Rock Socket EC 7 Template- Rev 00

63
PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD CONSULTING PORT AND COASTAL ENGINEERS PROJECT 1096 Matola TCM - FEL 3 DATE 6/6/2022 SHEET # 01 ISSUED BY SIGNED DATE SECTION DESIGN WGD DRAWING REF. 1096/00/5040 and 1096/00/5100 CHECKED SAH MODEL REF. NA APPROVED PES CALC # 1096|Socket Ø 1016 Piles|001 Rev 00 CALC FILE RE X:\PRDW Projects\Current\Mozambique (1096) Matola TCM FEL 3\Working\Engineers\WGD\4. Calculations MODEL FILE R Group Effects Must be considered for a centre to centre spacing less than 4 diameters between pile shafts for axial load Design of rock sockets for tubular steel piles Check 1. Axial loading (Compression and Tension) Check 2. Lateral Loading Input Calculation Note Design of rock sockets to LRFD using FHWA, 2010 - Drilled Shafts: Construction procedures and LRFD design methods In accordance with extracts from Tomlinson Lateral checks conducted using Lpile v 6.0 from Ensoft Pile Group Ø 1016 x 18wt Piles Critical Pile D4 (Comp) & D3 (Lat) Position (in x) All 1016mm Piles Rock Level -19 m MSL Critical Load Combination Raked (Y/N) N Tubular Steel Pile Outside Diameter D ### m See sk Wall Thickness t ### m Level at top of pile z1 1.70 m MSL Sea bed level z2 ### m MSL Raking angle a 0.24 RAD Rock Socket Socket Length Ls 6.50 m Socket outside diameter Ds 0.90 m Penetration depth Pd 3.00 m Steel Elastic Modulus Steel Es ### MPa Steel yield Strength Fy 350 MPa Unit weight of steel g ste 77 Concrete Elastic Modulus Concrete Ec ### MPa Concrete Strength fc 45 MPa Unit weight of reinforced concrete γ con 25 Rock Rock UCS (average over socket) 2.00 MPa RQD (average over socket) RQD 60.0% Unit weight of rock y roc 20 Loading Working Ultimate Axial Compression (Reactions for Prokon Model) PDE 2238 3003 Axial Tension (Reactions from Prokon Model) TDE 1 1 Momets load cases included under the lateral load checks Socket Sizing - Ø 1016 x 18wt Piles X:\PRDW Projects\Current\Mozambique (1096) Matola TCM FEL 3\Working\Engineers\DJP\2. Design\Prokon Models\Phase 4A - 4B loading\Final Rakers\1096 - 4A Berth 4B Loads - 2012-03-21 - API Rev01.A03 Calculation Description Initial sizing of pile (Ø governed by casing Ø length governed by loading and geo resistance - ULS case and SLS case Use Initial sizing from Check 1. Calculate RC pile axial load bending moment inte (use Lpile), factor interaction curves by LRFD structural resistance factors, calcu lateral resistance using LPile input LRFD factored loads factored again by the geot resistance factor and check that pile response does not exceed the factored interac allowable bending moment for associated vertical loads. ULS case and SLS case Spreadsheet Notation Governing Code Reference Pile Reference Member Dimensions Material Properties kN/m³ kN/m³ quc kN/m³

Transcript of Rock Socket EC 7 Template- Rev 00

Page 1: Rock Socket EC 7 Template- Rev 00

PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD

CONSULTING PORT AND COASTAL ENGINEERS

PROJECT 1096 Matola TCM - FEL 3 DATE 4/7/2023 SHEET # 01 of 01

ISSUED BY SIGNED DATE SECTION

DESIGN WGD DRAWING REF. 1096/00/5040 and 1096/00/5100

CHECKED SAH MODEL REF. NA

APPROVED PES CALC # 1096|Socket Ø 1016 Piles|001 Rev 00

CALC FILE REF. X:\PRDW Projects\Current\Mozambique (1096) Matola TCM FEL 3\Working\Engineers\WGD\4. Calculations

MODEL FILE REF.

Group Effects Must be considered for a centre to centre spacing less than 4 diameters between pile shafts for axial loads and 5 diameters for lateral loads

Design of rock sockets for tubular steel piles

Check 1. Axial loading (Compression and Tension)

Check 2. Lateral Loading

Input Calculation Note

Design of rock sockets to LRFD using FHWA, 2010 - Drilled Shafts: Construction procedures and LRFD design methods

In accordance with extracts from Tomlinson

Lateral checks conducted using Lpile v 6.0 from Ensoft

Pile Reference Pile Group Ø 1016 x 18wt Piles

Critical Pile D4 (Comp) & D3 (Lat)

Position (in x) All 1016mm Piles

Rock Level -18.5 m MSLCritical Load Combination

Raked (Y/N) N

Tubular Steel Pile

Outside Diameter D 1.0160 m See sketch below

Wall Thickness t 0.0180 m

Level at top of pile z1 1.70 m MSL

Sea bed level z2 -18.50 m MSL

Raking angle a 0.24 RAD

Rock Socket

Socket Length Ls 6.50 m

Socket outside diameter Ds 0.90 m

Penetration depth Pd 3.00 m

Steel

Elastic Modulus Steel Es 210000 MPa

Steel yield Strength Fy 350 MPa

Unit weight of steel g steel 77

Concrete

Elastic Modulus Concrete Ec 20000 MPa

Concrete Strength fc 45 MPa

Unit weight of reinforced concrete γ concrete 25

Rock

Rock UCS (average over socket) 2.00 MPa

RQD (average over socket) RQD 60.0%

Unit weight of rock y rock 20

Loading

Working Ultimate

Axial Compression (Reactions for Prokon Model) PDE 2238 3003 kN

Axial Tension (Reactions from Prokon Model) TDE 1 1 kN

Momets load cases included under the lateral load checks

Socket Sizing - Ø 1016 x 18wt Piles

X:\PRDW Projects\Current\Mozambique (1096) Matola TCM FEL 3\Working\Engineers\DJP\2. Design\Prokon Models\Phase 4A - 4B loading\Final - incl. add. Rakers\1096 - 4A Berth 4B Loads - 2012-03-21 - API Rev01.A03

Calculation Description

→ Initial sizing of pile (Ø governed by casing Ø length governed by loading and geotechical axial resistance - ULS case and SLS case

