Rock Slope Engineering

440
A SHORT COURSE IN SOIL AND ROCK SLOPE ENGINEERING NOEL SIMONS, BRUCE MENZIES and MARCUS MATTHEWS

description

short course

Transcript of Rock Slope Engineering

  • A SHORT COURSE INSOIL AND ROCKSLOPE ENGINEERING

    NOEL SIMONS, BRUCE MENZIES and MARCUS MATTHEWS

  • Published by Thomas Telford Publishing, Thomas Telford Ltd, 1 Heron Quay,

    London E14 4JD.

    URL: http://www.thomastelford.com

    Distributors for Thomas Telford books are

    USA: ASCE Press, 1801 Alexander Bell Drive, Reston, VA 20191-4400, USA

    Japan: Maruzen Co. Ltd, Book Department, 310 Nihonbashi 2-chome, Chuo-ku,

    Tokyo 103

    Australia: DA Books and Journals, 648 Whitehorse Road, Mitcham 3132, Victoria

    First published 2001

    Reprinted 2005, 2007

    A catalogue record for this book is available from the British Library

    ISBN: 978-07277-2871-5

    # Noel Simons, Bruce Menzies, Marcus Matthews and Thomas Telford Limited 2001.

    All rights, including translation, reserved. Except as permitted by the Copyright,

    Designs and Patents Act 1988, no part of this publication may be reproduced, stored in

    a retrieval system or transmitted in any form or by any means, electronic, mechanical,

    photocopying or otherwise, without the prior written permission of the Publishing

    Director, Thomas Telford Publishing, Thomas Telford Ltd, 1 Heron Quay,

    London E14 4JD.

    This book is published on the understanding that the authors are solely responsible for

    the statements made and opinions expressed in it and that its publication does not

    necessarily imply that such statements and/or opinions are or reflect the views or

    opinions of the publishers. While every effort has been made to ensure that the

    statements made and the opinions expressed in this publication provide a safe and

    accurate guide, no liability or responsibility can be accepted in this respect by the

    authors or publishers.

    Typeset by Academic Technical, BristolPrinted and bound in Great Britain by MPG Books, Bodmin

    Cover photograph

    Photograph of a landslide pushing over an apartment building in Kuala Lumpur, by kind

    permission of Bruce Mitchell.

  • : 2 ' % # !-

    #

    +! $$ $%

    $$ -- !

    $ ! ? @ $$% $! !

    $ # !!$ ! # A

    -# !$! - 3 !

    -

    ' $ # 3

    # !$$ $$

    %# !$ : $$

    # ?' ( @ % $$ $ A

    B$%1$ $ &$ #

    #% +! &- # -

    - - $ $ 8 %

    % # !! $ !$ ! !

    +! $$ $% $$ --

    $% !

    % - # ! 5 $- # $ 5

    ! $% ! : # # $

    $

    + #

    $% ! % A !!$

    $% ?@ 8 #- # $

    +!$ ! $%

    ! ! ! # !!$ -

    9 +! ! !$

    $ # #$ ! $ -! #

    !1+ # ! # !$

    $- 9 $% ! #- !$

  • $% $ $%

    + C $ !!

    ! 8 ! # $ -$ 8

    $ A !!$ !-

    ' $ % ' ( $ #

    - !$ $$

    A % :$

    !$ $-

    !$ 8 - # % $$ #%

    &$%# % +$ 1

    ! $

    & ! $!1 =1

    $$ =1- '# $ D###$E

    $ - A $! ! ! 8

    (! ($ ! 6

    $

    $ $ # $

    !!! !$ $$ % $

    $

    $ - # # $ 8 $- !

    $ - $ A 8

    ! =F1'F : $ # %

    ( # !$% ?'F"8 ' @

    ! 9 $% ! # # A $!

    $

    $ ! : # - -! # !

    % G , (!- 1 #

    ! #$ $ ?' 8@ #$

    $ !! $ # -

    ' # D###$%"(-"$"$"+E

    8 $$ ! -

    $! # $! - -

    ! !!

    D!E !$ D!E ! H :

    +!$ $$% ! $!

    ! $$ ? @

    -

    ! # # ?$% +@ D E $!

    ! 5 $! ! !

    $!H $$% ? @ $$ #

    $ $

    $ #

    !$%

    6 ' ,$ 23 2$ 2#

    - '

    = /***

  • !"#

    !

    8 # % $ - '

    !! - ( ( 2% + & 3 2%

    = .$% ! $% 8 8 !

    -$ $ , - % =

    = '!% > - % (

    = ,$ 2$ = 8 ( !

    , = - !! > ( '- 9

    & (% F $ $

    +! %

    $ 3 8 2

    # # A

    8 $%# ! #

    6 $ % - +$ #

    $ 6 D07)E 2 - " #" D" ' ::: 8

    9E !! 7))570I 6# J%

    $ 6 D0)4E 2 $ ! $ $

    # . 6 4

    !! /4I5/I/

    $ 6 D0)E , $1

    %

    " . 6 !! 5

    /4

    $ 6 D0))E = ! 2!$ $1$ !

    &! '! (! "! %

    % . !! 454I ,%

  • 8 9 % - +$ $1

    6 D07)E 2 - " #"

    D" ' ::: 8 9E

    !! 7))570I 6# J%

    '$ &$ =

    $ 6 D0)4E 2 $ ! $

    $

    #

    . 6 4 !! /4I5/I/

    - % ?$$ $% 1

    @ 00) - # ###$$$$

    ,$%# '$$ ! + ! )75I A

    / /I /; ( (: ( 6 '

    2( 2# :',6 * 74/ */0*) *

    && ,% = = ! +

    A ! *45/0 05//) "

    " = = :',6 0* I // 0 00/ /I$ 4; !!

    c)/I*"'K);I*"LI) &&,% F,+ 7;I 61 D+ M4*4I0;N 1 O%E

    && ,% ! + A = ! ?2!1

    $ $$ !

    @ 6 $ ! : !

    3 &! &$ 5 +$ $ I

    : '

    ! *5I 0))

    , ( DE 0* 70 ) 4 00* 4* $ !! !! c77**"'K;)**"L7 && ,% F ,+ 7;I 6

    D+ M4*4I0;N 1 O%E

    G 96 '! D! G 9$ =!E

    % , 0)

    : 2 G 2 !$ + A

    ! /4*5/I4 / -

    % , :',6 * 0**)) 47 *

    6 &$ ! $ ,

    '!$ ! ;7 %

    " !1

    $ , 6 $ ($ 8 (

    0;) ! !$

    !$ !$$ ! $ ,

    ># &$$ % +$ + A

    ! /75/;I )" "

    '! :',6 * / ;7** /

    G 9$ ,% 6 , %

    + A !!+ # ! + # A

    * " / 6 , :',6 *0/II)*P

    ! G 96 '!

  • ! $ > % +$ +

    A ! *40 "

    " + = 2

    (# $! 0)4 !$ ! (

    2 ' FA$

    =F1'F : ( #

    !$% ?'F"8 ' (! 005000 =F1

    'F : & -@

    ( ( ( !$ ! $%

    ( (! ( (

    ( ! & &

    ,$ 2$ !$ !! !

    - ! $% > ! (! ,$ 2$

    &A !$ ! ' =

    (! &A

    8 $ ($ 1 % +$

    $ # ! !!

  • Dedication

    Professor Noel Simons FREng, 19312006

    Noel Simons, who developed the University of Surrey into one of the UKs

    leading centres of geotechnical learning and research, and who inspired

    the Short Course Series of geotechnical books, died on August 10th

    2006. He was aged 75.

    He was not only a wonderful teacher, mentor, colleague and co-author,

    but was also a dear friend. This book is dedicated to his memory.

    viii

  • ""#

    (!

    $- 4

    '

    !!$ A ! /

    9$ $ - A /I

    '

    /)

    (! /

    ' /0

    $ 4I

    ( $ D,! ,C 07*E )

    '

    ! 0

    (! 4

    I

    $ I

    '

    ! ;I

    (! !

    ""

    F--# ;;

    '! $ ;)

    '! $$ * )7$- ! $$ ,! D0IIE 0

    ($ $! 0

    '! $$ 2 $ D07IE 07

    % , $ */

    ! *4

    61$$ ! /

    (! ! 4

    $

  • (! I !

    "

    F--# ;

    ' $ )

    $ ! /)

    $ $ ! I*

    (! 7 #

    3 ! I/

    :- ! )

    $%

    (! ; & %

    $! $% $ 0I

    2 $$ $ /

    $

    //*

    (! ) ' %

    % (

    2 /

    (! 0 % )

    F--# /7/

    :

  • % , ' 2 4//

    % , (!- 2 4/0

    ($ 447

    !! 44)

    $% 4;

    (! # %

    F--# 4I/

    ($ 4I/

    '3 4I)

    $ ! 470

    $ !! !! 470

    2$ 4;7

    $

    - B

    $- $ $% $$ 4;)

    &!!+ ,! 2@ $A$ 4)

    &!!+ / % ,@ $A$ 40I

    &!!+ 4 #% +! *

    $ ,! *4

    :+ /7

    (1F2 'F"8 '

    $

  • !

    " " #" $ % &'

    # " "

    ' # " " ! ( )

    "" " "

    " * ! ' + " ,- *'

    .

    !

    "#

  • !

    "

    #

    $ !

    %

    &

    '

    !" #$%&' "

    " ( ( )" ) * +

    ,"

    -

  • , #./' *

    - #./%'

    ) #..%' + #$0' * #$0' 1

    #$' 2 ) #$3' 4 2 #$%'

    4 "

    "

    "

    ! "

    5 -

    6

    !

    7

    8

    5 #* 9" $%'

    5

    +

    Externallyappliedtotalstress

    Flexible impermeable membrane

    Porewaterpressure

    u

    u Saturated soil

    ( ))

  • -

    *

    -

    * #$0$'

    8

    :

    5

    !

    -

    *+*

    #* $0$' +

    ;

    -

    6

    ,

    4

    -

    ! " # $%

    !

  • !

    "

    #

    $%

    &

    # # " #

    " '

    # # "

    ' # "#

    "

    "

    (

    )

    X X

    u

    u

    u

    1

  • -

    #! ! *

    *+*

    ,#! ! ,# ,! ,# ,! 0

    ! - #'

    %

    sd3.

