RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania...

86
RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Transcript of RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania...

Page 1: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

RFID DESIGN STUDIES

Dr. KVS RaoIntermec TechnologiesEverett, WA, USA

Prof. Raj MittraPennsylvania State UniversityUniversity Park, PA, USA.

Page 2: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.
Page 3: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.
Page 4: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.
Page 5: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Applications

• Electronic Toll Collection

• Access Control• Animal Tracking• Inventory Control• Tracking Runners in

Races!

Page 6: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Introduction

Radio Frequency Identification (RFID) System

- Background Information•Applications of RFID

• High Frequency (13.56MHz)• Supply Chain

• Wireless Payment

• Libraries Book ID

• Ultra High Frequency (902 – 928 MHz)• Supply Chain

• Sensors

• Libraries

• Microwave Frequency (2.45GHz)• Supply Chain

• Sensors

• Electronic Toll Payments

Page 7: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Design Challenges

• Small Size• Planar• UHF Frequency

Allocation – Europe 866-869 MHz– North America 902-

928 MHz

• Impedance Matching– ASIC Chip: High

Capacitive Value, Small Resistive Value

• Environmental Conditions

Page 8: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Antenna Parameters

• Characteristic Impedance– Power

• 3-Dimensional Radiation Patterns

• Maximum Directivity

224

( )a s

s a s a

R RP

R R X X

where Zwhere Zaa = R = Raa + j X + j Xa a is the antenna impedance,is the antenna impedance,

and Zand Zss = R = Rss + j X + j Xs s is the source impedance.is the source impedance.

radP

UD max

max

4

where Uwhere Umaxmax is the radiation intensity is the radiation intensity

in maximum direction, in maximum direction, and Pand Pradrad is the total radiated power. is the total radiated power.

Page 9: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Hybrid loop antenna

• Length of the antenna ~ one operating wavelength in free space

• Outer loop terminated by inner loop size reduction• Simple structure (one layer of dielectric substrate)• Antenna impedance must be highly inductive

Top View of the antenna

Page 10: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Hybrid loop antenna (cont‘d)

• Realize a high value for the inductance by: Changing the loop area (L ~ A) Changing the length of the perimeter

Top View of the modified antenna

Page 11: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Hybrid loop antenna : First design

• Perimeter of the loop antenna : 244 mm • Size used by the antenna : 39 x 40 (mm)• Resonance frequency : ~0.5 GHz and 1.26 GHz• Reactance +300 Ω at 1.01 GHz

Input Impedance

Page 12: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Hybrid loop antenna : First design (cont‘d)

• Not omnidirectional Pattern in the xy-plane

Non strictly symmetry of the geometry

Far Field Pattern (normalized)

xy-planexy-planexz- (blue) and yz-(red) planexz- (blue) and yz-(red) plane

Page 13: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Hybrid loop antenna : Parametric study

• Li = 16 (red graph) mm Li = 10 mm (blue graph)• Perimeter , Loop area : L • Perimeter 244 mm 232 mm

Changing the length of the inner loop Li

Page 14: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Hybrid loop antenna : Parametric study

• Wi = 28 (red graph) mm Wi = 30 mm (blue graph)• Perimeter , Loop area : L • Perimeter 248 mm 252 mm

Changing the width of the inner loop Wi

Page 15: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Hybrid loop antenna (cont‘d)

• Current distribution : small current in the top part of the antenna small influence on the inductance Meandering

Far Field Pattern and Current distribution at 910 MHz

Page 16: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Meandered Hybrid loop antenna

• Perimeter 252 mm 302 mm• Maximum percentage at 910 MHz

Top View of the meanderd antenna

Page 17: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Hybrid Loop Antenna

• Length of the antenna has a greater effect on the input impedance more than does the loop area

• Meandering technique reduces the size of the antenna• Small percentage power delivered to the antenna attributable to very small

resistive part of the input impedance• The developed design did not prove to be too useful

OBSERVATIONS

Page 18: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Dual cross-dipole

• Meandering dipole size reduction• Cross-polarization sensitivity dual dipole• Ground plane can act as reflector gain

Top and Side Views of the Antenna Structure

Page 19: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Dual cross-dipole : Design#1

• Length of the antenna : 218 mm ~0.66 λ (at 910 MHz)• Area used by the antenna : 51 x 51 (mm)• Reactance is too small in the desired frequency Length of the antenna • Resistive part is again very small

Input Impedance

Page 20: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Dual cross-dipole : Design#2

