RFIMICROWAVE CIRCUIT DESIGN FOR WIRELESS APPLICATIONS …

7
RFIMICROWAVE CIRCUIT DESIGN FOR WIRELESS APPLICATIONS uirich L. Rohde Synergy Microwave Corporation David P. Newkirk Ansoft Corporation A WILEY-JNTERSCIENCE PUBLICATION JOHN WlLEY & SONS, INC. NewYork I Chichester I Weinheim / Brisbane I Singapore I Toronto

Transcript of RFIMICROWAVE CIRCUIT DESIGN FOR WIRELESS APPLICATIONS …

Page 1: RFIMICROWAVE CIRCUIT DESIGN FOR WIRELESS APPLICATIONS …

RFIMICROWAVE CIRCUIT DESIGN FOR WIRELESS

APPLICATIONS

uirich L. Rohde Synergy Microwave Corporation

David P. Newkirk Ansoft Corporation

A WILEY-JNTERSCIENCE PUBLICATION

JOHN WlLEY & SONS, INC. NewYork I Chichester I Weinheim / Brisbane I Singapore I Toronto

Page 2: RFIMICROWAVE CIRCUIT DESIGN FOR WIRELESS APPLICATIONS …

CONTENTS

Foreword xiii

Preface

1 lntroduction to Wireless Circuit Design

1-1 Overview I 1 1-2 System Functions I 3 1-3 The Radio Channel and Modulation Requirements / 5

1-3-1 Introduction I 5 1-3-2 Channel Impulse Response I 7 1-3-3 Doppler Effect I 13 1-3-4 Transfer Function I 14 1-3-5 Time Response of Channel Impulse Response and Transfer

Function I 14 1-3-6 Lessons Learned I 17 1-3-7 Wireless Signal Example: The TDMA System in GSM I 18

1-4 About Bits, Symbols, and Waveforms I 29 C .

1-4-1 Introduction I 29 1-4-2 Some Fundamentals of Digital Modulation Techniques I 38

1-5 Analysis of Wireless Systems I 47 1-5-1 Analog and Digital Receiver Designs I 47 1-5-2 Transmitters I 58

1-6 Building Blocks I 81 1-7 System Specifications and Their Relationship to Circuit Design I 83

1-7-1 System Noise and Noise Floor I 83 1-7-2 System Amplitude and Phase Behavior I 88

1-8 Testing I 114 1-8-1 Introduction I 114 1-8-2 Transmission and Reception Quality I 1 14 1-8-3 Base-Station Simulation I 118 1-8-4 GSM I 118

vii

Page 3: RFIMICROWAVE CIRCUIT DESIGN FOR WIRELESS APPLICATIONS …

viii CONTENTS

1-8-5 DECT / 118 1-9 Converting C/N or SNR to E& 1 120

2 Models for Active Devices

2-1 Diodes / 124 2- 1- 1 Large-Signal Diode Model I 124 2- 1-2 Mixer and Detector Diodes / 128 2-1-3 PIN Diodes / 135 2-1-4 Tuning Diodes / 153

2-2 Bipolar Transistors / 198 2-2-1 Transistor Structure Types 1 198 2-2-2 Large-Signal Behavior of Bipolar Transistors / 199 2-2-3 Large-Signal Transistors in the Forward-Active Region / 209 2-2-4 Effects of Collector Voltage on Large-Signal Characteristics in the

Forward-Active Region / 225 2-2-5 Saturation and Inverse Active Regions / 227 2-2-6 Small-Signal Models of Bipolar Transistors / 232

2-3 Field-Effect Transistors I 237 2-3-1 Large-Signal Behavior of JFETs / 246 2-3-2 Small-Signal Behavior of JFETs / 249 2-3-3 Large-Signal Behavior of MOSFETs / 254 2-3-4 Small-Signal Model of the MOS Transistor in Saturation 1262 2-3-5 Short-Channel Effects in FETs / 266 2-3-6 Small-Signal Models of MOSFETs / 271 2-3-7 GaAs MESFETS / 301 2-3-8 Small-Signal GaAs MESFET Model / 3 10

2-4 Parameter Extraction of Active Devices 1 322 2-4-1 Introduction 1 322 2-4-2 Typical SPICE Parameters / 322 2-4-3 Noise Modeling I 323 2-4-4 Scalable Device Models 1 333 2-4-5 Conclusions / 348 2-4-6 Device Libraries / 359 2-4-7 A Novel Approach for Simulation at Low Voltage and Near

Pinchoff Voltage I 359 2-4-8 Example: Improving the BFR193W Model / 370

3 Amplifier Design with BJTs and FETs

3-1 Properties of Ampliiiers / 375 3-1-1 Introduction / 375 3-1-2 Gain I 380 3-1-3 Noise Figure / 385 3-1-4 Linearity / 415 3-1-5 AGC I 431 3-1-6 Bias and Power Voltage and Current (Power Consumption) / 436