    (f)Failure plane

    Failure plane (h)

    (e) (g)

    (b)

    (a)(c)

    (d)

    Horizontal midsection

    Free watersurface

    p

    p

    p

    uw

    p rapidly applied

    v0

    (v0 + p u0)

    u0

    Verti

    cal t

    otal

    st

    ress

    Pore

    wat

    er

    pres

    sure

    Verti

    cal e

    ffect

    ivest

    ress

    Time

    Time

    Time

    wu0

    ff sd2su2

    su3sd3c

    Undr

    aine

    d sh

    ear

    stre

    ngth

    c + (v0 + p u0) tan c + (v0 + p u0 uf2) tan

    c + (v0 u0 uf3) tan (

    v0

    u

    0

    u

    f3)

    (v0

    +

    p

    u0

    u

    f2)

    (v0

    u

    0) Vertical effectivestress

    (v0

    +

    p

    u0)

    (v0 ) No excesspore pressure

    f = sdwu0

    wuf

    (v0) Excess pore pressure atfailure

    f = su

    Drained shearUndrained shear

    Time

    pc + (v0 u0) tan

    (v0 + p)

    Dra

    ined

    she

    ar

    stre

    ngth

    Fig. 1.9 The effect of a reduction in loading on the shear strength of a saturated clay

    measured in the direct shear test

    SHORT COURSE IN SOIL AND ROCK SLOPE ENGINEERING

    20

  • ,- . . ,- ,&

    . &.+

    "

    4

    5

    E

    E 2 2E

    2 E

    E #!

    A2 &&&'

    -

    -

    8

    2

    2

    2 2

    + -

    7

    & . * & ,- "

    2

    5

    5

    ! " # $%

    -

  • ? -

    #* *6 $%&'

    4

    "

    4 "

    4

    1

    5

    2 5

    4

    4 "

    5

    " 1

    5

    2 5

    -

    1

    - 4

    "

    4

    4

    --

  • . , .* .

    4

    2

    2

    - 5

    #

    '

    -

    4

    8

    -

    2

    - "

    4 "

    7

    6 4

    2

    2 5

    4

    2

    "

    2

    ! " # $%

    -

  • 9

    ?

    4

    ; "

    -

    . , .* .

    4

    -

    7

    # '

    5

    5

    5

    4 -

    6 "

    9

    -

    #+

    & '

    4

    -

    F

    -

    4 -

    +

    - #+ & *'

    -

  • -

    4

    -

    "

    -

    * . ,-

    &.!

    2 5

    *

    " 2

    5 2 5

    6

    "

    "

    6

    2 4

    2

    Excess pore pressureat failure for case B

    Time

    Time

    Pore

    wate

    r pre

    ssur

    eFa

    ctor

    of s

    afe

    ty

    10

    A

    B

    ( ))<

    7 !

    7 5

    ! " # $%

    -!

  • *6 #$/'

    "

    6

    2

    "

    #+ '

    2

    " *6

    #$/' "

    @

    &&G "

    *6

    - &.4 );9-

    -"

  • H

    H

    #+ '

    A

    4

    H

    2 "

    4

    "

    "

    4

    H

    @

    H

    @

    2 5

    4

    9

    4

    2

    Displacement

    Shea

    r stre

    ss

    Rigid plastic

    Real soil

    sp

    s

    sr

    ( ))- / +

    +

    = ( /& );62 )

    ! " # $%

    -#

  • -

    2 6

    " 2 #*

    $/ ' !

    -

    4

    #* $/'

    #* $/'

    (

    7

    " "

    7

    "

    &&-

    " "

    -$

  • ! "

    !

    " # $

    "

    %

    & '(

  • %

    )

    *

    )

    + , -

    "

    ,-

    .

    "

    "

    /

    "

    0

    )

    ,& ''-

    ,& '1,-- )

    )

    # $% &

    ! !"!!"

    !

  • Equilibriumground waterlevel h

    P

    End of loadingpiezometric level

    # $$ '

    !

    Height of fill

    Shear stress on slipline through P

    Time

    Time

    Time

    Time

    (a)

    (b)

    (c)

    (d)

    Pore

    wate

    r pre

    ssur

    eh

    w

    Effe

    ctive

    stre

    ss

    at P

    Fact

    or o

    f saf

    ety

    Rapid construction

    Pore pressuredissipation

    Pore pressureequilibrium

    at P

    # $( )

    ! * *+ %,-.

    "# # !$ %&' (! !"# ) &

    $

  • ,& '1,- ,-- #

    "

    / "

    ,& '1,--

    ) /

    /

    2

    "

    ,

    -

    .

    )

    3

    ,-

    ,-

    ,-

    / ,-

    )

    4

    5 )

    /

    / "

    ! !"!!"

  • )

    /

    /

    *

    )

    6

    , + -

    * /

    !

    0

    1

    *

    ! +

    "

    * +

    %

    )

    , -

    %

    , -

    *

    7

    , -

    ,& '8- .

    "# # !$ %&' (! !"# ) &

  • / ) 9

    ,(::1-

    '( '' + '1

    ; ,( & 6 ?> 2 @

    2-

    ./

    /

    +

    $

    /%9

    3

    '8

    ,

    -

    &

    )

    .

    +

    = 0

    c = su

    # $2 3 4 5"

    .

    ! !"!!"

    %

  • * & ,

    -

    %

    , -

    , -

    + $

    4 /

    %

    % 5

    &

    + , - %

    +

    )

    + 9

    / " +

    . , # 1-

    (

    )

    .

    "# # !$ %&' (! !"# ) &

    &

  • .

    & 'A

    .

    & & 'B

    *)

    . '(

    /

    '

    ,& ':-

    # $6

    * 7! %,-$

    ! !"!!"

    (

  • 6

    /

    8'

    '

    7

    8

    1

    'A

    7 8

    /

    )

    $% 9

    *& :..2; %,:-

    9 & 0

    3 *

    C @

    (A+; 9 :A%(A+

    & 9

    8+%:A

    ; 2 '+%8+

    C 2

    /

    '+

    050

    040

    030

    020

    010

    0

    s u

    /p ra

    tio

    0 10 20 30 40 50 60 70Plasticity index: PI

    # $-

  • 8'

    '

    78

    1

    !

    !

    ;

    ) /

    * ) !

    )

    /

    " ;

    & '=

    )

    Torque

    # $=

  • 1=

  • *;

    /

    /

    %

    9

    . 7/ ,(

  • 7 ,(

  • .

    & '(+

    )

    )

    @5 ,(

  • @5 ,(

  • # $%% ) *+

    %,=(

    25

    001 05

    20

    15

    10

    05

    0

    25

    20

    15

    10

    05

    0

    (

    1

    3) m

    ax (k

    g/cm2

    )

    10 min 1 hour 1 day 1 week 1 month5 10 50 100 1000500

    (a)

    (b)

    c = 10 kg/cm2c = 20 kg/cm2c = 40 kg/cm2

    Time to failure: hours

    Pore

    pre

    ssur

    e pa

    ram

    ete

    r: A f

    # $%$

    *+ &

    %,6: ?

    ?

    .

    ! !"!!"

    %%

  • . & '(',-

    .

    6

    7 ,(

  • )

    ) '1 ; ,(

    & %,-=

    ;/

    3

    6

    #

    3 F

    3

    3 * , '=F-3*

    ;

    1+A B(+ A '=' B1 8== A+: +B'(A' 1+A < ':( ((+ A(A 8B+ +AB(+' '+1 (( ':: (:A 8:< 8B8 +A:1= :B ,08- 1B 'B< =

    & %,-=

    #

    3 F

    3

    3 * , '=F-3*

    , '=F-, 8+++-3 *

    ;

    ; '

  • B(+ B(+ (BF

    @

    /

    1= :B 08 !

    7

    (++ '++ B(+ B(+

    $6 C

    * *+ %,-.

    ! G ;

    &

    @ >> '> '/ @ '>'/

    ! 7H (+ 1A (A '+ +'A +

  • ,% %-' ./0*1

    @ @5 ,( '/ !

    @ '>'/

    "#$% & %

    9

    (8 BA ': 1= +18 '+ 9 (

  • ! "# $ % ! & '

    ( & ) * '+,-

    ( ./- +0

    !

    (

    '- 1

    2

    ' - 3 (

    (

    '- (

    ' +-

    4 5 ( !

    3 %

    ! "# # $ %" &'

  • , - ,

    - , & '((-

    ,-

    , -

    ,

    9 1-

    ! !"!!"

    &!

  • !

    "# $

    "

    !

    % &

    ' #

    %

    ! (

    ) *+

    !

    (

    ,

    -

    ,

    !

    ) *+

    %

  • ! %

    %

    .

    !

    !

    /

    !

    % '# %

    , ! *+

    0 1 12 0+34566

    7 ! *+

    ,

    ,

    %

    &

    ! !"!!"

  • !

    / %

    !

    !

    2

    )

    ) *

    ! 0) **066

    0) **066 !

    0) **066

    !" #$%&'

    8 -9

    :

    9 - 9

    ; 5

  • )),

    !

    2 %

    !

    !

    Depth of cut

    Shear stress on slipline through P

    Time

    Time

    Time

    Time

    (a)

    (b)

    (c)

    (d)

    Pore

    wa

    ter p

    ress

    ure

    h 0 w

    Effe

    ctive

    stre

    ss

    at P

    Fact

    or o

    f saf

    ety

    Rapid construction

    Pore pressuredissipation

    Pore pressureequilibrium

    hfw

    at P

    ) "

    " *

    !" #$%&'

    ! !"!!"

    $

  • +3*4 !/

    +3*@

    8 , $ +34< 8

    , 2

    0 6

    "

    ' # &

    !

    8 0+34

  • 8 0+34

  • 0

    0*66

    D 0+34@6

    %

    & %

    D

  • 8 - 0+34@6

    8

    ! = 0+3@*6

    !

    )

    0D +34@F 8

    +34;F $ = +3@5F = +3@56

    * '

    !

    !

    , 9

    /

    ) *;

    / *

    ,

    A

    0" & +344F 1 $ +34@F

    C +3@+6

    8 0+34

  • !