• “Load bar“ is added

• Length of the antenna : 258 mm ~ 0.78 λ (at 910 MHz)

• f300 at 900 MHz

Top View

Page 21: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Dual cross-dipole : Design#2

• ~80 % of the power is delivered to the antenna• Narrow bandwidth (10.5 MHz more than 50 % is delivered)• Min. AR 3 dB (860 MHz – 960 MHz)

Far Field Pattern/Power delivered to the antenna/ Axial Ratio

Page 22: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Dual cross-dipole : Parametric study

• Decreasing h, increases the resonance frequency• By varying the height, input impedance can be adjusted for a good matching

Influence of the height of the antenna

Page 23: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Dual cross-dipole : Parametric study

• Increasing the dielectric constant , drops the resonance frequency length of the antenna

• Area used by the antenna was decreased ~ 19 % by using a higher dielectric (4 instead of 2.2 )

• Max. Power delivered to the antenna was sligthly higher for the case with the higher dielectric constant (79 % vs 86 % )

• Bandwidth wasn‘t influenced

Influence of the dielectric constantInput Impedance and new design

Page 24: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Dual cross-dipole : New design

• Area used by the antenna reduced ~ 35 % compared to the inital design (second case) and ~21 % compared to the previous case

• Max percentage for the power plot : ~81 % (79 % second case / 86 % previous case)

• Bandwidth didn‘t change

New design/Power delivered to the antenna

Page 25: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Inductively coupled Feed

• Strength of the coupling depends on h2 and the size of the loop• Inductive coupling modeled by a transformer• Analyzing the input impedance by varying the size and shape of the and shape of the

looploop

Top View and structure

bodyloopin Z

MZZ

22

Page 26: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Inductively coupled Feed (cont‘d)

• Increasing the loop size, increase the inductance• With this method the reactance increases ~200 Ω• Two operating range frequency• Antenna size needs to be adjusted (increased)

Changing length of the loop

Page 27: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Inductively coupled Feed (cont‘d)

• Same experiment as before (changing the size of the loop)• For one design we realized a very high percentage of power

delivered (98 % at 899 MHz)• Bandwidth was narrow

Changing the shape of the feeding loop

Page 28: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Inductively coupled Feed (cont‘d)

• Narrow bandwidth• Operating frequency can be varied by changing the size of

the feeding loop • Antenna size must be increased to operate in the desired

frequency range if we use a square loop.

OBSERVATIONS

Page 29: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Antenna Measurement

Top View of the antenna

Page 30: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Input Impedance Comparison : Measurement et Simulation

Page 31: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Field Pattern normalized (910 MHz) - Comparison

Measurement Simulation

-Anechoic chamber not ideal for 910 MHz-Different feeding part (balun for measurement)-Infinite substrate size used for simulation

Page 32: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

PLATFORM-TOLERANT RFID DESIGNS

Page 33: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Parameter Size (mm)

L 62

W 51.3

H 3

S 5

gap (867/915 MHz) 1

gap (867/940 MHz) 1.9

r 2.35

ASIC Chip:

Zc=10-j160 [] at 867 MHz

Zc=10-j150 [] at 915 MHz

Zc=10-j145 [] at 940 MHz

Dual-Band PIFA Design

Page 34: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

•Dual-band Frequency Operation

•Open-Ended Stub

•Gap Dimension and Stub Dimension Used to Tune

•Platform Tolerance

•Dominating Horizontal Current Distribution

•Widening Short, Vertical Inductance Reduced, Antenna Lowered

Dual-Band PIFA Design

Page 35: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

•Mounting Materials

•Dimensions

•900 mm x 900 mm

•(4 x 4 )

•Thickness=13 mm

•Cardboard (r=2.5)

•Glass(r=3.8)

•Plastic(r=4.7)

Dual-Band PIFA Design

Page 36: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Impedance [867/915 MHz] Dual-Band PIFA DesignImpedance [867/915 MHz] Dual-Band PIFA Design

Real Impedance

0

50

100

150

200

250

300

850 858 865 873 880 888 895 903 910 918 925 933

Frequency [MHz]

No Material Cardboard Glass Plastic

Imaginary Impedance

0

50

100

150

200

250

300

850 858 865 873 880 888 895 903 910 918 925 933

Frequency [MHz]

No Material Cardboard Glass Plastic

Page 37: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Power Dual-Band PIFA DesignPower Dual-Band PIFA Design

  Power (867 MHz)

Power (915 MHz)

Power (940 MHz)