→ Use Initial sizing from Check 1. Calculate RC pile axial load bending moment interaction curves (use Lpile), factor interaction curves by LRFD structural resistance factors, calculate geotechnical lateral resistance using LPile input LRFD factored loads factored again by the geotechnical lateral resistance factor and check that pile response does not exceed the factored interaction curves allowable bending moment for associated vertical loads. ULS case and SLS case

Spreadsheet Notation

Governing Code Reference

Member Dimensions

Material Properties

kN/m³

kN/m³

quc

kN/m³

I13
YH: FHWA, 2010, pg 14-2 to 3
F42
YH: Can't change, otherwise you need to read off new values from settlement curves
F46
YH: Not applicable since we considering verticle piles
F59
YH: Can't change
F63
YH: If Changed, then reduction factors need to be calculated manually in the spreadsheet
F64
YH: Changing this value requires you to change to change the mass factor manually in the sheet.
Page 2: Rock Socket EC 7 Template- Rev 00

Design Checks

Rock Socket Design Checks Criteria Reference Results

Axial Compression

Rock Socket Shaft Friction 0.94 OK

Settlement under axial loading 3.82 mm

Axial Tension

Rock Socket Pull Out Resistance 0.00 OK

Rock Socket Shaft Friction 0.00 OK

Rock Socket Design Checks Criteria Reference Results

Lateral Loading

Casing Factored Moment Resistance OK OK

Socket Factored Moment Resistance OK OK

Deflection at ULS 0.0036 OK

Typical Section

Condition Status

ρ < 25mm

Condition Status

ρ < 10% shaft Ø

Steel tubular pile - length varies

Pile Cap - Pile Concrete ConnectionLconpp | Lconsk

Penetration depth (2-3m) (Pd)

Rock socket - length varies (Ls)

Rock socket

Socket- Pile Concrete ConnectionLconpp | Lconsk

Insitu concrete

Insitu concrete

Precast pile cap

Rock level

D

t

z1

z2

Ds

Page 3: Rock Socket EC 7 Template- Rev 00

PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD

CONSULTING PORT AND COASTAL ENGINEERS

PROJECT 1096 Matola TCM - Phase 4 - FEL 3 DATE 4/7/2023 SHEET # 01 of 01

ISSUED BY SIGNED DATE SECTION Socket Sizing - Ø 1016 x 18wt Piles

DESIGN WGD DRAWING REF. 1096/00/5040 and 1096/00/5100

CHECKED SAH MODEL REF. NA

APPROVED PES CALC # 1096|Socket Ø 1016 Piles|001 Rev 00

CALC FILE REF. X:\PRDW Projects\Current\Mozambique (1096) Matola TCM FEL 3\Working\Engineers\WGD\4. Calculations

MODEL FILE REF. X:\PRDW Projects\Current\Mozambique (1096) Matola TCM FEL 3\Working\Engineers\DJP\2. Design\Prokon Models\Phase 4A - 4B loading\Final - incl. add. Rakers\1096 - 4A Berth 4B Loads - 2012-03-21 - API Rev01.A03

CHECK 1. Design of rock socket for compression and tenison loading - Based on Tomlinson and FHWA, 2010

Input Calculation Note

Tomlinson's

FHWA, 2010 - Drilled Shafts: Construction Procedures and LRFD Design Methods

Pile Reference Pile Group Ø 1016 x 18wt PilesCritical Pile D4 (Comp) & D3 (Lat)Position (in x) All 1016mm PilesRock Level -18.5 m MSL

Critical Load Combination 0Raked (Y/N) N

Outside Diameter D 1.016 m

Wall Thickness t 0.018 m

Level at top of pile z1 1.70 m MSL

Sea bed level z2 -18.50 m MSL

Raking angle a 0.24 RAD

Socket Length Ls 6.50 m

Socket outside diameter Ds 0.90 m

Penetration depth Pd 3.00 m

Section PropertiesInside Diameter d 0.98 m

Steel area AS 0.056

Total plug area AT 0.754

Moment of Inertia I 0.007

Elast. Sect. Mod. Ze 0.014

Plast. Sect. Mod. Zp 0.018

Radius of Gyration r 0.353 m

Elastic Modulus Steel Es 210000 MPa

Steel yield Strength Fy 350 MPa

Unit weight of steel g steel 77

Elastic Modulus Concrete Ec 20000 MPa

Concrete Strength fc 45 MPa

Unit weight of reinforced concrete γ concrete 25

Rock UCS 2.00 MPa

RQD RQD 60%

Unit weight of rock y rock 20.00

Loading

Working Ultimate

Axial Compression (extreme environmental conditions) PDE 2238 3003 kN

Axial Tension (extreme environmental conditions) TDE 1 1 kN

Design ChecksRock Socket Axial Loading Checks Criteria Reference Results Condition Status

Axial Compression

Rock Socket Shaft Friction 0.94 OK

Settlement under axial loading 3.82 mm

Axial Tension

Calculation Description

Spreadsheet Notation

Governing Code Reference

Member Dimentions

m⁴

Material Properties

kN/m³

kN/m³

quc

kN/m³

ρ < 25mm

Page 4: Rock Socket EC 7 Template- Rev 00

Rock Socket Pull Out Resistance 0.00 OK

Rock Socket Shaft Friction 0.00 OK

Page 5: Rock Socket EC 7 Template- Rev 00

ROCK SOCKET DESIGN

Axial Compression

Rock Socket Shaft Friction - ultimate bond stress between socket concrete and rock

- From Tomlinson - Equ: 4.25

- LRFD design factors from FWHA, 2010

Ultimate bond stress fs =

2.00 MPa

Reduction factor α = 0.22 From graph below

(Tomlinson, 1994)

Correction factor β = 0.72 From graph below

RQD = 60.0%

Therefore mass factor j = 0.32

(Tomlinson, 1994)

Rock socket shaft friction resistence fs =

= 0.22 x 0.72 x 2

= 0.317 MPa

Ultimate Friction Capacity per m FS = fs x Øπ

0.9 m = 0.3168 x 0.9 x π x 1000

= 895.7 kN/m

Ulitmate Socket Friction Capacity = FS x Ls

= 895.8 x 6.5

= 5822 kN

LRFD Geotechnical Resistance Factor = 0.55

for Sockets in Compression Apply to LRFD factored Load

FHWA - Table 10.5

Ultimate LRFD factored Load = 3003 x 1 / 0.55

= 5460 kN

® Criterium Ultimate Friction Capacity = 5460 / 5823

= 0.94 < 1 therefore OK

Design Calculations

αβquc

quc =

Reduction Factors for Rock Socket Skin

Friction

Reduction Factors for Discontinuities in

Rock Mass

αβquc

Ignore end bearing - DLP report (Mozal, 99) Stated that as the nature of the intermittent or alternating sequence of very weakly cemented sands and very soft rock sandstone will result in a high degree of uncertainty regarding the base resistance of these piles

- For Ø Ds =

(Use API LRFD factored ulimate loads from Prokon model)

Page 6: Rock Socket EC 7 Template- Rev 00
Page 7: Rock Socket EC 7 Template- Rev 00

Axial Compression Settlement

Pile head settlement will be caused by the compression of the rock socket only.