    ;

    B &

    +

    ; >

    !

    8

    1

    0+3@+6 $

    8 C

    0+3@+6

    +5G

    ,

    !

    ,

    8 0+34

  • !

    = 0+3@*6

    0 6 !

    ! =

    !

    !

    2

    ,

    *

    !

    0+3446

    D >

    0D 0+34@6 / /

    1 0+34;6 & 0+3436 /

    ! !"!!"

    (-

  • !

    !

    0 +34@6 -

    01 +34@6 !

    - %

    0= +3@56

    /

    " & 0+3446

    8 " 0+3436

    0

    +6

    '#

    $ = 0+3@56

    0:6

    8

    ) *;

    !

    0! +3*@F "

    +3*B6 8

    C 1 0+34@6 8 / 0+3436 $ =

    0+3@56 1 0+3@+6 1 0+3@36

    ! 1 0+3@+6

    2

    !" # " !# $%& ! !"' ( %

    (

  • / !

    0) *46 0 +6

    0 ) *@6

    ! !

    , $ "

    $ = 0+3@56

    1 0+3@+6 3*0 56 *(

  • 2

    !

    !

    -

    Plane of relativerotary motion

    Axis

    n

    % 4 "

    " #$3'

    02

    200

    10004

    0

    mm

    00

    00

    10

    05

    01

    02

    03

    04

    05

    10 15

    20

    20 in

    30 40 50 102 m

    Undisturbed blue London clayn = 29 psi200 kPa

    Remoulded blue London clayn = 269 psi185 kPa Residual at = 15" approx

    038 m approx

    Residual at = 6" approx015 m approx

    n

    H:

    10

    4

    in

    Displacement

    3

    "" " " 1 2" #$3'

    !" # " !# $%& ! !"' ( %

    (#

  • ,

    / 0$ = +3@5F =

    +3@56

    ! 1

    01 0+3@36 ( ) *B06 066

    1 0+3@+6

    -5

    8 0+3@@6

    / +3

  • Motor

    Clutch (worm drive under)

    Alternative position for load ring bearing

    Load ring (dial gauge omitted)

    Hanger

    Gearbox

    Stop for hangerIndex for rotation scale

    Clamp

    (a)

    (b)

    Pillar for settlement gauge

    Loading yoke

    Ring shear cell

    Load rings inclamped turrets

    Counterweightedloading arm

    Rest for load arm

    Load hangerCounterweight

    Control panel

    Motor drive and gearbox

    0 100 m

    Approx.scale

    6#' "7 #$3$'

    8" " " "

    " " # '

    8" "

    #' "7 " 9

    " " " 8"

    - #$3$'

    !" # " !# $%& ! !"' ( %

    (

  • !

    !

    > "

    '#

    )

    '

    # , H

    $ -5

    "" : . - #$33'

    Turbulent

    Transitional

    Sliding

    40

    30

    20

    20 40 60 80 100

    10

    00

    Clay fraction: %

    r: d

    egre

    e

    & *"; - " ,

    1" #$6'

    ! !"!!"

    ((

  • !

    - 2

    '# '#

    0 6

    ,

    *1,

    /"

    ! "

    /

    0 6

    ! *

    .1

    !" # " !# $%& ! !"' ( %

    ()

  • ) 223,

    /

    ! (

    (

    ! (

    (

    ,

    /

    42 '!/ - 0+3

  • 01 +34;F $ +3@69

    !

    .1 01 +34@69

    .1

    **

    !

    )

    > 0+3@46

    +

    !

    " & 0+3446

    8

    $ = 0+3@56 &

    $

    $ = 0+3@56

  • % ! /

    C

    &'

    1 " 0+346

    &

    + !

    ;G !

    12 0+3;B6

    + !

    *+

    1 $ 0+3436 $

    - , !

    8

    !

    12 0+3436

    C 8 E

    $ 0+3@6

    +G !

    $

    " 0+34569

    - +5 5 *

  • , $

    &' '! 2

    2 ,

    /

    08 +3446 7

    8

    /

    !/ +3*4

    "

    2

    8 0+34

    0

    +56 I 2

    ' #

    !" # " !# $%& ! !"' ( %

    )

  • 8 - 0+34@6

    8 0+3436

    A 2

    2

    > ; 2

    2

    &'

    ,

    /

    / 0

  • /

    1 /

    = 0+3456

    / 4 5 , I

    J " 8 0+3;;6 /

    ;5 ! /

    +5G 2 /

    8 - 0+34@6

    = J /

    4 !

    ;5 & J

    / 5

    5(*5 ! / *G

    9 42 ',

    !

    8 0+34

  • , 2

    ,

    12 0+34@6

    C

    C

    ,

    ,

    12

    !

    12 0+34@6 ! *

    , ! *

    0 6

    2

    ( / " !" #$%3'

    8

    A

    . "

    & "

    A

    . $

    & E

    A E

    ! !"!!"

    )$

  • !

    1

    I 0+3@+6 /

    I

    5 2

    2 !

    " 8

    0+3;;6 8 C 0+3;@6 8 0+3@56

    / - 0+34@6 1 0+3@+6

    $ $ 0+3@*6

    !

    % /

    /

    * ;

    06 ! 0

    6 )

    06 ! 0

    6 0

    ) ;56

    !" # " !# $%& ! !"' ( %

    )

  • 06 !

    0

  • !"##$ % !"#&$

    '

    ( !")*$ !"&&$ +

    %

    , -

    .

    / $ !"#*

    !")*

    . 0

    !"#1$

    !"1#$

    ( !")# !")&$ 2

    30,45

    / 3 4 +6 $

    /

    $

    $ 7 8

    -

    - $

    7

  • ! " #

    $# % & '(

    " )*++ #

    !, "

    ,

    - &

    .

    $ / . )*+0(

    # , &

    ,

    +1 2 3

    $3 . )*4+ )*45(

    $ & '(

    % 6

    "

    7 )*58

    )*49

    )*59

    .

    9 : ;!

  • : >

    >

    =

    2 -

    W

    ;)

  • '() * + , 9 : ;? 7 .

    7

    7

    a

    z

    = bulk unit weight

    ;8

  • + , / ) )* ) 08 : ;; !=?=

    ?

    ;# ? ;@

    ? ?1#

    + , / ) )* ) ) 09 : ;# @ < ?= A !";?$

    ?

    ;?

    ?=

    ;#

    ?=

    ! ;#

    @ ! ? =)&

    H

    H

    tan

    ;;

  • - ."+

    : ;)

    + $ A

    )*> 6 != !* #&&; =* )* #**2

    9 )* !!## )"?2 )"?#** !?*

    ;#> 6 != !* !* =* ;# &*&2

    9 !;!; )* 1;12 1;15&*& !=

    ?*> 6 != !* !&? =* ?* 1)#2

    9 )* =* B !=**2 !=**1)# !?"

    : $ >

    : >

    6 # =* ;# #?*29 &*& )* ;=;2 ;=;5#?* *1*

    45

    45 3060

    10 m

    10 m

    10 m

    10 m

    5 m

    5 m

    Qw

    424 m

    (a)

    (b)

    (c)

    = 20 kN/m3

    su = 60 kN/m2

    ;4

  • '() * 1) ) 9 : ;& : C

    3 3 7 !

    7 2 7 !

    7 = 7

    7 = >

    7 = /

    7 =

    7

    : ' $

    / != # # !* !=#2

    4- !=# ;# 11; 2 ;=;#?* 11; *)"

    8

    '

    '

    : $

    @ !*=; &1#= !*= !#&!

    >

    6 &1# =* ;=; ))#)1 259 !#&! )* !* ";=; 25 ";=;5))#)1 !;=

    8 >

    $ !?" )*$ !=* ;#$ !?" ?*$ $ *1* $ *)" $ $ !;=

    "#$ #%#& &

    $

  • 8 *

    8 !

    8 C A

    7

    ! =

    !

    C *

    1

    Seepage parallel to slope

    Z

    mZ Uw

    z z cos

    cos

    z

    sin

    1

    ;5

  • ) / !)

    *$

  • !! %= = E % %%F % A %F E

    '

    % !; =&>

    % ! !*=% !* !#)% =* !&?

    * , )2 *

    -

    * :;"

    3 : ;"

    @:6

    a

    i

    x

    HDH

    l

    W = A suF

    ;*# %

    &

  • 2 6 @ :

    !"?&$

    019

    018

    017

    016

    015

    014

    013

    012

    011

    010

    0091 2 3 4

    i = 53

    45

    30

    15

    75

    225 n =

    3

    2

    1

    0

    nHH DHi

    Depth factor D

    Stab

    ility

    num

    ber N

    =

    s u

    /FH

    ;)9

    "#$ #%#& &

  • A G ( !")=$

    #2 )

    8

    9

    : ;!* - A

    >

    A ?

    !

    A?

    #;

    8 ' -

    *$ 3 #; ;=

    '( ' ' ! !$ #; ? =$ #; ? ?$ #; < ?

    - ." !$ !* #* =*25?

    : #; ? *!1

    #**!1 =* !* !?1

    : "* ? *=)

    #**=) =* !* !")

    =$ ?* !125? !?6 ?- ;# "* < !

    ;!

    ?-

    A

  • ! ") 345678 : ;!! >

    2> "*

    ?- ;

    *=#

    ?- ?*

    *=# !1 !? #!=

    3 * ;=2> A ?

    @ >

    ;) B 2< ! <

    ;# *!)# *!1!?- &&& &*1

    "* *=) *=)?- ;"? ;"?

    ;= ! * +

    "* *=#* *=)!

    *!"= *=!")* *!;; *!"!;# *!*; *!1! *!&*$ *!))$

    ?* **)& *!1! *!#)$ *!?;$

    !# **?? *!1! *!;#$ **11$

    < !

    "#$ #%#& &

  • !" #

    $% # &'(

    # )

  • 1) ) * % 345998

    : ;!= $

    : ;!= $

    : ;!= $ H

  • @ A .
  • 6 @

    !:

    : ;"

    8 :

  • F

    : ;!?

    >

    !:

    : I39

    !:

    : =

    $

  • * ") 345698

    @ (

    !")#$

  • * 8

    !

    *=

    )!) :) / ) ( !")*$ .'