No Material 83.49 64.92 74.07

Cardboard 54.53 86.28 80.5

Amount Increased

-28.96 21.36 6.43

       

No Material 83.49 64.92 74.07

Glass 54.81 80.72 72.9

Amount Increased

-28.68 15.8 -1.17

       

No Material 83.49 64.92 74.07

Plastic 58.3 85.72 72

Amount Increased

-25.19 20.8 -2.07

Page 38: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Radiation [867 MHz] Dual-Band PIFA DesignRadiation [867 MHz] Dual-Band PIFA Design

No Material Cardboard

Glass Plastic

Page 39: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Conclusions Dual-Band PIFA Design

  Directivity (867 MHz)

Directivity (915 MHz)

Directivity (940 MHz)

No Material 1.6841 1.832 1.8815

Cardboard 1.928 2.0704 2.3425

Amount Increased

0.2439 0.2384 0.461

       

No Material 1.6841 1.832 1.8815

Glass 2.4053 2.8135 3.9153

Amount Increased

0.7212 0.9815 2.0338

       

No Material 1.6841 1.832 1.8815

Plastic 2.9936 3.4036 4.1411

Amount Increased

1.3095 1.5716 2.2596

Page 40: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Environmental ChangeDual-Band PIFA Design

•Cardboard Box

• 900 mm x 900 mm

•4 x 4

•Thickness=13 mm

•Metal sheet

•450 mm x 450 mm

•2 x 2

•Height from Cardboard was Varied from 0 mm-20 mm

Radiation [867 MHz]

No Metal Metal 20 mm Under Cardboard

Page 41: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

  Power (867 MHz)

Power (915 MHz)

Peak Directivity (867 MHz)

Peak Directivity (915 MHz)

No Metal 54.53 86.28 1.928 2.0704

Metal 0 mm 76.6 80.7 3.3105 3.0219

Amount Increased

22.07 -5.58 1.3825 0.9515

         

  Power (867 MHz)

Power (915 MHz)

Peak Directivity (867 MHz)

Peak Directivity (915 MHz)

No Metal 54.53 86.28 1.928 2.0704

Metal 10 mm 91.08 73.11 3.1872 3.0167

Amount Increased

36.55 -13.17 1.2592 0.9463

         

  Power (867 MHz)

Power (915 MHz)

Peak Directivity (867 MHz)

Peak Directivity (915 MHz)

No Metal 54.53 86.28 1.928 2.0704

Metal 20 mm 73.25 76.82 3.2213 3.0599

Amount Increased

18.72 -9.46 1.2933 0.9895

Environmental Change Dual-Band PIFA Design

Page 42: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Ground Plane Optimization Dual-Band PIFA Design

No Material Directivity (867 MHz)

Directivity (915 MHz)

Original GP 1.6841 1.832

1 Inch Larger 2.3265 2.3131

2 Inch Larger 2.9306 2.918

3 Inch Larger 3.6696 3.7427

10 Inch Larger 4.5087 4.4954

     

Cardboard Directivity (867 MHz)

Directivity (915 MHz)

Original GP 1.928 2.0704

1 Inch Larger 2.6915 2.7059

2 Inch Larger 3.2191 3.2618

3 Inch Larger 3.1907 3.3583

10 Inch Larger 4.6297 4.687

Glass Peak Directivity (867 MHz)

Peak Directivity (915 MHz)

Original GP 2.4053 2.8135

1 Inch Larger 2.5102 2.6094

2 Inch Larger 2.9178 3.0237

3 Inch Larger 2.7375 2.7357

10 Inch Larger 3.7178 4.1891

     

Plastic Peak Directivity (867 MHz)

Peak Directivity (915 MHz)

Original GP 2.9936 3.4036

1 Inch Larger 2.9787 3.0035

2 Inch Larger 3.0787 2.9965

3 Inch Larger 3.1032 3.0408

10 Inch Larger 3.0544 2.9356

Page 43: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Ground Plane Optimization Dual-Band PIFA Design

Page 44: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

•Impedance Matching

•Inductively Coupled Feed Loop

•Gap dimension between loop and radiators is used to tune

•Designed to match Zc=10-j150 [] at 915 MHz

•Platform Tolerance

•Reduced Current on Ground Plane

Inductively-Coupled Feed Loop PIFA Design

Page 45: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

•Mounting Materials

•Dimensions

•200 mm x 200 mm

•( x )

•Thickness=5 mm

•Cardboard (r=2.5)

•Glass with No Loss(r=3.8)

