Rommy Joyce - Urban Planning Modules: Dynamo Custom Nodes for Parametric Land Use Planning (Poster)

1
DYNAMO CUSTOM NODES FOR PARAMETRIC LAND USE PLANNING URBAN PLANNING MODULES CEE 220: BIM Special Studies ROMMY JOYCE For the Berryessa Development Project, we did the land-use planning manually. It took us a long me and it was hard to update it and keep it up to date. What we really wanted to try do was to create a tool that will let us do this work more fluently, more automacally so that we could test many alternaves as opposed to having to do them manually. The advantage of creang this tool is that we could test more alternaves with less work and ulmately find the best alternave. In order to automacally create, analyze, and opmize different alternaves, we developed a framework that decomposes this problem into something that is mathemacally driven. We tested this framework by developing one series of modules as a proof of concept. Given the framework, someone else can add addional modules to test different strategies and plug them into our framework. As we procede, we will keep on developing new modules that will allow us to implement and test more complex planning assumpons that exhibit different types of planning behaviors. We could also add different measures for evaluang how good our potenal soluons are. In the end, we are generang and tesng a lot of data to present alternaves in a way that is intuive and gives decision makers insights to help them make beer decisions. Our modules focus on the overall land use strategy, generang possible layouts of urban areas. In essence, these modules divide the project site into sub-parcels, adding routes, major streets, alley ways, setbacks, and major constraints that the project site might have. These modules implement a set of rules to suggest the type of forms and buildings for each space. For the building generator module, we use a simple linear relaonship. We could also generate buildings with different uses based on the distance or different density. We use the different alternaves generated to evaluate energy use. We could also take into account the percentage of open space, cost of construcon, shading, percentage of daylight on each space, and walkability potenal. We could opmize by considering different alternaves and evaluang the tradeoff between different criteria such as building proximity versus building energy. For the metrics and evaluators, there are a lot of things that we could be measuring. We could even come up with the walkability desirability measure and different measures for evaluang how good our potenal soluons are. Our Goals Our Approach Our Vision Layout Generator Building Generator Analysis Opmizaon MODULES Dynamo Revit Pareto-Optimality

Transcript of Rommy Joyce - Urban Planning Modules: Dynamo Custom Nodes for Parametric Land Use Planning (Poster)

DYNAMO CUSTOM NODES FOR PARAMETRIC LAND USE PLANNINGURBAN PL ANNING MODULES

CEE 220: BIM Specia l StudiesROMMY JOYCE

Fo r t h e B e r r ye s s a D e ve l o p m e nt P ro j e c t , we d i d t h e l a n d - u s e p l a n n i n g m a n u a l l y. I t to o k u s a l o n g ti m e a n d i t wa s h a rd to u p d ate i t a n d ke e p i t u p to d ate . W h at we re a l l y wa nte d to t r y d o wa s to c re ate a to o l t h at w i l l l e t u s d o t h i s wo r k m o re fl u e nt l y, m o re a u to m ati ca l l y s o t h at we co u l d te st m a ny a l te r n ati ve s a s o p p o s e d to h av i n g to d o t h e m m a n u a l l y. T h e a d va nta ge o f c re ati n g t h i s to o l i s t h at we co u l d te st m o re a l te r n ati ve s w i t h l e s s wo r k a n d u l ti m ate l y fi n d t h e b e st a l te r n ati ve .

I n o rd e r to a u to m ati ca l l y c re ate , a n a l yze , a n d o p ti m i ze d i ffe re nt a l te r n ati ve s , we d e ve l o p e d a f ra m e wo r k t h at d e co m p o s e s t h i s p ro b l e m i nto s o m e t h i n g t h at i s m at h e m ati ca l l y d r i ve n . We te ste d t h i s f ra m e wo r k b y d e ve l o p i n g o n e s e r i e s o f m o d u l e s a s a p ro o f o f co n c e p t . G i ve n t h e f ra m e wo r k , s o m e o n e e l s e ca n a d d a d d i ti o n a l m o d u l e s to te st d i ffe re nt s t rate g i e s a n d p l u g t h e m i nto o u r f ra m e wo r k .

A s we p ro c e d e , we w i l l ke e p o n d e ve l o p i n g n e w m o d u l e s t h at w i l l a l l o w u s to i m p l e m e nt a n d te st m o re co m p l ex p l a n n i n g a s s u m p ti o n s t h at ex h i b i t d i ffe re nt t y p e s o f p l a n n i n g b e h av i o rs . We co u l d a l s o a d d d i ffe re nt m e a s u re s fo r e va l u ati n g h o w go o d o u r p o te nti a l s o l u ti o n s a re . I n t h e e n d , we a re ge n e rati n g a n d te sti n g a l o t o f d ata to p re s e nt a l te r n ati ve s i n a way t h at i s i n t u i ti ve a n d g i ve s d e c i s i o n m a ke rs i n s i g ht s to h e l p t h e m m a ke b e tte r d e c i s i o n s .

O u r m o d u l e s fo c u s o n t h e o ve ra l l l a n d u s e st rate g y, ge n e rati n g p o s s i b l e l ayo u t s o f u r b a n a re a s . I n e s s e n c e , t h e s e m o d u l e s d i v i d e t h e p ro j e c t s i te i n to s u b - p a rc e l s , a d d i n g ro u te s , m a j o r s t re e t s , a l l e y ways , s e t b a c ks , a n d m a j o r co n st ra i nt s t h at t h e p ro j e c t s i te m i g ht h ave .

T h e s e m o d u l e s i m p l e m e nt a s e t o f r u l e s to s u g ge st t h e t y p e o f fo r m s a n d b u i l d i n g s fo r e a c h s p a c e . Fo r t h e b u i l d i n g ge n e rato r m o d u l e , we u s e a s i m p l e l i n e a r re l ati o n s h i p . We co u l d a l s o ge n e rate b u i l d i n g s w i t h d i ffe re nt u s e s b a s e d o n t h e d i s ta n c e o r d i ffe re nt d e n s i t y.

We u s e t h e d i ffe re nt a l te r n ati ve s ge n e rate d to e va l u ate e n e rg y u s e . We co u l d a l s o ta ke i nto a c co u nt t h e p e rc e nta ge o f o p e n s p a c e , co st o f co n st r u c ti o n , s h a d i n g , p e rc e nta ge o f d ay l i g ht o n e a c h s p a c e , a n d wa l ka b i l i t y p o te nti a l .

We co u l d o p ti m i ze b y co n s i d e r i n g d i ffe re nt a l te r n ati ve s a n d e va l u ati n g t h e t ra d e o ff b e t we e n d i ffe re nt c r i te r i a s u c h a s b u i l d i n g p rox i m i t y ve rs u s b u i l d i n g e n e rg y. Fo r t h e m e t r i c s a n d e va l u ato rs , t h e re a re a l o t o f t h i n g s t h at we co u l d b e m e a s u r i n g . We co u l d e ve n co m e u p w i t h t h e wa l ka b i l i t y d e s i ra b i l i t y m e a s u re a n d d i ffe re nt m e a s u re s fo r e va l u ati n g h o w go o d o u r p o te nti a l s o l u ti o n s a re .

O u r G o a l s O u r A p p ro a c h O u r V i s i o n

L ayo u t G e n e rato r B u i l d i n g G e n e rato r A n a l ys i s O p ti m i zati o n

MODULES

Dyna

moRe

vit

Pareto-Opt imal i ty