    '

    @- !

    .

    : ' '

    -

    : ;!#$ '

    300

    200

    100

    0000 02 04 06 08 10

    ru

    F

    = 30c

    IH

    cot = 3D = 10

    = 005

    ;)+ / :

    3 $)*49(

    "#$ #%#& &

  • : ;!)$>

    ?

  • <
  • : !** ? **# !&" !;= *;#

    *?" *;# !&" *?" !;= !=;

    : < !** ? **=# !#= !?# *1

    !#= *?" !?# *""

    ? **&)

    !=; **&) **#***#* **=# !=; *""

    !=; *=) !#*

    !;?

    : ;!;$

    =$ + =*25? =? =# ? ?# *# ; A !

    2

    ? =?=* ?# **??

    ?

    **=# =;* =!#

    **#* = ==*

    : =# ;>! ? **=# =;* *# =!# !?=# ? **#* = *# ==* !)# ? **?? !?=# !)# !?=# 1=# !;?

    ?$ + 0

    : #!*$ (

    '

    "!!

  • ' ) )! )

    8

    ' ,

    : ;!1

    : !>

    >

    !! == ==

    ! = ?

    >

    ! G! G

    G

    ? !1

    ? "1!1& !1 **="

    *;

    ? **=#< !* !;# !;* !;# *; !;* *1"

    ? **#< !* ! !#* ! *; !#* !!#

    ? **=" !1" ;=#!!# *1" *"?

    3 !"#)$ !*#

    ru1 h1h2

    h3 A2 A4A3

    ru2

    ru3

    ;)0

  • $0 % )

    !"1=$

    ' C @- = :

    @=! .

    '

    ' C @- =

    : @== : @=)

    ; / $0 % ) >

    ?

    ' .

    ?

    : !*== !*=?$

    - ." !$ + - : ;!;

    I ?

    ? !1

    !"1 != =? *!&1#

    2 !=# =!1 *? ?$ =?*? !;!

    + !;? .' !#* ( '

    =$ + 0

    : #!*$

    I ?

    ? "1!1& !1 =&! **#)"

    =))

    *# !*=

    ? **=1 !*;

    !*? !*# 0 3 !"#)$

    "!#

  • ) !

    9 : ;!"

    , @: 8

    4G 4:G

    : ;=* 2 :@4

  • -

    -

    - H

    %

    6

    (a)

    (b)

    w

    No water pressureacting here

    ;=) $(

    , $(

    P

    Hw

    Z2

    Z1

    Hw

    Hw

    Z Z

    W

    W

    W W

    x

    q

    ()()( )

    ( )

    (a)

    P

    x

    q

    (b)x

    (c)

    = (z + q) x + Pp = z + q + p / x u = w Hw

    p = z1 + z2 +q + p / x u = w Hw = w

    W = ( z1+ z2 + q )b + Pp = zu = w Hw = w

    W = z x

    ;== ! %

    $(

    $( $(

    "!

  • ! "!#

    $ ! $!#

    !%&' ( "%&'

    !#)

    * +,

    +*,

    ! $ ! !# !# !#

    - . '

    ''

    / ! ! $!# ! !# !#

    - .

    ( ( !# .

    $!# ''

    (

  • =$ 8 : ;=; .

    @ + @ @

    .

    @ ! @ +

    =

    G G>

    .

    ? !" = " !# )*

    .

    # !" "# ?# )*

    G >

    .

    = !" !1 * !1

    .

    ! !" ! " =1 =* !* !* ! $ !1

    2 m

    1 m1 m

    1 m

    1 m

    3 m

    2 m

    15 m

    = 19 kN/m3

    CB

    A

    30 kPau = 35 kPa

    u = 30 kPa

    u = 0

    ;=;

  • G '>

    .

    ! " " * "

    .

    ! " " !* !* * = $ "

    ?$ + - : ;=# H .

    > * # =* !"# 25? -

  • 6

    9

    7

    ;+ -,

    3 > > > ! = !"# ! "# ;1# !* ?1#= !# !"# ; "# )&? ) )!?? *# !"# #; "# )!! = #"!; #? "# #*; ! ;";# ?" "# ?&! = ?#!) !) "# !#= ? !==

    ;4 -,

    3 > > > ! ? !"# #1# =* ?1#= ?# !"# = "# 1&? =) )!?? =# !"# ?; "# 1!! == #"!; !# !"# ?1 "# )#; !) ;";# *# !"# ?; "# ;=! & ?#!) !) "# !#= ? !==2 7

    ;5 !

    # *

    3 >

    >

    G

    !#"

    G G

    !=*

    G

    ! #& ;*)1 !"* *&; =#)1 !;* *1* !*

    = ?; ?&)? =&? *"& =1!; ==? !** ==?*

    ? !) !)1; =)# !*? =#&? =!# !*; =*)&

    ; * * =?* !** =?** !1* !** !1**

    # !# ")* !&1 *"* !"&1 !=1 *1" !;?1) ?= 1*# "; *&! !?=; ;; *&* )="

    &*

    !=?* !?##& "?* ""!;

    ! !=?&!#"

    = ! ! "?&!=*

    = !=1

    "!

  • ;$ + : ;=)

    @+ 6

    J .

    @6

    ;0 !

    # *

    3 >

    >

    G

    !=!

    G G

    *"=

    G

    ! #& ;"*) !"* *1* =? !;* *1" !#&?

    = ?; ;11= =&? !** =&?* ==? !*# =!=;

    ? !) ==?# =)# !*; =#;1 =!# !*& =**"

    ; * * =?* !** =?** !1* !** !1**

    # !# !*"* !&1 *1" =*** !=1 *1) !;11) ?= 1*# "; *&* !?;? ;; *)# )&&

    !*!=1

    !=?* !?=") "?* ")&!

    ! !=?!*!=1!=!

    = !?! ! "?!*!=1*"=

    = *"#

    ;* ! % 6 ;=+

    > . @ .

    # ! !?!

    * !=1 *"#

    0 5 10 m

    Scale

    12

    3

    4

    5

    6

    34

    31

    3162

    6546

    10

    17

    C

    D

    = 19 kN/m3

    = 20 kN/m3c =

    A B

    18 kPa, = 23

    ;=4

  • .

    ' :

    .

  • / ) ) < ) ) )!) / ! $ ! )2 ! .

    6

    $ ! =2 ! 6 .

    > >

    ! !;$#5)

    ! ;) ))? * ;&& ;)! *"! #*&

    = ?; !==; ?! )1# #)1 !** #)1

    ? == !;?# )= #?& #=) !*; #*)

    ; =* !?** )# ==) ;#) !*? ;;?

    # ! "=* ;) !) ? *"" ?&") !! ?;* !& )# =#= *"= =&;3I( !1;; =)?1 =)&&

    "#$ #%#& &

    """

  • $ ! ;2 . 8

    8

    :

    C :

    : .

    $ .

    C

    '

    $ ! +2

  • %
  • 120

    110

    10001 02 03 040

    (c)

    (b)

    (a)

    06

    08

    10

    10 05 05 10 20 300

    12

    14

    40 40 50 60 7030 3020 2010 100

    02

    0

    00604

    10

    02 04

    06 0

    8

    10

    tan

    n

    tan F

    tan F

    : degree

    L d

    n

    l

    W

    pq

    Q

    sF

    positive

    = 0c > 0, > 0

    c = 0

    f 0

    d /L

    ;=0 $( " = ) :$( % $( "

    I

    ""

  • / ($ 6 ..

    G G

    3 6 .=***

    !;* ***

    +, -' . +@3( + /?- /"#5"1 /2 I28L 6083@ :

    6,3 43@I + 6,3 I28L 43@F40 + 6,3 G + /"#5"1 /2 G30,4 + /?- /"#5"1 /2 G. + ( ( G4,30,4 + 6,3 G3 + 6,3 G:@=6 :

    6,3 /?- /"#5"1 GGI.308+4 + /"#5"1 /2 /=*** GGI.30,4 + /"#5"1 /2 /=*** G3.+ + 6,3 G3 + 6,3 G3@0& !!; + /?- /"#5"1 /2 80@ + /"#5"1 /2 083@ :

    6,3 (9,3@ + 6,3 (3@ + 6,3 +3@0 # ( 6,3 + /"#5"1 /2 94@(4 + 6,3 3 3 6,3 3.30,4 + 6,3 3 + 6,3 /?- /"#5"1 /2 308 + 6,3 30,G + 6,3 3 G$ + 6,3 3 ,$ + 6,3 /"#5"1 /2 30,4 19 + 6,3 3./ + /"#5"1 /2 30,2+ + 6,3 3 / + /"#5"1 /2 /=*** 3@04 + 6,3 /?- /"#5"1 /2 3@049, / + /?- /"#5"1 346 == + /?- /"#5"1 /2

    "#$ #%#& &

    ""%

  • 3/@34 + 6,3 30,4 + /5% % 30,4? + 6,3 I28L 3@ + 6,3 I28L I4L@3? + 6,3 /3 3 /?- /"#5"1 /2 L3@0 + 6,3

    +'/, -' . @++4+@0+ + /"#5"1 /2 +0IM3@9 + /"#5"1 /2 4A3 :

    /"#5"1 /2 : @ :

    /"#5"1 /2 9: + /"#5"1 /2 9,+H?6 + /"#5"1 /2 9,+H: + 6,3 9,:4L + /?- /"#5"1 9,,(@ + /"#5"1 /2 3 H + /"#5"1 /2 30,4@+H + 6,3 3/@93 + 6,3 3 + /"#5"1 /2 /46G4 + 6,3 / : @ :

    /"#5"1 /2

    =- ) ) ) 30,45/ 3 4 +6 G4,.30,4 8.

    0

    + ?

    I G ,

    N

    3 4 I

    G . N . .

    :!

    - /

    . $ @

    ' 3 4

    ' 64:824 +,2,I9

  • !

    !

    "# $ !

    !

    ! "

    #

    "# % !

    !

    &

    "

    #

    '

    ! &

    (

    "#

    (

    "# !

    "# !

  • "# (

    "# ! '

    !

    "# !

    !

    "# !

    "#

    )* + ",-./#

    ! 0 '

    !

    .,

    12 ,,/

    1-/

    % ",-.3# 4

    0 ,-.

