ROMS 4D-Var: The Complete Story

56
ROMS 4D-Var: The Complete Story Andy Moore Ocean Sciences Department University of California Santa Cruz & Hernan Arango IMCS, Rutgers University

description

ROMS 4D-Var: The Complete Story. Andy Moore Ocean Sciences Department University of California Santa Cruz & Hernan Arango IMCS, Rutgers University. Acknowledgements. ONR NSF. Chris Edwards, UCSC Jerome Fiechter, UCSC Gregoire Broquet, UCSC Milena Veneziani, UCSC - PowerPoint PPT Presentation

Transcript of ROMS 4D-Var: The Complete Story

Page 1: ROMS 4D-Var:  The Complete Story

ROMS 4D-Var: The Complete Story

Andy MooreOcean Sciences Department

University of California Santa Cruz&

Hernan ArangoIMCS, Rutgers University

Page 2: ROMS 4D-Var:  The Complete Story

Acknowledgements• Chris Edwards, UCSC • Jerome Fiechter, UCSC• Gregoire Broquet, UCSC• Milena Veneziani, UCSC• Javier Zavala, Rutgers• Gordon Zhang, Rutgers• Julia Levin, Rutgers• John Wilkin, Rutgers• Brian Powell, U Hawaii• Bruce Cornuelle, Scripps• Art Miller, Scripps• Emanuele Di Lorenzo, Georgia Tech• Anthony Weaver, CERFACS• Mike Fisher, ECMWF

• ONR• NSF

Page 3: ROMS 4D-Var:  The Complete Story

Outline

• What is data assimilation?

• Review 4-dimensional variational methods

• Illustrative examples for California Current

Page 4: ROMS 4D-Var:  The Complete Story

What is data assimilation?

Page 5: ROMS 4D-Var:  The Complete Story

Best Linear Unbiased Estimate (BLUE)

1y 2y

Prior hypothesis: random, unbiased, uncorrelated errors

1 2, Error std:

Find: A linear, minimum variance, unbiased estimate

1 1 2 2ax a y a y 1 22

a a truex x so that is minimised

Page 6: ROMS 4D-Var:  The Complete Story

Best Linear Unbiased Estimate (BLUE)

2 22 1

1 22 2 2 21 2 1 2

ax y y

2 2 2 1

1 1 1 2 2 1( ) ( )y y y

2 2

1 21 22 2 2 2

1 2 1 2

ax y y

2 2 1 2

1 1 2 2 2 1( ) ( )y y y

OR

Page 7: ROMS 4D-Var:  The Complete Story

Best Linear Unbiased Estimate (BLUE)

2 2 2 1( ) ( )a b b b y bx x y x

2 2 1 2( ) ( )a b b y y bx x y x

OR

Let 1 2, by x y y

2 2 1 2( )a b y

Posterior error:

Page 8: ROMS 4D-Var:  The Complete Story

ROMS

,y R

Data Assimilation

bb(t), Bb

fb(t), Bf

xb(0), B

time

x(t)

Obs, y

Model solutions depends on xb(0), fb(t), bb(t), (t)

xb(t)

Page 9: ROMS 4D-Var:  The Complete Story

Data Assimilation

Find ( (0), ( ), ( ), ( ))T T T Tt t t b fz x ε ε η

that minimizes the variance given by:

initialconditionincrement

boundaryconditionincrement

forcingincrement

corrections for model

error

1 11 1

2 2TTJ z D z Gz d R Gz d

diag( , , , ) b fD B B B Q

Background error covariance

TangentLinearModel

ObsErrorCov.

Innovation

bd y Hx

Page 10: ROMS 4D-Var:  The Complete Story

4D-Variational Data Assimilation (4D-Var)

At the minimum of J we have :

( ) ( )T Ta

1 1 1 1b bz z D G R G G R y Hx

( ) ( )T Ta

1b bz z DG GDG R y Hx

OR

time

x(t)

Obs, y

xb(t)

xa(t)

J z 0

Page 11: ROMS 4D-Var:  The Complete Story

Matrix-less Operations

TGDG δThere are no matrix multiplications!

Zonal shear flow

Page 12: ROMS 4D-Var:  The Complete Story

Matrix-less Operations

There are no matrix multiplications!

Adjoint ROMS

TGDG δ

Zonal shear flow

Page 13: ROMS 4D-Var:  The Complete Story

Matrix-less Operations

There are no matrix multiplications!

Adjoint ROMS

TGDG δ

Zonal shear flow

Page 14: ROMS 4D-Var:  The Complete Story

Matrix-less Operations

There are no matrix multiplications!

Covariance

TGDG δ

Zonal shear flow

Page 15: ROMS 4D-Var:  The Complete Story

Matrix-less Operations

There are no matrix multiplications!

Covariance

TGDG δ

Zonal shear flow

Page 16: ROMS 4D-Var:  The Complete Story

Matrix-less Operations

There are no matrix multiplications!

