REVIEW Sol Gel Coatings on Metal for Corrosion Protection
date post
10-Oct-2015Category
Documents
view
35download
1
Embed Size (px)
Transcript of REVIEW Sol Gel Coatings on Metal for Corrosion Protection
Progress in Organic Coatings 64 (2009) 327338
Contents lists available at ScienceDirect
Progress in Organic Coatings
journa l homepage: www.e lsev ier .com
Review
Solge io
Duhua WDepartment o
a r t i c
Article historReceived 31Received in rAccepted 12
Keywords:SolgelCorrosion reProtective co
Contents
1. Intro2. Gen
2.1.2.2.
3. Corr3.1.
3.2.
3.3.4. Chal
4.1.4.2.4.3.
5. ConcAcknRefe
1. Introdu
Metalstheir alloy
CorrespE-mail ad
0300-9440/$doi:10.1016/jf Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58105, USA
l e i n f o
y:October 2007evised form 12 August 2008August 2008
sistanceatings
a b s t r a c t
Solgel protective coatingshave shownexcellent chemical stability, oxidation control andenhancedcorro-sion resistance for metal substrates. Further, the solgel method is an environmentally friendly techniqueof surface protection and had showed the potential for the replacement of toxic pretreatments and coat-ings which have traditionally been used for increasing corrosion resistance of metals. This review coversthe recent developments and applications of solgel protective coatings on different metal substrates,such as steel, aluminum, copper, magnesium and their alloys. The challenges for industrial productionsand future research on solgel corrosion protective coatings are also briey discussed.
2008 Published by Elsevier B.V.
duction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327eral background of solgel coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Brief history of solgel chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328Preparation of solgel coatings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
osion protective solgel coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329Steel substrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3293.1.1. Metal oxide coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3293.1.2. Organicinorganic hybrid solgel coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3313.1.3. Inhibitor doped solgel coatings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3323.1.4. Inorganic zinc-rich coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332Aluminum substrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3333.2.1. Metal oxide coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3333.2.2. Organicinorganic hybrid solgel coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3343.2.3. Hybrid solgel magnesium-rich coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335Copper and magnesium substrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
lenges and future studies of solgel corrosion protective coatings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337Basic theory studies of solgel coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337Optimization and new synthesis routes of solgel coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337New raw materials and multiple component systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
lusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337owledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337rences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
ction
, such as iron, aluminum, copper and magnesium ands are used in amyriad of structural,marine, aircraft appli-
onding author.dress: [email protected] (Gordon.P. Bierwagen).
cations and cultural heritage, etc. While these metals are usefulbecause of their physical characteristics, such as stiffness and highstrength toweight ratios, they are highly susceptible to corrosion inaggressive environments. Corrosion is always the major reason ofenergy andmaterial loss. It was reported that 1/5 of energy globallyand average 4.2% of gross national product (GNP) is lost each yeardue to corrosion [1] and the economic impact of corrosion is esti-mated to be greater than $100,000,000,000 per year in the United
see front matter 2008 Published by Elsevier B.V..porgcoat.2008.08.010l coatings on metals for corrosion protect
ang, Gordon. P. Bierwagen / locate /porgcoat
n
328 D. Wang, Gordon.P. Bierwagen / Progress in Organic Coatings 64 (2009) 327338
States alone [2]. This cost includes the application of protectivecoatings (paint, surface treatment, etc.), inspection and repair ofcorroded surfaces and structures, and disposal of hazardous wastematerials. A generic way to protect metals from corrosion is toapply protective lms or coatings, which also permit the desiredproperties of the substrate to be coated through the chemicalmod-ication of the coatings [3,4], such as mechanical strength, opticalappearance, bioactivity, etc.
There are several techniques for the deposition of coatingson metals, including physical vapor deposition (PVD), chemicalvapor deposition (CVD), electrochemical deposition, plasma spray-ing and solgel process. There are many advantages using solgelcoatings, several most important features are listed as follows[5,6]:
(A) Solgel processing temperature generally is low, frequentlyclose to room temperature. Thus thermal volatilization anddegradation of entrapped species, such as organic inhibitors,is minimized.
(B) Since liquid precursors are used it is possible to cast coatings incomplex shapes and to produce thin lms without the need formachining or melting.
(C) The solgel lms are formed by green coating technologies:It uses compounds that do not introduce impurities into theend product as initial substances, thismethod iswaste-free andexcludes the stage of washing.
Ten year ago, Guglielmi [7] has already discussed the potentialof solgel coatings as a corrosion inhibiting system for metal sub-strates. Since then, a great deal of work has been done to makevarious solgel based protective coatings. This review will intro-duce the basic chemistry involved in solgel processes, then theprogress and development of solgel protective coatings on metalsubstrate, such as steel, aluminum, etc. Finally some problems andfuture work on solgel coatings will be summarized br