    5 ' !

    ,-

    ! "

    .6 7 6 8 ,26# *

    0

    "8 ,-31# 9

    !

    ! !

    !

  • !

    "#$%&

    0

    %

    '(

    %

    (

    0(

    8

    $

    (

    :;

    (8

    0

    ('

    (

    0

    8

    4,1

    11

    1.

    .-

    ,,/

    8

    ?

    %1-

    .1

    11

    ,.3

    .

    1>.1

    ,1

    21

    -1

    12

    0

    %

    ..21

    .

    ,11

    ,21

    ,1

    1

    1/-

    1/3

    /=

    1-

    ":

    #+*

    "8

    ,-31#

    E 16

    ,11

    !

    ,16 4

    " #

    ,,

    1-

    !

    #& '&< ,/ F ,-/2

    4 .,

    /

    Moraine

    05 m

    +20 m

    +40 m

    +55 m

    1:1

    1:1Depth of tensioncrack 05 m

    Soft sensitive clay

    Surcharge5 kPa

    ) * )+

    ! !

    ()

  • ( 31 .16 7 31 .16 8 16 =. ,.8 " # ,1 .1

    ,,3

    )* ",-=#

    ,12

    $ % *

    !

    ) ,-.= 0

    7 9 ",-/.#

    ) + 7 '

    9 : , 4 . 0

    3 ' ,-.= !

    "4 .# 0 * ,-

    7 =

    . ! '

    0 ! 3

    0

    ?

    G 7

    + 7

    ,.1

    ! +

    ! 0

    * '

    :

    !

    2

    =/ " #

    "# ,.

    : !

    !

    ! '

    7

    ( 6 & -.6

    16 .6

    4 0 " 4 .3#

    7

    ./6 "6#

    "# $ " "#

    (

  • Slip II (5 May 1957)

    Slip I (24 April 1957)

    N

    16 April 1957

    19 April 1957

    23 April 1957

    Date of excavation to 945 m O.D

    Groundlevel+ 183 m O.D.

    Excavated to 701 m O.D.by 14 April 1957

    0 10 20 30 m

    Scale

    , * - )+

    ' - #$%&

    ! !

    ((

  • " .# 4 0

    .6

    ,2 ,-

    '

    !

    Originalground level

    Excavation to 091 mon 1 April

    Excavation to 701 mon 14 April

    Excavation completed19 April

    Note:Slip surfacesnor surveyed

    BlueLondon clay

    BrownLondon clay

    Marsh clay

    Clay fill

    25 April2 p.m.

    24 April9 p.m.

    24 April5 p.m.

    1:1

    1:1

    :1

    366 m

    183 m

    1478

    m

    854

    m

    945 m

    +533 m

    +183 m

    091 m

    +091 m

    823 m

    O.D.

    . ) - ) / # & $0 #

    1 & )+ ' - #$%&

    BlueLondon clay

    BrownLondon clay

    :1

    Fill

    Marsh claysu = 15 kPa

    73

    m

    35

    m2

    7 m

    85

    m

    Pw

    Case

    Londonclay

    Strength for F = 10 suMeasured strength su

    su in kPa

    su / su

    1 2 3 4 5527

    958055

    537

    958056

    508

    1053048

    594

    1149052

    685

    1197057

    1 2

    3

    4 5

    2 ) )+ ' -

    #$%&

    "# $ " "#

    (+

  • !

    D !

    ,26

    ,. "0 7 9 ,-/.#

    7 =16

    2 =/ D

    !

    *

    . ! ,.

    , 1,2 1=1 1.= !

    )

    ,2

    1 &

    !

    0

    & =6

    !

    , ) )+

    ' #$%&

    +

    (

    (

    0

    (

    "#

    0 7

    ( 8

    0

    0

    9&

    H

    9 : ,

    0

    ,32 . > .3 -/ 1./

    9 : ,

    0

    ,= 3 ,- > .1 -/ 1.

    8 E ,,- > > 31 31 ,1, 131 E =1 > > 3. I 2/ I12

    ! !

    (,

  • 0 ! )

    &

    7 )

    7 316

    2 =/

    ) 0

    7 9 ",-/.# (

    0 !

    7 ./6

    ",. #

    0 ,- 7 .6

    8 E E 3 3,

    7

    316

    ) 7

    .16

    E & 316

    7 . 1

    .6 .6

    "0

    ,-32#

    -. /010 ,-// 7

    '

    7

    "# $ " "#

    ($

  • $ !

    1=8 2 =/

    .1

    .

    26

    3. ' ./ "

    !# ==6

    !

    :

    ! G

    1. /,1

    ,. 1. ,1, 1 2

    =/ , .

    !

    118 .3 '

    26 (

    1. /,1 ,. 1. ,1 1

    /16

    2 =/ $3

    2 =/ 36 2 =/

    . 3

    ' 4 ) #$%,&

    ' :

    5

    ( 6

    (

    #

    $

    ( 8

    ( 8

    " 26#

    0

    "

    #

    @ , 2, = ,,/ ,,= ,11

    E , 2, / ,3 ,. ,1=

    3. , 2 / 2 23 1=./ , =1 3 ,1 -1 1==

    ! !

    (2

  • $3

    $3

    , .

    ! /,1 &

    ..

    /,1 & 1. /,1

    2 =/

    $3

    (

    2 =/ ,22

    ,

    1. /,1 6 '

    /,1 & ,=6

    )

    2 3 5

    .6 0% 72 ' 4 ) #$%0&

    0

    (

    :

    5

    ( 6

    (

    $

    (

    ( 8

    ( 8

    " 26#

    0

    2 =/ $3

    1. /,1 . 2 / 3- ., 1/,. 1. - =, ,,1 ., 3/ 1./,1 1 ,, == ,=. 32 3/ 1.=2 =/ "$3# / /- 2 - 2 ,112 =/ "# , 2, = ,,/ ,,= ,3, . "# ,- // ,1 / ,- /2

    "# $ " "#

    (

  • 2 =/ $3

    7

    H

    ,1, 1

    /,1 &

    " 1 #

    &

    &

    $

    !

    " 1 # ./ ")

    )* ,-/1# 1

    3

    ' 4 ) #$%0&

    0 " #

    5

    ( 6

    (

    $

    ( 8

    ( 8

    " 26#

    ( 8

    " 26#" 3111

    #

    0

    0 - 3111 1 . . ,11

    /,1 /,1 2, =, 32 32 3, ,,=1. /,1

    2 / 3- ., 3 ,

    2 =/ "$3#

    /- 2 - 2 // ,22

    ! !

    (!

  • ,

    1/ %

    &

    !

    (

    ! ! ! !

    % '7 1 ! #$%8&

    7

    % 0

    1

    9

    ( 6 7( 6 8( 6 8 7&

    4 *'*/

    ,3 /. = 2 13 1 ,-32E :

    / 1 1/ 2 ,-324 : 1 /. 2 = 1 ,3 ,-.E

    ,- .= 3 1,2 , ,-320 @

    3 .= = 1 1,1 7 ,-.5

    > > > > > 2 0 ,-3

    0

    > > > > > . ,-32

    F! : 1 3. 1 . 111 3 E

    0 ,-..

    8 @

    1 2/ 1 ./ 111 3 0 ,-32

    B ?

    2 2, 2 . 111 2 0 ,-32

    H 7

    > > > > > , 0 ,-32

    ) : 2 ,,1 1 -1 11- / 8 ,-.

    +

    3 .1 1 1 1, .1 7 ,-.

    0E /

    = -, . // 1,- ,- 7 ,-.

    : > > > > > ,/

    4 :J

    3 / . = 11 ,1 H ,-.,

    7

    , / ,2 ,2 1= ,1, :?

    H : .. /1 . . 12. 12.

    > > > > 121

  • H 0

    ",-/3# 0 E ",-/-# 0 ",-==#

    " %

    3&& 456 & %2(7< / F ,-..

    % 9 % : "4 ..#

    !

    !

    .6 7 .6 8 ,26 26 28

    ) )

    N

    20

    22

    2330

    25

    28

    29

    26

    24

    2119

    CBA

    5

    5

    10

    15

    15

    20

    5

    5

    10

    10

    0 50 100 m

    Scale

    Vane testSoundingPiezometerSampling

    Ovre Storgate

    ) 9! ) #$%,&

    ! !

    +)

  • ' 4 ./ '

    ( 8 .

    ! '

    ,

    5

    5

    5

    5

    77

    99

    9

    67

    48

    4

    7

    4

    10

    10

    1220

    15

    10

    5

    Reduced level+ 30 m

    Dep

    th: m

    Sam

    ple

    No.

    Soil type

    Sandy rockFILLMediumSAND

    Very soft to soft greysilty CLAYwith verythin seamsof silt andfine sand

    Water content: %

    20 30 40 50 2010 30 40 50 2010 302010 30 40 50

    Boring 30

    Salt content: g/lClay content: %Plasticity index: %

    Unit weight: kN/m3

    Shear strength: kPa

    St.

    Undisturbed

    Remoulded

    ClaySalt P.I.

    St.

    1510

    5 Unconfined compression test,showing failure strain in %Cone testVane testSensitivity

    Boring log for boring 30

    % 9! ) #$%,&

    "# $ " "#

    +

  • 0 )C !

    ( '

    D ) "

    #D

    4 .=

    ,1,

    !

    %

    " 1# &

    :? .3

    4 .2

    13= !

    %

    !

    4 .-

    %

    5

    8 4 %$27'

    ,-. ,-3- 4

    /

  • = 95

    = 90

    = 85

    = 185

    = 95

    = 90

    = 85

    = 185

    = 95

    = 90

    = 85

    = 185G.W.L.

    G.W.L.

    G.W.L.

