Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor...

22
Page 1 ECE 541/ME 541 Microelectronic Fabrication Techniques Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: [email protected])

Transcript of Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor...

Page 1: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 1

ECE 541/ME 541Microelectronic Fabrication Techniques

Review of Semiconductor Fundamentals

Zheng Yang(ERF 3017, email: [email protected])

Page 2: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 2

Semiconductor

• A semiconductor is an ‘almost’ insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

Page 3: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 3

Semiconductor materials

Page 4: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 4

Energy levels

• Electrons can only have discrete values of energy

• Electrons in the outermost shell, called Valence Electrons.

• With large number of atoms in solid, energy levels form bands

• Important bands are the valence band, conduction band and energy gap

Page 5: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 5

Electronic properties of materials – general case.

Insulators.Conductors.

Semi-conductors.

Page 6: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 6

Energy diagrams of three categories material

Page 7: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 7

SemiconductorThe energy band gap between the conduction band and valance band determines the conductive properties of the materials

Metal Negligible band gap

InsulatorLarge band gap, >6eV

Conduction Band

Valence Band

Band GapConduction Band

Valence Band

Band Gap

Semiconductor Medium band gap, 0~4 eV

SiO2, Si3N4, Al2O3, HfO2, etc.

Si, Ge, GaAs, GaN, SiC, ZnO etc.

Conduction Band

Valence Band

Al, Au, Pt, Ni, Co, etc.

Page 8: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 8

Covalence Bonds

• Atoms of solid materials form crystals, which are 3D structures held together by strong bonds Between atoms—covalence Bonds like Silicon.

• Silicon forms a covalent crystal. The shared electrons are not mobile. Therefore there is a energy gap between the valence band and the conduction band.

Page 9: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 9

Holes

• An electron hole is the conceptual and mathematical opposite of an electron

• Holes do not travel like electrons• Only electrons can move from atom to atom

Page 10: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 10

Doping in Silicon

• Pure silicon wafers are called intrinsic silicon• Intrinsic silicon doesn’t have enough free

electrons for current conduction.• So impurities are introduced to increase

conductivity• The introduction of these impurities is called

doping

Page 11: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 11

Donors and Acceptors• Donors are dopant atoms that added to a

semiconductor to provide electrons• Acceptors are dopant atoms that provide holes

Page 12: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 12

Type of doping

• N (negative) type: doped with donors and has extra free electrons.

• P (positive) type: doped with acceptorsand has extra holes.

Page 13: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 13

Electronic properties of doped silicon – qualitative picture.

Page 14: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 14

Methods for doping (2) Diffusion

• Diffusion• impurities move by a

difference in concentration gradients

• Conducted at very high temperatures

• Gas sources are the most common but liquids and solids are also used

• The sources react with silicon to form dopant oxide which then diffuses into the rest of the substrate by the increase of temperature

Page 15: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 15

Methods for doping (2) – Ion Implantatoin

• Ion implantation: Alternative to high temperature diffusion

• A beam of highly energetic dopant ions is aimed at the semiconductor surface

• Collision with ion distorts the crystal structure

• Annealing has to be performed to correct the damage

Page 16: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 16

Electronic properties: Silicon in general.

EG = 1.12 eVBoltzman constant: k = 8.62 10–5 eV/K

kTEEc

FceNn /)( Fundamental materials property:

Where n = concentration of negative (electron) carriers (typically in cm-

3)Ec is the energy level of the conduction bandEF is the Fermi level.Nc is the intrinsic density of states in the conduction band (cm-3).

EF

Similarly, kTEE

VVFeNp /)(

Where p = concentration of positive (hole) carriers (typically in cm-3)EV is the energy level of the valence bandNV is the intrinsic density of states in the valence band (cm-3).

EC

EV

Page 17: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 17

Density of states in conduction band, NC (cm-3) 3.22E+19

Density of states in valence band, NV (cm-3) 1.83E19

Note: without doping, n = p ni where ni is the intrinsic carrier concentration.For pure silicon, then

)/exp(2 kTENNn GVci

Thus ni = 1 x 1010 cm-3

Similarly the Fermi level for the intrinsic silicon is,

)/ln()2/1(2/)( CVVCVi NNkTEEEE

Where we have used Ei to indicate intrinsic Fermi level for Si.

Electronic properties: intrinsic (undoped) silicon.

Page 18: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 18

Consider doping with n-type (or electron donating) dopant (such as Arsenic).Then n ND where ND is the arsenic doping concentration.

The injection of negative (electron) carriers dramatically alters the Fermi level of the system since there are now a significant sea of negative carriers available.

We can determine the new Fermi level as well as the resulting change in positive carriers.

)/exp(2 kTENNpnn GVci

Thus p=ni2/ND.

And EF = Ei + kT ln(ND/ni)

Page 19: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 19

Correspondingly, for p-type (acceptor) dopants such at Boron:Thus n=ni

2/NA.

And EF = Ei - kT ln(NA/ni)

Resistivity

)(1

pn pnq

Where q is electron chargeand are mobilities.

kTEEi

Fienp /)(

kTEEi

iFenn /)(

Page 20: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 20

Equations to remember

Note: Our interest was in determining n and p. Free carriers strongly influence the properties of semiconductors.

Page 21: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 21

Example 1

(a) Consider Si doped with 1014 cm3 boron atoms. Calculate the carrier concentration (n and p) at 300 K.

(b) Determine the position of the Fermi level and plot the band diagram.

Page 22: Review of Semiconductor Fundamentalszyang/Teaching/20182019... · Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 2 Semiconductor • A semiconductor

Page 22

Example 2

Consider a Si sample doped with 3 1016 cm3 of phosphorous (P) atoms and 1016 cm3 of boron (B) atoms.

(a) Is the semiconductor n-type or p-type?

(b) Determine the free carrier concentration (hole and electron concentrations, or p and n) at 300K.

(c) Determine the position of the Fermi level and draw the band diagram.