Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity...

22
iMedPub Journals ht tp://www.imedpub.com Translational Biomedicine ISSN 2172-0479 2015 Vol. 6 No. 3:21 1 © Under License of Creative Commons Attribution 3.0 License | This arcle is available in: www.transbiomedicine.com Review Article DOI: 10.21767/2172-0479.100021 Satyajit Patra 1 , S Nithya 2 , B Srinithya 2 and Meenakshi SM 2 1 Division of Biochemistry and Genecs, American Internaonal Medical University, Saint Lucia, WI, USA 2 Department of Biotechnology, School of Chemical & Biotechnology, SASTRA University, Thirumalaisamudram, Thanjavur, Tamilnadu, India – 613401 Corresponding author: Dr. Satyajit Patra [email protected] Division of Biochemistry and Genecs, American Internaonal Medical University, Saint Lucia, WI, USA. Tel: 1-758-488-0322 Citation: Patra S, Nithya S, Srinithya B, et al. Review of Medicinal Plants for An-Obesity Acvity. Transl Biomed. 2015, 6:3. Introducon In the present scenario, obesity is the major public health problem with about 1.9 billion adults (18 years and older) worldwide are overweight and about 600 million of them are clinically obese [1]. Obesity is characterized by increase in adipose cell size which is determined by amount of fat accumulated in the cytoplasm of adipocytes [2]. This change in the metabolism in the adipocytes is regulated by various enzymes such as fay acid synthase, lipoprotein lipase and adipocyte fay acid-binding protein [3]. Obesity results from an imbalance between energy intake and expenditure. It is caused by altered lipid metabolic processes including lipogenesis and lipolysis [4]. Lipogenesis is the process that stores free fay acids in the form of triglyceride (TG) [5]; similarly, lipolysis is the process whereby the TG stored is metabolized to free fay acids and glycerol [6]. Obesity accompanied by hyperlipidemia which is indicated by abnormally high concentraon of lipids in blood [7]. The adipose ssue, an endocrine organ, has a major role in the regulaon of metabolism and homeostasis, through the secreon of several biologically acve adipokines [8]. During adipose ssue development, three major transcripon factors, peroxisome proliferator-acvated receptor (PPAR) γ, CCAAT/enhancer binding protein (C/EBP) α, and sterol regulatory element-binding protein (SREBP) 1c, regulate the expression of these lipid-metabolizing enzymes [9]. 5' AMP- acvated protein kinase (AMPK) plays a major role in glucose and lipid metabolism by inacvang acetyl-CoA carboxylase (ACC) and smulates fay acid oxidaon by up-regulang the expression of carnine palmitoyltransferase-1 (CPT-1), PPARα, and uncoupling protein [10]. Nowadays, changes in human lifestyle and high energy diet have increased the incidence of obesity and even have become a risk factor to the populaon of children [11,12]. There are several pharmacologic substances available as anobesity drugs, however they have hazardous side effects and hence natural products have been used for treang obesity in many Asian countries [13]. The potenal of natural products for the treatment of obesity is sll largely unexplored and can be an excellent alternave for the safe and effecve development of anobesity drugs [14]. Currently drugs available in the market for treatment of obesity can be divided into two major classes one being orlistat, which Review of Medicinal Plants for An-Obesity Acvity Abstract Obesity is a complex health issue to address, it is a serious and chronic disease that can have a negave effect on many systems in your body. Overweight and obesity may increase the risk of many health problems, including diabetes, heart disease, osteoarthris and certain cancers. Obesity is increasing at an alarming rate throughout the world. Today it is esmated that there are more than 300 million obese people world-wide. Obesity is regarded as a disorder of lipid metabolism and the enzymes involved in this process could be targeted selecvely for the development of anobesity drugs. However, most of the an-obesity drugs that were approved and marketed have now been withdrawn due to serious adverse effects. The naturopathic treatment for obesity has been explored extensively since ancient mes and gaining momentum in the present scenario. Tradional medicinal plants and their acve phytoconstuents have been used for the treatment of obesity and their associated secondary complicaons. Some acve medicinal plants and their respecve bioacve compounds were also tested by clinical trials and are effecve in traemnet of obesity. This review focus on natural phytoextracts with their mechanism of acon and their preclinical experimental model for further scienfic research. Keywords: Obesity; Anobesity drugs; Medicinal plants Received: August 20, 2015; Accepted: December 01, 2015; Published: December 04, 2015

Transcript of Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity...

Page 1: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

iMedPub Journalshttp://www.imedpub.com

Translational BiomedicineISSN 2172-0479

2015Vol. 6 No. 3:21

1© Under License of Creative Commons Attribution 3.0 License | This article is available in: www.transbiomedicine.com

Review Article

DOI: 10.21767/2172-0479.100021

Satyajit Patra1, S Nithya2, B Srinithya2 and Meenakshi SM2

1 DivisionofBiochemistryandGenetics,AmericanInternationalMedicalUniversity,SaintLucia,WI,USA

2 DepartmentofBiotechnology,SchoolofChemical&Biotechnology,SASTRAUniversity,Thirumalaisamudram,Thanjavur,Tamilnadu,India–613401

Corresponding author: Dr.SatyajitPatra

[email protected]

DivisionofBiochemistryandGenetics,AmericanInternationalMedicalUniversity,SaintLucia,WI,USA.

Tel: 1-758-488-0322

Citation:PatraS,NithyaS,SrinithyaB,etal. ReviewofMedicinalPlantsforAnti-ObesityActivity.TranslBiomed.2015,6:3.

IntroductionInthepresentscenario,obesityisthemajorpublichealthproblemwithabout1.9billionadults(18yearsandolder)worldwideareoverweight and about 600million of themare clinically obese[1].Obesityischaracterizedbyincreaseinadiposecellsizewhichisdeterminedbyamountoffataccumulatedinthecytoplasmofadipocytes[2].Thischangeinthemetabolismintheadipocytesis regulated by various enzymes such as fatty acid synthase,lipoproteinlipaseandadipocytefattyacid-bindingprotein[3].

Obesity results from an imbalance between energy intake andexpenditure. It is caused by altered lipid metabolic processesincludinglipogenesisandlipolysis[4].Lipogenesisistheprocessthat stores free fatty acids in the form of triglyceride (TG)[5]; similarly, lipolysis is the process whereby the TG storedis metabolized to free fatty acids and glycerol [6]. Obesityaccompaniedbyhyperlipidemiawhichisindicatedbyabnormallyhighconcentrationof lipids inblood[7].Theadiposetissue,anendocrineorgan,hasamajorroleintheregulationofmetabolismand homeostasis, through the secretion of several biologicallyactiveadipokines[8].Duringadiposetissuedevelopment,three

major transcription factors, peroxisome proliferator-activatedreceptor(PPAR)γ,CCAAT/enhancerbindingprotein(C/EBP)α,andsterol regulatory element-binding protein (SREBP) 1c, regulatetheexpressionoftheselipid-metabolizingenzymes[9].5'AMP-activatedproteinkinase(AMPK)playsamajorroleinglucoseandlipidmetabolismbyinactivatingacetyl-CoAcarboxylase(ACC)andstimulatesfattyacidoxidationbyup-regulatingtheexpressionofcarnitinepalmitoyltransferase-1(CPT-1),PPARα,anduncouplingprotein[10].

Nowadays,changesinhumanlifestyleandhighenergydiethaveincreasedtheincidenceofobesityandevenhavebecomeariskfactor to the population of children [11,12]. There are severalpharmacologicsubstancesavailableasantiobesitydrugs,howeverthey have hazardous side effects and hence natural productshavebeenusedfortreatingobesityinmanyAsiancountries[13].Thepotentialofnaturalproductsforthetreatmentofobesityisstilllargelyunexploredandcanbeanexcellentalternativeforthesafeandeffectivedevelopmentofantiobesitydrugs[14].

Currentlydrugsavailableinthemarketfortreatmentofobesitycanbedividedintotwomajorclassesonebeingorlistat,which

Review of Medicinal Plants for Anti-Obesity Activity

AbstractObesityisacomplexhealthissuetoaddress,itisaseriousandchronicdiseasethatcanhaveanegativeeffectonmanysystemsinyourbody.Overweightandobesitymayincreasetheriskofmanyhealthproblems,includingdiabetes,heartdisease,osteoarthritis and certain cancers. Obesity is increasing at an alarming ratethroughouttheworld.Todayitisestimatedthattherearemorethan300millionobesepeopleworld-wide.Obesity isregardedasadisorderof lipidmetabolismand the enzymes involved in this process could be targeted selectively for thedevelopmentofantiobesitydrugs.However,mostoftheanti-obesitydrugsthatwereapprovedandmarketedhavenowbeenwithdrawnduetoseriousadverseeffects. The naturopathic treatment for obesity has been explored extensivelysinceancienttimesandgainingmomentuminthepresentscenario.Traditionalmedicinal plants and their active phytoconstituents have been used for thetreatmentofobesityandtheirassociatedsecondarycomplications.Someactivemedicinalplantsand their respectivebioactivecompoundswerealso testedbyclinicaltrialsandareeffectiveintraemnetofobesity.Thisreviewfocusonnaturalphytoextractswiththeirmechanismofactionandtheirpreclinicalexperimentalmodelforfurtherscientificresearch.

Keywords: Obesity;Antiobesitydrugs;Medicinalplants

Received: August20,2015; Accepted: December01,2015; Published: December04,2015

Page 2: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

2

© Copyright iMedPub Find this article in: www.transbiomedicine.com

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

This article is available in: www.transbiomedicine.com

reduces fat absorption through inhibition of pancreatic lipaseandthesecondissubutraminewhichisananorecticorappetitesuppressant.Bothdrugshaveadverseeffectsincludingincreasedbloodpressure,headache,drymouth,insomnia,andconstipation[15,16]. In 1990 Fenfluramine and Dexfenfluramine werewithdrawnfromthemarketbecauseofheartvalvedamage[17].TheUSFDAin1997approvedsubutraminedrugasatreatmentforobesity.But later inOctober2010 thedrugwaswithdrawnfrom the market due to increased cardiovascular events andstrokes[18,19]. InFebruary2011theUSFDArejectedapprovalofcontrivewhichisacombinationofbupropion/naltrexoneduetoconcernsoverpotentialcardiovascularrisks[20].Certaindrugshavepotentialforabusesuchasphentermineanddiethylpropionandhenceareapprovedforshorttermuse[21].

Atpresent,becauseofhighcostandpotentiallyhazardoussideeffects, the need for natural products against obesity is underexplorationwhichmaybeanalternativestrategyfordevelopingeffective, safeantiobesitydrugs [22]. In2000,MoroandBasilereportedtheuseofcertainwellknownmedicinalplantsthathadclaimedtobeuseful intreatingobesity.Theantiobesityeffectsofnaturalproductsfrommorediversesources[23].Theaimofthepresentreviewwastoupdatedataonpotentialantiobesityherbalplants.

MethodsDatabases used for this study to search include PubMed,Scopus, Google Scholar, Web of Science, and IranMedex withinformationreportedbetweenSeptember2,2006toSeptember22,2014.Searchofliteratureswasfocusedonhumanoranimalsinvestigatingthebenefitsandharmsofherbalmedicinestotreatobesity.Thesearchtermswere“obesity”and(“herbalmedicine”or“plant”,“plantmedicinal”or“medicinetraditional”)withoutnarrowingorlimitingsearchitems.Publicationswithabstractfromthementioneddatabaseswereusedtopreparethisreview.Themainoutcomemeasuresweredefinedasbodyweight,bodyfat,includingfatmass/fatweightorfatpercentage/visceraladiposetissueweight,waistorhipcircumference,tricepsthicknessandappetite, and the amount of food/energy intake. Abstracts of

publicationsonplantsused toevaluate theactivityonhuman,animals,celllinesstudieswiththemainoutcomeasmentionedabovewereincluded.Invitrostudies,reviewarticlesandletterstotheeditorwereexcluded.Tworeviewersreviewedthearticlesforabstractsandtitle.Duetoourinclusionandexclusioncriteria,the duplicate articles were eliminated. The review includesactivecomponentsandmechanismofactionagainstobesity inanimalsandpresentedinTable 1.SomeoftheplantsaretestedfortheiractivityagainstobesityincelllineslistedinTable 2 and plantsthatweretestedonhumanvolunteersorclinicaltrailsarelistedinTable 3.Insomeinstancesscientisthaveevaluatedtheanti-obesity activity in isolated cell organelles, isolated cellularenzymesspecificallypancreaticlipasearelistedinTables 3 and 4 respectively.Table 4presenttheplantwhichwasstudiedforitsactivityagainstobesityinanin silicomodel.

DiscussionInthisreview,wehavereporttheantiobesityeffectsofdifferentherbal plants or compounds containing minerals or chemicalextractsofplants.PlantshavingreportedantiobesityeffectsarelistedinTable 1withinformationabouttheiractivecomponentsand theireffects. From the review itwas suggested that,plantshowing anti-obesity potential mainly belongs to the familyLeguminoseae,Lamiaceae,Liliaceae,Cucurbitaceae,Asteraceae,Moraceae, Rosaceae and Araliaceae. Majority of the studiesindicatesdecreaseinbodyweightorbodyweightgaininanimalsand humans with or without changes in body fat indicatingantiobesityeffects.Theantiobesityeffectssuchasbodyweightreduction,decreaseinthelevelsoftriglycerides,totalcholesterol,and low density lipoprotein cholesterol with simultaneousincreaseinhighdensitylipoproteincholesterolwasobservedintheanimalstreatedwiththeplants[1,15,29,31,39,54,60,78,79,83,85,98,100,101,133,145,152,165,190,196,201].Inonestudy[41],ithasbeenreportedthatacompoundchakasaponinII,suppressedmRNAlevelsofneuropeptideY(NPY)andenhancedthereleaseof serotonin (5-HT) that suppressed theappetite signals in thehypothalamus of the mice. Clinical trials were conducted onhumans for various plant extracts [45,49,135]which showed asignificantdecreaseinbodyweightandbodyfatreduction.There

Table 1. Anti-obesityeffectofnaturaloccurringplantswithmechanismofactionstudiedonanimalmodelsPlant name Part(s) Mechanism Experimental model Reference

1 Achyranthes aspera Linn(Amaranthaceae)

Seed Theplantlowerstotalcholesterol,totaltriglyceride,andLDL-cholesterol,andincreasesHDLcholesterollevel.

High-fat-fedmaleSwissalbinomice

[24]

2 Acorus calamus Linn(Araceae)

Rhizome,rootsandleaves

EthylacetateextarctofA. calamusinhibitsα-glucosidaseactivity.

Glucosechallengedmice. [25]

3 Achyranthes bidentataBlume(Amaranthaceae)

Root Thedrugaffectsondifferentiationofadipocyteanddecreaseofphospho-Aktexpression.

MaleSprague-Dawleyfedwithahigh-fatdiet

[26]

4 Actinidia polygama Max(Actinidiaceae)

Fruits Serumlevelsofaspartatedecreasedinthemicetreatedwiththeextractwithoutchangesinserumlevelsofalaninetransaminasebloodureanitrogenandcreatinine.

Micewithhigh-fatdietinducedobesity

[27]

5 Adenophora triphylla Hara(Campanulaceae)

Root Anti-obesityeffectofA. triphyllaismediatedbyincreasingadipocytesadiponectinandactivatingpathwaylikeAMPK,andPPAR-α,anddecreasingadipokinesTNF-α,GPDH,andPPAR-α.Italsoactivelyexpresseslow-densitylipoprotein[LDL]receptorandcholestorl7α-hydroxylase(CYA7A1)andinhibitsexpressionof3hydroxy-3methylglutaryl-CoA(HMG-CoA)reductase.

Highfatdiet(HFD)-C57B2/6mice

[28,29]

Page 3: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

3

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

© Copyright iMedPub Find this article in: www.transbiomedicine.com

© Under License of Creative Commons Attribution 3.0 License

6 Aegle marmelos Linn(Rutaceae)

Leaves TheactivechemicalconstituentsofA. marmelosforanti-adipogenicactivityarehalfordinol,ethyletheraegelineandesculetinwereresponsibleforthedecreaseinadipocyteaccumulation.Activecompoundsumbelliferoneandesculetindepleteslipidcontentintheadipocytesandbydecreasingthehyperlipidemia.

HighfatdietinducedobesemaleSpragueDrawlyrat

[30,31]

7 Allium cepa Linn(Amaryllidaceae)

Peel ThemRNAlevelsofactivatingprotein(AP2)isdown-regulatedbyA.cepaandthoseofcarnitinepalmitoyltransferase-1α(CPT-1α)andfattyacidbindingprotein4(FABP4)areup-regulated.ItisalsoproposedthatA. cepa increaseslevelofPPAR-γ2mRNA(mesentericfats)andIL-6mRNAlevels(perirenalandmesentericfats).

Highfat-fedrats,Diet-inducedobeseMaleSprague-Dawleyrats

[32,33]

8 Allium fistulosum Linn(Liliaceae)

Root Significantreductioninbodyweightandadiposetissueweightaswellasadipocytesize.Genesinvolvedinlipogenesisaredown-regulatedbyA. fistulosum.

