Rob Russell Cell Networks University of Heidelberg

17
Russell Group, Protein Evolution _________ ____

description

Putting it all together to answer a “real” question. Rob Russell Cell Networks University of Heidelberg. Domains assemble to form higher-order structures. Pawson & Nash, Science, 2003. Case study 1: GabaB R1/R2. Family 3 GPCRs Subunit R1 binds ligands, R2 signals, but not vice versa - PowerPoint PPT Presentation

Transcript of Rob Russell Cell Networks University of Heidelberg

Page 1: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____

Page 2: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____

Rob RussellCell Networks

University of Heidelberg

Putting it all together to answer a “real” question

Page 3: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____Domains assemble to form higher-order structures

Pawson & Nash, Science, 2003

Page 4: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____Case study 1: GabaB R1/R2

• Family 3 GPCRs• Subunit R1 binds ligands, R2 signals,

but not vice versa• Why?

Page 5: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____

Analysis of intrinsic features

Low complexity

Signal peptide

Coiled coil region

Transmembrane helices

>gi|3776094|emb|CAA09940.1| GABAB receptor, subunit 1b [Homo sapiens]

MGPGAPFARVGWPLPLLVVMAAGVAPVWASHSPHLPRPHSRVPPHPSSERRAVYIGALFPMSGGWPGGQACQPAVEMALEDVNSRRDILPDYELKLIHHDSKCDPGQATKYLYELLYNDPIKIILMPGCSSVSTLVAEARMWNLIVLSYGSSSPALSNRQRFPTFFRTHPSATLHNPTRVKLFEKWGWKKIATIQQTTEVFTSTLDDLEERVKEAGIEITFRQSFFSDPAVPVKNLKRQDARIIVGLFYETEARKVFCEVYKERLFGKKYVWFLIGWYADNWFKIYDPSINCTVDEMTEAVEGHITTEIVMLNPANTRSISNMTSQEFVEKLTKRLKRHPEETGGFQEAPLAYDAIWALALALNKTSGGGGRSGVRLEDFNYNNQTITDQIYRAMNSSSFEGVSGHVVFDASGSRMAWTLIEQLQGGSYKKIGYYDSTKDDLSWSKTDKWIGGSPPADQTLVIKTFRFLSQKLFISVSVLSSLGIVLAVVCLSFNIYNSHVRYIQNSQPNLNNLTAVGCSLALAAVFPLGLDGYHIGRNQFPFVCQARLWLLGLGFSLGYGSMFTKIWWVHTVFTKKEEKKEWRKTLEPWKLYATVGLLVGMDVLTLAIWQIVDPLHRTIETFAKEEPKEDIDVSILPQLEHCSSRKMNTWLGIFYGYKGLLLLLGIFLAYETKSVSTEKINDHRAVGMAIYNVAVLCLITAPVTMILSSQQDAAFAFASLAIVFSSYITLVVLFVPKMRRLITRGEWQSEAQDTMKTGSSTNNNEEEKSRLLEKENRELEKIIAEKEERVSELRHQLQSRQQLRSRRHPPTPPEPSGGLPRGPPEPPDRLSCDGSRVHLLYK

PFAM analysis

Homology to known structure can be used to create model

Page 6: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____Family III GPCRs

1 2 3 4 5 6 7

R1

Ligand binding domain

IC1 IC2IC3

Cterm

EC1 EC2 EC3

-- -

G-protein

dimerisation

cut

Page 7: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____

Robbins et al, J. Neurosci, 21, 8043, 2001

R1 binds ligandR2 signals

Page 8: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____GabaB R1/R2

1 2 3 4 5 6 7 1 2 3 4 5 6 7

R1 R2

Ligand binding domain

IL1 IL2

IL3 Cterm

EL1 EL2 EL3

IL1 IL2IL3 Cterm

EL1 EL2 EL3

--

- -

-- -

G-protein

(none)

blocked

Page 9: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____Case study 2: Human RYKan inactive tyrosine kinase

Page 10: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____Human RYK model

Insulin receptor YK(template)

Human RYK(model)

Katso, Russell, Ganesan, Mol Cell Biol, 19, 6427, 1999

Page 11: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____

Van Noort et al, Mol Sys Biol, 2012

Case study 3: What are phosphorylation sites doing?

Page 12: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____

Katso, Russell, Ganesan, Mol Cell Biol, 19, 6427, 1999

MPN134 is phosphorylated at Serine 392

Page 13: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____What do modifications do to interfaces?

Van Noort et al, Mol Sys Biol, 2012

From positively charged to polar

From polar to negatively charged

Modelled MPN134 homodimer: From a polar-polar interaction to a pair of negative charges in proximity

Page 14: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____Homology modelling

+

algorithm

Page 15: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____Homology modelling steps

• Identify the homologue of known structure

• Get the best alignment of your sequence to the structure

• Model building– Side-chain replacement– Loop building– Optimisation/relaxation/minimisation

Page 16: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____

Page 17: Rob Russell Cell Networks University of Heidelberg

Russell Group, Protein Evolution

_________ ____Problem with loops

Two subtilisin-like serine proteases