Settlement Settlement of pile head where load is only carried by rock socket skin friction

Settlement ρ =

Ip = 0.18 See below

L/B = 7.2

R = Ec/Ed

Ec = 20000 MPa

Deformation modulus Ed = Section 5.5 Tomlinson

Mr = 150 See below

= 150 x 0.32 x 2

= 96 MPa

R = 208

(Tomlinson, 1994)

(Tomlinson, 1994)

F = 0.82 See below

D/B = 3.3 Assume 3m pentration of casing

(D = recess)

Factor F

(Tomlinson, 1994)

® Criterium Pile Head Settlement ρ =

= 0.82 x 2238 x 0.18 / ( 0.9 x 96 )

= 3.8 mm

F x PDE(working) x Ip/(Ds x Ed)

Mr x j x quc

Elastic settlement influence factors for

rock sockets skin friction on piles

Values for Mr Section 5.5

Reduction factors for calculation of settlement of

recessed sockets

Socket assumed recessed - pile casing pentrates +- 3m into

rock

F x PDE(working) x Ip/(Ds x Ed)

Page 8: Rock Socket EC 7 Template- Rev 00
Page 9: Rock Socket EC 7 Template- Rev 00

The Ultimate Axial Tensile Capacity of The Substructure is The Lesser Value of the 'Pull out Resistance' and 'Axial Tension' Pull Out Resistence

Ultimate pull out resistance - Based on pull out cone

- Tomlinson 1994

- LRFD design factors from FWHA, 2010

Ultimate pull out resistance resistance weight rock pull out cone

Ignore weight contribution of soft silty clay overlaying rock

Vc = Volume rock cone

= 1/3(π)(Ls/2+Pd)((Ds/2)² + (Ds/2)(Ds/2+(LS/2+Pd)tan30)

+ (Ds/2+(LS/2+Pd)tan30)²)

= 1/3π(6.5/2+3)x((0.9/2)^2+((0.9/2)x(0.9/2)+(6.5/2+3)xTAN30))

+((6.5/2+3)xTAN30))^2))-(πx0.9/2x(6.5+3))

= 117.10

Vs = Volume socket

= π(Ds/2)(Ls)

= P x (0.9/2)^2 x (6.5)

= 4.14

= 117.11 x (20 - 10) + 4.14 x (25 - 10)

= 1233.07 kN

LRFD Geotechnical Resistance Factor = 1

for Sockets in Compression Apply to LRFD factored Load

FHWA - Table 10.5 - LRFD Resistance factor changed to 1 as a result of conservative

cone shape assumption - TomlinsonUltimate LRFD factored Load = 1 x 1 / 1

= 1 kN

® Criterium Ultimate Pull Out Resistance =

= 1 / 1234

= 0.00 < 1.0 therefore OK

Rpullout =

Assume a conservative half cone angle of 30˚ and bottom of pull out cone taken at the mid point of the bond length

Rpullout = Vc x γ'rock + Vs x γ'socket

Rpullout = Vc x γ'rock + Vs x γ'socket

(Use API LRFD factored ulimate loads from Prokon model)

Bonded length = Ls

Ls/2

Seabed - Soft silty clay

Rock level

Rock Socket

Penetration depth of casing = Pd

30˚

30˚

Ds

F288
YH: Conservative estimation, neglecting the concrete plug in the pile
F292
YH: Conservative estimation, neglecting the self-weight of the pile.
Page 10: Rock Socket EC 7 Template- Rev 00

Axial Tension

Rock Socket Shaft Friction - ultimate bond stress between socket concrete and rock

- From Tomlinson - Equ: 4.25 Assumption that same calc as compression governs

- LRFD design factors from FWHA, 2010

Ultimate bond stress fs =

2.00 MPa

Reduction factor α = 0.22 From graph below

(Tomlinson, 1994)

Correction factor β = 0.72 From graph below

RQD = 60.0%

Therefore mass factor j = 0.32

(Tomlinson, 1994)

Rock socket shaft friction resistence fs =

= 0.22 x 0.72 x 2

= 0.317 MPa

Ultimate Friction Capacity per m FS = fs x Øπ

m = 0.3168 x 0.9 x π x 1000

= 895.7 kN/m

Ulitmate Socket Friction Capacity = FS x Ls

= 895.8 x 6.5

= 5822 kN

LRFD Geotechnical Resistance Factor = 0.45

for Sockets in Compression Apply to LRFD factored Load

FHWA - Table 10.5

Ultimate LRFD factored Load = 1 x 1 / 0.45

= 0 kN

® Criterium Ultimate Friction Capacity = 0 / 5823

= 0.00 < 1 therefore OK

αβquc

quc =

Reduction Factors for Rock Socket Skin

Friction

Reduction Factors for Discontinuities in

Rock Mass

αβquc

- For Ø Ds =

(Use API LRFD factored ulimate loads from Prokon model)

Page 11: Rock Socket EC 7 Template- Rev 00

PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD

CONSULTING PORT AND COASTAL ENGINEERS

PROJECT 1096 Matola TCM - Phase 4 - FEL 3 DATE 4/7/2023 SHEET # 01 of 01

ISSUED BY SIGNED DATE SECTION Socket Sizing - Ø 1016 x 18wt Piles

DESIGN WGD DRAWING REF. 1096/00/5040 and 1096/00/5100

CHECKED SAH MODEL REF. NA

APPROVED PES CALC # 1096|Socket Ø 1016 Piles|001 Rev 00

CALC FILE REF. X:\PRDW Projects\Current\Mozambique (1096) Matola TCM FEL 3\Working\Engineers\WGD\4. Calculations

MODEL FILE REF.