Highfatdiet-inducedmice [34]

9 Allium nigrum Linn(Amaryllidaceae)

Bulb ExtractofA. nigrumupregulatesAMPK,FOXO1,Sirt1,ATGL,HSL,perilipin,ACO,CPT-1,andUCP1intheadiposetissues,whereasitdownregulatesCD36.

High-fatdietinducedobesemice

[35]

10 Allium sativum Linn(Amaryllidaceae)

Stem,BulbandRoots

Itincreasesantioxidantenzymesandsuppressesglutathionedepletionandlipidperoxidationinhepatictissue.OilisolatedfromA. sativum downregulatessterolregulatoryelementbindingprotein-1c,acetyl-coAcarboxylase,fattyacidsynthase,and3-hydroxy-3-methylglutaryl-coenzymeAreductase.

High-fatdiet-inducedobeseC57BL/6Jmice

[36,37]

11 Alpinia galangaLinn(Zingiberaceae)

Rhizome Galangin,theprincipalcompontentofA. galangal decreasesserumlipids,liverweight,lipidperoxidationandaccumulationofhepaticTGs.

Obesityinducedinfemaleratsbyfeedingcafeteriadiet

[38]

12 Alpinia officinarum Hance(Zingiberaceae)

Root ThedrugcontrolsandimproveslipidprofileinanimalsbyloweringserumTotal-C,TG,andLDL-Cconcentrations,leptincontent.

Obesityinmicefedahigh-fat diet

[39,40]

13 Angelica gigasNakai(Apiaceae)

Roots Decursin,theactiveconstituentofA.gigas improves glucosetolerance.DecursinalongwiththeHFDsignificantlyreducessecretionadipocytokinessuchasleptin,resistin,IL-6andMCP-1.

Micefedahigh-fatdiet [41]

14 Argyreia nervosa Bojer(Convolvulaceae)

Root Serumcontentsofleptin,totalcholestrol,LDL,andtriglyceridesarereducedbyA. speciosa.

Diet-inducedobesityrats [42]

15 Artemisia iwayomogi(Compositae)

WholePlant ItdownregulatesadipogenictranscriptionfactorsPPARγ2andC/EBPαandtheirtargetgenesCD36,aP2,andFAS.TheextractdecreasesgeneexpressionofproinflammatorycytokinesincludingTNFα,MCP1,IL-6,IFNα,andINFβinepididymaladiposetissueandreducesplasmalevelsofTNFαandMCP1.

Micefedahigh-fatdiet. [43]

16 Atractylodes lancea (Thunb.)DC(Compositae)

Rhizome It inhibitshumanpancreaticlipase.Anewpolyacetylene,syn-(5E,11E)-3-acetoxy-4-O-(3-methylbutanoyl)-1,5,11-tridecatriene-7,9-diyne-3,4-diolhasbeenisolatedandidentifiedandexhibitslipaseinhibitoryactivity.

High-fatdiet-inducedobesitymice

[44]

17 Aster pseudoglehni Lim, Hyun & Shin (Asteraceae)

Leaves Itsuppressesexpressionofadipogenesis-relatedgenesincludingPPARγ,C/EBPα,andSREBP1c.

Highfatdietinduced-maleC57BL/6Jmice

[45]

18 Bauhinia variegata Linn(Leguminosae)

Stemandrootbarks

ExtractofE. variegataincreasesbrainserotoninlevelandhigh-densitylipoproteinwithaconcomitantdecreaseintotalcholesterol,triglyceridesandlow-densitylipoprotein.

Hypercaloricdiet-inducedmice

[46]

19 Bergenia crassifolia (L.)Fritsch(Saxifragaceae)

Leaves Galloylbergeninderivatives3,11-Di-O-galloylbergeninand4,11- di-O-galloylbergeninarefoundtobepresentinB. crassifolia moderatesanti-lipidaccumulationactivities.

Ratswithhigh-caloriediet-inducedobesity

[47]

Page 4: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

4

© Copyright iMedPub Find this article in: www.transbiomedicine.com

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

This article is available in: www.transbiomedicine.com

20 Boehmeria nivea(L.)Gaudich(Urticaceae)

Leaf Theextractsreducesadiposetissueweightserumalkalineaminotransferaseandlactatedehydrogenaseactivities.Serumtriglyceride,totalcholesterol,LDL-cholesterollevel,atherogenicindexandcardiacriskfactorsaredecreasedinanimalsfedwithleafpowderandserumHDL-cholestrollevelsareincreased.

Highfat/cholestroldiet-inducedMaleSprague-Dawleyrats.

[48]

21 Boerhaavia diffusa L.(Nyctaginaceae)

Root ThephytoconstituentscompoundssitosterolfoundinthisplantwhichisstructurallysimilartocholesterolhasbeensuggestedtoreducecholesterolbyloweringthelevelofLDL-cholesterolandcholesterolleveldecreasedsignificantlyinplasmawithoutanysideeffects.

HighfatdietinfemaleSprague-Dawleyrats

[49]

22 Bombax ceiba L.(Malvaceae)

Stembark TheextractandactiveconstituentgemfibrozilreversestheeffectsofHFDtreatmentonserumparameters.Thisactivitymaybeduetotheinactivationofacetyl-coAcarboxylase,asaresultofAMPKactivationthatmediatesthermogenesisandFASinhibition.

Male,Wistaralbinorats [50]

23 Anredera cordifolia (Ten.)Steenis (Basellaceae)

Leaves Theextractsuppresseslipidaccumulationanddown-regulatesPPARγ,CCAAT/enhancerbindingproteinα,SREBP,andtheirtargetgenes.ItalsoincreasesphosphorylationofAMPK.

High-fatdiet-inducedobeserats

[51]

24 Brassica rapa L.(Brassicaceae)

Root Lipolysis-relatedgenesincludingβ3-adrenergicreceptor,hormone-sensitivelipase,adiposetriglyceridelipase,anduncouplingproteinareinducedinwhiteadipocytesofanimalstreatedwithextractofB. campestris.

Highfatdietinducedmice [52]

25 Buddleja officinalis Maxim(Scrophulariaceae)

WholePlant Theextractreducesbodyweightgaininducedthroughadipocytedifferentiation.

High-fatdiettoC57BL/6mice

[53]

26 Bursera grandiflora (Schltdl.)Engl(Burseraceae)

Roots B. grandifloraexertsanti-obesityactivitybydecreasingintheplasma-triglyceridelevels.

MiceoftheC57B1/6strainwithhypercaloricdiet.

[54]

27 Calanus finmarchicus(Calanidae)

Wax C. finmarchicusreducesmacrophageinfiltrationanddownregulatesexpressionofproinflammatorygenesincludingtumornecrosisfactor-α,interleukin–6,andmonocytechemoattractantprotein–1,whereasup-regulatesadiponectinexpression.

C57BL/6Jmicewithhigh-fat diet

[55]

28 Camellia japonica L.(Theaceae)

Leaves C. japonicacontrolinsulinwhichisamodulatoroflipidsynthesisviasterolregulatoryelementbindingprotein-1c(SREBP-1c),decreasedlevelsofinsulinaffectshepatictriglyceridesynthesis.

HighfatdietinducedSprague−Dawleyrats

[56]

29 Camellia oleifera Abel(Theaceae)

Fruithull Serum levels of total cholesterol and triacylglycerols are decreased but high-density lipoprotein cholesterol increased.Activity of fatty acid in animal liver is lowered by.

MaleICRmicewerefedaHFD

[57]

30 Camellia sinensis (L.)Kuntze(Theaceae)

Leaves,twigsandstems,flowerbuds

C. sinesisattenuatesthegeneexpressionof(SREBP-1c),fattyacidsynthaseandCCAAT/enhancerbindingproteinα.ExtractfoundtoreducesICAM-1releasefollowedbynonpharmacologicalHGTEsupplementationindb/dbmicecausingnoadiponectin-inducingorantiadipogeniceffects,reducedsICAM-1release.ChakasaponinIIfromflowerbud,suppressesmRNAlevelsofneuropeptideY(NPY).ThemRNAlevelsofadipogenicgenessuchasPPAR-γ,C/EBP-α,SREBP-1c,adipocytefattyacid-bindingprotein,lipoproteinlipaseandfattyacidsynthasearedecreased in C. Sinensistreatedanimals.

Albinoratsfedonhigh-fatdiet,diet-inducedobesityinFemaleddYmice,highfatinduced-C57BL/6J-Lepob/obmice,highfatdiet-inducedC57BL/6Jmice

[58-64]

31 Cheilanthes albomarginata C.B. Clarke(Pteridaceae)

Rhizome ExtractofC. albomarginatalowersplasmatriglycerideactivityaswellasreducesweightofadiposetissue.

HighfatdietinducedobesemaleSpragueDawleyrats

[65]

Page 5: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

5

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

© Copyright iMedPub Find this article in: www.transbiomedicine.com

© Under License of Creative Commons Attribution 3.0 License

32 Chenopodium quinoa Willd(Amaranthaceae)

Seeds C. quinoaextractattenuatemRNAlevelsofseveralinflammationmarkersincludingmonocytechemotacticprotein-1,CD68andinsulinresistanceosteopontin,plasminogenactivatorinhibitor-1anditalsoreversestheeffectsofHF-induceddownregulationoftheuncouplingprotein(s)mRNAlevelsinmuscle.

Micefedwithstandardlow-fatorahigh-fatdiet

[66]

33 Cirsium brevicaule A. Gray (Compositae)

Leaves C. brevicauleinhibitsfattyacidsynthaseandsuppressthedifferentiationandlipidaccumulationandaffectingtranscriptionfactorssuchasSREBP-1c,C/EBPα,andPPARγknowntocontrolthefattyacidsynthaseexpression.

C57BL/6micethatwerefedahigh-fatdiet

[67]

34 Citrus reticulata Blanco(Rutaceae)

Peel mRNAexpressionlevelsoflipogenesisrrelatedgenessuchasSREBP1c,FASandACC1intheliverareloweredandthesizeofadipocytesarereduced.

Highfatdietinducedmice [68]

35 Citrus sunki (Hayata)Yu.Tanaka(Rutaceae)

Peel PhosphorylationlevelsofAMPKandacetyl-CoAcarboxylasearedecreased.

High-fatdietinducedobeseC57BL/6mice

[69]

36 Clerodendrum phlomidis L.f.(Lamiaceae)

Roots Itnhibitspancreaticlipaseactivity.Theextractcontainsβ-sitosterol.

HighfatdietinducedobesityinC57BL/6Jmice

[70]

37 Coccinia grandis (L.)Voigt(Cucurbitaceae)

Fruit Reducesbodyweight,foodintake,organandfatpadsweightandserumGLU,CHO,TRG,LDLandVLDLcholesterollevelsandincreasesHDLlevels.

Cafeteria diet and Atherogenicdietinducedobesityinfemalerats.

[71]

38 Codonopsis lanceolata (Siebold&Zucc.)Benth.&Hook.f.exTrautv(Campanulaceae)

Roots Reducesweightofadiposepadsandtheserumlevelsoftriglycerides,totalcholesterol,andlowdensitylipoproteincholesterol.

High-calorie/high-fat-dietinducedobesitySprague-Dawleymalerats

[72]

39 Coffea arabica L.(Rubiaceae)

Seed C. arabicadietsupplementationcanimpairglucosetolerance,hypertension,cardiovascularremodeling,andnonalcoholicfattyliverdisease.

High-carbohydrate,high-fatdiet-fedWistarmalerats

[73]

40 Coleus forskohlii (Willd.)Briq.(Lamiaceae).

Root C. forskohliiactasanti-obesisitydrugbyinhibitingdyslipidemia.

Diet-inducedobesityinrats [74,75]

41 Corchorus olitorius L.(Malvaceae)

Leaves Livertissuegeneexpressionofgp91phox(NOX2)involvedinoxidativestressisdown-regulatedbyC. olitorius and genesrelatedtotheactivationofβ-oxidationlikePPARαandCPT1Aareup-regulatedbytheplant.

Highfatdiet-inducedLDLreceptordeficientmice

[76]

42 Cordia ecalyculata Vell(Boraginaceae)

Wholeplant Anti-obesityactivityoftheC. ecalyculata ismedicatedbyanorecticcentralaction,facilitatingbindingtoadenosinereceptors,therebypromotinganextensionofadrenalin.

Mice(albino,swissstrain)treatedwithcyclophosphamide

[77]

43 Cornus officinalis Siebold&Zucc.(Cornaceae)

Rhizome PlatycodinDisthemajorcomponenteffectivetoactivateAMPK-α.Theextractreducesserumlevelsofaspartatetransaminaseandalaninetransaminase.

C57BL/6JmicewerefedaHFdiet

[78]

44 Cucumis melo L.(Cucurbitaceae)

Fruitpeel C. meloreducesgaininbodyweight,serumlipidprofileliketotalcholesterol,triglyceride,LDL-Clevel,atherogenicindexandincreasesserumHDL-Clevels.

Highcholesteroldietinducedinrats

[79]

45 Cyamopsis tetragonoloba (L.)Taub(Leguminosae)

Beans Itdecreasesadiposetriglycerideaccompaniedbyenhancingactivityofhormone-sensitivelipase-facilitatingmobilizationofdepotfat.

High-fat-fedWistarrats [80]

46 Dimocarpus longans Leenh(Sapindaceae)

Flower Bycombinedeffectofdecreasedexogenouslipidabsorption,normalizationofhepaticPPAR-γgeneexpression,suppressionofpancreaticactivityandSREBP-1candFASgeneexpression,andhigherfecaltriglycerideoutput.

Hypercaloricdiet-maleSprague-Dawleyrats.

[81]

47 Dioscoreae tokoronis Linn(Dioscoreaceae)

Root Itdecreasestriglyceride,totalplasmacholesterol,andlow-densitylipoprotein-cholesterol.ItsuppressestheexpressionofSREBP-1aswellasthatoffattyacidsynthaseinadiposeandlivertissues.

Highfatdiet-inducedmice [82]

Page 6: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

6

© Copyright iMedPub Find this article in: www.transbiomedicine.com

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

This article is available in: www.transbiomedicine.com

48 Eucommia ulmoides Oliv(Eucommiaceae)

Leaves,Bark Asperulosideincreasesadenosine5′-triphosphateproductioninWATandincreasesuseofketonebodies/glucoseinskeletalmuscle.

ObesityinducedbyovariectomyinfemaleWistarrats,ratsfedahigh-fat diet.

[83,84]

49 Fraxinus excelsior L.(Oleaceae)

Seed Secoiridoidspresentenhancesfatmetabolismthroughβ-oxidation,inhibitadipocytedifferentiationduringanimalgrowthandlimitfataccumulation.

Highfatdietinducedmice [85]

50 Garcinia cowa Roxb.ex Choisy(Clusiaceae)

Fruit,commerciallyavailabletablet

InhibitstheenzymeATP-dependentcitratelyase,whichcatalyzesthecleavageofcitratetooxaloacetateandacetyl-CoA.SerumapoA1levelsareincreasedbytheplantandtheserumtotalcholesterollevels.

FemaleSprague-Dawleyratsfedatherogenicdiet

[86,87]

51 Geranium thunbergiiSieboldexLindl.&Paxton(Geraniaceae)

Leaf Theextractameliorateshigh-fatdiet-inducedobesitybyalteringtheadipokinelevelsanddownregulatesexpressionoftranscriptionfactorsandlipogenicenzymesinvolvedinlipidmetabolism.

Highfatdiet-inducedmice [88]

52 Glycine max (L.)Merr.(Leguminosae)

Bean Reductionsglucose-6-phosphatedehydrogenase,malicenzyme,fattyacidsynthetase,aswellasacetyl-CoAcarboxylase.TheextractdecreasesappetiteandHFdiet-inducedbodyweightgainthroughleptin-likeSTAT3phosphorylationandAMPKactivation.

Diet-inducedobesemice [89,90]

53 Gymnema sylvestre (Retz.)R.Br.exSm(Apocynaceae)

Leaves Inhibitsserumlipids,leptin,insulin,glucose,apolipoproteinBandLDHlevelswhileitincreasestheHDL-cholesterol,apolipoproteinA1andantioxidantenzymeslevels.

Highfatdiet-inducedobesityinwistarrats

[91-93]

54 Hibiscus cannabinus L.(Malvaceae)

Leaves Itdecreasesserumcholesterol,triglycerides,LDL-C,SGOTandSGPTactivities.

Highcholesteroldietinducedobesityinfemalealbinorats

[94]

55 Hibiscus sabdariffa L.(Malvaceae)

Leaf PromotesLXRα/ABCA1pathway,stimulatingcholesterolremovalfrommacrophages,delayingatherosclerosis.Also,theextracttreatmentattenuatedliversteatosis,downregulatedSREBP-1candPPAR-γ,blockedtheincreaseofIL-1,TNF-αmRNAandlipoperoxidationandincreasedcatalasemRNA.

Highfatdiet-inducedobeseC57BL/6NHsdmice

[95,96]

56 Holoptelea integrifolia (Roxb.)Planch.(Ulmaceae)

Bark HMG-CoAreductaseactivityisreducedandcholesterolbiosynthesisandincreaseinlecithin,cholesterolacyltransferaseactivity.