•Glass with Loss(r=2.5) and Loss Tangent 0.002

Inductively-Coupled Feed Loop PIFA Design

Page 46: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Impedance

-10

10

30

50

70

90

110

130

150

170

190

0.825 0.845 0.865 0.885 0.905 0.925 0.945 0.965 0.985 1.005 1.025

Frequency [MHz]

Imaginary 9.75

Imaginary 9.5

Imaginary 9.25

Imaginary 9

Real 9.75

Real 9.5

Real 9.25

Real 9

  Power 915 MHz [%]

Power 940 MHz [%]

Average

Gap 9 mm 9.09 4.39 6.74

Gap 9.25 mm 86.09 41.45 63.77

Gap 9.5 mm 77.38 34.50 55.94

Gap 9.75 mm 15.28 13.00 14.14

Optimization of Impedance in Free Space

Page 47: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Directivity & Radiation

  Directivity (915 MHz) Directivity (940 MHz)

No Mounting Material 3.47 3.3

Cardboard (r=2.5) 3.43 2.94

Amount Increased -0.04 -0.36

     

  Directivity (915 MHz) Directivity (940 MHz)

No Mounting Material 3.47 3.3

Glass No Loss (r=3.8) 3.4 3.25

Amount Increased -0.07 -0.05

     

  Directivity (915 MHz) Directivity (940 MHz)

No Mounting Material 3.47 3.3

Glass With Loss (r=2.5) and loss 0.002

3.36 3.3

Amount Increased --0.11 0

867 MHz No Material

867 MHz Cardboard

Page 48: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Impedance

0

10

20

30

40

50

60

0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Frequency [GHz]

Gap 9.75 Gap 9.5 Gap 9.25 Gap 9 Gap 8.8 Gap 8.75 Gap 8.5

Optimization of Impedance for Cardboard

Page 49: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Impedance Inductively-Coupled Feed Loop PIFA

Impedance (Before Optimization)

020406080

100120140160180200

0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99 1.01 1.03

Frequency [GHz]

Imaginary No Material Imaginary Cardboard Imaginary No Loss Imaginary Glass with Loss

Real No Material Real Cardboard Real Glass with Loss Real No Loss

Page 50: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Impedance Inductively-Coupled Feed Loop PIFA

Impedance (Optimized)

0

20

40

60

80

100

120

140

160

180

200

0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99 1.01 1.03

Frequency [GHz]

Imaginary No Material Imaginary Cardboard Imaginary Glass No Loss Imaginary Glass With Loss

Real No Material Real Cardboard Real Glass No Loss Real Glass With Loss

Page 51: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

  Power (915 MHz) [%] Power (940 MHz) [%]

Free Space 86.09 41.45

Cardboard 16.29 6.5

Cardboard Optimized 61.19 31.69

     

Free Space 86.09 41.45

Glass 24.06 9.48

Glass Optimized 56.59 69.36

     

Free Space 86.09 41.45

Glass with Loss 11.65 23.81

Glass with Loss Optimized 61.6 52.55

Power Before and After Optimization Inductively Coupled Feed Loop PIFA

Page 52: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Performance Enhancement with Artificial Magnetic Conductors

• PEC Ground– Reflects Half the Radiation

• Gain can be increased by 3 dB

– Image Currents Can Cancel Currents in Antenna

• Limitation on distance between ground and radiating elements (/4)

– Reflection Coefficient of -1

PMC Ground– Image Currents In Phase with

Original Currents PMC is reflective Low Profile Antennas

– High Impedance Surface Current is filtered at selected

frequencies so tangential magnetic field is small while electric field is still large

Suppression of Surface Waves=>Minimizes Backlobe

– Reflection Coefficient of +1

Page 53: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Metamaterials

• Electrical Ground Plane Redirect one-half of the radiation gain can be increased by 3 dB Min. distance between antenna and ground : λ/4

• Image currents cancel currents in antenna poor radiation efficiency

• Metamaterials→Material that exhibit electromagnetic properties not found in nature

• EBG (Electromagnetic Band Gap) - Surface Subclass of metamaterials Can be designed to act as an AMC (Artificial Magnetic Conductor)

ground plane

ChallengesChallenges

Page 54: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Metamaterial

• Reflectivitiy “+1“ (reflection magnitude 1 and reflection phase 0°)• Can be achieved by utilizing periodic patch with via geometry or by planar

achitecture without the need of vias FSS (Frequency Selective Surface)• GA (Genetic algorithm) for an optimized FSS unit cell size,geometry and

dielectric constant and thickness of the substrate material

AMCAMC

Page 55: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Metamaterial - Simulations

