15

BVI (Bulk Volume Irreducible)

The fractional part of the formation volume occupied by immobile ,

capillary-bound water.

FFI (Free Fluid Index)

The fractional part of the formation volume occupied by fluids free ,

to flow.

NMR-Fluid Partitioning

David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
Page 16: RP_NMR_2012

16

NMR-response

Coates et al., 1999

Pore body T2 T2-spectrum

Composite

2 _1/

0

t T

xM M e

%#

2 _ 2/

0

t T

xM M e

%#

2 _ 3/

0

t T

xM M e

%#

2 _ 4/

0

t T

xM M e

%#

2 _/

0

1

i

nt T

x i

i

M M f e%

#

# $

Page 17: RP_NMR_2012

17

Typical NMR Interpretation

0.00

0.50

1.00

1.50

2.00

0.1 1 10 100 1000 10000

T2 ,msec

Incre

me

nta

l Po

rosity [p

u]

Cap

illa

ry B

ou

nd

Flu

id -

BV

I

Cla

y B

ou

nd

Wate

r -

CB

W

Solid

Rock

Matrix

Movable

Water

Clay-

Bound

Water

Hydro

Carbon Dry

Clay

Capillary-

Bound

Water

FFI BVI

)Effective

)Total

Fluid

Porous Media

T2_cut_off

33ms clastics

100-190 ms carbonates

Page 18: RP_NMR_2012

18

NMR T2 Distribution- Ambient P&T A

mp

litu

de

T2, msec

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10 100 1000 10000 100000 1000000

Brine (25000 ppm NaCl)

Berea, Sw = 100%

Brine (25000 ppm NaCl)

T2 = 1 sec Bulk Relaxation/ Surface Relaxation

Total Area = Porosity

Incre

men

tal P

oro

sit

y

Page 19: RP_NMR_2012

19

Porosity Comparison

y = 0.99x

R2 = 0.99

0

5

10

15

20

25

0 5 10 15 20 25

Saturated Porosity, %

NM

R P

oro

sit

y,%

NMR-Porosity

Page 20: RP_NMR_2012

20

NMR-Porosity

Straley et al., 1995

Page 21: RP_NMR_2012

21

NMR-Porosity

Coates et al., 1999

Page 22: RP_NMR_2012

22 Coates et al., 1999

T2_cutoff

clastics = 33ms

carbonates = 100-190ms

FFI

BVI

NMR- T2_cutoff

David Price
David Price
David Price
Page 23: RP_NMR_2012

23

NMR T2 Distribution- Ambient P&T A

mp

litu

de

T2, msec

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10 100 1000 10000 100000 1000000

Brine (25000 ppm NaCl)

Berea, Sw = 100%

Brine (25000 ppm NaCl)

T2 = 1 sec Bulk Relaxation/ Surface Relaxation

Bound water

Free water

capillary

Page 24: RP_NMR_2012

24

0

1000

2000

3000

4000

5000

6000

0.01 0.1 1 10 100 1000 10000

Am

pli

tud

e,

a.u

Free Fluid

Capillary

Bound Clay Bound

Water wet!

2

1 2

T r'#

Let '*range 10-40 (m/s

2

4

3

2

2 (10 ) (4 10 )

8 10

8

%

%

#

# + + +

# +

#

r T

ms

s

m

nm

'

(

(200 nm

David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
Page 25: RP_NMR_2012

25

NMR-Determining T2_cutoff

Straley et al., 1995

Centrifuged

Page 26: RP_NMR_2012

26

T2 Distribution (Berea - 33H)

0

50

100

150

200

250

300

350

0.01 0.1 1 10 100 1000 10000

T2, msec

Am

pli

tud

e

Saturated Desaturated

NMR-Determining T2_cutoff

Page 27: RP_NMR_2012

27

T2 distribution (Berea 33H)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0.01 0.1 1 10 100 1000 10000 T2, msec

Inc

rem

en

tal

Po

ros

ity

, %

0

0.05

0.1

0.15

0.2

0.25

Cu

mu

lati

ve

Po

ros

ity

, %

Incremental saturated Incrementa desaturated Cumulative saturated Cumulative desaturated