Diet-inducedobeserat [97]

57 Humulus lupulus L.(Cannabaceae)

Femaleinflorescence

HepaticfattyacidsynthesisisreducedthroughthereductionofhepaticSREBP1cmRNAexpressionintheratsfedahigh-fatdiet.

High-fatdietinducedobeserat,maleC57BL/6JmicefedaHFdiet

[98,99]

58 Hunteria umbellata (K.Schum.)Hallierf.(Apocynaceae)

Seed Theextractreducesweightgainpatternandcausesdoserelatedreductionsintheserumlipids,Coronaryarteryriskindex.Also,pre-treatmentsignificantlyimprovestriton-inducedhepatichistologicallesions.

Highfatdiet-inducedrats [100]

59 Hypericum philonotisSchltdl.&Cham.(Hypericaceae)

Leaves Decreasesbodyweightandserumglucoselevels.Italsodecreasestotalcholesterol,triglyceridesandhigh-densitylipoprotein-cholesterolwithoutchanginglow-densitylipoprotein-cholesterol,AI,ASTandALTlevel.

MaleWistarratsfedwithhighfatdiet

[101]

60 Hypericum silenoides Juss.(Hypericaceae)

Leaves Bodyweightandserumglucoselevelsoftheratsdecreased.Thedrugalsohaseffectontotalcholesterol,triglyceridesandhigh-densitylipoprotein-cholesterol.

MaleWistarratsfedwithhighfatdiet

[101]

61 Ilex paraguariensisA.St.-Hil.(Aquifoliaceae)

Leavesandunripefruits

Down-regulatesexpressionofCreb-1andC/EBPa,andup-regulatesexpressionofDlk1,Gata2,Gata3,Klf2,Lrp5,Pparc2,Sfrp1,Tcf7l2,Wnt10b,andWnt3a.ThemRNAlevelsofPPAR-γ2weredownregulated.

Highfatdiet-inducedmice,maleWistarratsfeddiet

[102-105]

62 Ipomoea batatas (L.)Lam(Convolvulaceae)

Fruit ExpressionofSREBP-l,Acyl-CoASynthase,Glycerol-3-PhosphateAcyltransferase,HMG-CoAReductaseandFattyAcidSynthaseinlivertissueinmiceisaltered.

Micefedwithhigh-fatdiet [106]

63 Saccharina japonica(Phaeophyceae)

WholePlant Expressionofthefatintake-relatedgeneACC2andlipogenesis-relatedgenesarereduced.ItincreasesphosphorylationofAMPKanditsdirectdownstreamprotein,acetylcoenzymeAcarboxylase.

High-fat-diet-inducedobesemaleSprague-Dawleyrats

[107,108]

Page 7: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

7

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

© Copyright iMedPub Find this article in: www.transbiomedicine.com

© Under License of Creative Commons Attribution 3.0 License

64 Larix laricina(DuRoi)K.Koch(Pinaceae)

WholePlant Stimulatesglucoseuptake,potentiatedadipogenesis,activatedAMPK,andactedasmitochondrialuncoupler/inhibitor(onnormalisolatedmitochondria).

Diet-inducedobeseC57BL/6mice

[109]

65 Ligularia fischeri (Ledeb.)Turcz.(Compositae)

Leaves Polyphenolspresentintheextractexhibitsantiobesityeffectsbyinhibitingpancreaticlipase.

C57BL/6mice [110]

66 Ligustrum lucidum W.T.Aiton(Oleaceae)

Fruits TreatmentwiththeextractdecreasesHFD-inducedobesity,mainlybyimprovingmetabolicparameters,suchasfatsandtriglycerides.

Highfat-diet-inducedC58BL/6Jobesemice

[111]

67 Lithocarpus polystachyus (Wall.exA.DC.)Rehder(Fagaceae).

Leaves Decreaseslevelsofserumlipids,attenuatesbodyweightgainandlowerscirculatingleptinandinsulinlevels,amelioratethestateofoxidativestress,raiseserumadiponectin,reducecirculatingCRPandresistinlevels,anddepressesexpressionofPPARγandC/EBPα.

Highfatdiet-inducedobeserats

[112]

68 Lithospermum erythrorhizon Siebold&Zucc.(Boraginaceae)

Roots Reduceshigh-fatdiet-inducedincreasesinbodyweight,whiteadiposetissuemass,serumtriglycerideandtotalcholesterollevels,andhepaticlipidlevelsanddecreaseslipogenicandadipogenicgeneexpression.Acetylshikonin,activeconstituentofL. erythrorhizonsuppressesadipocytedifferentiationandattenuatesadipogenictranscriptionfactorexpression.

C57BL/6Jmicewerefedanormalorhigh-fatdiet

[113,114]

69 Morinda citrifolia L.(Rubiaceae)

Fruit Reducesbodyweightandfatmass.Itincreasesglucosetoleranceandreducedplasmatriglycerideslevel.

High-fatdiet-inducedobesityinmice

[115]

70 Morus alba L.(Moraceae)

Fruit,leaves ThehepaticperoxisomePPAR-Randcarnitinepalmitoyltransferase-1areelevated,whilefattyacidsynthaseand3-hydroxy-3-methylglutaryl-coenzymeA(HMG-CoA)reductasearereduced.Itdecreaseshepaticlipids,fattyacidsynthaseand3-hydroxy-3-methylglutaryl-coenzymeA(HMG-CoA)reductaseandelevateshepaticperoxisomePPAR-αandcarnitinepalmitoyltransferase-1.

Highfatdiet-inducedmice,6-week-oldmalehamsters.

[116]

71 Morus australis Poir(Moraceae)

Fruit Reducesresistancetoinsulin,associatedwithleptin. MaleC57BL/6micefedwithhigh-fatdiet

[117]

72 Morus nigra L.(Moraceae)

Fruit,leaves, ProinflammatorycytokinesMCP-1andTNF-α,plasmatriglyceride,liverlipidperoxidationlevelsandadipocytesizearedecreased.Inflammatorymarkers(monocytechemoattractantprotein-1,induciblenitricoxidesynthase,C-reactiveprotein,tumournecrosisfactor-αandinterleukin-1)inliverandadiposetissueareincreased.

Adenovirus36-inducedobesityinmice,high-fat(HF)diet-inducedobesemice.

[116-120]

73 Murraya koenigii(L.)Spreng.(Rutaceae)

Leaves Reducesbodyweightgain,plasmatotalcholesterolandtriglyceridelevelsinmice.

Highfatdiet-inducedmice [121]

74 Myrciaria dubia (Kunth) McVaugh(Myrtaceae)

Fruit Reducesanimalbodyweightsofthefatinwhiteadiposetissues,glucose,totalcholesterol,triglycerides,andLDL-candinsulinbloodlevels.AnincreaseinHDL-clevelsalsoseen.

Wistarratswithobesityinducedbysubcutaneousinjectionofmonosodiumglutamate

[122]

75 Myrtus communis L.(Myrtaceae)

Leaves Thebodyweightreducedby32%whenadministeredwithsibutramine,whileitwasreducedby21%and24%whenadministeredwiththemethanolicextractofM. communis/kgbodyweight.

High-fatdietinducedobesemice

[123]

76 Nelumbo nucifera Gaertn.(Nelumbonaceae)

Seedepicarp,leaves,seed,petals

Theextractseffectiveininhibitingpreadipocytedifferentiation.Theflavonoidsinhibitseffectonbothadipocytedifferentiationandpancreaticlipaseactivity,accumulationanddecreasesexpressionPPARγ,GLUT4,andleptininculturedhumanadipocytes,indicatingthatitinhibitsthedifferentiationofpre-adipocytesintoadipocytes.Themethanolextractinhibitslipaseactivityandsuppressestheexpressionoffattyacidsynthase,acetyl-CoAcarboxylase,andHMGCoAreductaseandincreasesthephosphorylationofAMP-activatedproteinkinaseintheliver.

Highfatdiet-inducedmiceMaleSprague-Dawleyratswerefedwithanormaldietandahigh-fatdiet,Highfatdiet-inducedC57BL/6mice.

[124-127]

Page 8: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

8

© Copyright iMedPub Find this article in: www.transbiomedicine.com

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

This article is available in: www.transbiomedicine.com

77 Nephelium lappaceum L.(Sapindaceae)

Fruit TheexpressionofIgf-1andIgf-1RwerereducedonobeseratmodeltreatedwithextractofN. lappaceum.

Ratfedwithhighcaloriedietandtreatedwithellagicacid

[128]

78 Nitraria retusa (Forssk.)Asch.(Nitrariaceae)

Shoot Theextractsupressesincreaseinbodyandfatmassweight,anddecreasestriglyceridesandLDL-cholesterollevelsandenhancesgeneexpressionrelatedtolipidhomeostasisinlivershowinganti-obesityactions.

BKS.Cg-Dock7m+/+Leprdb/Jmicemodel

[129]

79 Olea europaea L.(Oleaceae)

Leaves TheextractreversesHFD-inducedupregulationofWNT10b-andgalanin-mediatedsignalingmoleculesandkeyadipogenicgenes(PPARγ,C/EBPα,CD36,FAS,andleptin).Italsoinducesdownregulationofthermogenicgenesinvolvedinuncoupledrespiration(SIRT1,PGC1α,andUCP1)andmitochondrialbiogenesis(TFAM,NRF-1,andCOX2).

High-fatdiet-inducedobesityinmice

[130,131]

80 Orthosiphon aristatus (Blume)Miq(Lamiaceae)

Wholeplant Betulinicacid,theactiveconstituentsuppresseshypothalamicproteintyrosinephosphatase1Binmiceandenhancestheantiobesityeffectofleptininobeserats

High-fat-fedmice [132]

81 Panax ginseng C.A.Mey.(Araliaceae)

Root GinsamincreasesPPAR-γexpressionandAMP-activatedproteinkinasephosphorylationinliverandmuscle.TheextractsstronglyactivatesHormoneSpecificLipaseviaProteinKinaseA.

Insulin-resistantrat,highfatdietinducedobeseC57BL6/Jmice

[133,134]

82 Perilla frutescens (L.)Britton(Lamiaceae)

Leaf Itdecreasesbodyweightgain,foodefficiencyratio,andrelativeliverandepididymalfatmass.

Highfatdiet-inducedrats [135]

83 Petasites japonicus (Siebold&Zucc.)Maxim.(Compositae)

Flowerbuds Theextractsattenuatethreeadipogenetictranscriptionfactors,peroxisomePPAR-γ2,CCAAT/enhancer-bindingproteinandsterolregulatoryelement-bindingprotein1c.

Diet-inducedobesity-prone mice.

[136]

84 Phaseolus vulgaris L.(Leguminosae)

Bean Itreducesfoodintakeandbodyweightinananimalmodelofobesityresultinginsuppressionofglycaemia.

GeneticallyobeseadultmaleZuckerfa/farats.

[137]

85 Phyllostachys edulis (Carrière)J.Houz.(Poaceae)

Leaves TheextractameliorateselevatedMCP-1concentrationintheblood.

Highfatdiet-inducedC57BL/6Jmice

[138]

86 Pinus koraiensis Siebold&Zucc(Pinaceae)

Leaves Suppressesfataccumulationandintracellulartriglycerideassociatedwithdownregulationofadipogenictranscriptionfactorexpression,includingPPARγandCEBPαinthedifferentiated3T3-L1adipocytes.ItattenuatesexpressionofFABPandGPDHastargetgenesofPPARγduringadipocytedifferentiation.

HighfatdietMaleSprague-Dawleyrats

[139]

87 Piper fragile Benth(Piperaceae)

Seed P. fragilerudeoilshowssignificantreductioninbodyweight.

MaleSpraguedawleymiceweretreatedwithhighcholesteroldiet

[140]

88 Piper sarmentosum Roxb.(Piperaceae)

leaves P. sarmentosumgroupshowsreductioninenzymeactivity.AqueousextractofP. fragilehavetheabilitytoreduce11β-HSD1enzymeactivity.

Ovariectomy-InducedObeseRats

[141]

89 Platycodon grandiflorum(Campanulaceae)

Roots Platycodinfeedingincreasescholesterolabsorptionupto60%,butnotcholesterolsynthesis.Platycodin-enricheddietscanlowercirculatingandwholebodycholesterolcontents.

GoldenSyrianhamsters [142]

90 Polygonum aviculare L.(Polygonaceae)

AerialParts ExtractofP. avicularesuppressestheelevatedmRNAexpressionlevelsofsterolregulatoryelement-bindingprotein-1c,peroxisomePPAR-γ,fattyacidsynthase,andadipocyteprotein2inthewhiteadiposetissueofobesemice.

High-fatdietinducedobesemice

[143]

91 Populus balsamifera L.(Salicaceae)

WholePlant Salicortinreduceswholebodyandretroperitonealfatpadweights,aswellashepatictriglycerideaccumulation.Italsomodulateskeycomponentsinsignalingpathwaysinvolvedwithglucoseregulationandlipidoxidationintheliver,muscle,andadiposetissue.

C57Bl/6micesubjectedtohighfatdiet

[144]

Page 9: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

9

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

© Copyright iMedPub Find this article in: www.transbiomedicine.com

© Under License of Creative Commons Attribution 3.0 License

92 Premna integrifolia Linn(Verbenaceae)

Roots Asignificantdecreaseinthelevelsofserumglucose,triglyceride,totalcholesterol,LDLandVLDLobservedintheanimalstreatedwiththeextractofP. integrifolia.

FemaleSwissAlbinomice,fedwithcafetariadiet

[145]

93 Prunus mume (Siebold)Siebold&Zucc(Rosaceae)

Fruit IncreasesCPT-1expressionanddecreasesFAS,ACC,andSREBP-1cintheliverandquadricepsmusclestoresultinginreducingtriglycerideaccumulation.ItalsoimprovesinsulinsensitivityinOVXratsandpreventstheimpairmentofenergy,lipid,andglucosemetabolismbyOVXthroughpotentiatinghypothalamicleptinandinsulinsignaling.

Highfatdiet,ovariectomizedrats

[114]

94 Pueraria montana var.chinensis(Ohwi)Sanjappa&Pradeep(Leguminosae)

Flower Itdownregulatesacetyl-CoAcarboxylaseexpression.Foradiposetissue,theexpressionsofhormone-sensitivelipaseinwhiteadiposetissueanduncouplingprotein1inbrownadiposetissueareupregulated.

MaleC57BL/6Jmicewerefedahigh-fatdiet

[146]

95 Punica granatum L(Lythraceae)

Leaves,seed PunicicacidbindsandactivatesPPAR-αandγ,thusupregulatingPPARαanditsresponsivegenes(Stearoyl-CoAdesaturase-1,SCD1;Carnitinepalmitoyltransferase1,Cpt-1;andacyl-coenzymeAdehydrogenase)aswellasPPARγ-responsivegenesexpression(CD36andFattyAcidBindingProtein4,FABP4)inintra-abdominalwhiteadiposetissuewhilesuppressingexpressionoftheinflammatorycytokineTNF-αandNF-κBactivation.

High-fatdietinducedobesemice

[147,148]

96 Rheum palmatum L.(Polygonaceae)

Root ItinhibitsperoxisomePPAR-γtransactivityandtheexpressionofitstargetgenes,suggestingthatrheinactsasaPPARγantagonist.

Diet-inducedobesefemaleC57BL/6mice

[108,149,150]

97 Rosmarinus officinalis L.(Lamiaceae)

Leaves Itdecreasescirculatingtumornecrosisfactoralpha,IL-1β,andleptin,andupregulatedadiponectin.TheextractalsoinducesphaseIandphaseIIgeneexpressionandtheperoxisomePPAR-γcoactivator1-alpha.Serumtriglycerides,cholesterolandinsulinlevelsarealsodecreasedintheleananimals.

Lean(Le,fa/+)andobese(Ob,fa/fa)femaleZuckerrats

[151]

98 Rubus fruticosus L.(Rosaceae)

Fruit Purifiedblueberryanthocyaninshavebeenshowntoimprovebodyweightandbodycompositionandreduceobesityinmice.

C57BL/6J micefedahigh-fatdiet

[152]

99 Sapindus emarginatus Vahl(Sapindaceae)

Pericarpofflower

Methanolicextractdecreasesbodyweight,BMI,Bloodglucoselevels,totalcholesterol,LDL-C,HDL-C,Triglycerides,SGOT,andSGPT.

Monosodiumglutamateinducedobesityinwistaralbinorats

[153]

100 Sasa quelpaertensis Nakai(Poaceae)

Leaves AdipogenesisisinhibitedbythisdrugbydownregulatingtheexpressionofCCAAT/enhancer-bindingproteinα,peroxisomePPAR-γ,SREBP-1c,andaP2.ItalsodecreasestheexpressionoffattyacidsynthaseandadiponectinmRNAsindifferentiatingadipocytes.ItincreasesAMPKandacetyl-CoAcarboxylasephosphorylation.

High-fatdiet-inducedobeseC57BL/6mice

[154,155]

101 Schisandra chinensis (Turcz.)Baill.(Schisandraceae)

Peel ItdecreasesexpressionofC/EBPβ,C/EBPαorPPARγ,andresultantdown-regulationoftheterminalmarkergene,aP2duringdifferentiationof3T3-L1preadipocytesintoadipocytes.AktandGSK3βphosphorylationaredown-regulatedblockingadipogenesisandadipocytedifferentiation.