FSS-designFSS-design

Unit CellUnit Cell

Antenna StructureAntenna Structure

FSS-Screen with AntennaFSS-Screen with Antenna

GA-Output ParameterGA-Output Parameter

Page 56: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Metamaterial – Simulations (cont‘d)

• Resonance frequency is decreasing by using a FSS-layer

Input Impedance- Comparison (with and without using an FSS-layer)Input Impedance- Comparison (with and without using an FSS-layer)

Page 57: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Metamaterial – Simulations (cont‘d)

• Higher Power transfer for the case with the FSS-layer (~94 % instead of 83 %)

• Directivity is alternating in the range between 900 and 950 MHz around 1.2

• Antenna could be made smaller future work

• Bandwidth sligthly smaller for the FSS-case

Bandwidth and maximum Directivity - Comparison Bandwidth and maximum Directivity - Comparison (with and without using an FSS-layer)(with and without using an FSS-layer)

Page 58: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Metamaterials (cont‘d)

• Using an FSS-layer drop the resonance frequency• Changing the size of the antenna to get a desired input impedance is

very difficult • Directivity behaviour changes sligthly• Higher power delivered to the antenna with the FSS-layer• Bandwidth slighly smaller for the FSS-case

Summary

Future work

Increasing Bandwidth Changing structure of the AMC instead of the antenna size Antenna attached to metal objects Performance will change Tunable antenna design provide tolerance for fabrication

Page 59: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Fabrication of AMCs

Configuration of AMC

GA Input

Parameter Output

Page 60: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

FSS Layer

FSS Unit Cell

/2 x /2 FSS Layer

Reflection Crosses 0 at 939 MHz

Page 61: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Directivity AMC

  Directivity

  867 MHz 940 MHz

PEC Ground

2.5255 2.6126

AMC Ground

2.892 3.125

Increased 0.3665 0.5124

  Directivity

  915 MHz 940 MHz

PEC Ground

2.7074 2.421

AMC Ground

3.6855 2.9899

Increased 0.9781 0.5689

Dual-Band PIFA Inductively Coupled PIFA

Page 62: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Radiation [867 MHz]AMC

Dual-Band PIFA

Inductively Coupled PIFAPEC

PEC

AMC

AMC

Page 63: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Optimization Dual-Band PIFA Design

Impedance Stub 2.8

0

50

100

150

200

250

850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950

Frequency [MHz]

[]

Imaginary Gap 2.6 Imaginary Gap 2.5 Imaginary Gap 2.4 Imaginary Gap 2.2 Imaginary Gap 2.1

Real Gap 2.6 Real Gap 2.5 Real Gap 2.4 Real Gap 2.2 Real Gap 2.1

Page 64: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Optimization Dual-Band PIFA Design

STUB 2.8 Imaginary 867 MHz []

Real 867 MHz []

Power 867 MHz [%]

Gap 2.6 157.45 40.29 63.56

Gap 2.5 142.94 3.55 29.90

Gap 2.4 153.95 26.54 77.39

Gap 2.2 131.14 2.66 10.70

Gap 2.1 128.29 2.69 9.23

Note: 915 MHz and 940 MHz were not able to be sufficiently matched.

Page 65: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Optimization Inductively-Coupled Feed Loop PIFA Design

Impedance (Imaginary)

150

155

160

165

170

175

180

900 905 910 915 920 925 930 935 940 945 950

Frequency [MHz]

[]

Gap 9.5 Gap 9.4 Gap 9.3 Gap 9.25 Gap 9.2 Gap 9.1 Gap 8.9

Page 66: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Dimension [mm]

Imaginary 915 MHz

[]

Real 915 MHz

[]

Imaginary 940 MHz

[]

Real 940 MHz

[]

Power 915 MHz

[%]

Power 940 MHz

[%]

8.90 164.15 0.07 169.24 3.27 0.92 17.11

9.10 164.23 0.06 170.52 4.52 0.78 20.97

9.20 162.70 0.24 166.82 1.47 3.64 9.68

9.25 166.60 2.98 171.89 0.51 26.83 2.44

9.30 158.90 0.14 163.86 1.29 3.11 10.70

9.40 163.04 0.13 167.28 4.80 1.90 26.83

9.50 163.52 0.17 168.06 4.42 2.34 23.91

Optimization Inductively-Coupled Feed Loop PIFA Design

Page 67: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

OBSERVATIONS

• Dual-Band PIFA Design showed to be platform tolerant in numerous cases

• Inductively Coupled Feed Loop PIFA was very sensitive to platform• An optimization was done for each mounting material with the