Tangent Linear ROMS

TGDG δ

Zonal shear flow

Page 17: ROMS 4D-Var:  The Complete Story

Matrix-less Operations

There are no matrix multiplications!

Tangent Linear ROMS

TGDG δ

Zonal shear flow

Page 18: ROMS 4D-Var:  The Complete Story

Representers

TGDG δ

A covariance

= A representer

Green’s Function

Zonal shear flow

Page 19: ROMS 4D-Var:  The Complete Story

A Tale of Two Spaces

( ) ( )T Ta

1 1 1 1b bz z D G R G G R y Hx

( ) ( )T Ta

1b bz z DG GDG R y Hx

K = Kalman Gain Matrix

Solve linear system of equations!

Page 20: ROMS 4D-Var:  The Complete Story

A Tale of Two Spaces

( ) ( )T Ta

1 1 1 1b bz z D G R G G R y Hx

( ) ( )T Ta

1b bz z DG GDG R y Hx

Solve linear system of equations!

model t model t(N N ) (N N )

obs obs(N N )obs modelN N

Page 21: ROMS 4D-Var:  The Complete Story

A Tale of Two Spaces

( ) ( )T Ta

1 1 1 1b bz z D G R G G R y Hx

( ) ( )T Ta

1b bz z DG GDG R y Hx

Model space searches: Incremental 4D-Var (I4D-Var)

Observation space searches: Physical-space Statistical Analysis System (4D-PSAS)

Page 22: ROMS 4D-Var:  The Complete Story

An alternative approach in observation space:The Method of Representers

(t) (t) (t) a bx x β

matrix of representers

vector of representercoefficients

(t)bx : solution of finite-amplitude linearization of ROMS (RPROMS)

R4D-Var

(Bennett, 2002)

Page 23: ROMS 4D-Var:  The Complete Story

Representers

TGDG δ

A covariance

= A representer

Green’s Function

Zonal shear flow

Page 24: ROMS 4D-Var:  The Complete Story

4D-Var: Two Flavours

Strong constraint: Model is error free ( ) 0t η

Weak constraint: Model has errors ( ) 0t η

Only practical in observation space

Page 25: ROMS 4D-Var:  The Complete Story

4D-Var Summary

Model space: I4D-Var, strong only (IS4D-Var)

Observation space: 4D-PSAS, R4D-Var strong or weak

Page 26: ROMS 4D-Var:  The Complete Story

Former Secretary of DefenseDonald Rumsfeld

Page 27: ROMS 4D-Var:  The Complete Story

Why 3 4D-Var Systems?

• I4D-Var: traditional NWP, lots of experience, strong only (will phase out).

• R4D-Var: formally most correct, mathematically rigorous, problems with high Ro.

• 4D-PSAS: an excellent compromise, more robust for high Ro, formally suboptimal.

Page 28: ROMS 4D-Var:  The Complete Story

The California Current (CCS)

Page 29: ROMS 4D-Var:  The Complete Story

The California Current System (CCS)

30km grid 10km grid

Veneziani et al (2009)Broquet et al (2009)

Page 30: ROMS 4D-Var:  The Complete Story

The California Current System (CCS)

COAMPS 10km winds; ECCO open boundary conditions

30km grid 10km grid

Veneziani et al (2009); Broquet et al (2009)

June mean SST (2000-2004)

fb(t) bb(t)

Page 31: ROMS 4D-Var:  The Complete Story

3km grid

ChrisEdwards

Page 32: ROMS 4D-Var:  The Complete Story

Observations (y)

CalCOFI &GLOBEC

SST &SSH

ARGO

TOPP Elephant Seals

Ingleby andHuddleston (2007)

Page 33: ROMS 4D-Var:  The Complete Story

Strong Constraint 4D-Var

Page 34: ROMS 4D-Var:  The Complete Story

A Tale of Two Spaces

( ) ( )T Ta

1 1 1 1b bz z D G R G G R y Hx

( ) ( )T Ta

1b bz z DG GDG R y Hx

Solve linear system of equations!

5model modelN N ~ 10

4obs obs(N N ) ~ 10

obs modelN <N

Page 35: ROMS 4D-Var:  The Complete Story

CCS 4D-Var

( ) ( )T Ta

1 1 1 1b bz z D G R G G R y Hx

T( (0), (t), (t), (t))b b b bz x b f 0

From previouscycle

ECCO COAMPS

( ) ( )T Ta

1b bz z DG GDG R y Hx

Page 36: ROMS 4D-Var:  The Complete Story

( )T 1 1 1D G R G

Model space (~105):

Observation space (~104):

( )T 1GDG R

Both matrices are conditioned the samewith respect to inversion(Courtier, 1997)

Jmin

July 2000: 4 day assimilation windowSTRONG CONSTRAINT

# iterations # iterations(1 outer, 50 inner,Lh=50 km, Lv=30m)

Model Space vs Observation Space(I4D-Var vs 4D-PSAS vs R4D-Var)

J J

Page 37: ROMS 4D-Var:  The Complete Story

SST Increments x(0)

I4D-Var 4D-PSAS R4D-VarModel Space

Inner-loop 50

Observation Space

Observation Space

Page 38: ROMS 4D-Var:  The Complete Story

Initial conditions vs surface forcingvs boundary conditions

No

ass

imil

atio

n

i.c.only

i.c. + f i.c.+ f + b.c.