Page 4: RFIMICROWAVE CIRCUIT DESIGN FOR WIRELESS APPLICATIONS …

3-2 Amplifier Gain, Stability, and Matching 1 441 3-2- 1 Scattering Parameter Relationships I 442 3-2-2 Low-Noise Amplifiers I 448 3-2-3 High-Gain Amplifiers I 466 3-2-4 Low-Voltage Open-Collector Design I 477

3-3 Single-Stage FeedBack Amplifiers I 490 3-3-1 Lossless or Noiseless Feedback I 495 3-3-2 Broadband Matching I 496

3-4 Two-Stage Amplifiers / 497 3-5 Arnplifiers with Three or More Stages I 507

3-5-1 Stability of Multistage Amplifiers / 512 3-6 A Novel Approach to Voltage-Controlled Tuned Filters Including CAD

Validation I 513 3-6-1 Diode Performance I 513 3-6-2 A VHFExample / 516 3-6-3 An HFNHF Voltage-Controlled Filter I 5 18 3-6-4 Improving the VHF Filter / 521 3-6-5 Conclusion I 521

3-7 Differential Amplifiers / 522 3-8 Frequency Doublers I 526 3-9 Multistage Amplifiers with Autornatic Gain Control (AGC) / 532 3-10 Biasing I 534

3-10-1 RFBiasing I 543 3-10-2 dc Biasing I 543 3-10-3 dc Biasing of IC-Type Amplifiers / 547

3-1 1 Push-PullIParallel Amplifiers I 547 3-12 Power Amplifiers I 550

3-12-1 Example 1: 7-W Class C BJT Amplifier for 1.6 GHz / 550 3-12-2 Impedance Matching Networks Applied to RF Power Transistors /565 3-12-3 Example 2: Low-Noise Amplifier Using Distributed Elements /585 3-12-4 Example3: l-WAmplifierUsingtheCLYl5 / 589 3-12-5 Example 4: 90-W Push-Pul1 BJT Amplifier at 430 MHz I 598 3-12-6 Quasiparallel Transistors for Improved Linearity I 600 3-12-7 Distribution Amplifiers I 602 3-12-8 Stability Analysis of a Power Amplifier I 602

3-13 Power Amplifier Datasheets and Manufacturer-Recornmended Applications / 6 1 1

4 Mixer Design

4-1 Introduction I 636 4-2 Properties of Mixers I 639

4-2-1 Conversion GaidLoss I 639 4-2-2 Noise Figure / 641 4-2-3 Linearity I 645 4-2-4 L 0 Drive Level / 647

Page 5: RFIMICROWAVE CIRCUIT DESIGN FOR WIRELESS APPLICATIONS …
Page 6: RFIMICROWAVE CIRCUIT DESIGN FOR WIRELESS APPLICATIONS …

CONTENTS ~i

5-9 Phase-Noise Improvements of Integrated RF and Millimeter-Wave Oscillators 1 831 5-9-1 Introduction 1 831 5-9-2 Review of Noise Analysis I 831 5-9-3 Workarounds 1 833 5-9-4 Reduction of Flicker Noise I 834 5-9-5 Applications to Integrated Oscillators I 835 5-9-6 Summary I 842

Wireless Synthesizers

6-1 Introduction I 848 6-2 Phase-Locked Loops I 848

6-2-1 PLL Basics I 848 6-2-2 PhaseFrequency Comparators I 85 1 6-2-3 Filters for Phase Detectors Providing Voltage Output 1 863 6-2-4 Charge-Pump-Based Phase-Locked Loops / 867 6-2-5 How to Do a Practical PLL Design Using CAD I 876

6-3 Fractional-N-Division PLL Synthesis I 880 6-3-1 The Fractional-N Principle I 880 6-3-2 Spur-Suppression Techniques I 882

6-4 Direct Digital Synthesis / 889

HBT High-Frequency Modeling and lntegrated Parameter Extraction

A-1 Introduction / 900 A-2 High-Frequency HBT Modeling I 901

A-2-1 dc and Small-Signal Model 1 902 A-2-2 Linearized T Model I 904 A-2-3 Linearized Hybrid-R Model 1 906

A-3 Integrated Parameter Extraction I 907 A-3-1 Formulation of Integrated Parameter Extraction I 908 A-3-2 Model Optimization I 908

A-4 Noise Model Validation I 909 A-5 Parameter Extraction of an HBT Model I 913 A-6 Conclusions I 921

Nonlinear Microwave Circuit Design Using Multiharmonic Load-Pull Simulation Technique

B-1 Introduction / 923 B-2 Multiharmonic Load-Pul1 Simulation Using Harmonic Balance I 924

B-2-1 Formulation of Multiharmonic Load-Pul1 Simulation / 924 B-2-2 Systematic Design Procedure I 925

Page 7: RFIMICROWAVE CIRCUIT DESIGN FOR WIRELESS APPLICATIONS …

xii CONTENTS

B-3 Application of Multiharmonic Load-Pul1 Simulation / 927 B-3-1 Narrowband Power Ampiifier Design / 927 B-3-2 Frequency Doubler Design / 933

B-4 Conclusions / 937 B-5 Note on the Practicality of Load-Pull-Based Design / 937

INDEX