CHECK 2. Design of rock socket for lateral loading - Based on Tomlinson and FHWA, 2010 using LPIle v 6.0 from Ensoft

Input Calculation Note

Tomlinson's

FHWA, 2010 - Drilled Shafts: Construction Procedures and LRFD Design Methods

LPIle v 6.0 Pile design software from Ensoft

Pile Reference Pile Group Ø 1016 x 18wt PilesCritical Pile D4 (Comp) & D3 (Lat)Position (in x) All 1016mm PilesRock Level -18.5 m MSL

Critical Load Combination 0Raked (Y/N) N

Outside Diameter D 1.016 m

Wall Thickness t 0.018 m

Level at top of pile z1 1.70 m MSL

Sea bed level z2 -18.50 m MSL

Raking angle a 0.24 RAD

Socket Length Ls 6.50 m

Socket outside diameter Ds 0.90 m

Penetration depth Pd 3.00 m

Section PropertiesInside Diameter d 0.98 m

Steel area AS 0.056

Total plug area AT 0.754

Moment of Inertia I 0.007

Elast. Sect. Mod. Ze 0.014

Plast. Sect. Mod. Zp 0.018

Radius of Gyration r 0.353 m

Elastic Modulus Steel Es 210000 MPa

Steel yield Strength Fy 350 MPa

Unit weight of steel g steel 77

Elastic Modulus Concrete Ec 20000 MPa

Concrete Strength fc 45 MPa

Unit weight of reinforced concrete γ concrete 25

Rock UCS 2.00 MPa

RQD RQD 60%

Unit weight of rock y rock 20.00

Loading

See load case table below

Design ChecksRock Socket Design Checks Criteria Reference Results Condition Status

Lateral Loading

Casing Factored Moment Resistance OK OK

Socket Factored Moment Resistance OK OK

Deflection at ULS 0.0036 OK

X:\PRDW Projects\Current\Mozambique (1096) Matola TCM FEL 3\Working\Engineers\DJP\2. Design\Prokon Models\Phase 4A - 4B loading\Final - incl. add. Rakers\1096 - 4A Berth 4B Loads - 2012-03-21 - API Rev01.A03

Calculation Description

Spreadsheet Notation

Governing Code Reference

Member Dimentions

m⁴

Material Properties

kN/m³

kN/m³

quc

kN/m³

ρ < 10% shaft Ø

Page 12: Rock Socket EC 7 Template- Rev 00

PILE INTERACTION GRAPHS

Pile and Socket Sections Resisting Lateral Loading

Section 1:

Concrete shaft with permanent casing

Allows for variations in penetration of casing

Allows for damage to the rocks top layer's lateral resistance

as a result of installing the pile

(Design calls from 3m pentration)

Section 2:

Concrete shaft - Rock socket

Length to be confirmed

Unfactored Pile Interaction Bending Moments

Determined using LPIle v 6.0

Unfactored Moment ResistanceLoad Step Axial Load (kN) Socket (kNm) Casing (kNm)

1 -2000 860 8117

2 0 1444 8490

3 2000 1958 8817

4 4000 2347 9064

5 6000 2654 9260

6 8000 2863 9387

7 10000 2943 9443

Factored Pile Interaction Bending Moments

Ø = Structural Resistence factor 0.75 FHWA (2010) 16.7

Factored Moment ResistanceLoad Step Axial Load (kN) Socket (kNm) Casing (kNm)

1 -2000 645 6088

2 0 1083 6368

3 2000 1469 6613

4 4000 1760 6798

5 6000 1991 6945

6 8000 2147 7040

7 10000 2207 7082

Design Calculations

Assume only 2.25m of section length assists with lateral resistance

6000 6200 6400 6600 6800 7000 7200

-4000

-2000

0

2000

4000

6000

8000

10000

12000 Factored Casing Moment Resistance

Factored Bending Moment (kNm)

Fact

ored

Axi

al Lo

ad (k

N)

OD: 1016mmSide walls : 18mmRebar: 12No. Y32Conc: 45MpaCover: 174mm

Actual Rock Level

Assumed Rock level

Concrete shaft with permanent casing

Concrete shaft - rock socket

Page 13: Rock Socket EC 7 Template- Rev 00

6000 6200 6400 6600 6800 7000 7200

-4000

-2000

0

2000

4000

6000

8000

10000

12000 Factored Casing Moment Resistance

Factored Bending Moment (kNm)

Fact

ored

Axi

al Lo

ad (k

N)

Page 14: Rock Socket EC 7 Template- Rev 00

LPILE - SOIL MODEL PILE CAPACITY CHECKS

Load Cases for Lpile Inputs: Load cases taken from various representative combination reaction outputs

from Prokon berth model

Need to add moment from pile alignment tolerances to Prokon moment to give total moment (tolerance +0.2m)

Load Case ULS Axial Load SLS Axial Load

(kN) (kN)

1 1897 3002.18 2497.38 2237.68

2 1391.05 464.61 1483.97 536.44

3 2401.11 1658.16 2732.74 1260.62

4 2457.84 2076.47 2873.13 1134.85

5 1817.72 1818.47 2181.42 981.93

LRFD Factored Load Cases for Lpile Inputs:

Ø = Geotechnical Lateral Resistence factor 0.67 FHWA (2010) 16.7

(p-y method push over analysis) - Lpile has used p-y method for weak rock to determine soil reaction

Load CaseSLS Axial Load

(kNm) (kN)

1 3727.43 2237.68

2 2214.88 536.44

3 4078.72 1260.62

4 4288.25 1134.85

5 3255.85 981.93

ULS Prokon Moment (kNm)

ULS Total Moment (kNm) (all pos+)

Total ULS Moment Factored by

Geotechnial Lateral Resistance Factos

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

-4000

-2000

0

2000

4000

6000

8000

10000

12000

Factored Socket Moment Resistance

Factored Bending Moment (kNm)

Fact

ored

Axi

al Lo

ad (k

N)OD: 900mmRebar: 12No. Y32Conc: 45MpaCover: 114mm

Page 15: Rock Socket EC 7 Template- Rev 00

Bending Moment Vs Depth

Output from Lpile soil model.