J

IS4D-Var, 1 outer, 50 inner4 day window, July 2000

Page 39: ROMS 4D-Var:  The Complete Story

Model Skill

No assim.Assim.14d frcst

I4D-Var

RMS error in temperature

(1 outer, 20 inner, 14d cyclesLh=50 km, Lv=30m)

Broquet et al (2009)

Page 40: ROMS 4D-Var:  The Complete Story

Surface Flux Corrections, (I4D-Var)

Wind stress increments(Spring, 2000-2004)

Heat flux increments(Spring, 2000-2004)

Broquet

Page 41: ROMS 4D-Var:  The Complete Story

Weak Constraint 4D-Var

Page 42: ROMS 4D-Var:  The Complete Story

Model Error (t)

Model error priorstd in SST

Page 43: ROMS 4D-Var:  The Complete Story

A Tale of Two Spaces

( ) ( )T Ta

1 1 1 1b bz z D G R G G R y Hx

( ) ( )T Ta

1b bz z DG GDG R y Hx

Solve linear system of equations!

8model t model t(N N ) (N N ) ~ 10

4obs obs(N N ) ~ 10

obs modelN N

Page 44: ROMS 4D-Var:  The Complete Story

( )T 1 1 1D G R G

( )T 1GDG R

Jmin

# iterations # iterations(1 outer, 50 inner,Lh=50 km, Lv=30m)

Model Space vs Observation Space(I4D-Var vs 4D-PSAS vs R4D-Var)

July 2000: 4 day assimilation windowSTRONG vs WEAK CONSTRAINT

J J

Model space (~108):

Observation space (~104):

Page 45: ROMS 4D-Var:  The Complete Story

4D-Var Post-Processing

• Observation sensitivity• Representer functions• Posterior errors

Page 46: ROMS 4D-Var:  The Complete Story

Assimilation impacts on CC

No assim

IS4D-Var

Time meanalongshore

flow across 37N,2000-2004

(30km)

(Broquet et al,2009)

Page 47: ROMS 4D-Var:  The Complete Story

0 127

500 122

(37N,day 7)W

W

I v d dz

Observation Sensitivity

0.3 SvI

I y

What is the sensitivity of the transport I tovariations in the observations?

What is ?

Page 48: ROMS 4D-Var:  The Complete Story

Observations (y)

CalCOFI &GLOBEC

SST &SSH

ARGO

TOPP Elephant Seals

Ingleby andHuddleston (2007)

Page 49: ROMS 4D-Var:  The Complete Story

Sensitivity of upper-ocean alongshoretransport across 37N, 0-500m, on day 7to SST & SSH observations on day 4(July 2000)

SSH day 4 SST day 4

Sverdrups per degree CSverdrups per metre

Observation Sensitivity

Applications: predictability, quality control, array design

Page 50: ROMS 4D-Var:  The Complete Story

CalCOFI GLOBEC

Sv/deg C Sv/psu Sv/deg C Sv/psu

dep

th

I T I T I S I S

Applications: predictability, quality control, array design

Page 51: ROMS 4D-Var:  The Complete Story

Observations (y)

CalCOFI &GLOBEC

SST &SSH

ARGO

TOPP Elephant Seals

Ingleby andHuddleston (2007)

Page 52: ROMS 4D-Var:  The Complete Story

The Method of Representers

(t) (t) (t) a bx x β

matrix of representers

vector of representer

coeffiecients

(t)bx : solution of finite-amplitude linearization of ROMS (RPROMS)

Page 53: ROMS 4D-Var:  The Complete Story

There are no matrix multiplications!

Representers

TGDG δ

A covariance

= A representer

Green’s Function

Page 54: ROMS 4D-Var:  The Complete Story

Representer Functions

, day 0T T , day 14T T

, day 0T S , day 0T

70

80

90

Page 55: ROMS 4D-Var:  The Complete Story

Summary• ROMS 4D-Var system is unique• Powerful post-processing tools• All parallel• 4D-Var rounds out the adjoint sensitivity and

generalized stability tool kits in ROMS• CCS, CGOA, IAS, EAC, PhilEX• Biological assimilation• Outstanding issues: - multivariate refinements for coastal regions - non-isotropic, non-homogeneous cov. - multiple grids - posterior errors

Page 56: ROMS 4D-Var:  The Complete Story

ROMSROMS