Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance...

20
Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco

description

Robotics & Sensor Fusion for Mechatronics From CAD to Image

Transcript of Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance...

Page 1: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

Autonomous vehicle navigation

An Obstacle Avoidance Exercise

Luca Baglivo, Mariolino De Cecco

Page 2: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

We’re using two-dimensional grids: maps represented as images!

Page 3: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

From CAD to Image

Page 4: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

ATTRACTIVE POTENTIAL REPULSIVE POTENTIAL+

IMAGINE ROBOT AS A BALL ROLLING DOWN HILLS

Page 5: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

TOTAL POTENTIAL

Page 6: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

THE RESULTING FORCE IS THE GRADIENT AND GIVES DIRECTION TO THE ROBOT

This example is in the Matlab script “OstacoliQuadrati.m”

Page 7: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

POTENTIAL FIELDS METHOD FEATURES:

• AUTOMATIC PATH PLANNING FOR OBSTACLE AVOIDANCE

• IS BOTH A PLANNING & CONTROL STRATEGY ALL-IN-ONE

• BEST FOR LOCAL PATH PLANNING->UNEXPECTED OBSTACLES

• BE AWARE FROM LOCAL MINIMA! HARMONIC POTENTIAL

FUNCTIONS HAS PROVEN ONLY GLOBAL MINIMA

• NOT SUITABLE FOR HIGH PRECISION POSITIONING ON TARGET

Page 8: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

A FORMULATION

Page 9: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

A FORMULATION

Page 10: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

A FORMULATION

Page 11: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

A FORMULATION

Page 12: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

A FORMULATION

Page 13: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

ANOTHER, NAIVE FORMULATION

A VIRTUAL CORIDOR ALIGNMENT FOR LINE FOLLOWING

• The attractive potential can be defined punctually as desired.

• Build a vector field that point towards desired path.

Page 14: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

ANOTHER, NAIVE FORMULATION

A VIRTUAL CORRIDOR ALIGNMENT FOR LINE FOLLOWING

• How to define it

Lc

xF

yF

K yangles (+)

alphaK

Page 15: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

ANOTHER, NAIVE FORMULATION

A VIRTUAL CORIDOR ALIGNMENT FOR LINE FOLLOWING

• How to compute steering angle input

K y

alphaK delta

steering axis

Page 16: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

ANOTHER, NAIVE FORMULATION

A VIRTUAL CORIDOR ALIGNMENT FOR LINE FOLLOWING

• Now add the repulsive force vector Frep, and play …

K y

Frep Ftot

delta’

Page 17: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

OBJECT PICKING

A possible application for forklifts

Page 18: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

ANOTHER, NAIVE FORMULATION

A VIRTUAL CORIDOR ALIGNMENT FOR LINE FOLLOWING

• Try with:

• Tricycle robot forward velocity, point obstacle at (xF,yF) = (4,1.5)

yR

b

D1

Page 19: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

ANOTHER, NAIVE FORMULATION

A VIRTUAL CORIDOR ALIGNMENT FOR LINE FOLLOWING

• A control sketch

Robot kinematic

model

Steer control

velocity

steer angle

Potential field gradient vector

y

+ -alphaK

delta

kcontrol

Page 20: Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.

Robotics & Sensor Fusion for Mechatronics

Bibliography

1. Siegwart R., Nourbakhsh I, Scaramuzza D., Introduction to Autonomous Mobile Robots