HFD-inducedobeserats [156]

102 Senna siamea (Lam.) H.S.Irwin & Barneby(Leguminosae)

Roots Activeconstituentsincludeschrysophanol,physcion,emodin,cassiaminA,friedelinandcycloart-25-en-3,24-diolexhibitspancreaticlipaseinhibitoryactivity.

Alloxaninduceddiabetesrats.

[157]

103 Shorea robusta Gaertn(Diptercarpaceae)

Leaves Itdecreasesserumglucose,triglyceride,cholesterol,LDL-C,HDL-C,VLDL-C,atherogenicindex,SGPTandSGOT.

Monosodiumglutamateinducedobesityinalbinorats

[158]

104 Sida rhombifolia L. (Malvaceae)

Leaf Up-regulationofPPARγ2andSREBP-1cexpressionintheepididymaladiposetissue,leadingtoattenuationofadipogenesis.

Highfatdiet-inducedC57BL/6Jmice

[159]

105 Solanum lycopersicum L.(Solanaceae)

Fruit AMP-activatedproteinkinaseandacetyl-CoAcarboxylasephosphorylationinliveriselevated,andHMG-CoAreductaseexpressionisdecreased.ItstronglydecreasesexpressionofperoxisomePPAR-γ,CCAAT/enhancer-bindingproteinalphaandperilipinintheadiposetissue.

High-fat-diet-inducedobesityinC57BL/6mice

[160,161]

Page 10: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

10

© Copyright iMedPub Find this article in: www.transbiomedicine.com

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

This article is available in: www.transbiomedicine.com

106 Syzygium aromaticum (L.)Merr.&L.M.Perry(Myrtaceae)

Flowerbuds Theextractsuppressesexpressionoflipidmetabolism-relatedproteins,includingSREBP-1,FAS,CD36andPPARγintheliverandWAT,inadditiontodownregulatesmRNAlevelsoftranscriptionfactorsincludingSREBPandPPAR-γ.

Highfatdietfedmice [162]

107 Tamarindus indica L.(Leguminosae)

Fruitpulp,pulp,seed coat

Levelsofplasmatotalcholesterol,lowdensitylipoprotein,andtriglycerideisdecreasedanditincreaseshigh-densitylipoprotein,withtheconcomitantreductionofbodyweight.

Diet-inducedobeseSprague-Dawleyrats

[163-165]

108 Tecomella undulata (Sm.)Seem.

Bark TheextractshowsasignificantincreaseinSIRT1andadiponectinlevelsanddecreaseinPPAR,C/EBP,E2F1,leptinandLPLlevelsinpreadipocytesandadipocytesandshowsimprovementinlipidprofileandglucoselevels.

HighFatDietobesemice. [166]

109 Vaccinium corymbosum L.(Ericaceae)

Peel ItinhibitslipidaccumulationanddecreasesexpressionofC/EBPβ,aswellastheC/EBPαandPPARγgenesduringthedifferentiationofpreadipocytesintoadipocytes.Itdown-regulatesadipocyte-specificgenessuchasaP2andFAS.

High-fatdiet-inducedobeserats

[167]

110 Veratrum nigrum L.(Melanthiaceae)

Wholeplant Itreducesweightgainandthefatpadweightinhighfatdiet-inducedobesemice.

High-fatdiet-inducedobesemice

[134]

111 Vigna angularis (Willd.)Ohwi&H.Ohashi(Leguminosae)

Seed Itreducestotalhepaticlipidaccumulationandlipidsecretionintothefeces.Incubationofadipocyteswiththeextractsignificantlydecreasestriglycerideaccumulation,glycerolphosphatedehydrogenaseactivityandinflammatoryresponseswithoutaffectingcellviability.

Highfatdiet-inducedobesityinrats

[168]

112 Vigna nakashimae

(Ohwi)Ohwi&H.Ohashi(Leguminosae)

Seeds Itdecreasesexpressionofperoxisomeproliferatoractivatedreceptorγanditstargetgenes.ItenhancesthephosphorylationofAMP-activatedproteinkinase(AMPK)andacetylCoAcarboxylase(ACC),andincreasestheexpressionoffattyacidoxidationgenes.

High-fatdietfedmice [169]

113 Viscum album L.

(Santalaceae)

Leaves,stems,

andfruits

Bodyandepididymalfatpadweightsare,andhistologicalexaminationindicatesanameliorationoffattyliver.Itpotentlyinducesmitochondrialactivitybyactivatingthermogenesisandimprovingendurancecapacityandalsoinhibitedadipogenicfactorsinvitro.

MaleC57Bl/6micefeda

high-fatdiet

[170]

114 Vitis thunbergiiSiebold&Zucc(Vitaceae)

Roots ActivationofAMPKactivatingglucoseandlipid

metabolism.

High-fatdiet-fed

C57BL/6JNarlmice

[171]

115 Vitis vinifera L.

(Vitaceae)

Seedflours,

peel,roots,fruit

Byup-regulatinghepaticgenesrelatedtocholesterol(CYP51)andbileacid(CYP7A1)synthesisaswellasLDL-cholesteroluptake.Lipidmetabolism-associatedgenesMlxp1,Stat5a,Hsl,Plin1,andVdrweredown-regulated.TheextracttreatmentdecreasesexpressionofaP2,Fas,andTnfa,knownmarkersofadipogenesis,asmeasuredbyreal-timepolymerasereaction.ExpressionofPPAR-γinliverandadiposetissueisloweredbyregulatingthelipidmetabolismandsuppressedobesity.

MaleGoldenSyrian

hamstersfedhigh-fat(HF)diets,highfatdiet-inducedC57BL/6Jmice

[54,171-

178]

116 Zanthoxylum bungeanum Maxim.(Rutaceae)

Fruit Itreducesweightgain,whiteadiposetissuemass,andserumtriglycerideandcholesterollevels.ItalsodecreasedlipidaccumulationandPPARγ,C/EBPα,SREBP-1,andFASproteinandmRNAlevelsintheliver.

ObeseC57BL/6micefeda

high-fatdiet

[179]

117 Ziziphus mauritiana Lam(Rhamnaceae)

Bark Itreducesbodyweight,fatmassandpancreaticlipase

activity.

HighFatDietinduced

obesityinWistarrats

[180]

118 Dohaekseunggi-tang

traditionalplant-basedmedicine(TaoheChengqiTang:Chinese)

Commercial

formula

Dohaekseunggi-tangconsistsoffiveherbsincludingGlycyrrhizae uralensisFischer(40g),Rheum undulatumLinne(80g),Prunus persicaLinne(60g),Cinnamomum cassiaPresl(40g),andNatriiSulfas(40g)mixed.Theextractdecreasedserumtotalcholesterol,LDL-cholesterol,triglyceride,glucose,andleptinconcentrations,andincreasedHDL-cholesterolandadiponectinlevelsandincreasedmRNAexpressionofperoxisomeproliferatoractivatedreceptor-γ,uncouplingprotein-2,andadiponectininvisceraladiposetissueofHFDmice

High-fatdietinducedobese

mice

[181]

Page 11: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

11

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

© Copyright iMedPub Find this article in: www.transbiomedicine.com

© Under License of Creative Commons Attribution 3.0 License

Table 2. Anti-obesityeffectofplantswithmechanismofactionstudiedoncelllineasmodel.1 Acorus calamus Linn

(Araceae)Rhizome,rootsandleaves

EthylacetateextractofA. calamusinhibitsα-glucosidaseactivity.

HTT-T15cellline [25]

2 Aegle marmelos Linn(Rutaceae)

Leaves Activecompoundsumbelliferoneandesculetindepleteslipidcontentintheadipocytesandbydecreasingthehyperlipidemiainobeseratsfedwithhigh-fatdiet.

3T3-L1preadipocytes [30,31]

3 Agrimonia pilosa Ledeb(Rosaceae)

Aerialparts Activeconstituent1beta-hydroxy-2-oxopomolicacidinhibitsadipocytedifferentiationandexpressionofadipogenicmarkergenes,suchasPPAR-γ,C/EBPalpha,GLUT4,adiponectin,aP2,ADD1/SREBP1c,resistin,andfattyacidsynthase.ItalsoinhibitsadipocytedifferentiationthroughdownregulationofvariousadipocytokinesbyblockingPPAR-γandC/EBPalphaexpression.

3T3-L1preadipocytes [182]

4 Alnus hirsuta (Spach)Rupr.(Betulaceae)

Leaves Platyphyllonol-5-O-β-d-xylopyranosidesuppressestheinductionofPPARγandC/EBPαproteinexpression,andinhibitsadipocytedifferentiation.

3T3-L1preadipocytecells [183]

5 Amomum cardamomum L.(Zingiberaceae)

Seeds ByregulatingtheC/EBPα,C/EBPβandPPARγgeneand protein expressions.

3T3-L1Celllines. [184]

6 Bauhinia variegate L.(Fabaceae)

Flowers,flowerbuds,stem,roots,stembark,seeds,leaves

itreducesincreasedleveloftotalcholesterol,triglycerides,LDLPandincreasesthelevelofHDLP,brainserotoninlevel.β-sitosterolinthesteminducessecretionofserotonininbrainandinturnexhibitsanti-obesityactivity.

Humanneutrophils. [185]

7 Brassica rapa L.(Brassicaceae)

Root Lipolysis-relatedgenesincludingβ3-adrenergicreceptor,hormone-sensitivelipase,adiposetriglyceridelipase,anduncouplingproteinareinducedinwhiteadipocytesofanimalstreatedwithextract of B. campestris.ActivationofcyclicAMPK,HSL,andextracellularsignal-regulatedkinaseareinducedinEBR-treated3T3-L1cells.

3T3adipocytes. [52]

8 Caesalpinia sappan L.(Leguminosae)

Heartwood Brazileininhibitsintracellularlipidaccumulationduringadipocytedifferentiationin3T3-L1cellsandsuppressestheinductionofperoxisomePPAR-γ(PPARγ).

Postconfluent3T3-L1preadipocytes

[186]

9 Citrus aurantium L.(Rutaceae)

Fruits,leaves ItinhibitsAktactivationandGSK3βphosphorylation,whichinducesthedown-regulationoflipidaccumulationandlipidmetabolizinggenes,ultimatelyinhibitingadipocytedifferentiation.

3T3-L1preadipocytes [22,187,188]

10 Coptis chinensisFranch.(Ranunculaceae)

Rhizome Itinhibitslipidaccumulationin3T3-L1cells.ThefivealkaloidspresentinthisplantsignificantlyreducesexpressionlevelsofseveraladipocytemarkergenesincludingproliferatoractivatedreceptorandCCAAT/enhancer-bindingprotein.Isolatedalkaloidsfoundtoinhibitadipogenesis.

3T3-L1adipocytescells [189]

11 Cucurbita moschata Duchesne(Cucurbitaceae)

Stems ReducesexpressionofperoxisomePPAR-γ,CCAAT/enhancer-bindingproteinα,fattyacid-bindingprotein4,sterolresponseelement-bindingprotein-1candstearoyl-coenzymeAdesaturase-1,anddecreaseslipidaccumulation.

Primarymouseembryonicfibroblasts

[190]

12 Curcuma longa L.(Zingiberaceae)

Rhizomes Increasehormone-sensitivelipaseandadiposetriglyceridelipasemRNAlevelsanddecreasesperilipinmRNAlevelviaAMPK,resultinginlipolysis.Inadiposetissue,curcumininhibitsmacrophageinfiltrationandnuclearfactorκBactivationinducedbyinflammatoryagents.

3T3-L1adipocytes [191,192]

13 Cyclopia falcata (Harv.)Kies(Leguminosae)

Stem Flavonoid,phloretin-3′,5′-di-C-glucosideinhibitsintracellulartriglycerideanddownregulatesPPAR2expression and in in vitro conditionitcaninhibitadipogenesis.

3T3-L1mousepre-adipocytes

[193]

14 Cyclopia maculata (Andrews)Kies(Leguminosae)

Stems Mangiferin,hesperidininhibitsintracellulartriglycerideandfataccumulation,anddecreasesPPAR2expressionandinin vitroitcaninhibitadipogenesis.

3T3-L1mousepre-adipocytes

[193]

Page 12: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

12

© Copyright iMedPub Find this article in: www.transbiomedicine.com

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

This article is available in: www.transbiomedicine.com

15 Dalbergia sissoo DC.(Leguminosae)

Leaves Inhibitspancreaticlipaseandcanbeusedasananti-obesityagentinsuitableform.

Chickenpancreas [194]

16 Dioscorea oppositifolia L.(Dioscoreaceae)

Rhizome DecreasesexpressionofPPAR-γ.BatatasinIcompoundfromtheextractwasfoundtoincreasep-AMPKandCPT-1in3T3-L1adipocytes,resultingininhibitingadipogenesis.

Mouseembryopreadipocyte(3T3-L1)celllines

[195]

17 Eremochloa ophiuroides(Munro)Hack(Poaceae)

WholePlant ExpressionofC/EBPandPPAR,thecentraltranscriptionalregulatorsofadipogenesis.Moreover,thisplantdown-regulatesphosphorylationlevelsofAktandGSK3.

Mouse3T3-L1preadipocytes

[196]

18 Glycine max (L.)Merr.(Leguminosae)

Bean Itinhibitsadipocytedifferentiationin3T3-L1preadipocytecells.AccumulationoftriglyceridesisinhibitedandactivationofAMPK.

3T3-L1 preadipocytecells

[89,90]

19 Houttuynia cordata Thunb.(Saururaceae)

Leaf Attenuatesexpressionoffattyacidsynthase,sterolregulatoryelement-bindingprotein-1andglycerol3-phosphateacyltransferases.TheextractinhibitstheelevationofplasmaTGlevelsinmice.TheextractspossiblysuppresstheuptakeofNEFAandglycerolbyblockingFAT/CD36andalsosuppressaquaproin-7.

HumanHepG2hepatocytes

[197,198]

20 Ilex paraguariensisA.St.-Hil.(Aquifoliaceae)

Leavesandunripefruits

AmodulatoryeffectontheexpressionofgenesrelatedtotheadipogenesisasPPAR2,leptin,TNFandC/EBParealsoseen.

3T3-L1cellline [102-105]

21 Ipomoea batatas (L.)Lam(Convlvulaceae)

Fruit ExpressionofSREBP-l,Acyl-CoASynthase,Glycerol-3-PhosphateAcyltransferase,HMG-CoAReductaseandFattyAcidSynthaseinlivertissue.

Murine3T3-LIadipocytes [106]

22 Irvingia gabonensis (Aubry-LecomteexO'Rorke)Baill.(Irvingiaceae)

Seed Inhibitsadipogenesisinadipocytes.Theeffectappearstobemediatedthroughthedownregulatedexpressionofadipogenictranscriptionfactors(PPAR-γ)andadipocyte-specificproteins(leptin),andbyupregulatedexpressionofadiponectin.

Murine3T3-LIadipocytes [199]

23 Morus australis Poir.(Moraceae)

Root Increaseslipolyticeffectssuchasdecreasedintracellulartriglycerideandthereleaseofglycerol.

3T3-L1adipocytes [200]

24 Nelumbo nucifera Gaertn.(Nelumbnaceae)

Seedepicarp,leaves,seed,petals

Theextractseffectiveininhibitingpreadipocytedifferentiation.Theflavonoidsinhibitseffectonbothadipocytedifferentiationandpancreaticlipaseactivity,accumulationanddecreasesexpressionPPARγ,GLUT4,andleptininculturedhumanadipocytes,indicatingthatitinhibitsthedifferentiationofpre-adipocytesintoadipocytes.

3T3-L1(adipocyte),NIH3T3(mousefibroblast, embryo),L-02(normalhepatocyte)cellsCHO-K1,andU2OScells,

[124-127]

25 Nepeta tenuifolia Benth.(Lamiaceae)

Wholeplant Inhibitstriglycerideaccumulationin3T3-L1adipocytes,suggestinganti-obesityactivity.

3T3-L1cells [201]

26 Pericarpium zanthoxyli(Rutaceae)

Seed Decreasesexpressionoftheadipogenesis-relatedtranscriptionfactor,PPAR-γandPPAR-γ-targetgenes,suchasadipocyteprotein2(aP2),fattyacidsynthase(FAS)andotheradipocytemarkersandalsodecreaseslevelsofCCAAT/enhancer-bindingproteinβ(C/EBPβ)inadose-dependentmanner.

OP9cells [202]

27 Petasites japonicus (Siebold&Zucc.)

Flowerbuds Theextractsattenuatethreeadipogenetictranscriptionfactors,peroxisomePPAR-γ2,CCAAT/enhancer-bindingproteinandsterolregulatoryelement-bindingprotein1c.

3T3-L1murinepreadipocytes

[136]

28 Peucedanum japonicum Thunb.(Apiaceae)

Leaves PteryxindownregulatesgenesSREBP-1c,fattyacidsynthase,andacetyl-coenzymeAcarboxylase-1intreated3T3-L1adipocytesandHepG2hepatocytesandup-regulateslipidcatabolizinggenes.Inaotherstudyitwasprovedthattheextractdown-regulatesakeylipogenicactivator,SREBP1candadipocytesizemarkergene,paternallyexpressedgene1/mesoderm-specifictranscript(PEG1/MEST)inadiposetissueinvivo.