    15

    14

    13

    12

    11

    Fact

    or o

    f saf

    ety

    16

    15

    14

    13

    12

    Fact

    or o

    f saf

    ety

    13

    12

    11

    10 Fact

    or o

    f saf

    ety

    c : kPa, : kN/m3

    Profile A

    Profile B

    +5

    0

    5

    10

    Elev

    atio

    n: m

    Profile C

    +5

    0

    5

    10

    Elev

    atio

    n: m

    +5

    0

    5

    10

    15

    Elev

    atio

    n: m

    L.W.L. 10

    L.W.L. 10

    L.W.L. 10

    Timber pilesat 1 m ccs

    c = 1 = 32

    c = 2 = 32

    c = 3 = 32

    c = 0 = 32

    Slightly over-consolidated clayNormally-consolidated clay

    c = 1 = 32

    c = 3 = 32

    c = 0 = 32

    Slightly over-consolidated clayNormally-consolidated clay

    Critical circle

    Critical circle

    Critical circle

    c = 2 = 32

    c = 1 = 32

    c = 3 = 32

    c = 4 = 32

    c = 0 = 32

    Slightly over-consolidated clay Normally-consolidated clay

    c = 2 = 32

    Profile after slip

    0 " 9! )

    #$%,&

    "# $ " "#

    ++

  • 0908

    07

    06 Fact

    or o

    f saf

    ety

    06

    05

    04 Fact

    or o

    f saf

    ety

    07

    08

    06

    05 Fact

    or o

    f saf

    ety

    = 95

    = 90

    = 85

    = 185

    : kN/m3Profile A

    +5

    0

    5

    10

    Elev

    atio

    n: m L.W.L. 10

    Timber pilesat 1 m ccs

    Critical circle

    = 95

    = 90

    = 85

    = 185

    Profile C5

    0

    10

    15

    Elev

    atio

    n: m

    L.W.L. 10

    Critical circle

    = 95

    = 90

    = 85

    = 185

    Profile B

    0

    5

    10

    15

    Elev

    atio

    n: m

    L.W.L. 10

    Critical circle

    Profile after slipProfile before slip

    3025

    2015

    10 kPa

    2015

    10 kPa

    20

    25

    30

    1510 kPa

    Undrained shear strength

    6 # 8& 9! )#$%,&

    ! !

    +,

  • 15 19 255 9Borehole

    25

    20

    15

    10

    50 1000

    0 50 1000 50 100 1500 50 100 1500 50 100 2001500

    5

    Dep

    th b

    elow

    gro

    un

    d su

    rface

    : m

    Pore pressure: kPa

    Measuredpore pressure

    Level +74 +30 +225 +30 +28

    $ *5 9! ) #$%,&

    21 3

    F = 101

    F = 105Actual slip circlesafety factor 107

    Critical slip circlesafety factor 100

    30

    20

    10

    2468

    101214

    0 4 8

    4

    12 16

    8

    20 m

    Scale

    Curves of equal pore pressure

    12 16 metres of water

    Measured pore pressure

    02468

    101214

    metres

    SectionNo.

    Safety factorsc , analysis (Bishop 1955)

    123

    110100110

    Weighted average safety factor for the whole slide F = 106

    c = 10 kPa = 27

    8 " ' ) #$%&

    "# $ " "#

    +$

  • ( ,1:; = A C 0

    0 )C

    ,11

    ,1=

    !

    %

    9 7

    ( 1 = 5 1=

    !

    ,-3-

    " 1# &

    4 .,, ' 1-

    ,1,

    / 5 '

    7

    4

    1 " % #

    " ./# 7

    1

    4'& * %27 L 8 9 7

    5 ' 4 .,

    G

    ,2 5

    ! ,-..

    ,2./

    8 G

    7

    G

    " ,67 /68 ,6 .6#

    ! !

    +2

  • 0

    (

    2/8 1 "#D 1 2 "# >

    0 )C

    ,1 " 1-- ,,3 G

    #

    1/- " 4 .,#

    G

    21 3

    0 5 10 m

    Scale

    SectionNo.

    Safety factors = 0

    123

    097093135

    10095

    Actual slip circlesafety factor F = 117

    Critical slip circlesafety factor F = 093

    30

    4050607080

    70

    80

    60

    50

    40 kPa

    20

    10

    Curves of equalshear strength

    # 8& ' ) #$%&

    "# $ " "#

    +

  • !

    G >

    @ 5 ",-=#

    0

    0 5 10 15 m

    Scale

    Sandstone and shaleSandstone

    Limestone

    Fractured shaleLowercarboniferous

    Boulderclay

    Alluvial gravelRiver Lune

    128

    m

    Typicalslip circle

    Average inclinationof slope = 28

    Boulder clay w = 12LL = 26PL = 13

    Clay fraction = 25%

    , ) ) )+

    #$%&

    60

    60

    40

    20

    200

    0

    Shea

    r stre

    ngth

    : kPa

    Effective pressure: kPa

    w = 12LL = 26PL = 13

    matrix

  • " %

    $ % * &

    ! &

    *

    4

    B

    ? 7 ,-,

    ,-3, 13. " 4

    .,3# )

    ,/8

    +

    ,-/

    ! ! &

    7

    &

    75

    50

    25

    0

    cm Observations startedFailure after29 years

    194119291912

    Wall built

    Forward movement of wall with time

    North

    BrownLondonClay

    Blue London ClayLondon and North Western Railway

    18361875

    6 m

    Ballast

    2 ) 9 : 4 )+ #$00&

    "# $ " "#

    +%

  • &

    ! 0

    4 .,.

    (

    ! !

    ' * ,-== 8 0

    : 0 H

    4 +

    &&0 '&9 '0 8 4%7'

    7 + ,-/3

    ,-=

    ,-= 1=. ,-=. 1/ " 5

    # > 4 .,/

    '

    8

    ) 7

    ,, E ,@

    ,-./

    , 8

    ,-=. 1,. ,-

    1 ,. "4 .,=#

    150

    125

    100

    75

    50

    25

    00

    c re

    quire

    d fo

    r st

    abilit

    y: kP

    a Wembley Hill

    Uxbridge

    Northolt

    Wood Green

    Upper HollowayKensal Green

    Sudbury Hill

    Mill Lane

    Park Village East

    10 20 30 40 50 60 70 80 90 100Age at failure: years

    Analysis by circlesAnalysis by planesDenotes there is reason tobelieve point should bemoved in direction shown

    ; ' #$0&

    ! !

    ,)

  • 7 & 31 .1

    & "4 .,2# %

    ! 7 .=

    .= 3( ,

    ,1 3 ( , &

    .=

    ,1 11 4 .,2 +

    1. 1. 4 .,-

    CL

    South

    17 m

    0 10 20 m

    Scale

    Hendon Motorway (M1)

    North

    Brown LondonClay

    Blue London Clay4:1

    1964

    56

    123

    Piez.ru

    1973 197512356

    017022101105

    +0090320809505

    Mean ru values1973 (9yrs) = 0751975 (11yrs) = 062

    % " )+ #$00&

    11 m

    Great Northern Railway

    EastWest

    Brown Londonclay

    Blue London clay

    4:1

    3:1

    3:1185018501956

    54

    12 9

    8

    11 10

    Piez. ru

    0061254

    018021009

    Piez. ru

    03189

    1110

    034031032

    Mean ru = 015

    Mean ru = 032

    Old SideNew Side

    Piezometer readings 1975

    Old Side (125 yrs)

    New Side (19 yrs)

    0 * )+ #$00&

    "# $ " "#

    ,

  • ! ! (

    ,8 1

    18 17

    7 (

    ,38 1

    =8 1 ".1 #

    7

    (

    ,38 ,

    04

    02

    02

    04

    0r u 20 40 60 80 100 120Time: years

    6

  • 4 .1

    ! 7

    & A C A C

    0 *

    !

    30

    30 40 50 60

    20

    20

    10

    100

    0

    Shea

    r stre

    ngth

    s: k

    Pa

    Effective pressure : kPa

    West Acton Crews Hill

    Grange Hill

    Sudbury Hill Hadley Wood

    First time slides, older than 45 years, depth 5 to 12 m

    ru =035 03 025

    c = 1 kPa = 20

    $ " ' )+ #$00&

    30

    30 40 50 60

    20

    20

    10

    100

    0

    Shea

    r stre

    ngth

    s: k

    Pa

    Effective pressure : kN/m2

    Peak 38 m

    m samples

    Peak 250

    mm dia. sa

    mples

    Back-anal

    ysis first-sl

    ides

    = fully s

    oftened

    c 14

    7 kPa

    14 kPa

    14 kPa

    20

    20

    20

    13

    Residual

    ,8 " '

    )+ #$00&

    "# $ " "#

    ,+

  • 0 7 8 0

    7 ! ( ,8 1

    A C

    "* !#

    ,

    ! 7

    &D

    31 .1

    ' & 1 0 ",-=3#

    >

    7

    ( ,1 1 ,.8 1 .2

    &

    G

    .2 & &

    G

    0 1 10 . : 09

    !

    ",-31#

    6 =>

    ' 3 )+ #$02&

    E ( 0

    , ,( ,

    / ( ,

    ,( ,

    ! !

    ,,

  • ? "

    ! # ",-.1#

    & " .1 #",-=1 #D

    & $ % ;': 4'& %2,7 ,-. F! 0

    9 0 )D

    *

    0 G "

    ) #

    7 ? +

    ,-.1

    ,-.,

    4 ,-. %

    0

    *

    ! )

    ,2 " 4 .,#

    !

    ! />2

    "4 .# "

    ,1# . ,=1 ,-.;.

    1/

    ' /8 ,-8 % . /

    ,,8 . 5

    !

    4

    "# $ " "#

    ,$

  • ,-

    /8 318 18

    ) "

    #

    ,-8

    NRiver Severn

    B

    E

    F

    GD

    C

    A

    River bankafter slide

    River bankbefore slide

    Road before slide

    Road after slide

    Railway (maintained in position)

    Approximateboundary ofmain slide

    Secondary slide

    0 50 100 m

    Scale

    Original positionof housePosition of houseafter slideHousedemolished

    , * @+1 )+ #$%2&

    Scarp ofmain slide

    CoalportBeds

    Fault

    Probable limit ofweathering

    Railway

    1951 1952Road

    183 m

    Slip surfaceobserved

    0 25 50 m

    River Severn

    Inclination of slope = 10

    w = 21LL = 44 PL = 22

    ,, ) @+1 )+ #$%2&

    ! !

    ,2

  • & ,- - ,, - ! ,1 " 4 .#

    +

    F!