Factored Pile Interaction Checks

Concrete Filled Casing Concrete Socket

(take results from model output) (take results from model output)

Load CaseMoment Axial Load Moment Axial Load

(kNm) (kN) (kNm) (kN)

1 3727 2238 820 2238

2 2215 536 245 536

3 4079 1261 910 1261

4 4288 1135 590 1135

5 3256 982 970 982

Socket Response

CasingResponse

Page 16: Rock Socket EC 7 Template- Rev 00

Load cases are all within the factored concrete filled casing interaction curve

OK - Manual Check

Load cases are all within the factored concrete socket interaction curve

OK - Manual Check

1000 2000 3000 4000 5000 6000 7000 8000

-4000

-2000

0

2000

4000

6000

8000

10000

12000Factored Casing Moment Resistance

Factored Bending Moment (kNm)

Fact

ored

Axi

al Lo

ad (k

N)

0 500 1000 1500 2000 2500

-4000

-2000

0

2000

4000

6000

8000

10000

12000Factored Socket Moment Resistance

Factored Bending Moment (kNm)

Fact

ored

Axi

al Lo

ad (k

N)

Page 17: Rock Socket EC 7 Template- Rev 00

LPILE - SOIL MODEL DEFLECTIONS

ULS delfections

Deflection Vs Depth

Maximum Deflection = 0.0036 m From Chart

10% of shaft dia. = 0.09 m OK

FHWA, 2010 - 12.3.3.3.1

Length Check

Is socket long enough for lateral loads

OK - Manual Check

Page 18: Rock Socket EC 7 Template- Rev 00

X:\PRDW Projects\Current\Mozambique (1096) Matola TCM FEL 3\Working\Engineers\DJP\2. Design\Prokon Models\Phase 4A - 4B loading\Final - incl. add. Rakers\1096 - 4A Berth 4B Loads - 2012-03-21 - API Rev01.A03 ULS

AXIAL FORCE X MOMENT Z MOMENT

MAXIMUM MINIMUM MAXIMUM MINIMUM MAXIMUM MINIMUM

Node Max Axial LC X-Moment Z-Moment Node Min Axial LC Max X-Moment Max Z-Moment Node Max X Moment LC Max Axial Max Z-Moment Node Min X Moment LC Max Axial Max Z-Moment Node Max Z Moment LC Max Axial Max X-Moment Node Min Z Moment LC Max Axial Max X-Moment

[kN] [kNm] [kNm] [kN] [kNm] [kNm] [kNm] [kN] [kNm] [kNm] [kN] [kNm] [kNm] [kN] [kNm] [kNm] [kN] [kNm]

10899 3002.18 B1LT+ 1415.65 -1262.67 11894 464.61 M11UT- -466.91 1310.35 11894 2109.22 B1LT+ 1658.16 -1147.39 10896 -1647.36 M1ET- 2509.13 1824.05 10898 1852.80 M1ET- 2076.47 -1558.06 10896 -1610.40 B1WMT+ 1818.47 843.05

9954 1733.16 B21LT- 579.61 -434.50 733.73 M11UT+ 83.43 324.64 579.61 B21LT- 1733.16 -434.50 -35.53 M17DT+ 1526.14 359.56 365.25 M1ET+ 1086.76 97.10 -488.18 B21WT- 1673.60 506.91

9951 1165.47 B21LT- 417.59 -398.73 743.32 M11UT+ 86.28 290.93 417.59 B21LT- 1165.47 -398.73 -83.68 M17DT+ 1054.83 353.97 353.97 M17DT+ 1054.83 -83.68 -435.91 B21WT- 1155.49 344.67

9948 1136.78 B21LT- 343.12 -403.00 725.56 M11UT+ 71.95 306.32 343.12 B21LT- 1136.78 -403.00 -59.73 M17DT+ 1044.49 370.04 370.04 M17DT+ 1044.49 -59.73 -449.38 B21WT- 1133.79 295.37

9945 1141.68 STLW 228.44 -13.39 731.53 M11UT+ 61.27 263.37 270.33 B21LT- 1137.24 -354.44 40.97 M17DT+ 1062.92 332.68 333.05 M1ET+ 1098.41 147.77 -399.46 B21WT- 1136.31 254.21

9942 1126.93 STLW 188.58 -10.67 722.25 M11UT+ 26.39 237.66 251.40 B11LT+ 1102.80 237.40 -27.85 M11S1- 736.81 -252.09 308.02 M1ET+ 1088.02 143.54 -356.53 B21WT- 1120.74 193.64

9939 1134.39 STLW 222.46 -11.47 716.67 M11UT+ -18.68 206.52 337.66 B11LT+ 1121.94 234.36 -128.78 M11S1- 717.40 -249.44 293.22 M1ET+ 1098.36 186.40 -331.32 B21WT- 1119.52 191.91

9936 1129.55 B11LT- 375.18 -147.46 700.66 M11S1- -291.76 -222.10 457.44 B11LT+ 1122.02 237.42 -291.76 M11S1- 700.66 -222.10 265.03 M1ET+ 1087.95 184.14 -292.47 B21WT- 1107.44 150.71

9933 1183.43 B11DT+ 710.16 212.89 681.21 M11S1- -394.14 -155.67 710.25 B11LT+ 1183.40 212.71 -394.14 M11S1- 681.21 -155.67 228.77 M1ET+ 1103.62 219.10 -245.31 B21WT- 1113.18 162.65

9930 1165.75 B11DT+ 872.79 128.03 668.24 M11S1- -531.41 -116.53 872.79 B11DT+ 1165.75 128.03 -531.41 M11S1- 668.24 -116.53 231.29 M1ET+ 1081.94 226.53 -240.86 B21WT- 1090.54 127.54

9927 1780.21 B11DT+ 940.53 1.36 688.02 M11UT- -251.50 -67.45 940.56 B11LT+ 1780.18 1.14 -384.16 M11S1- 1153.77 -39.24 187.69 M1ET+ 1095.87 253.97 -201.83 B11LT- 1768.22 771.88

9924 1126.80 B11LT+ 554.54 -30.61 677.23 M11S1- -381.30 40.86 554.54 B11LT+ 1126.80 -30.61 -381.30 M11S1- 677.23 40.86 170.59 M11ST+ 1024.06 -131.13 -158.77 B11LT- 1113.30 365.21