Both3T3-L1andHepG2celllines,3T3-L1andHepG2cells

[203,204]

29 Rubus chingii var. suavissimus(S.K.Lee)L.T.Lu(Rosaceae).

Leaves Theextractincreasesadipogenesisandincreasesexpressionofadiponectinandleptin.Intheearlyphaseofadipogenesis,extractincreasesthemRNAexpressionofadipogenictranscriptionfactorsCCAAT/enhancerbindingproteinαandPPAR-γ.

3T3-L1preadipocytes [205]

Page 13: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

13

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

© Copyright iMedPub Find this article in: www.transbiomedicine.com

© Under License of Creative Commons Attribution 3.0 License

30 Salicornia herbacea L.(Amaranthaceae)

Wholeplant Isorhamnetin3-О-β-D-glucopyranosidesuppressesadipogenicdifferentiationbydownregulationofperoxisomeproliferator-activatedreceptor-γ,CCAAT/enhancer-bindingproteins,SREBP1,andtheadipocyte-specificproteins.Specificmechanismmediatingtheeffectsofisorhamnetin3-О-β-D-glucopyranosideconfirmedbyactivationofAMPK.

3T3-L1preadipocytes [206]

31 Siegesbeckia pubescensL.(Amaranthaceae)

Wholeplant Theanti-obesityeffectismodulatedbycytidine-cytidine-adenosine-adenosine-thymidine/enhancerbindingproteins,andperoxisomeproliferator-activatedreceptor,geneandproteinexpressions.

3T3-L1preadipocytes [207]

32 Smilax china L.(Smilacaceae)

Leaves Polyphenolandflavonoid,exhibitsα-glucosidaseandlipidaccumulationinhibitionproperties.

3T3-L1adipocytes [208]

33 Tetrapanax papyriferus (Hook.)K.Koch(Araliaceae)

Wholeplant Theanti-obesityeffectismodulatedbycytidine-cytidine-adenosine-adenosine-thymidine/enhancerbindingproteins,andperoxisomeproliferator-activatedreceptor,geneandproteinexpressions.

3T3-L1preadipocytes [207]

34 Veratrum nigrum L.(Melanthiaceae)

Wholeplant Itdecreaseslipidaccumulationandtheexpressionsoftwomajoradipogenesisfactors,PPARandC/EBP,in3T3-L1cells.

3T3-L1cells [134]

35 Vitis labrusca L.(Vitaceae)

Seed TheextractofV. labruscainhibitslipidaccumulationofC3H10T1/2and3T3-L1cellsinadose-dependentmanner.InhibitionisassociatedwithreducedexpressionofPPAR-γ.

C3H10T1/2and3T3-L1cells

[177]

36 Vitis vinifera L.(Vitaceae)

Seedflours,peel,roots,fruit

Byup-regulatinghepaticgenesrelatedtocholesterol(CYP51)andbileacid(CYP7A1)synthesisaswellasLDL-cholesteroluptake.Lipidmetabolism-associatedgenesMlxp1,Stat5a,Hsl,Plin1,andVdrweredown-regulated.TheextracttreatmentdecreasesexpressionofaP2,Fas,andTnfa,knownmarkersofadipogenesis,asmeasuredbyreal-timepolymerasereaction.ExpressionofPPAR-γinliverandadiposetissueisloweredbyregulatingthelipidmetabolismandsuppressedobesity.

3T3-L1preadipocytes,highfatdiet-inducedmice,murine3T3-LIadipocytes,

[54,171-178]

37 Ziziphus jujube Mill.(Rhamnaceae)

Fruit Suppresseslipidaccumulationandglycerol-3-phosphatedehydrogenase.Elicitsthemostinhibitoryeffectwithattenuationoftheexpressionofkeyadipogenictranscriptionfactors,includingPPAR-γandCCAATenhancerbindingproteins(C/EBPs)attheproteinlevel.

3T3-L1preadiocytes [209-211]

38 Germinatedbrownrice,germinatedwaxybrownrice,germinatedblackrice,andgerminatedwaxyblackrice

Seed Extractoftheseseedsdecreasesbodyweightgainandlipidaccumulationintheliverandepididymaladiposetissue.ThemRNAlevelsofadipogenictranscriptionalfactors,suchasCCAATenhancerbindingprotein(C/EBP)-α,SREBP(SREBP)-1c,andperoxisomeproliferatoractivatedreceptors(PPAR)-γ,andrelatedgenes(aP2,FAS)aredecreasedbytheseed extract.

3T3-L1murineadipocytes [212]

Table 3 Listofplantsexhibitinganti-obesityactivitystudiedonhumanvolunteers.1 Carum carvi L.

(Apiaceae)Seed Reducesweight,bodymassindex,bodyfatpercentage,

andwaist-to-hipratio.Humanclinicaltrials [213]

2 Cissus quadrangularis L.(Vitaceae)

Cylarisaformulacontains a C. quadrangularextract

Phytosterolsandfiberextractshaveanti-lipase,andanorexiantpropertiesthatreducetheabsorptionofdietaryfatsandenhancesatiationbyincreasingserumserotoninlevels.

Humanclinicaltrials [214]

3 Citrus aurantium L.(Rutaceae)

Fruits,leaves Theactiveconstituentp-synephrineincreasesmetabolicrate,energyexpenditureandincreaseinweightloss.Theleafextractdown-regulatestheexpressionofC/EBPβandsubsequentlyinhibitstheactivationofPPARγandC/EBPα.Theanti-adipogenicactivityofismediatedbytheinhibitionofAktactivationandGSK3βphosphorylation,whichinducesthedown-regulationoflipidaccumulationandlipidmetabolizinggenes,ultimatelyinhibitingadipocytedifferentiation.

Humanclinicaltrials [22,187,188]

Page 14: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

14

© Copyright iMedPub Find this article in: www.transbiomedicine.com

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

This article is available in: www.transbiomedicine.com

wasanincreaseinmetabolicrateandenergyexpenditure.Itwasalsoreportedthattheclinicaltrialsperformedonhumansfortheplant extracts [151,165,226] showed an excess fat elimination,body mass index, fat percentage and blood glucose loweringeffects. In another clinical trial study [148] the fenugreek seed

extractdecreasedthefatconsumptionandalso insulin/glucoseratio.Theessentialoilfromtheplants[124,227]suppressedfataccumulation, intracellular triglyceride and decrease in bodyweight. Ginseng which is a popular Chinese herbal medicinesignificantly decreased the weight gain and improved glucose

4 Garcinia cowa Roxb.ex Choisy(Clusiaceae)

Fruit,commerciallyavailabletablet

InhibitstheenzymeATP-dependentcitratelyase,whichcatalyzesthecleavageofcitratetooxaloacetateandacetyl-CoA.SerumapoA1levelsareincreasedbytheplantandtheserumtotalcholesterollevels.

Humanclinicaltrials [86,87]

5 Gynostemma pentaphyllum (Thunb.)Makino(Cucurbitaceae)

Leaves ActivationofAMPKby5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside(AICAR)inhibitsadipogenesisbydownregulatingPPARcandCEBP1aaswellaslipogenicfactorsincludingfattyacidbindingprotein4andlipoproteinlipase.AMPKactivationdirectlyinactivatesACCthroughSer79phosphorylation,leadingtodecreasedfatsynthesisbyreducingtheproductionofmalonyl-CoAfromacetyl-CoA.

Humanclinicaltrials [215]

6 Nigella sativa L.(Ranunculaceae)

CommercialNigella sativaoilpreparedbysteamdistillation.

N. sativareducestotalcholesterol,lowdensitylipoprotein(LDL)andfastingbloodglucose.Theoiliseffectiveasanadd-ontherapyinpatientswithmetabolicsyndrome.

HumanVolunteer [216,217]

7 Salacia reticulata wight(Celastraceae)

Root Significantweightandbody-fatreductionwasobservedin S. reticulata treatedanimalsandalsoBMIreductionis seen.

Humanclinicaltrials [218]

8 Trigonella foenum-graecum L.(Leguminosae)

Seed Dailyfatconsumption,expressedastheratiofatreportedenergyintake/totalenergyexpenditure(fat-REI/TEE),isdecreasedinoverweightsubjectsadministeredthefenugreekseedextract.Significantdecreaseintheinsulin/glucoseratioinsubjectstreatedwithfenugreekseedextract.

Clinicaltrials [219]

9 Turnera diffusaWilld.exSchult.(Passifloraceae)

Leaves Theherbalpreparationcapsulesdelaysgastricemptying,reducingthetimetoperceivedgastricfullnessandinducesweightloss.

Healthyvolunteers [220,221]

10 Vernonia amygdalina Delile(Compositae)

Leaf Fatelimination usuallyoccurredwithin2sec,2minofextractintake.ThebloodglucoselowerseffectsofV. amygdalinaleafextractwereusuallyexertedin2sec,2minofextractintakebythepatient.

Clinicaltrials [222]

11 Ziziphus jujube Mill.(Rhamnaceae)

Fruit Theextractsuppresseslipidaccumulationandglycerol-3-phosphatedehydrogenase.Z. jujubaextractelicitsthemostinhibitoryeffectwithattenuationoftheexpressionofkeyadipogenictranscriptionfactors,includingPPAR-γandCCAATenhancerbindingproteins(C/EBPs)attheproteinlevel.

Humanclinicaltrials [209-211]

Table 4. Anti-obesityeffectofplantswithmechanismofactionstudiedonisolatedcellorganelles. 1 Verbesina persicifolia

DC(Compositae)

Aerialparts 4β-cinnamoyloxy,1β,3α-dihydroxyeudesm-7,8-eneistheactiveconstituentpresent in V. persicifoliainducesbioenergeticcollapseinratlivermitochondria,demonstratingtypicaluncouplingagent.ItactsasamilduncouplerdropingΔψandincreasesrespiratorystate4.Theenergycollapse,milduncoupling,andthe fact that V. persicifoliaislargelyusedinfolkmedicines,thisplantmaybeviewedasapotentiallyeffectiveanti-obesitydrug.

Ratlivermitochondria

[223]

Table 5. Anti-obesityeffectofplantswithmechanismofactionstudiedonisolatedcellenzymes.1 Fraxinus chinensis

subsp.rhynchophylla(Hance)A.E.Murray(Oleaceae)

Stemsandbarks

Majoractivecomponentsaresecoiridoidsligstroside,oleuropein,2"-hydroxyoleuropeinandhydroxyframosideB.ThesecompoundssignificantlyinhibitpancreaticlipaseandhydroxyframosideBbeingthemostactiveinhibitorinamixedmechanismofcompetitiveandnoncompetitivemanner.

Porcinepancreaticlipase

[224]

2 Vitis vinifera L.(Vitaceae)

Seedflours,peel,roots,fruit

Byup-regulatinghepaticgenesrelatedtocholesterol(CYP51)andbileacid(CYP7A1)synthesisaswellasLDL-cholesteroluptake.Lipidmetabolism-associatedgenesMlxp1,Stat5a,Hsl,Plin1,andVdrweredown-regulated.TheextracttreatmentdecreasesexpressionofaP2,Fas,andTnfa,knownmarkersofadipogenesis,asmeasuredbyreal-timepolymerasereaction.ExpressionofPPAR-γinliverandadiposetissueisloweredbyregulatingthelipidmetabolismandsuppressedobesity.

Purepancreaticlipase

[54,171-178]

Page 15: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

15

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

© Copyright iMedPub Find this article in: www.transbiomedicine.com

© Under License of Creative Commons Attribution 3.0 License

tolerance [115,120].P. granatum exhibits potential antiobesitymechanismincludinginhibitionofpancreaticlipaseactivityandsuppression of energy intake. Its effect on energy intake wassimilartosubutraminebutwithadifferentmechanism.

A study reported that Green tea possessed higher antioxidantactivitythanantiobesityactivityduetoitshighconcentrationofcatechins, includingepicatechins,ECGandEGCG. Itwasprovedthatantiobesityactivityofcatechinsresultedfromthecombinedactions of appetite reduction, greater lipolytic activity, energyexpenditureandadipocytedifferentiation.

TheactivecompoundsumbelliferoneandesculetinfromtheplantAegle marmeloshaveshownmarkedeffectbydepletingthelipidcontentintheadipocytesandbydecreasingthehyperlipidemia.Similarly,galanginacompoundfromAlpinia galangal showedasignificantdecreaseinserumlipids,liverweight,lipidperoxidationandaccumulationofhepaticTriglycerides.Decursinacompoundfrom Angelica gigas significantly improved glucose toleranceandreducedthesecretionofHFD-inducedadipocytokines.Thephytoconstituent compound sitosterol found in Boerhaavia diffusa is structurally similar tocholesterolhasbeensuggestedto reduce cholesterol by lowering the level of LDL-cholesterol.p-synephrinecompoundfromtheplantCitrus aurantiumshowedincreased metabolic rate, energy expenditure and increasein weight loss. In Nelumbo nucifera flavonoids showed mildinhibitoryeffectonbothadipocytedifferentiationandpancreatic

lipase activity.Among theflavonoids, flavoneswithout glucoseinhibited pancreatic lipase activity, whereas flavone glycosidesdidnotshowinhibition.Thepresenceofephedrineandpseudo-ephedrine in the plant Sida rhomboidea induced appetitesuppressionthatinhibitsbodyweightgain.

ConclusionNatural products identified from traditional medicinal plantshave always paved the way for development of new types oftherapeutics. Generally most of the compounds were isolatedfrom natural sources despite which orlistat a semi-syntheticderivativeof lipstatinhavebeenapprovedby theUS foodanddrug administration for the treatment of obesity. Orlistat is apotent inhibitor of pancreatic lipase (PL) which is a lipolyticenzymewhichhydrolysesdietary fats in the initial stepof lipidmetabolism. There have been many reports on other effectssuchasanti-oxidativestresseffectswhichmaybe important inthemanagementofotherdiseases like cardiovasculardiseasesand diabetes. The antiobesity drugs are generally preferredbasedonhighefficacyandeffectiveness.Theactiveexplorationof natural sources has provided new developments based onthe understanding of complex and redundant physiologicalmechanisms. Such explorationwill lead to a safe and effectivepharmacologicaltreatment.

Page 16: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

16

© Copyright iMedPub Find this article in: www.transbiomedicine.com

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

This article is available in: www.transbiomedicine.com

References1 Centre WM (2015) Obesity and overweigh. World Health

Organization.

2 Devlin MJ, Yanovski SZ, Wilson GT (2000) Obesity: what mentalhealthprofessionalsneedtoknow.AmJPsychiatry157:854-866.

3 Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM (2000)Transcriptional regulation of adipogenesis. Genes Dev 14: 1293-1307.

4 PagliassottiMJ,GaylesEC,HillJO(1997)Fatandenergybalance.AnnNYAcadSci827:431-448.

5 MandrupS, LaneMD (1997)Regulatingadipogenesis. JBiolChem272:5367-5370.

6 Ducharme NA, Bickel PE (2008) Lipid droplets in lipogenesis andlipolysis.Endocrinology149:942-949.

7 AkiyamaT,TachibanaI,ShiroharaH,WatanabeN,OtsukiM(1996)High-fathypercaloricdiet inducesobesity,glucose intoleranceandhyperlipidemia in normal adultmaleWistar rat.DiabetesRes ClinPract31:27-35.

8 YudkinJS(1999)C-reactiveproteininhealthysubjects:associationswith obesity, insulin resistance, and endothelial dysfunction:a potential role for cytokines originating from adipose tissue?ArteriosclerThrombVascBiol19:972-978.

9 Freytag SO, Utter MF (1983) Regulation of the synthesis anddegradationofpyruvatecarboxylasein3T3-L1cells.JBiolChem258:6307-6312.

10 KimEJ, JungSN,SonKH,KimSR,HaTY,etal. (2007)Antidiabetesand antiobesity effect of cryptotanshinone via activation of AMP-activatedproteinkinase.MolPharmacol72:62-72.

11 Klop B, Elte JW, Cabezas MC (2013) Dyslipidemia in obesity:mechanismsandpotentialtargets.Nutrients5:1218-1240.

12 KopelmanPG(2000)Obesityasamedicalproblem.Nature404:635-643.

13 MatsonKL,FallonRM(2012)Treatmentofobesity inchildrenandadolescents.JPediatrPharmacolTher17:45-57.

14 BhutaniKK,BirariRB,KapatK(2007)Potentialantiobesityandlipidloweringnaturalproducts:areview.Nat.Prod.Commun2:331-348.

15 DrewBS,DixonAF,DixonJB(2007)Obesitymanagement:updateonorlistat.VascHealthRiskManag3:817-821.

16 TziomalosK,KrassasGE,TzotzasT(2009)Theuseofsibutramineinthemanagementofobesityandrelateddisorders:anupdate.VascHealthRiskManag5:441-452.

17 ConnollyHM,Crary JL,McGoonMD,HensrudDD, EdwardsBS, etal. (1997) Valvular heart disease associated with fenfluramine-phentermine.NEnglJMed337:581-588.