    1/ " ,116

    ,1# <

    ,- ,,6

    . 4 %27$ *

    5

    G

    ,. 1'

    +

    , 1

    60

    100

    50

    25

    500

    0

    Shea

    r stre

    ngth

    : kPa

    Effective pressure: kPa

    w = 21LL = 44PL = 22

  • 1 ,.1

    5

    G

    0

    2. ,0 -.

    G

    & 2. -.

    ! &

  • G ,18 ,

    2

    - G 7 G

    % &'( & *0 G

    +

    " #

    &

    !

    10 4'& %2,7' ,-3- 7

    0 E

    0

    " #

    5 ! ,-./

    " 4 .3#

    ,1 $ H>8

    (

    -8 28 &

    ,33 " "0 ,-/3# ,. 1# ' 7 , 0 E ,18 ,<

    0 E ",-/-#

    4 5 5C 5 0 5 9 ) @

    "# $ " "#

    ,%

  • ' !

    % % &

    ' &

    4 !

    4

    ! &

    " #

    0

    !

    7 !

    "

    # F !

    Typical slip circle

    Piezometric line

    Piezometric level

    Piezometer

    1900

    Section after slip(surveyed 1956)

    7 m

    0 5 10 m

    Scale

    3:1

    Brown LondonClay

    w = 31LL = 82 PL = 28

    Slip occurred after 49 years

    Analysis of sectionafter slipc = 0 = 15

    ,2 ) ) = #$2$& )+

    #$%2&

    ! !

    $)

  • !

    !

    G

    4

    7

    & 31 .1

    "# $ " "#

    $

  • !"

    # ! $% #& '% ( ()

    * (+ (+ ! ) (

    ,% (# #& # #+ #+ % -

    %

    % "

    . ,%/ "

    % "

    0

    0 1

    %% % % %

    2 %

    %

    % %

    '

    % %

    ' % % "

    % % %

    " 3 % % *

    % % -

    " %

    4 % %

    " %

  • 2

    % " 0 %%

    % - % % %

    2 % -

    " % %

    %

    . %

    % %

    0

    " % %-%

    % 0 % "

    %% " %

    % - '

    " %

    5%-

    % % 6 0

    % %-

    % -

    " %7% 2

    %- 68

    " %

    %

    4 %

    9

    * 4% %

    5% 8

    % %

    %

    % %

    0 % 8

    %

    2 %

    8

    " %

    %

    0

    %

    2

    , : -

    %

    %

    0 7%

    % % %

    ! "

    !

  • % % %

    % %%

    4 % %

    % ;

    ) % 2 % %%

    % % %

    3 0

    ." )( " % "

    3 "

    " # 4

    % %

    9

  • 5" % % %

    9 5 0 9 - ? 3%

    @

    0 , %% 9 5

    % 9 5 8 % % 5

    % %% % )

    2

    % 8% 9 5

    5 9 5

    53

    %

    - % "

    %

    ;% ? %% 9 5

    "

    ! "# $ !

    %% ! $ $ !

    ! ! $ ! & ! !

    ! "

  • .1 0 % %

    0 % %%

    % %

    " % %

    % % "3 -

    A % " % %

    % 6 % %

    % 0

    %

    % -

    %

    % 7%"

    %

    2 B C ) >>

    &>> " %

    % %

    . %

    2 ' )) 8

    4 ! 5

    ' * ,% %

    ' ! "" ! !

    $ ! ! ! ! !!

    $ %& #$ "! !!!

  • 9 !% &> &>+ .-

    4 5 ! ' % %

    %

    2 ) ( +>>

    % " 4 +&

    8 %

    " %%% 9 -

    % %7% %

    2

    % % % -

    -3

    0 %%

    % 9 5

    = #++ % -3 %

    % 9 5

    9 5 4 %

    ,

    205

    204412

    180

    190

    200

    220

    230

    250240

    210

    Toe

    D

    C

    B

    ABackscarp

    0 10 20 30 40 50 mScale

    BatterseaCourt

    111 101102

    104402403

    103404

    405

    406

    106105107

    108

    109110

    112

    401

    Library

    AC AB

    AA

    Lecturetheatres

    413410411203

    202 206408

    407201

    419

    Trialdrain

    250240

    230

    220

    210

    200

    190

    180

    170

    160

    170

    SurreyCourt

    414

    416415

    417

    N

    Deep drainage trenches

    ( ! ) $ *

    ! "

    (

  • 4

    ;%

    % %

    9 % %

    % ( ". 8 % % %

    % 0" % 8

    % %

    % #) ".

    2 ' ) %

    D% )) . 2 -

    % % %

    %

    2 ) "

    >>>

    E >>>

    @8 %

    E>> >>>

    0 E)> >>>

    0 E( >> E> >>>

    7% % %

    7%

  • " 9 5

    % %

    8% % % >

    #) (

    0 %

    % %

    %

    % %-

    2 %-

    9 5 % % 3

    P205 P201 P104 P107 P102

    31

    m

    47

    m

    77

    m

    135

    m81

    m

    16

    m

    04

    m

    182

    m

    104

    m

    Readings taken on4 January 1966prior to effects ofdrainage measures

    # ,-% ! .

    30

    30

    60

    90

    O.D.

    m

    Water levelin the Chalk

    1820 1843 1878 1895 1911 1936

    Drift and gravel

    London Clay

    Woolwich and Reading bedsThanet Sand

    Chalk

    / ! !0 1 /

    )"(*

    ! "

    *

  • % %

    %

    %

    % 9

    !% (& 2

    9

    %

    "

    %

    %%

    2

    3 0

    ' ) ; )( 3

    - % 2 %

    % - %

    % % 8 % A

    %

    ;% %

    % 9

    %

    0 %

    % %-

    %

    % % %-

    % )

    %

    ;% )#

    -

    5 % +>+

    % % 2

    %

    % %

    % &( 2

    % )

    +&F G 0

    % %

    1965 1966N D J F M A M J J A S O N D

    0

    1

    2

    3

    Dep

    th b

    elow

    gro

    un

    d su

    rface

    : m Piezometer P106Depth 61 m24 m from of drainDrains installedMarch / June 1966

    LC

    4 2

    $ %& #$ "! !!!

    +

  • % ;% )

    %

    +>+ %

    ;% )> %

    %

    % -

    3

    % 4

    % *

    % %%

    =%

    %

    8 9

    !%" (+

    %

    %

    0 %

    %

    % %

    19701969M A M J J A S O N D J F M A M J J

    0

    1

    2

    3

    Dep

    th b

    elow

    gro

    un

    d su

    rface

    : m Outside drained areaPiezometer CDepth unknown

    Inside drained areaPiezometer 404Depth 57 m

    5 % -% ,(6(

    2

    3

    Dep

    th b

    elow

    surfa

    ce: m

    1969 1970 1971 1972 1973 1974 1975 1976

    Piezometer P404 21 m from centre line of drain

    " 7 -% (6(

    ! "

  • *" ) % "

    9 %

    %

    & %

    0 % %

  • -%

    6 % % % % 6

    4 3 %

    -

    6

    ,% (# ! #+

    ' > >

    > > &>

    , 9 1 0 %

    % ? = ,

    % 9 4 5%

    %%

    I%/

    2 D% #> J % J 5

    = , % 9 "

    % 0 %

    % %

    " % &) 0

    % 0 % 8 >

    0

    &> ? 8 %

    %

    *" - %

    %

    ;% #+

    ?

    "

    % 6

    %

    %

    0

    " %

    8 % % % %

    8 %

    -

    " 6 0 %

    ; )

    " -

    8 % + %

    % 0 %

    ! "

    !

  • 9 %% .

    % %

    8 % > %

    0 % 8 %

    % 2 % %

    % %

    0 5 10 15 20 25 m

    Scale

    N

    P10

    P15

    P14P13

    P2

    P6

    P8P9

    P7

    P3(S)

    P11(S)P12(D)

    P4(D)

    P1

    I4 I5I8

    I27

    I14

    I21

    I12I10

    I17

    I2

    3339 Victoria Crescent(under construction)

    Existing rear retaining wall

    Phase 2Counterfort drains

    Lateral extentof slip

    Y

    X

    Dow

    nsl

    ope

    dire

    ctio

    nInclinometerreadingdirections

    Lateral extentof slip

    Phase 1 piles

    Access RoadSite Boundary

    Existing 3 storey block of flats

    600 mm dia. bored pilecontaining 305 305 118 UCInclinometer and numberPiezometer and numberShallowDeep

    (S)(D)

    Note: Reinforced concrete retaining walls and associated works omitted for clarity

    9 )""*

    $ %& #$ "! !!!

    '

  • 4 %-% %

    %%

    2 >

    2 % %

    % % %7% % %

    4 %

    ! #) 0 % %

    % % 0

    + %

    >

    2

    %

    %

    B %7% 0

    % 8%

    ( -

    %

    P1 Piezometer tip and number

    3339 Victoria Crescent

    1

    1

    2

    2

    3

    3

    4

    4

    Flats

    Access

    Spur drain

    Outline of counterfort

    P1P10

    P12P15

    P9

    P11

    P4

    P2P3P5P6

    P7P8P13P14

    Existing retaining wall

    Original ground level

    Final ground levelPost-slip ground level

    Rows of piles

    !! 9 )""*

    ! "

  • 0 -

    & % ;

    % %

    -

    % &>

    0 -- -

    %%

    0

    % % 3 -

    0

    %

    ?

    % %% 3

    %

    3 -

    "

    " , ." &>>> @%

    &>>> C 9 &>>>

    - - 4 8

    %

    . # 0 % 4# %%

    %- ; 2 %

    % 8% +> 0 %

    %

    % % % "

    %

    ' % &

    % %

    0

    % %%

    " %

    4

    % % %-

    % #> &>F %-

    2 " -

    %

    2 % 8

    " %

    %

    % % 0

    % %

    %

    $ %& #$ "! !!!

  • %

    %

    " D &>>>

    &>>>

    : 0 %%

    %

    #K 0

    ( 0 )> >> %

    0 7%"

    %

    %% 2

    %

    1% 7 ; 9 %

    * '

    -

    4% "

    %% 5

    " % /

    2 % % #)> .

    %% @ 5 %

    > .