9921 1116.76 STLW 299.03 -3.13 677.55 M11S1- -254.11 60.91 477.97 B11LT+ 1116.08 -23.72 -254.11 M11S1- 677.55 60.91 133.46 M1ET+ 1083.28 272.23 -116.67 B21WT- 1079.92 138.08

9918 1114.69 B5LT+ 550.96 -18.99 688.08 M11S1- -167.60 70.84 550.96 B5LT+ 1114.69 -18.99 -176.09 M1DT- 1008.74 -2.56 124.46 M1ET- 1045.29 -32.88 -101.39 B21WT+ 1092.37 360.30

9915 1143.55 B5LT+ 679.86 -37.13 695.69 M11UT- -98.25 97.19 679.86 B5LT+ 1143.55 -37.13 -378.96 M1DT- 983.15 29.78 158.27 M1ET- 1054.23 -24.16 -135.71 B21WT+ 1096.03 361.40

9912 1139.81 B5LT+ 818.49 -142.84 693.84 M11UT- -89.85 147.08 818.49 B5LT+ 1139.81 -142.84 -444.62 M1DT- 977.81 158.71 218.34 M1ET- 1036.79 -125.30 -171.81 B21WT+ 1072.89 331.65

10899 3002.18 B1LT+ 1415.65 -1262.67 1569.10 M11UT- -686.80 1323.28 1415.65 B1LT+ 3002.18 -1262.67 -1446.49 M1ST- 2296.80 1503.09 1582.84 M1ET- 2316.92 -1373.46 -1603.42 B1WMT+ 2816.91 1034.27

10898 2076.70 M1ST- -1571.43 1770.92 1340.92 B11UT+ 454.44 -1338.42 1176.04 B1LT+ 1851.29 -1213.05 -1571.43 M1ST- 2076.70 1770.92 1852.80 M1ET- 2076.47 -1558.06 -1559.17 B1WMT+ 1896.09 811.65

10896 2509.13 M1ET- -1647.36 1824.05 1273.99 B11UT+ 471.39 -1388.01 1231.84 B1LT+ 1776.53 -1259.01 -1647.36 M1ET- 2509.13 1824.05 1824.05 M1ET- 2509.13 -1647.36 -1610.40 B1WMT+ 1818.47 843.05

10894 1570.29 B1WMT+ 965.20 -1587.40 645.49 M11S1- -745.30 1336.74 1345.66 B1LT+ 1152.40 -1299.80 -1585.62 M1ET- 1066.80 1607.08 1607.08 M1ET- 1066.80 -1585.62 -1604.16 B3WT+ 1273.87 925.78

11903 1138.41 B1LT+ 1459.88 -690.01 602.24 M11UT- -488.20 1266.53 1459.88 B1LT+ 1138.41 -690.01 -1034.24 M1DT- 698.63 1403.22 1558.44 M1ET- 764.61 -868.00 -1130.08 B5LT+ 1003.12 1157.34

11901 2032.70 B1LT+ 1493.67 -889.74 969.35 M11UT- -439.50 1336.50 1493.67 B1LT+ 2032.70 -889.74 -961.98 M1ST- 1356.55 1606.53 1610.42 M1ET- 1380.78 -871.71 -1345.52 B5LT+ 1965.52 1028.77

11898 2554.23 B1LT+ 1908.64 -1052.88 1555.36 M11UT- -426.74 1400.65 1908.64 B1LT+ 2554.23 -1052.88 -943.35 M1ST- 2159.95 1664.78 1668.73 M1ET- 2164.11 -931.13 -1505.22 B5LT+ 2413.71 1210.81

11896 2352.28 B1LT+ 2083.38 -1066.61 1453.27 B11UT- -326.65 1166.42 2083.38 B1LT+ 2352.28 -1066.61 -923.33 M1ET- 2022.66 1721.09 1721.09 M1ET- 2022.66 -923.33 -1525.39 B5LT+ 2184.85 1262.61

11894 1658.38 B3WT+ 1699.96 -1488.64 464.61 M11UT- -466.91 1310.35 2109.22 B1LT+ 1658.16 -1147.39 -1034.27 M1ET- 675.14 1534.46 1534.46 M1ET- 675.14 -1034.27 -1565.82 B5LT+ 1590.22 1192.63

Page 19: Rock Socket EC 7 Template- Rev 00

X:\PRDW Projects\Current\Mozambique (1096) Matola TCM FEL 3\Working\Engineers\DJP\2. Design\Prokon Models\Phase 4A - 4B loading\Final - incl. add. Rakers\1096 - 4A Berth 4B Loads - 2012-03-21 - API Rev01.A03 SLS

AXIAL FORCE X MOMENT Z MOMENT

MAXIMUM MINIMUM MAXIMUM MINIMUM MAXIMUM MINIMUM

Node Max Axial LC X-Moment Z-Moment Node Min Axial LC Max X-Moment Max Z-Moment Node Max X Moment LC Max Axial Max Z-Moment Node Min X Moment LC Max Axial Max Z-Moment Node Max Z Moment LC Max Axial Max X-Moment Node Min Z Moment LC Max Axial Max X-Moment

[kN] [kNm] [kNm] [kN] [kNm] [kNm] [kNm] [kN] [kNm] [kNm] [kN] [kNm] [kNm] [kN] [kNm] [kNm] [kN] [kNm]

10899 2237.68 B1LT+ 989.30 -968.43 11894 536.44 M1ET- -720.08 1134.85 11894 1524.21 B1LT+ 1260.62 -890.91 10896 -1192.40 M1ET- 1912.43 1350.87 10898 1371.82 M1ET- 1592.09 -1124.83 10894 -1205.76 B3WT+ 981.93 656.68

9954 1268.92 B21LT- 408.67 -323.17 819.89 M1ST+ 91.05 267.04 408.67 B21LT- 1268.92 -323.17 -8.97 M17DT+ 1126.06 274.07 277.57 M1ET+ 836.85 79.48 -358.95 B21WT- 1229.22 360.20

9951 893.72 B21LT- 303.15 -296.37 813.74 M17DT+ -39.56 266.47 303.15 B21LT- 893.72 -296.37 -39.56 M17DT+ 813.74 266.47 266.47 M17DT+ 813.74 -39.56 -321.16 B21WT- 887.06 254.54

9948 872.94 B21LT- 252.61 -300.50 804.61 M17DT+ -23.14 278.93 252.61 B21LT- 872.94 -300.50 -23.14 M17DT+ 804.61 278.93 278.93 M17DT+ 804.61 -23.14 -331.42 B21WT- 870.95 220.78