18 JamesWP,CatersonID,CoutinhoW,FinerN,VanGaalLF,etal.(2010)Effectofsibutramineoncardiovascularoutcomesinoverweightandobesesubjects.NEnglJMed363:905-917.

19 Kang JG,ParkCY (2012)Anti-ObesityDrugs:AReviewaboutTheirEffectsandSafety.DiabetesMetabJ36:13-25.

20 Glazer G (2001) Long-term pharmacotherapy of obesity 2000: areviewofefficacyandsafety.ArchInternMed161:1814-1824.

21 MayerMA, Höcht C, Puyó A, Taira CA (2009) Recent advances inobesitypharmacotherapy.CurrClinPharmacol4:53-61.

22 MoroCO,BasileG(2000)Obesityandmedicinalplants.Fitoterapia71Suppl1:S73-82.

23 Han LK, Kimura Y, Okuda H (2005) Anti-obesity effects of naturalproducts.StudiesinNaturalProductsChemistry200530:79-110.

24 RaniN, Sharma SK, VasudevaN (2012)Assessment of AntiobesityPotentialofAchyranthesasperaLinn.Seed.EvidBasedComplementAlternatMed2012:715912.

25 Mythili Avadhani MN (2013) The Sweetness and Bitterness ofSweet Flag [Acorus calamus L.] – A Review. Research Journal ofPharmaceutical,BiologicalandChemicalSciences4:598-610.

26 Oh SD, Kim M, Min BI, Choi GS, Kim SK, et al. (2014) Effect ofAchyranthesbidentataBlumeon3T3-L1AdipogenesisandRatsFedwithaHigh-FatDiet. EvidBasedComplementAlternatMed2014:158018.

27 SungYY,YoonT,YangWK,MoonBC,KimHK(2013)Anti‑obesityeffects of Actinidia polygama extract in mice with high‑fatdiet‑inducedobesity.MolMedRep7:396-400.

28 Hyun-Jin C, Mi Ja C, Seung-Shi H (2010) Antiobese andhypocholesterolaemiceffectsofanAdenophoratriphyllaextract inHepG2cellsandhighfatdiet-inducedobesemice.FoodChemistry119:437–444.

29 LeeSE,LeeEH,LeeTJ,KimSW,KimBH(2013)Anti-obesityeffectandactionmechanismofAdenophora triphylla rootethanol extract inC57BL/6obesemicefedahigh-fatdiet.BiosciBiotechnolBiochem77:544-550.

30 Karmase A, Birari R, Bhutani KK (2013) Evaluation of anti-obesityeffectofAeglemarmelosleaves.Phytomedicine20:805-812.

31 KarmaseA, JagtapS,BhutaniKK (2013)AntiadipogenicactivityofAeglemarmelosCorrea.Phytomedicine20:1267-1271.

32 KimOY, Lee SM,DoH,Moon J, LeeKH, et al. (2012) Influenceofquercetin-rich onion peel extracts on adipokine expression in thevisceraladiposetissueofrats.PhytotherRes26:432-437.

33 Moon J, Do HJ, Kim OY, Shin MJ (2013) Antiobesity effects ofquercetin-rich onion peel extract on the differentiation of 3T3-L1preadipocytesandtheadipogenesisinhighfat-fedrats.FoodChemToxicol58:347-354.

34 SungYY,YoonT,KimSJ,YangWK,KimHK(2011)Anti-obesityactivityofAlliumfistulosumL.extractbydown-regulationoftheexpressionoflipogenicgenesinhigh-fatdiet-inducedobesemice.MolMedRep4:431-435.

35 ChenYC(2014)Methanolicextractofblackgarlicamelioratesdiet-inducedobesityviaregulatingadipogenesis,adipokinebiosynthesis,andlipolysis.JournalofFunctionalFoods9:98-108.

36 Kim I, Kim HR, Kim JH, Om AS (2013) Beneficial effects of AlliumsativumL.stemextractonlipidmetabolismandantioxidantstatusinobesemicefedahigh-fatdiet.JSciFoodAgric93:2749-2757.

37 Lai YS (2014)Garlic essentialoil protects againstobesity-triggerednonalcoholic fatty liver disease through modulation of lipidmetabolismandoxidativestress.JAgricFoodChem62:5897-5906.

38 Kumar S, Alagawadi KR (2013) Anti-obesity effects of galangin, apancreatic lipase inhibitor in cafeteriadiet fed female rats. PharmBiol51:607-613.

39 Jung CH, Jang SJ, Ahn J, Gwon SY, Jeon TI, et al. (2012) Alpiniaofficinarum inhibits adipocyte differentiation and high-fat diet-induced obesity in mice through regulation of adipogenesis andlipogenesis.JMedFood15:959-967.

Page 17: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

17

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

© Copyright iMedPub Find this article in: www.transbiomedicine.com

© Under License of Creative Commons Attribution 3.0 License

40 XiaDZ,YuXF,WangHM,RenQY,ChenBM(2010)Anti-obesityandhypolipidemiceffectsofethanolicextract fromAlpiniaofficinarumHance(Zingiberaceae)inratsfedhigh-fatdiet.JMedFood13:785-791.

41 Hwang JT (2012) Decursin, an active compound isolated fromAngelica gigas, inhibits fat accumulation, reduces adipocytokinesecretionandimprovesglucosetoleranceinmicefedahigh-fatdiet.PhytotherRes26:633-638.

42 KumarS,AlagawadiKR,RaoMR(2011)EffectofArgyreiaspeciosaroot extract on cafeteria diet-induced obesity in rats. Indian JPharmacol43:163-167.

43 Choi Y, Yanagawa Y, Kim S, Whang WK, Park T (2013) Artemisiaiwayomogi Extract Attenuates High-Fat Diet-Induced Obesity byDecreasingtheExpressionofGenesAssociatedwithAdipogenesisinMice.EvidBasedComplementAlternatMed2013:915953.

44 JiaoP,Tseng-CrankJ,CorneliusenB,YimamM,HodgesM,etal.(2014)LipaseinhibitionandantiobesityeffectofAtractylodeslancea.PlantaMed80:577-582.

45 Lee HM, Yang G, Ahn TG, Kim MD, Nugroho A, et al. (2013)AntiadipogenicEffectsofAster glehni Extract: InVivoand InVitroEffects.EvidBasedComplementAlternatMed2013:859624.

46 Balamurugan G, Muralidharan P (2010) Antiobesity effect ofBauhiniavariegatabarkextracton female rats fedonhypercaloricdiet.BangladeshJournalofPharmacology5:8-12.

47 ShikovAN,PozharitskayaON,MakarovaMN,MakarovVG,WagnerH (2014) Bergenia crassifolia (L.) Fritsch--pharmacology andphytochemistry.Phytomedicine21:1534-1542.

48 Lee JJ (2011) Effects of Ramie Leaves on Improvement of LipidMetabolism and Antiobesity Effect in Rats Fed a High Fat/HighCholesterolDiet.KoreanJournalofFoodScienceandTechnology43:83-90.

49 KhalidM, Siddiqui HH (2012) Evaluation of weight reduction andanti–cholesterolactivityofPunarnava rootextractagainsthigh fatdiets inducedobesity inexperimentalrodent.AsianPacificJournalofTropicalBiomedicine2:S1323-S1328.

50 GuptaP,GoyalR,ChauhanY,SharmaPL(2013)Possiblemodulationof FAS and PTP-1B signaling in ameliorative potential of Bombaxceibaagainsthighfatdietinducedobesity.BMCComplementAlternMed13:281.

51 KimH,ChoungSY(2012)Anti-obesityeffectsofBoussingaultigracilisMiersvar.pseudobaselloidesBaileyviaactivationofAMP-activatedproteinkinasein3T3-L1cells.JMedFood15:811-817.

52 AnS,HanJI,KimMJ,ParkJS,HanJM,etal.(2010)Ethanolicextractsof Brassica campestrisspp.raparootspreventhigh-fatdiet-inducedobesityviabeta(3)-adrenergicregulationofwhiteadipocytelipolyticactivity.JMedFood13:406-414.

53 RohC,ParkMK,ShinHJ,JungU,KimJK(2012)BuddlejaofficinalisMaximowicz extract inhibits lipid accumulation on adipocytedifferentiationin3T3-L1cellsandhigh-fatmice.Molecules17:8687-8695.

54 Aguilar Santamaría L (2012) Effect of Bursera grandiflora on bodyweight and lipemia in obese mice. Efecto de Bursera grandiflorasobreelpesocorporalylipemiaenratonesobesos11:138-146.

55 HöperAC,SalmaW,SollieSJ,HafstadAD,LundJ,etal.(2014)WaxestersfromthemarinecopepodCalanusfinmarchicusreducediet-inducedobesityandobesity-relatedmetabolicdisorders inmice. JNutr144:164-169.

56 TamaruS,OhmachiK,MiyataY,TanakaT,KubayasiT,etal. (2013)Hypotriglyceridemic potential of fermentedmixed teamade withthird-cropgreentealeavesandcamellia(Camelliajaponica)leavesinSprague-Dawleyrats.JAgricFoodChem61:5817-5823.

57 Chen Q (2014) Polyphenol-rich extracts from Oiltea camelliapreventweight gain in obesemice fed a high-fat diet and slowedtheaccumulationoftriacylglycerolsin3T3-L1adipocytes.JournalofFunctionalFoods9:148-155.

58 Abd El-Moneim RA, Abd El-Mouaty HM (2013) A comparativehistological, immunohistochemical, and biochemical study of theeffectofgreen teaextractsorchromiumpicolinateadministrationonthewhitevisceraladiposetissueand liver inalbinorats fedonhigh-fatdiet.TheEgyptianJournalofHistology36:882-898.

59 Hamao M, Matsuda H, Nakamura S, Nakashima S, Semura S,et al. (2011) Anti-obesity effects of the methanolic extract andchakasaponins from the flower buds of Camellia sinensis inmice.BioorgMedChem19:6033-6041.

60 KimHJ,JeonSM,LeeMK,JungUJ,ShinSK,etal.(2009)Antilipogeniceffectofgreen teaextract inC57BL/6J-Lepob/obmice.PhytotherRes23:467-471.

61 LeeMS,KimCT,KimY(2009)Greentea(-)-epigallocatechin-3-gallatereducesbodyweightwith regulationofmultiplegenesexpressioninadiposetissueofdiet-inducedobesemice.AnnNutrMetab54:151-157.

62 LiQ,LiuZ,HuangJ,LuoG,LiangQ,etal. (2013)Anti-obesityandhypolipidemiceffectsofFuzhuanbrickteawaterextractinhigh-fatdiet-inducedobeserats.JSciFoodAgric93:1310-1316.

63 OiY,HouIC,FujitaH,YazawaK(2012)AntiobesityeffectsofChineseblacktea(Pu-erhtea)extractandgallicacid.PhytotherRes26:475-481.

64 WeinS, SchraderE,RimbachG,WolfframS (2013)Oral green teacatechinstransientlylowerplasmaglucoseconcentrationsinfemaledb/dbmice.JMedFood16:312-317.

65 LamichhaneR, KimSG,PoudelA, SharmaD, LeeKH, et al. (2014)EvaluationofinvitroandinvivobiologicalactivitiesofCheilanthesalbomarginataClarke.BMCComplementAlternMed14:342.

66 FoucaultAS,MathéV,LafontR,EvenP,DiohW,etal.(2012)Quinoaextract enriched in 20-hydroxyecdysone protects mice from diet-induced obesity and modulates adipokines expression. Obesity(SilverSpring)20:270-277.

67 InafukuM, Nugara RN, Kamiyama Y, Futenma I, Inafuku A, et al.(2013)CirsiumbrevicauleA.GRAYleafinhibitsadipogenesisin3T3-L1cellsandC57BL/6mice.LipidsHealthDis12:124.

68 Lee YS, ChaBY, Saito K, Choi SS,WangXX, et al. (2011) Effects ofaCitrusdepressaHayata(shiikuwasa)extractonobesityinhigh-fatdiet-inducedobesemice.Phytomedicine18:648-654.

69 KangSI,ShinHS,KimHM,HongYS,YoonSA,etal.(2012)ImmatureCitrussunkipeelextractexhibitsantiobesityeffectsbyβ-oxidationandlipolysisinhigh-fatdiet-inducedobesemice.BiolPharmBull35:223-230.

70 ChidrawarVR(2012)Pre–clinicalevolutionarystudyofClerodendrumphlomidis as an anti–obesity agent against high fat diet inducedC57BL/6J mice. Asian Pacific Journal of Tropical Biomedicine 2:S1509-S1519.

71 AhmedSM,ManojJ(2012)AntiobesityactivityofCocciniaindicainfemaleratsfedwithcafeteriaandatherogenicdiets.DerPharmaciaLettre4:1480-1485.

Page 18: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

18

© Copyright iMedPub Find this article in: www.transbiomedicine.com

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

This article is available in: www.transbiomedicine.com

72 ChoiHK,WonEK, Jang YP, Choung SY (2013)Antiobesity Effect ofCodonopsislanceolatainHigh-Calorie/High-Fat-Diet-InducedObeseRats.EvidBasedComplementAlternatMed2013:210297.

73 PanchalSK,PoudyalH,Waanders J,BrownL (2012)Coffeeextractattenuates changes in cardiovascular and hepatic structure andfunctionwithoutdecreasingobesity inhigh-carbohydrate,high-fatdiet-fedmalerats.JNutr142:690-697.

74 ShivaprasadHN,GopalakrishnaS,MariyannaB,ThekkootM,ReddyR,etal. (2014)EffectofColeus forskohliiextractoncafeteriadiet-inducedobesityinrats.PharmacognosyRes6:42-45.

75 Shivaprasad HN (2014) Ethnopharmacological and phytomedicalknowledgeofColeusforskohlii:Anapproachtowardsitssafetyandtherapeutic value. Oriental Pharmacy and Experimental Medicine14:301-312.

76 Wang L, Yamasaki M, Katsube T, Sun X, Yamasaki Y, et al. (2011)Antiobesity effect of polyphenolic compounds from molokheiya(CorchorusolitoriusL.) leaves inLDLreceptor-deficientmice.Eur JNutr50:127-133.

77 Araldi RP, Rechiutti BM, Mendes TB, Ito ET, Souza EB (2014)MutagenicpotentialofCordiaecalyculataaloneand inassociationwithSpirulinamaximafortheirevaluationascandidateanti-obesitydrugs.GenetMolRes13:5207-5220.

78 Kim HL (2013) Corni Fructus Containing Formulation AttenuatesWeight Gain in Mice with Diet-Induced Obesity and RegulatesAdipogenesisthroughAMPK.EvidBasedComplementAlternatMed2013:423741.

79 Bidkar JS, Ghanwat DD, Bhujbal MD, Dama GY (2012) Anti-hyperlipidemicactivityofCucumismelo fruitpeelextracts inhighcholesteroldietinducedhyperlipidemiainrats.JComplementIntegrMed9:Article22.

80 Pande S, Srinivasan K (2012) Potentiation of hypolipidemic andweight-reducinginfluenceofdietarytenderclusterbean(Cyamopsistetragonoloba)whencombinedwithcapsaicininhigh-fat-fedrats.JAgricFoodChem60:8155-8162.

81 YangDJ,ChangYY,HsuCL,LiuCW,LinYL,etal.(2010)Antiobesityand hypolipidemic effects of polyphenol-rich longan (Dimocarpuslongans Lour.) flower water extract in hypercaloric-dietary rats. JAgricFoodChem58:2020-2027.

82 SongMY,LvN,KimEK,KwonKS,YooYB,etal. (2009)Antiobesityactivity of aqueous extracts of Rhizoma Dioscoreae Tokoronis onhigh-fatdiet-inducedobesityinmice.JMedFood12:304-309.

83 Hirata T (2014) Chapter 8 - The Chemistry and Bioactivity ofEucommia ulmoides Oliver Leaves, in Studies in Natural ProductsChemistry,R.Attaur,Editor225-260.

84 Lee TN (2013) The principle of symmetry in acupuncture and itsclinicalapplications.AmJChinMed41:1223-1231.

85 IbarraA,BaiN,HeK,BilyA,CasesJ,etal.(2011)FraxinusexcelsiorseedextractFraxiPureâ„¢limitsweightgainsandhyperglycemiainhigh-fatdiet-inducedobesemice.Phytomedicine18:479-485.

86 Altiner A (2012) Effect of the antiobesity agent garcinia cambogiaextractonserumlipoprotein(a),apolipoproteinsa1andb,andtotalcholesterollevelsinfemaleratsfedatherogenicdiet.TheJournalofAnimalandPlantSciences22:872-877.

87 Márquez F, BabioN,BullóM, Salas-Salvadó J (2012) Evaluationofthe safety and efficacy of hydroxycitric acid or Garcinia cambogiaextractsinhumans.CritRevFoodSciNutr52:585-594.

88 SungYY,YoonT,YangWK,KimSJ,KimHK(2011)Anti-obesityeffectsofGeraniumthunbergiiextractviaimprovementoflipidmetabolisminhigh-fatdiet-inducedobesemice.MolMedRep4:1107-1113.

89 Kim HJ (2014) The inhibitory effect of saponin derived fromCheonggukjangon adipocytedifferentiation In vitro. Food ScienceandBiotechnology23:1273-1278.