T2cutoff = 14.22 msec

NMR-Determining T2_cutoff

Page 28: RP_NMR_2012

28

Estimation of T2 Cutoff (Centrifuge)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100 1000 10000

0

2.5

5

7.5

10

12.5

15

Incremental Porosity Cumulative Porosity

T2 Cutoff = 6 msec

100% Saturation

Swirr

T2, msec

In

cre

me

nta

l P

oro

sit

y, %

Cu

mu

lati

ve

Po

ros

ity,

%

Page 29: RP_NMR_2012

29

5.5 4 5.8 s

Methane in Berea

Gas in Place

Page 30: RP_NMR_2012

30

Pore Characterization

0

0.2

0.4

0.6

0.8

1

0.00001 0.0001 0.001 0.01 0.1 1 10Pore Body

Grain

Pore Throat

Pore Body

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

NMR

Mercury Injection

2D Random porous network

pore bodies

pore throats

Page 31: RP_NMR_2012

31

P 0

P 5

P 2

P 10

R O C KM E R C U R Y

R O C KM E R C U R Y

R O C KM E R C U R Y

R O C K

T H R O A T

P O R E

P O R E

M E R C U R Y

100 8 0 60 4 0 20 0 .0

ME

RC

UR

Y I

NJE

CT

ION

CA

PIL

LA

RY

PR

ESS

UR

E

M E R C U R Y S A T U R A T I O N ( % P O R E V O L U M E )

P 0

P 5

P 2

P 10

Traditional Mercury Injection- Concept

Page 32: RP_NMR_2012

32 Kleinberg 1996

Page 33: RP_NMR_2012

33

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100 1000 10000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1110100100010000100000

NMR Hg Hg_Mod.

T2, msec

Capillary Pressure, psi

Wate

r S

atu

rati

on

, fr

ac.

Hg

Satu

rati

on

, fr

ac.

Comparison of Cum.T2 & Hg Injection

Page 34: RP_NMR_2012

34

Comparison of T2 distribution & Inc. Hg Injection

0

0.2

0.4

0.6

0.8

1

0.00001 0.0001 0.001 0.01 0.1 1 10

T2, sec

, -

. /0 10 10 12 3

. /0 10 10 12 3

NMR T Relaxation:-2

1 S=!T V21 2=! "#$$%&'()"*+,'(-.'*#,"/0.1"20-+rT b2

1 2 = ! 3 "e rT th2rthwhere ! 4551*6'71"8%.5#*191,#:'7'6+ ;!e rb

2

Washburn equation:-

2<=0$>P =c rth

<=0$>! ;e P Tc

T2 distribution Inc. Hg Injection

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

P,psi

David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
Page 35: RP_NMR_2012

35

0

0.2

0.4

0.6

0.8

1

0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 100000

T2, sec or (2.21 psi.sec)/P

NMR HG Inv. HG

Mercury Injection rotated

about a vertical axis and

Shifted.

NMR T2 Distribution Inc. Mercury Inj.

(2.21 psi.sec)/P

5 48 (m/s

Page 36: RP_NMR_2012

36

NMR

Coates et al., 1999

Page 37: RP_NMR_2012

37

Schlumberger Doll Research

2 4

2_gmk aT )#44a

k = md when ) is decimal and T2 is in msec.

NMR-Permeability

** a = 0.13 for carbonates Kenyon et al. 1995.

David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
Page 38: RP_NMR_2012

38

22

FFIk

C BVI

)5 67 7. / . /# 8 90 1 0 12 3 2 37 7: ;

Timur_Coates

104C

Timur 4.54

210

wirr

kS

)#

wirrBVI S)#

(1 )wirrFFI S)# %

Where FFI and BVI are in porosity units (p.u.), ) is porosity as a percentage

and k is permeability in md.