9945 879.92 STLW 178.21 -9.83 818.26 M17DT+ 45.25 250.21 203.46 B21LT- 874.01 -264.75 45.25 M17DT+ 818.26 250.21 250.21 M17DT+ 818.26 45.25 -294.77 B21WT- 873.40 192.71

9942 868.43 STLW 147.02 -7.79 813.82 M11ST+ 47.91 184.59 187.66 B11LT+ 847.61 183.45 37.68 M11ST- 1657.30 -384.96 230.52 M1ET+ 837.75 115.76 -262.79 B21WT- 861.54 147.79

9939 874.38 STLW 174.12 -8.38 809.20 M11ST+ 10.40 156.20 249.10 B11LT+ 861.45 179.24 -27.17 M11ST- 1633.15 -377.22 218.48 M1ET+ 845.73 148.25 -243.86 B21WT- 860.81 146.91

9936 867.38 B11UT- 275.91 -117.16 795.74 M11ST+ -79.26 129.61 328.36 B11LT+ 860.35 178.25 -142.54 M11ST- 1603.59 -332.90 196.66 M1ET+ 837.65 146.17 -214.48 B21WT- 851.42 115.44

9933 903.53 B11UT- 432.17 -80.65 791.43 M11ST- -415.04 -236.88 499.94 B11LT+ 902.82 157.95 -207.52 M11ST- 1582.85 -236.88 168.66 M1ET+ 849.68 172.51 -179.29 B21WT- 855.96 124.37

9930 888.88 B11DT+ 609.97 100.37 775.64 M11ST- -608.08 -180.48 609.97 B11DT+ 888.88 100.37 -304.04 M11ST- 1551.28 -180.48 169.21 M1ET+ 833.12 179.13 -174.78 B21WT- 838.39 96.96

9927 1300.07 B11DT+ 657.98 11.57 791.63 M11UT- -114.41 -52.67 658.00 B11LT+ 1300.05 11.43 -201.58 M11ST- 2204.75 -70.12 135.80 M1ET+ 843.87 200.28 -145.14 B11UT- 1292.70 540.80

9924 863.40 B11LT+ 399.68 -13.31 781.34 M11ST- -408.88 46.28 399.68 B11LT+ 863.40 -13.31 -204.44 M11ST- 1562.68 46.28 121.72 M11ST+ 791.15 -58.80 -112.52 B11UT- 854.46 265.84

9921 860.36 STLW 229.98 -2.66 780.48 M11ST- -225.24 80.18 372.67 B11UT+ 859.00 -3.24 -112.62 M11ST- 1560.96 80.18 92.44 M1ET+ 834.75 218.19 -80.23 B21WT- 830.30 104.44

9918 854.67 B5LT+ 402.36 -13.88 777.82 M1DT- -109.66 0.94 402.36 B5LT+ 854.67 -13.88 -109.66 M1DT- 777.82 0.94 84.68 M1ET- 805.98 -12.41 -68.81 B21WT+ 839.80 275.26

9915 874.47 B5LT+ 488.70 -30.62 761.04 M1DT- -244.93 26.88 488.70 B5LT+ 874.47 -30.62 -244.93 M1DT- 761.04 26.88 111.54 M1ET- 812.63 -4.35 -96.34 B21WT+ 842.83 276.39

9912 869.85 B5LT+ 578.41 -104.98 755.92 M1DT- -288.43 118.16 578.41 B5LT+ 869.85 -104.98 -288.43 M1DT- 755.92 118.16 156.92 M1ET- 799.03 -74.81 -124.29 B21WT+ 825.33 253.85

10899 2237.68 B1LT+ 989.30 -968.43 1732.86 M11UT- -584.13 1010.23 989.30 B1LT+ 2237.68 -968.43 -1032.11 M1ST- 1765.14 1122.56 1172.27 M1ET- 1778.08 -976.22 -1195.60 B1WMT+ 2114.27 735.05

10898 1592.99 M1ST- -1139.86 1320.99 1434.14 B1LT+ 811.16 -933.83 811.16 B1LT+ 1434.14 -933.83 -1139.86 M1ST- 1592.99 1320.99 1371.82 M1ET- 1592.09 -1124.83 -1164.57 B1WMT+ 1464.13 568.24

10896 1912.43 M1ET- -1192.40 1350.87 1383.82 B1LT+ 850.70 -971.04 850.70 B1LT+ 1383.82 -971.04 -1192.40 M1ET- 1912.43 1350.87 1350.87 M1ET- 1912.43 -1192.40 -1205.30 B1WMT+ 1411.93 591.51

10894 1179.62 B1WMT+ 682.96 -1194.59 685.74 B1LT- -23.65 897.32 936.60 B1LT+ 900.58 -1002.85 -1145.62 M1ET- 816.22 1188.42 1188.42 M1ET- 816.22 -1145.62 -1205.76 B3WT+ 981.93 656.68

11903 855.63 B1LT+ 1044.88 -540.95 554.89 M1DT- -724.39 1054.15 1044.88 B1LT+ 855.63 -540.95 -724.39 M1DT- 554.89 1054.15 1154.53 M1ST- 569.52 -717.43 -834.34 B5LT+ 765.47 843.19

11901 1548.37 B1LT+ 1066.47 -694.49 1059.28 M1ST- -673.93 1193.20 1066.47 B1LT+ 1548.37 -694.49 -673.93 M1ST- 1059.28 1193.20 1193.20 M1ST- 1059.28 -673.93 -998.34 B5LT+ 1503.68 756.53

11898 1949.01 B1LT+ 1375.70 -819.43 1672.11 M1ST- -657.93 1236.62 1375.70 B1LT+ 1949.01 -819.43 -657.93 M1ST- 1672.11 1236.62 1236.62 M1ST- 1672.11 -657.93 -1120.99 B5LT+ 1855.44 910.48

11896 1791.72 B1LT+ 1506.07 -830.37 1564.73 M1ET- -635.63 1275.50 1506.07 B1LT+ 1791.72 -830.37 -635.63 M1ET- 1564.73 1275.50 1276.18 M1ST- 1568.19 -616.76 -1136.23 B5LT+ 1680.23 958.89