90 Singh BP, Vij S, Hati S (2014) Functional significance of bioactivepeptidesderivedfromsoybean.Peptides54:171-179.

91 Kumar V, Bhandari U, Tripathi CD, Khanna G (2012) Evaluation ofantiobesityandcardioprotectiveeffectofGymnemasylvestreextractinmurinemodel.IndianJPharmacol44:607-613.

92 Kumar V, Bhandari U, Tripathi CD, Khanna G (2013) Anti-obesityeffectofGymnemasylvestreextractonhighfatdiet-inducedobesityinWistarrats.DrugRes(Stuttg)63:625-632.

93 ReddyRM,LathaPB,VijayaT,RaoDS(2012)Thesaponin-richfractionofaGymnemasylvestreR.Br.aqueousleafextractreducescafeteriaandhigh-fatdiet-inducedobesity.ZNaturforschC67:39-46.

94 KarthikM,GayathriC(2013)EffectofethanolicextractofHibiscuscannabinus leafonhighcholesteroldiet inducedobesity infemalealbino rats.Asian JournalofPharmaceuticalandClinicalResearch.AsianJPharmClinRes6:65-67.

95 Patel S (2014) Hibiscus sabdariffa: An ideal yet under-exploitedcandidate fornutraceuticalapplications.Biomedicine&PreventiveNutrition4:23-27.

96 Villalpando-Arteaga EV, Mendieta-Condado E, Esquivel-Solís H,Canales-Aguirre AA, Gálvez-Gastélum FJ, et al. (2013) Hibiscussabdariffa L. aqueous extract attenuateshepatic steatosis throughdown-regulation of PPAR-γ and SREBP-1c in diet-induced obesemice.FoodFunct4:618-626.

97 SubashAK,AugustineA(2013)Hypolipidaemiceffectsofmethanolextract of Holoptelea integrifolia (Roxb.) Planchon bark in diet-inducedobeserats.ApplBiochemBiotechnol169:546-553.

98 Sumiyoshi M, Kimura Y (2013) Hop (Humulus lupulus L.) extractinhibitsobesity inmicefedahigh-fatdietoverthelongterm.BrJNutr109:162-172.

99 YuiK,KiyofujiA,OsadaK(2014)Effectsofxanthohumol-richextractfromthehoponfattyacidmetabolisminratsfedahigh-fatdiet.JOleoSci63:159-168.

100 Adeneye AA, Adeyemi OO, Agbaje EO (2010) Anti-obesity andantihyperlipidaemic effect of Hunteria umbellata seed extract inexperimentalhyperlipidaemia.JEthnopharmacol130:307-314.

101García-delaCruzL,Galvan-GoizY,Caballero-CaballeroS,ZamudioS,AlfaroA,etal.(2013)HypericumsilenoidesJuss.andHypericumphilonotisCham.&Schlecht.extracts: in-vivohypolipidaemicandweight-reducingeffectsinobeserats.JPharmPharmacol65:591-603.

102 ArçariDP,BartchewskyW,dosSantosTW,OliveiraKA,FunckA,etal.(2009)Antiobesityeffectsofyerbamatéextract(Ilexparaguariensis)in high-fat diet-induced obese mice. Obesity (Silver Spring) 17:2127-2133.

103 Arçari DP, Santos JC, Gambero A, RibeiroML (2013) The in vitroand in vivo effects of yerbamate (Ilex paraguariensis) extract onadipogenesis.FoodChem141:809-815.

104Gosmann G, Barlette AG, Dhamer T, Arçari DP, Santos JC, et al.(2012)Phenoliccompoundsfrommaté(Ilexparaguariensis)inhibitadipogenesis in 3T3-L1 preadipocytes. Plant FoodsHumNutr 67:156-161.

Page 19: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

19

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

© Copyright iMedPub Find this article in: www.transbiomedicine.com

© Under License of Creative Commons Attribution 3.0 License

105 Resende PE, Verza SG, Kaiser S, Gomes LF, Kucharski LC, et al.(2012)Theactivityofmatesaponins(Ilexparaguariensis) in intra-abdominalandepididymalfat,andglucoseoxidationinmaleWistarrats.JEthnopharmacol144:735-740.

106 JuJH,YoonHS,ParkHJ,KimMY,ShinHK,etal.(2011)Anti-obesityandantioxidativeeffectsofpurplesweetpotatoextract in3T3-L1adipocytesinvitro.JMedFood14:1097-1106.

107 JangWS,ChoungSY(2013)AntiobesityEffectsoftheEthanolExtractof Laminaria japonica Areshoung in High-Fat-Diet-Induced ObeseRat.EvidBasedComplementAlternatMed2013:492807.

108Oh J (2015) The herbal composition GGEx18 from Laminariajaponica, Rheum palmatum, and Ephedra sinica inhibits visceralobesity and insulin resistance by upregulating visceral adiposegenesinvolvedinfattyacidoxidation.PharmBiol53:301-312.

109Harbilas D (2012) Larix laricina, an Antidiabetic AlternativeTreatment from the Cree of Northern Quebec Pharmacopoeia,DecreasesGlycemia and Improves Insulin Sensitivity InVivo. EvidBasedComplementAlternatMed2012:296432.

110 ChaKH(2012) Inhibitionofgastrointestinal lipolysisbygreentea,coffee, and gomchui (Ligularia fischeri) tea polyphenols duringsimulateddigestion.JAgricFoodChem60:7152-7157.

111 LiuQ,KimSH,KimSB,JoYH,KimES,etal.(2014)Anti-obesityeffectof (8-E)-niizhenide,asecoiridoidfromLigustrumlucidum, inhigh-fatdiet-inducedobesemice.NatProdCommun9:1399-1401.

112 ZhouCJ,Huang S, Liu JQ,Qiu SQ, Xie FY, et al. (2013) Sweet tealeavesextractimprovesleptinresistanceindiet-inducedobeserats.JEthnopharmacol145:386-392.

113Gwon SY (2012) Lithospermum erythrorhizon suppresses high-fatdiet-inducedobesity,andacetylshikonin,amaincompoundofLithospermum erythrorhizon, inhibits adipocyte differentiation. JAgricFoodChem60:9089-9096.

114 Ko BS (2013) Prunus mume and Lithospermum erythrorhizonExtracts Synergistically Prevent Visceral Adiposity by ImprovingEnergyMetabolismthroughPotentiatingHypothalamicLeptinandInsulinSignalling inOvariectomizedRats.EvidBasedComplementAlternatMed2013:750986.

115 SaminathanM(2013)SystematicreviewonanticancerpotentialandotherhealthbeneficialpharmacologicalactivitiesofnovelmedicinalplantMorindacitrifolia(Noni)..IntJPharmacol9:462-492.

116 YangY,YangX,XuB,ZengG,TanJ,etal.(2014)ChemicalconstituentsofMorusalbaL.andtheirinhibitoryeffecton3T3-L1preadipocyteproliferationanddifferentiation.Fitoterapia98:222-227.

117 WuT,QiX,LiuY,GuoJ,ZhuR,etal.(2013)Dietarysupplementationwith purified mulberry (Morus australis Poir) anthocyaninssuppressesbodyweightgaininhigh-fatdietfedC57BL/6mice.FoodChem141:482-487.

118 LimHH,LeeSO,KimSY,YangSJ,LimY(2013)Anti-inflammatoryandantiobesityeffectsofmulberryleafandfruitextractonhighfatdiet-inducedobesity.ExpBiolMed(Maywood)238:1160-1169.

119Na HN, Park S, Jeon HJ, Kim HB, Nam JH (2014) Reduction ofadenovirus 36-induced obesity and inflammation by mulberryextract.MicrobiolImmunol58:303-306.

120 Peng CH, Liu LK, Chuang CM, Chyau CC, Huang CN, et al. (2011)Mulberrywaterextractspossessananti-obesityeffectandabilitytoinhibithepaticlipogenesisandpromotelipolysis.JAgricFoodChem59:2663-2671.

121 BirariR, JaviaV,BhutaniKK (2010)Antiobesityand lipid loweringeffects of Murraya koenigii (L.) Spreng leaves extracts andmahanimbineonhigh fatdiet inducedobese rats.Fitoterapia81:1129-1133.

122 NascimentoOV,BoletiAP,YuyamaLK,LimaES(2013)EffectsofdietsupplementationwithCamu-camu(MyrciariadubiaHBKMcVaugh)fruitinaratmodelofdiet-inducedobesity.AnAcadBrasCienc85:355-363.

123 Ahmed AH (2013) Flavonoid Content and Antiobesity Activity ofLeavesofMyrtuscommunis.AsianJournalofChemistry25:6818-6826.

124 Ahn JH, Kim ES, Lee C, Kim S, Cho SH, et al. (2013) Chemicalconstituents fromNelumbonucifera leaves and their anti-obesityeffects.BioorgMedChemLett23:3604-3608.

125 DuH(2010)Antiobesityandhypolipidemiceffectsoflotusleafhotwater extractwith taurine supplementation in rats fed a high fatdiet.JBiomedSci17:S42.

126 Velusami CC, Agarwal A, Mookambeswaran V (2013) Effect ofNelumbonuciferaPetalExtractsonLipase,Adipogenesis,Adipolysis,andCentralReceptorsofObesity.EvidBasedComplementAlternatMed2013:145925.

127 You JS, Lee YJ, KimKS, Kim SH, ChangKJ (2014)Anti-obesity andhypolipidaemiceffectsofNelumbonuciferaseedethanolextractinhumanpre-adipocytesandratsfedahigh-fatdiet.JSciFoodAgric94:568-575.

128 ZhaoYX,LiangWJ,FanHJ,MaQY,TianWX,etal.(2011)Fattyacidsynthase inhibitors from the hulls of Nephelium lappaceum L.CarbohydrRes346:1302-1306.

129 Zar Kalai F, Han J, Ksouri R, Abdelly C, Isoda H (2014) OraladministrationofNitrariaretusaethanolicextractenhanceshepaticlipid metabolism in db/db mice model 'BKS.Cg-Dock7(m)+/+Lepr(db/)J'throughthemodulationoflipogenesis-lipolysisbalance.FoodChemToxicol72:247-256.

130 PoudyalH,CampbellF,BrownL(2010)Oliveleafextractattenuatescardiac,hepatic,andmetabolicchangesinhighcarbohydrate-,highfat-fedrats.JNutr140:946-953.

131 Vogel P, KasperMachado I, Garavaglia J, Zani VT, de Souza D, etal. (2014) Polyphenols benefits of olive leaf (Olea europaea L) tohumanhealth.NutrHosp31:1427-1433.

132 Choi YJ, Park SY,Kim JY,WonKC,KimBR,et al. (2013)Combinedtreatment of betulinic acid, a PTP1B inhibitor, with Orthosiphonstamineus extract decreases body weight in high-fat-fed mice. JMedFood16:2-8.

133 LimS,YoonJW,ChoiSH,ChoBJ,KimJT,etal.(2009)Effectofginsam,avinegarextractfromPanaxginseng,onbodyweightandglucosehomeostasis in an obese insulin-resistant ratmodel.Metabolism58:8-15.

134 ParkJ, JeonYD,KimHL,LimH,JungY,etal. (2013) InteractionofVeratrumnigrumwithPanaxginsengagainstObesity:ASang-banRelationship.EvidBasedComplementAlternatMed2013:732126.

135 KimMJ,KimHK(2009)Perillaleafextractamelioratesobesityanddyslipidemiainducedbyhigh-fatdiet.PhytotherRes23:1685-1690.

136Watanabe T, Hata K, Hiwatashi K, Hori K, Suzuki N, et al. (2010)SuppressionofmurinepreadipocytedifferentiationandreductionofvisceralfataccumulationbyaPetasitesjaponicusethanolextractinmicefedahigh-fatdiet.BiosciBiotechnolBiochem74:499-503.

Page 20: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

20

© Copyright iMedPub Find this article in: www.transbiomedicine.com

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

This article is available in: www.transbiomedicine.com

137 Carai MA, Fantini N, Loi B, Colombo G, Gessa GL, et al. (2011)Multiple cycles of repeated treatmentswith a Phaseolus vulgarisdryextractreducefoodintakeandbodyweightinobeserats.BrJNutr106:762-768.

138Higa JK, LiuW, BerryMJ, Panee J (2011) Supplement of bambooextract lowers serum monocyte chemoattractant protein-1concentrationinmicefedadietcontainingahighlevelofsaturatedfat.BrJNutr106:1810-1813.

139 KoHS(2013)EssentialOilofPinuskoraiensisExertsAntiobesicandHypolipidemic Activity via Inhibition of Peroxisome Proliferator-Activated Receptors Gamma Signaling. Evid Based ComplementAlternatMed2013:947037.

140Darusman LK, Batubara II (2014) U.M. R., Fractionation of activecomponentsfromPipercf.fragileessentialoilasaromatherapyforanti-obesity.ActaHorticulturae1023:23-28.

141 SuhanaMohdRamliE,NirwanaSoelaiman I,OthmanF,AhmadF,Nazrun Shuib A, et al. (2012) The effects of piper sarmentosumwaterextractontheexpressionandactivityof11β-hydroxysteroiddehydrogenasetype1intheboneswithexcessiveglucocorticoids.IranJMedSci37:39-46.

142 Zhao HL, Harding SV, Marinangeli CP, Kim YS, Jones PJ (2008)Hypocholesterolemic and anti-obesity effects of saponins fromPlatycodongrandifloruminhamstersfedatherogenicdiets.JFoodSci73:H195-200.

143 Sung YY, Yoon T, Yang WK, Kim SJ, Kim DS, et al. (2013) TheAntiobesityEffectofPolygonumaviculareL.EthanolExtractinHigh-Fat Diet-Induced Obese Mice. Evid Based Complement AlternatMed2013:626397.

144Harbilas D (2013) Populus balsamifera Extract and Its ActiveComponent Salicortin Reduce Obesity and Attenuate InsulinResistance in a Diet-Induced Obese Mouse Model. Evid BasedComplementAlternatMed2013:172537.

145MaliPY,BigoniyaP,Panchal SS,Muchhandi IS (2013)Anti-obesityactivity of chloroform-methanol extract of Premna integrifolia inmicefedwithcafeteriadiet.JPharmBioalliedSci5:229-236.

146 KamiyaT,Sameshima-KamiyaM,NagamineR,TsubataM,IkeguchiM, et al. (2012) The crude extract from puerariae flower exertsantiobesityandantifattylivereffectsinhigh-fatdiet-inducedobesemice.EvidBasedComplementAlternatMed2012:272710.

147 Adnyana IK (2014) Anti-obesity effect of the pomegranate leavesethanolextract (Punicagranatuml.) inhigh-fatdiet inducedmice.InternationalJournalofPharmacyandPharmaceuticalSciences6:626-631.

148 Viladomiu M, Hontecillas R, Lu P, Bassaganya-Riera J (2013)Preventiveandprophylacticmechanismsofactionofpomegranatebioactiveconstituents.EvidBasedComplementAlternatMed2013:789764.

149 Shin SS, Park D, Lee HY, Hong Y, Choi J, et al. (2012) The herbalcompositionGGEx18 fromLaminaria japonica,Rheumpalmatum,andEphedrasinicareducesobesityviaskeletalmuscleAMPKandPPARα.PharmBiol50:506-515.

150 Zhang Y, Fan S, HuN, GuM, Chu C, et al. (2012) Rhein ReducesFatWeight indb/dbMouseandPreventsDiet-InducedObesity inC57Bl/6MousethroughtheInhibitionofPPARγSignaling.PPARRes2012:374936.

151 RomoVaqueroM,Yáñez-GascónMJ,GarcíaVillalbaR,LarrosaM,FromentinE,etal.(2012)Inhibitionofgastriclipaseasamechanism

for bodyweight and plasma lipids reduction in Zucker rats fed arosemaryextractrichincarnosicacid.PLoSOne7:e39773.

152 Kaume L, Howard LR, Devareddy L (2012) The blackberry fruit:a review on its composition and chemistry, metabolism andbioavailability, and health benefits. J Agric Food Chem 60: 5716-5727.

153 SuneethaDS,DivyaTB,AliF(2013)Antiobesityvaluesofmethanolicextract of Sapindus emariganatus on monosodium glutamateinducedmodel in rats. . International Journal of PharmacognosyandPhytochemicalResearch5:267-270.

154 Kang SI, Shin HS, Kim HM, Hong YS, Yoon SA, et al. (2012) Anti-obesitypropertiesofaSasaquelpaertensisextractinhigh-fatdiet-inducedobesemice.BiosciBiotechnolBiochem76:755-761.

155 Kang SW, Kang SI, Shin HS, Yoon SA, Kim JH, et al. (2013) Sasaquelpaertensis Nakai extract and its constituent p-coumaric acidinhibitadipogenesisin3T3-L1cellsthroughactivationoftheAMPKpathway.FoodChemToxicol59:380-385.

156 ParkHJ(2012)Anti-obesityeffectofSchisandrachinensisin3T3-L1cellsandhighfatdiet-inducedobeserats.FoodChemistry134:227-234.

157 Kumar D, Karmase A, Jagtap S, Shekhar R, Bhutani KK (2013)PancreaticlipaseinhibitoryactivityofcassiaminA,abianthraquinonefromCassiasiamea.NatProdCommun8:195-198.