Inductively Coupled Feed Loop PIFA• The AMC ground plane did significantly improve the directivity and

reduce the backlobe in both antenna cases• An optimization needed to be done using the AMC for both antenna

cases because the impedance was altered• The Dual-Band PIFA Design was optimized to sufficient operation

but the Inductively Coupled Feed Loop PIFA was not

Page 68: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

ALTERNATE PLATFORM-TOLERANT RFID DESIGNS

*courtesy of Prof. K.W.LeungCity University of Hong Kong

Page 69: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

RFID Tag Design

- Background Information

•Inductive-coupled feeding design

Page 70: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Platform Tolerant

•Principle

-Using a patch antenna as the resonating element -The Tag antenna and the surface material are isolated by the ground plane

-The Tag has a stable performance regardless of the mounting surface

Page 71: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

RFID Tag Antenna Configuration

First Design

Size of Ground Plane:Size of Ground Plane: 83.638 x 112.058mm (0.26λx 0.34λ)83.638 x 112.058mm (0.26λx 0.34λ)

Size of Printed Antenna:Size of Printed Antenna: 64.4 x 89.95mm(0.2λ x 0.27λ)64.4 x 89.95mm(0.2λ x 0.27λ)

Substrate thickness:Substrate thickness: 1.524mm1.524mm

Substrate dielectric constant:Substrate dielectric constant: 3.383.38

Substrate loss tangent:Substrate loss tangent: 0.00210.0021

Page 72: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

RFID Tag Antenna Configuration

•Chip Impedance- 20.83 – j116.67ΩΩ

•Transmitted power of the Reader - 1W (30dBm)

•Gain of the Reader antenna- ~7.5dBi

Page 73: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

RFID Tag Antenna Configuration

Simulated Antenna Gain

•Gain: ~ -8.6 to -0.77 dBi

Page 74: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

RFID Tag Antenna Configuration

Current Distribution (First Design)

902 MHz

Page 75: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

RFID Tag Antenna Configuration

Current Distribution (First Design)

915 MHz

Page 76: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

RFID Tag Antenna Configuration

Current Distribution (First Design)

928 MHz

Page 77: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Result and Analysis

Measurement Method

-The Read Range was measured in the EMC Chamber

-Reader Antenna was moved inside the EMC Chamber

-Measure the maximum readable distance that the signal can be detected

Page 78: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

RFID Tag Antenna Configuration

Measurement Method

- - RFID Tag was fixed by the foam stand and measured at different orientation angles (0 deg, 45 deg, 90 deg)

0 deg 45 deg 90 deg

Page 79: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Result and Analysis

Tag Antenna Configuration (by inductively-coupled feeding)

-The tag has similar performances for different angles

Page 80: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Result and Analysis

Second Design

-A Philips’s chip SL3S10 01 FTT is used

-Impedance of the chip: 16 – j380Ω (much more capacitive)

-Difficult to match using the first design

-Introduce a new feed network

Page 81: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

RFID Tag Antenna Configuration

Second Tag Antenna Design

- - Directly connect the feed network to the radiating patch at several point

Size of Ground Plane: 83.638 x 112.058mm (0.26λx 0.34λ)Size of Ground Plane: 83.638 x 112.058mm (0.26λx 0.34λ)

Size of Printed Antenna: 54.45 x 93.3mm(0.17λ x 0.28λ)Size of Printed Antenna: 54.45 x 93.3mm(0.17λ x 0.28λ)

Page 82: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

RFID Tag Antenna Configuration

Current Distribution (Second Design)

902 MHz

Page 83: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

RFID Tag Antenna Configuration

Current Distribution (Second Design)

915 MHz

Page 84: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

RFID Tag Antenna Configuration

Current Distribution (Second Design)

928 MHz

Page 85: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Result and Analysis

Platform Tolerance Test

-Following surfaces were used in the test:

-Acrylic (200 x 200 x 3 mm)

-Wood (200 x 200 x 3 mm)

-Aluminium (200 x 200 x 3 mm)

Page 86: RFID DESIGN STUDIES Dr. KVS Rao Intermec Technologies Everett, WA, USA Prof. Raj Mittra Pennsylvania State University University Park, PA, USA.

Result and Analysis

Platform Tolerance

-The tag has stable performance over different surfaces-The longest read range is obtained for the metal (Aluminium)

case because EM wave is reflected by the metal