    %

    % %

    . %

    %

    % &> % 3 %

    0

    ? 7% %

    5

    5%

    0 9 @ 2 *

    ' ' 5% >

    " %

    /

    %

    %

    %

    0 %

    " .

    " % ? % 9

    * ' ' 5% %

    %

    %

    "

    ! "

    (

  • 0

    " "

    1

    %% % 8

    0 9

    % %

    ; &>>> ! % %

    I%/ % 3-

    0

    " %-

    % -

    9 @

    5 0 %

    7% % % % -

    % % 0 ?

    %

    3-

    8 % %

    2 % % 7%

    %% 1

    0 % 7% 8% 6 %% ? % 8 %-

    6 %

    0 % 3 6 -3

    %

    4 % %3

    %-

    % 3

    2 -

    % %

    % %

    0 % % 3

    2 % %

    % - %

    0 %

    9 7%

    % 9 -

    " %

    $ %& #$ "! !!!

    )

  • ;% ) %

    ; &>>> % %

    % % .%

    % %

    %-

    4 %

    9

    0 %

    % %%

    " 9 .

    3%

    ; )+ 2

    %

    % ; )

    #% % & %

    % 1

    6 % ; )) %

    % %

    0 10 m

    Scale

    Fish Bed

    Grey Ledge

    Table Ledge

    Seacliff

    Seawall

    Beach

    Mudslide

    Loading at headfrom landslide above

    1998 clifftop postion

    1995 clifftop postion

    Active slip surface observedapprox. 2 m above Grey Ledgein exposure above seawall

    Denotes moving landslidePosition of shear surfaceconfirmed by inclinometeror visual observation

    ' % 1% 7 )666*

    ! "

    *

  • 45 40 35 30 25 20

    Elevation mAOD

    45 40 35 30 25 20

    Elevation mAOD

    45 40 35 30 25 20

    Elevation mAOD

    P2P3 P

    6P4

    P5

    P1

    Sect

    ion

    A

    Sect

    ion

    D

    Sect

    ion

    F

    ND

    rain

    dril

    led

    to g

    rou

    nd

    surfa

    ce

    Dra

    in te

    rmin

    ates

    with

    in th

    e gr

    ou

    nd

    Not

    e: dr

    ain

    leng

    ths

    and

    posit

    ions

    are

    pro

    visi

    onal

    Birc

    hi B

    edEx

    istin

    g pi

    ezo

    me

    ter.

    (Prop

    osed

    addit

    ional

    piez

    om

    ete

    rs n

    ot s

    how

    n)

    Prop

    osed

    loca

    tions

    of p

    neum

    atic

    piez

    om

    ete

    r

    D

    C

    E

    F

    B

    A

    (,

    1%7)%

    /;;

    9!.,7*

    $ %& #$ "! !!!

    (+

  • * 6

    % % % ; )( ,%-

    (# # #+

    * % 3 %

    % ,%-

    (# % ;% )# % 8 4 3

    2 %

    3

    %

    2 % %

    8 % % 2

    % 3 %

    # ; $.!- 7$ 9 ! / ; ;

    *

    Removal of soil

    Toe, berm preferably free draining

    ? % $

    ! "

    (

  • 5 6

    %

    % " %

    = % " %

    2 % % 3

    -

    % ; )

    4 - 8 %

    % ;" * % @ ,

    % % ; * *

    7% * ; @8 3

    J-! 4%

    F F

    Centre of slip circle

    Removal of soil

    Deep seated circular slip surface

    4 % .

    9! )"5' "5($*

    Fills always advantageous

    Fills always unfavourableFills adverse in

    short term, butbeneficial in long term

    Centre of rotation

    Drained neutral point = mobilized

    Undrained neutral point of landslide = , immediately under centre of rotation

    5 ! ! 9! )"45*

    $ %& #$ "! !!!

    (

  • !

    % '' 3 %% 3

    2

    %% %%

    % %

    " %% %

    0 0 %

    %% %

    %

    0 % %% % 5%

    " " 5 ,"

    ! (( 2 #& 9? (( =

    &>>> : &>>> D% ,% &>>>

    (' %.-: 9 5 % - -

    ->

    %

    5 +( & 2

    - % % -

    % 8

    4 %

    %

  • ;% )&>

    % 0 6 %

    @ & 4 %

    -

    0 - %-

    % 5 !?%

    )( 8

    - % %

    C 7%" 8

    % + % %

    0 4L % > " % B

    B? 0 %

    ; )& -

    ; )&& 0 %

    8

    ) ". 2

    % !?% @ )

    % -

    7%"

    0 -

    %

    > % ) % >

    && % >) 2 >

    %

    &>> &

    C % 8

    8 % % %

    %

    8

    % %

    0

    +

    -

    % ! % % -

    % % %

    Cathode, can be a perforated tube

    Original water table

    Anode, usually a steel rod

    Water flows from anode to cathode

    6 %? .%

    $ %& #$ "! !!!

    ('

  • % ; )&

    %

    4 -

    %

    0

    '% 8

    %

    % (F

    0 % % > >>> "*

    + 4 >>

    8 % % &>>> ( "*

    && "

    0

    ; )&+ %

    % % % >>

    % 4 &

    %

    Dep

    th: m Descrip-

    tion of soil

    Water content: %

    10 20 30 40

    Unitweight:kN/m3

    Shear strength: kPa

    10 20

    Sensi-tivity

    Vertical effective stress: kPa

    50 100Weath-eredcrust

    5

    Quickclay

    10

    15

    wPw

    w = Water contentwL = Liquid limitwP = Plastic limit

    wL

    193

    196

    200

    195

    195

    Vane boring I50

    80

    80

    7070

    10

    >100

    >100

    >100

    Effective pressure

    Vane boringUnconfined compression testCone test

    Pre-consolidation pressure observed in consolidation test

    ! .% @ =A%

    )"4*

    ! "

    (

  • 10+

    8+

    6+

    4+

    2+

    1

    3

    5

    7

    9

    Electrode row no:

    N

    +

    B

    P12P14P11

    P13

    P10P2 P4P1 P5

    P3P6P8

    P9P7

    S1S2S3

    S4

    Brook

    Excavation

    BV7

    V3V4V1V5V6

    V2

    I5

    67

    8910

    1112

    Section BB

    S1

    S4

    S3

    P6

    P12

    P13

    P14

    P7 P9

    P11 P10 P1 P2P3

    P4

    P8

    P5

    0 5 10 m

    Scale

    Bedrock 28 m

    Excavation

    5 67 89101112

    Weatheredcrust

    Quick clay

    Piezometer installations P1P14Precision settlement gauge S1Borros settlement gauge S2S12Vane boring I before electro-osmosisVane borings V1V5 after 30 days ofelectro-osmosisVane borings V6V7 after 103 days ofelectro-osmosis

    , . ! .% @ =A%

    )"4*

    $ %& #$ "! !!!

    (

  • 00

    00

    20

    20

    40

    40

    60

    60

    8080

    100

    400

    300

    200

    100

    120Time: days

    Current reversed

    Volta

    ge b

    etwe

    en

    ele

    ctro

    des:

    VCu

    rrent

    : A

    5000

    10 000

    15 000

    20 000

    25 000

    30 000

    Pow

    er

    consu

    med:

    kW

    h

    0

    10

    20

    30

    40

    50

    Settl

    emen

    t: cm

    April May June July August1964

    S3 (depth = 80 m)

    S2 (depth = 40 m)S1 (depth = 10 m)

    ' 2 % % @ =A%

    )"4*

    ! "

    ((

  • 4 +

    C=2- 0

    % >> %

    > 38 ) %

    5 % %

    % 2 % 8 -

    % %

    4

    8 %

    % 2 7%"

    % %

    "

    % % !%

    2

    6

    !?% )( %

    -

    % -

    % % 3 %

    %

    0 %

    8

    @- %% % %

    '% - % % > ". 8% % > ". 8

    '%

    %8 %

    %

    % %-

    0 %

    %

    % %

    !?% )( %

    0

    0 5

    200

    400

    600

    Settl

    emen

    t: m

    m P12 P11 P10

    10 m

    Scale

    S1

    S1S11

    1

    2+

    4+

    6+

    8+

    10+

    3

    5

    7

    9

    Electrode row no:

    Original ground surface

    ( % $ @ =A% )"4*

    $ %& #$ "! !!!

    ()

  • % %

    %

    8

    %

    %

    0 % % %

    % % %

    %

    % - ;% %

    %

    0 - % %

    % % A

    % % %

    4 %8 % @ @ )

    8

    % B %

    7% C 0%

    4-

    @- %

    2 3 %

    % % % %

    % G

    /2?

    % "

    " > % %

    "

    5 -% % 4 ?

    % 7%

    % 3 ?

    % % 8-

    ?

    ?

    7% 4 >F A %

    F &F 6

    % % 4 # -

    4/

    % %% =% %% %

    % 4 ) 2 %

    % %

    00 3

    %

    "

    %

    % 0

    %

    " %

    = (( *% ()

    ! "

    (*

  • 0 3 %

    %

    % %

    -

    %

    4 %

    -

    - %

    2 %

    % %

    %

    %- 3

    %

    % 3 %

    * 3%

    3

    7% % " 5 > *%

    + B ; &>>>

    2 % % %

    % % " % -

    %

    %

    % 8

    %

    " %

    10 8 7% % 4 -

    % " ;

    % %

    =% "

    > 5 %

    % % % %-

    % % 2 %

    %

  • " A

    M 7%

    % 7% " 3 %

    2

    %

    = &>>> %

    %- %

    -

    ; )& 4 % % "

    0

    % "

    0 %

    %

    %

    % % "

    %

    0 %

    7% %

    %

    Slip surface

    Ground water level

    Pre-works cross-section

    Post-works cross-section

    Crib wall

    Ground anchors

    Drainage

    Regraded ground profile

    Made ground

    Laminated clay

    Unsheared laminated clay

    London Clay

    # ,. 0 . 0 . ! $- $

    $ !- . !

    )666*

    ! "

    )

  • 0 7%

    " 5

    8 0 %

    0

    %

    % %

    %

    %

    ' 0 " % "- %

    %

    % %

    0

    0 %

    %

    %1

    %

    ?%

    % %

    0 % 4

    "

    -

    % " % ; )& )

    * % "- % % %

    " 1

    " % % % %