158 Supriya KSK, Vrushabendra Swamy BM, Archana Swamy P,VishwanathKM1Anti-ObesityActivityofShorearobustaG.LeavesExtract on Monosodium Glutamate Induced Obesity in AlbinoRats.ResearchJournalofPharmaceutical,BiologicalandChemicalSciences.

159 ThounaojamMC,JadejaRN,RamaniUV,DevkarRV,RamachandranAV (2011) Sida rhomboidea. Roxb leaf extract down-regulatesexpressionofPPARγ2andleptingenesinhighfatdietfedC57BL/6JMiceandretardsinvitro3T3L1pre-adipocytedifferentiation.IntJMolSci12:4661-4677.

160 ChoiKM,LeeYS,ShinDM,LeeS,YooKS,etal.(2013)Greentomatoextractattenuateshigh-fat-diet-inducedobesitythroughactivationoftheAMPKpathwayinC57BL/6mice.JNutrBiochem24:335-342.

161 Perveen R (2015) Tomato (Solanum lycopersicum) CarotenoidsandLycopenesChemistry;Metabolism,Absorption,Nutrition,andAllied Health Claims-A Comprehensive Review. Crit Rev Food SciNutr55:919-929.

162 JungCH,AhnJ,JeonTI,KimTW,HaTY(2012)Syzygiumaromaticumethanolextractreduceshigh-fatdiet-inducedobesityinmicethroughdownregulationofadipogenicand lipogenicgeneexpression.ExpTherMed4:409-414.

163 AzmanKF,AmomZ,AzlanA,EsaNM,AliRM,etal.(2012)AntiobesityeffectofTamarindusindicaL.pulpaqueousextractinhigh-fatdiet-inducedobeserats.JNatMed66:333-342.

164 JindalV,DhingraD,SharmaS,ParleM,HarnaRK(2011)HypolipidemicandweightreducingactivityoftheethanolicextractofTamarindusindicafruitpulpincafeteriadiet-andsulpiride-inducedobeserats.JPharmacolPharmacother2:80-84.

165 SasidharanSR,JosephJA,AnandakumarS,VenkatesanV,MadhavanCN, et al. (2014) Ameliorative potential of Tamarindus indicaon high fat diet induced nonalcoholic fatty liver disease in rats.ScientificWorldJournal2014:507197.

166 AlvalaR,AlvalaM,SamaV,DharmarajanS,Ullas JV,etal. (2013)Scientific evidence for traditional claim of anti-obesity activity of

Page 21: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

21

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

© Copyright iMedPub Find this article in: www.transbiomedicine.com

© Under License of Creative Commons Attribution 3.0 License

Tecomellaundulatabark.JEthnopharmacol148:441-448.

167 SongY,ParkHJ,KangSN, JangSH, LeeSJ,etal. (2013)Blueberrypeelextractsinhibitadipogenesisin3T3-L1cellsandreducehigh-fatdiet-inducedobesity.PLoSOne8:e69925.

168 Kitano-OkadaT, ItoA,KoideA,NakamuraY,HanKH,etal. (2012)Anti-obesityroleofadzukibeanextractcontainingpolyphenols:invivoandinvitroeffects.JSciFoodAgric92:2644-2651.

169 SonY,NamJS, JangMK, Jung IA,ChoSI,etal. (2013)AntiobesityactivityofVignanakashimaeextractinhigh-fatdiet-inducedobesity.BiosciBiotechnolBiochem77:332-338.

170 JungHY,KimYH,KimIB,JeongJS,LeeJH,etal.(2013)TheKoreanMistletoe (Viscum album coloratum) Extract Has an AntiobesityEffectandProtectsagainstHepaticSteatosisinMicewithHigh-FatDiet-InducedObesity.EvidBasedComplementAlternatMed2013:168207.

171 HsuHM(2014)Vitisthunbergiisupplementationdemonstratesananti-obesityeffect indevelopingobesemice.EuropeanJournalofIntegrativeMedicine6:581-587.

172 KimYM,LeeEW,EomSH,KimTH(2014)Pancreaticlipaseinhibitorystilbenoids fromtherootsofVitisvinifera. Int JFoodSciNutr65:97-100.

173 Jeong YS (2012) Grape skin extract reduces adipogenesis- andlipogenesis-related geneexpression in 3T3-L1 adipocytes throughthe peroxisome proliferator-activated receptor-gamma signalingpathway.NutrRes32:514-521.

174 JeongYS(2011)Anti-obesityeffectofgrapeskinextract in3T3-L1adipocytes.FoodSciandBiotechnology20:635-642.

175 KangJS,LeeWK,LeeCW,YoonWK,KimN,etal.(2011)Improvementofhigh-fatdiet-inducedobesitybyamixtureofredgrapeextract,soy isoflavone and L-carnitine: implications in cardiovascular andnon-alcoholicfattyliverdiseases.FoodChemToxicol49:2453-2458.

176 KimH (2014)Dietary supplementationof chardonnaygrape seedflour reducesplasmacholesterol concentration,hepatic steatosis,andabdominalfatcontentinhigh-fatdiet-inducedobesehamsters.JAgricFoodChem62:1919-1925.

177 Oh J (2013)Antioxidant and antiobesity activities of seed extractfrom campbell early grape as a functional ingredient. Journal ofFoodProcessingandPreservation37:291-298.

178 Zhang XH,Huang B, Choi SK, Seo JS (2012) Anti-obesity effect ofresveratrol-amplified grape skin extracts on 3T3-L1 adipocytesdifferentiation.NutrResPract6:286-293.

179GwonSY,AhnJY,KimTW,HaTY(2012)ZanthoxylumpiperitumDCethanolextractsuppressesfataccumulationinadipocytesandhighfatdiet-inducedobesemicebyregulatingadipogenesis.JNutrSciVitaminol(Tokyo)58:393-401.

180DeshpandeMS(2013)Anti-obesityactivityofZiziphusmauritiana:Apotentpancreaticlipaseinhibitor.AsianJournalofPharmaceuticalandClinicalResearch6:168-173.

181 SungYY,KimDS,ChoiG,KimSH,KimHK(2014)Dohaekseunggi-tangextract inhibitsobesity,hyperlipidemia,andhypertension inhigh-fatdiet-inducedobesemice.BMCComplementAlternMed14:372.

182 Ahn EK, Lee JA, Seo DW, Hong SS, Oh JS (2012) 1β-Hydroxy-2-oxopomolic acid isolated from Agrimonia pilosa extract inhibitsadipogenesisin3T3-L1cells.BiolPharmBull35:643-649.

183 Lee M, Song JY, Chin YW, Sung SH (2013) Anti-adipogenic

diarylheptanoidsfromAlnushirsutaf.sibiricaon3T3-L1cells.BioorgMedChemLett23:2069-2073.

184 ParkJA(2014)Anti-oxidativeandanti-obesityeffectsofAmomumcardamomum L. Extract. Korean Journal of Microbiology andBiotechnology42:249-257.

185 Bansal V (2014) Phytochemical, Pharmacological Profile andCommercialUtilityofTropicallyDistributedPlantBauhiniavariegata.GlobalJournalofPharmacology8:196-205.

186 Liang CH (2013) Brazilein from Caesalpinia sappan L. AntioxidantInhibits Adipocyte Differentiation and Induces Apoptosis throughCaspase-3ActivityandAnthelminticActivitiesagainstHymenolepisnanaandAnisakissimplex.EvidBasedComplementAlternatMed2013:864892.

187 Kim GS, Park HJ, Woo JH, Kim MK, Koh PO, et al. (2012) CitrusaurantiumflavonoidsinhibitadipogenesisthroughtheAktsignalingpathwayin3T3-L1cells.BMCComplementAlternMed12:31.

188 StohsSJ,PreussHG,SharaM(2012)Areviewofthehumanclinicalstudies involving Citrus aurantium (bitter orange) extract and itsprimaryprotoalkaloidp-synephrine.IntJMedSci9:527-538.

189 ChoiJS,KimJH,AliMY,MinBS,KimGD,etal.(2014)Coptischinensisalkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes bydownregulatingC/EBP-αandPPAR-γ.Fitoterapia98:199-208.

190 LeeJ,KimD,ChoiJ,ChoiH,RyuJH,etal.(2012)Dehydrodiconiferylalcohol isolated from Cucurbita moschata shows anti-adipogenicand anti-lipogenic effects in 3T3-L1 cells and primary mouseembryonicfibroblasts.JBiolChem287:8839-8851.

191 BradfordPG(2013)Curcuminandobesity.Biofactors39:78-87.

192Ho JN (2013) Standardized Ethanol Extract of Curcuma longa L.FermentedbyAspergillusoryzaePromotesLipolysisviaActivationof cAMP-Dependent PKA in 3T3-L1 Adipocytes. Journal of FoodBiochemistry37:595-603.

193Dudhia Z, Louw J, Muller C, Joubert E, de Beer D, et al. (2013)CyclopiamaculataandCyclopiasubternata(honeybushtea)inhibitsadipogenesisin3T3-L1pre-adipocytes.Phytomedicine20:401-408.

194GRJN(2012)AStudyonEthanolicExtractofDalbergiasissooroxb.Leaves for Pancreatic Lipase Inhibition. Journal of Pharmacy andTechnology5:497-500.

195 YangMH,ChinYW,ChaeHS,YoonKD,KimJ(2014)Anti-adipogenicconstituents fromDioscorea opposita in 3T3-L1 cells. Biol PharmBull37:1683-1688.

196 ParkHJ,ChungBY,LeeMK,SongY,LeeSS,etal.(2012)Centipedegrassexertsanti-adipogenicactivity through inhibitionofC/EBPβ,C/EBPα, and PPARγ expression and the AKT signaling pathway in3T3-L1adipocytes.BMCComplementAlternMed12:230.

197 Kang H, Koppula S (2014) Houttuynia cordata attenuates lipidaccumulation via activation of AMP-activated protein kinasesignalingpathwayinHepG2cells.AmJChinMed42:651-664.

198MiyataM,KoyamaT,YazawaK(2010)WaterextractofHouttuyniacordataThunb.leavesexertsanti-obesityeffectsbyinhibitingfattyacidandglycerolabsorption.JNutrSciVitaminol(Tokyo)56:150-156.

199Ngondi JL (2009) IGOB131, a novel seed extract of the WestAfricanplantIrvingiagabonensis,significantlyreducesbodyweightand improves metabolic parameters in overweight humans in arandomized double-blind placebo controlled investigation. LipidsHealthDis8:7.

Page 22: Review of Medicinal Plants for Anti-Obesity Activity...Review of Medicinal Plants for Anti-Obesity Activity Abstract Obesity is a complex health issue to address, it is a serious and

22

© Copyright iMedPub Find this article in: www.transbiomedicine.com

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 6 No. 3:21

Translational BiomedicineISSN 2172-0479

This article is available in: www.transbiomedicine.com

200 KimYS, LeeYM,KimH,Kim J, JangDS, et al. (2010)Anti-obesityeffect of Morus bombycis root extract: anti-lipase activity andlipolyticeffect.JEthnopharmacol130:621-624.

201 Roh C, Jung U (2012) Nepeta japonicaMaximowicz extract fromnatural products inhibits lipid accumulation. J Sci Food Agric 92:2195-2199.

202 Kim HR, Kim JM, Kim MS, Hwang JK, Yang SH, et al. (2014)Inhibitory effects of Pericarpium zanthoxyli extract on adipocytedifferentiation.IntJMolMed33:1140-1146.

203NugaraRN, InafukuM, IwasakiH,OkuH (2014) Partially purifiedPeucedanumjaponicumThunbextractsexertanti-obesityeffectsinvitro.Nutrition30:575-583.

204NugaraRN,InafukuM,TakaraK,IwasakiH,OkuH(2014)Pteryxin:acoumarininPeucedanumjaponicumThunbleavesexertsantiobesityactivitythroughmodulationofadipogenicgenenetwork.Nutrition30:1177-1184.

205 EzureT,AmanoS(2011)RubussuavissimusS.Leeextractincreasesearlyadipogenesisin3T3-L1preadipocytes.JNatMed65:247-253.

206 KongCS,SeoY(2012)Antiadipogenicactivityofisohamnetin3-O-β-D-glucopyranoside from Salicornia herbacea. ImmunopharmacolImmunotoxicol34:907-911.

207 Park JA (2013) Anti-oxidative and anti-obesity activities ofTetrapanax papyriferus and Siegesbeckia pubescens extracts andtheirsynergisticanti-obesityeffects.KoreanJournalofMicrobiologyandBiotechnology41:341-349.

208 KangYH(2013)Studyonantioxidative,antidiabeticandantiobesityactivityofsolventfractionsofsmilaxchinaL.leafextract.JournalofNutritionandHealth46:401-409.

209GaoQH,WuCS,WangM(2013)Thejujube(ZiziphusjujubaMill.)fruit:areviewofcurrentknowledgeoffruitcompositionandhealthbenefits.JAgricFoodChem61:3351-3363.

210MostafaUE,LabbanL(2013)TheEffectofZizyphusjujubeonSerumLipid Profile and Some Anthropometric Measurements. PakistanJournalofNutrition12:538-543.

211 KubotaH,MoriiR,Kojima-YuasaA,HuangX,YanoY,etal. (2009)EffectofZizyphusjujubaextractontheinhibitionofadipogenesisin3T3-L1preadipocytes.AmJChinMed37:597-608.

212 HoJN,SonME,LimWC,LimST,ChoHY(2012)Anti-obesityeffectsofgerminatedbrownriceextractthroughdown-regulationoflipogenicgenes in high fat diet-induced obese mice. Biosci BiotechnolBiochem76:1068-1074.

213 KazemipoorM,RadziCW,HajifarajiM,HaerianBS,MosaddeghMH,et al. (2013) Antiobesity effect of caraway extract on overweightandobesewomen:a randomized, triple-blind,placebo-controlledclinicaltrial.EvidBasedComplementAlternatMed2013:928582.

214ObenJ,KuateD,AgborG,MomoC,TallaX(2006)TheuseofaCissusquadrangularisformulationinthemanagementofweightlossandmetabolicsyndrome.LipidsHealthDis5:24.

215 ParkSH,HuhTL,KimSY,OhMR,TirupathiPichiahPB,etal.(2014)AntiobesityeffectofGynostemmapentaphyllumextract(actiponin):arandomized,double-blind,placebo-controlledtrial.Obesity(SilverSpring)22:63-71.

216NajmiA,NasiruddinM,KhanRA,HaqueSF(2008)EffectofNigellasativaoilonvariousclinicalandbiochemicalparametersofinsulinresistancesyndrome.IntJDiabetesDevCtries28:11-14.

217 RazaviBM,HosseinzadehH(2014)AreviewoftheeffectsofNigellasativaL.anditsconstituent,thymoquinone,inmetabolicsyndrome.JEndocrinolInvest37:1031-1040.

218 Ofner M, Tomaschitz A, Wonisch M, Litscher G (2013)Complementarytreatmentofobesityandoverweightwithsalaciareticulataandvitamind.IntJVitamNutrRes83:216-223.

219 ChevassusH,GaillardJB,FarretA,CostaF,GabillaudI,etal.(2010)Afenugreekseedextractselectivelyreducesspontaneousfatintakeinoverweightsubjects.EurJClinPharmacol66:449-455.

220 Szewczyk K, Zidorn C (2014) Ethnobotany, phytochemistry, andbioactivity of the genus Turnera (Passifloraceae) with a focus ondamiana--Turneradiffusa.JEthnopharmacol152:424-443.

221 AndersenT,FoghJ(2001)Weightlossanddelayedgastricemptyingfollowing a South American herbal preparation in overweightpatients.JHumNutrDiet14:243-250.

222 AnastasiaUU(2010)Anti-Carcinoma,Anti-Obesity,AntidiabeticandImmuneDefenceEffectsofVernoniaamygdalinaLeafExtractandLeafPowder, inTwoHumanCancerPatients.AmericanJournalofImmunology6:50-53.

223Dalla Via L, García-Argáez AN, Braga A, Martínez-Vázquez M,Grancara S, et al. (2014)Aneudesmanderivative fromVerbesinapersicifoliaD.C.asanaturalmilduncoupler in livermitochondria.Anewpotentialanti-obesityagent?CurrPharmDes20:253-261.

224 AhnJH,ShinE,LiuQ,KimSB,ChoiKM,etal. (2013)Secoiridoidsfrom the stem barks of Fraxinus rhynchophylla with pancreaticlipaseinhibitoryactivity.NatProdRes27:1132-1135.

225 GurudeebanS (2012)An insilicoapproachofalpha-ketoglutaratedependent dioxygenase FTO inhibitors derived from Rhizophoramucronata.DrugInventionToday4:594-598.

226 RomoVaqueroM(2014)Arosemaryextractenrichedincarnosicacidimprovescirculatingadipocytokinesandmodulateskeymetabolicsensors in leanZucker rats: Critical and contrastingdifferences intheobesegenotype.MolNutrFoodRes58:942-953.

227 Qi S, Zhou D (2013) Lotus seed epicarp extract as potentialantioxidantandanti-obesityadditiveinChineseCantoneseSausage.MeatSci93:257-262.