11894 1260.94 B3WT+ 1251.37 -1118.41 536.44 M1ET- -720.08 1134.85 1524.21 B1LT+ 1260.62 -890.91 -720.08 M1ET- 536.44 1134.85 1135.49 M1ST- 543.47 -668.88 -1169.86 B5LT+ 1215.53 913.15

Page 20: Rock Socket EC 7 Template- Rev 00

CONFORMING ROCK SOCKET DESIGN TO EUROCODE 7

Page 21: Rock Socket EC 7 Template- Rev 00
Page 22: Rock Socket EC 7 Template- Rev 00

Base on Geotechnical Laboratory and Site Investigation.ULTIMATE LIMIT STATE

The ultimate bearing capacity for rock sockets are only dependant on skin friction. Therefore the the fundamental Equation is:

The above equation is based on the following site specific soil/rock properties that need to be measured:*Rock Quality Designation*Rock Unconfined Compressive Strength*Mass factor

**α is determine from the graph below utilizing the field test result for the quc

Page 23: Rock Socket EC 7 Template- Rev 00

Based on the number of test results collected for the above material properties, their respective skin friction can be determined

Rs1 = Fs 1 * Contact AreaRs2 = Fs 2 * Contact Area…

Then the determine the charateristic resistance (Rsk) using the appropriate correlcation factors according to number of tests completed

**β is determine from the graph below utilizing the field test result for the Mass factor (j) based on the elastic modulus of the rock

Page 24: Rock Socket EC 7 Template- Rev 00

Design Approach 1: Combination 1(Design Resistance set by partial factor set R1 according to piling type)

(Design Actions set by partial factor set A1)

Design Action (Fd) = G*1.35 + Q*1.5

R 1 R4 with explicit verification R4 without explicit verificationDriven Bored CFA Driven Bored CFA Driven

1 1 1 1.5 1.7 1.7 1.7Shaft com, ϒs 1 1 1 1.3 1.4 1.4 1.5Shaft ten, ϒs,t 1 1 1 1.5 1.7 1.7 1.7Total, ϒt 1 1 1 1.7 1.7 1.7 2

SERVICEABILITY LIMIT STATE

Design Resistance (Rd) = Rsk/ϒs

Overal Design Safety Factor (Г) = Rd/Fd

Base, ϒb

Page 25: Rock Socket EC 7 Template- Rev 00
Page 26: Rock Socket EC 7 Template- Rev 00

Hence the allowable pile settlement is set by the engineer and is project specific, settlements are generally limited between 10mm to 25mm at pile head

Example: (same as in spreadsheet)

The settlement (ρ) for piles with rock sockets can be determined from the following equation established by Pells and Turner

F is a reduction factor to account for the pile

recess

Page 27: Rock Socket EC 7 Template- Rev 00

Standard calculation method

RQD (assumed) % 602

Therefore, based on equation 1 Fs = 895.7 MpaUltimate bearing capacity Qu = 5822kN

0.94

EC 7 calculation method

Rs;k = 5822/1.55 3756.129 kN

Design Combination 1 Design Combination 2Rd = Rs,k/1.0 3756 Rd = Rs,k/1.6Fd = 3003 Fd =

0.799521

Refer to example 4.7 of tomlinson's; a rock socket design in weak mudstone has been undertaken. Tomlinsons assumes that both shaft friction and base bearing are activated.He utilizes a factor of safety of 3 for the Ultimate bearing resistance Qu. Shaft resistance is more than twice the working load and end bearing is 0.9 times the working load

quc MN/m² (assumed)

Overal Design Factor (Г) = Rd/Fd

Overal Design Factor (Г) = Rd/Fd Overal Design Factor (Г) = Rd/Fd

Page 28: Rock Socket EC 7 Template- Rev 00

CONFORMING ROCK SOCKET DESIGN TO EUROCODE 7

Page 29: Rock Socket EC 7 Template- Rev 00
Page 30: Rock Socket EC 7 Template- Rev 00

Base on Geotechnical Laboratory and Site Investigation.

The ultimate bearing capacity for rock sockets are only dependant on skin friction. Therefore the the fundamental Equation is:

eqn 1

The above equation is based on the following site specific soil/rock properties that need to be measured:

Page 31: Rock Socket EC 7 Template- Rev 00

Based on the number of test results collected for the above material properties, their respective skin friction can be determined

Then the determine the charateristic resistance (Rsk) using the appropriate correlcation factors according to number of tests completed

is determine from the graph below utilizing the field test result for the Mass factor (j) based on the elastic modulus of the rock

B167
YH: Note the skin friction should be determined for each test pit and corresponding data.
Page 32: Rock Socket EC 7 Template- Rev 00

Design Approach 1: Combination 2(Design Resistance set by partial factor set R4 according to piling type)

(Design Actions set by partial factor set A2)

Design Action (Fd) = G*1.0 + Q*1.3

R4 without explicit verificationBored CFA

2 21.6 1.62 22 2

Design Resistance (Rd) = Rsk/ϒs

Overal Design Safety Factor (Г) = Rd/Fd

Page 33: Rock Socket EC 7 Template- Rev 00
Page 34: Rock Socket EC 7 Template- Rev 00

Hence the allowable pile settlement is set by the engineer and is project specific, settlements are generally limited between 10mm to 25mm at pile head

for piles with rock sockets can be determined from the following equation established by Pells and Turner

Page 35: Rock Socket EC 7 Template- Rev 00

Design Combination 22347.5

2238

0.953355

Refer to example 4.7 of tomlinson's; a rock socket design in weak mudstone has been undertaken. Tomlinsons assumes that both shaft friction and base bearing are activated.He utilizes a factor of safety of 3 for the Ultimate bearing resistance Qu. Shaft resistance is more than twice the working load and end bearing is 0.9 times the working load

Overal Design Factor (Г) = Rd/Fd

Page 36: Rock Socket EC 7 Template- Rev 00

CONFORMING ROCK SOCKET DESIGN TO EUROCODE 7

Page 37: Rock Socket EC 7 Template- Rev 00

Design Approach 1: Combination 2(Design Resistance set by partial factor set R4 according to piling type)

Page 38: Rock Socket EC 7 Template- Rev 00
Page 39: Rock Socket EC 7 Template- Rev 00
Page 40: Rock Socket EC 7 Template- Rev 00
Page 41: Rock Socket EC 7 Template- Rev 00
Page 42: Rock Socket EC 7 Template- Rev 00