NMR-Permeability

David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
Page 39: RP_NMR_2012

39

NMR-Permeability

4 /k )

Page 40: RP_NMR_2012

40

Klinkenberg Permeability, md

NM

R E

sti

mate

d P

erm

eab

ilit

y, m

d

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0.0001 0.001 0.01 0.1 1 10 100 1000 10000

Fr ee Fl ui d M odel M ean T 2 M odel

kNMR = 1.08kCore0.94

R2 = 0.90

kNMR = 0.54kCore1.08

R2 = 0.88

NMR-Permeability

Page 41: RP_NMR_2012

41

NMR-Permeability

Page 42: RP_NMR_2012

42

NMR-log

Page 43: RP_NMR_2012

43

1 1 1 1

1 1 1 1

w o

w bw o bo

nmr

w o

w bw o bo

S C ST T T T

W

S C ST T T T

'

'

. / . /% % %0 1 0 1

2 3 2 3#. / . /

% < %0 1 0 12 3 2 3

Tw and To are peak relaxation times for water and oil saturated rock

Tbw and Tbo are peak relaxation times for water and oil

w

o

C'

''

# and Sw and So are the water and oil saturation

NMR Wettability Index

David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
David Price
Page 44: RP_NMR_2012

44

Conceptual affect on NMR

Page 45: RP_NMR_2012

45

Carbonate sample saturated with water, then crude oil

Page 46: RP_NMR_2012

46

NMR-wettability-carbonates

_ _

_

wet water wet oil

w nmr

total

S SI

S

%#

David Price
David Price
David Price
David Price
David Price
David Price
David Price
Page 47: RP_NMR_2012

47

Allen, D., C. Crary, B. Freedman, M. Andreani, W. Klopf, R. Badry, C. Flaum, B. Kenyon, R. Kleinberg,

P. Gossenberg, J. Horkowitz, D. Logan, J. Singer and J. White, 1997, How to use borehole

Nuclear Magnetic Resonance, Oil Field Review, 9, p34-57.

Chang, D. and H. Vinegar, 1994, Effective Porosity, Producible Fluid and Permeability in Carbonates from

NMR Logging, SPWLA 35th Annual Logging Symposium, June 19-22, 21pp.

Coates, G. R., L. Xiao and M. G. Prammer,1999, NMR Logging Principles and Applications, Gulf Publishing Co.

Houston, TX, 234 pp

Dastidar, R., C. Rai and C. Sondergeld, 2004, Integrating NMR with other petrophysical information to

characterize a reservoir, SPE89948.

Dunn, K. J., D. J. Bergmann and G. A. Latorraca, 2002, Nuclear Magnetic Resonance: Petrophysical and

Logging Applications, Handbook of Geophysical Exploration, Vol 32, Pergamon, New York, 293 pp

Ellis, D. V. and J. M. Singer, 2007, Well logging for Earth Scientists, Springer, The Netherlands, 692 pp.

Kenyon, W. E., H. Takazaki, C. Straley, P. N. Sen, M. Herron, A. Matteson and M. J. Petricola, 1995, A

laboratory study of nuclear magnetic resonance relaxation and its relation to depositional texture

and petrophysical properties-carbonate Thamama group, Mubarraz, Abu Dhabi, SPE-29886.

References

Page 48: RP_NMR_2012

48

Kleinberg, R. L., 1966, Utility of NMR T2 distributions, connection with capillary pressure, clay effect, and

determination of the surface relaxivity parameter '2, Magnetic Resonance Imaging, 14, 7/8, 761-

767.

Lootestijin, W. and J, Hofman, 2006, Wettability-Index determination by Nuclear Magnetic Resonance, SPE

Resrv Eval. And Eng.,146-153.

Matteson, A., J. P. Tomanic, M. M. Herron, D. F. Allen and W. E. Kenyon, 1998, NMR Relaxation of Clay-Brine

Mixtures, SPE49008, pp205-211.

!"#$%&'()*()+,-../+,012,03&'456'$(,16*5(74",2(83565"(,933$:,;8()<8,=%4>(+,!1?-7059, Schlumberger

Wireline and Testing, Houston,

Sigal, R., 2002, Coates and SDR permeability:Two variations on the same theme, Petrophysics, 43, 1, 38-46.

Straley, C. D. Rossini, H. J. Vinegar, P. N. Tutunjian and C. E. Morriss, 1994, Core analysis by low field NMR

Paper 9404 Soc. Core Analysts., 43-56.

References