REVIEW OF HEAD INJURY TOLERANCE TO DIRECT IMPACT · PDF fileREVIEW OF HEAD INJURY TOLERANCE TO...

18
ABSTRACT REVIEW OF HEAD INJURY T OLERANCE TO DI RECT IMPACT By Verne L. Roberts and James H. McEl ha ney Highway Safety Research Insti tute The University of Michigan An n Arbor, Michigan U.S .A. 481 05 The human tolera nce l iterature pertaining to direct head impact is re- viewed and discussed. The basis for the Vien na Index, the Effective Di s- pl acement Index, the Severity Index , the Head Injury Criteria of USMVSS #208, the Wayne State Head I njury Tolera nce Curve and the Maximum Strain Cri teria will be examined a nd the correlation of these various indices with the avai l- abl e data demonstrated . Additionally, the predictio n of injury for various impact pul ses when used with the variety of availab le criteria wi l l be determi ned . Where appropriate, new data will be introduced to compl ete the exi sti ng data set. It is felt that on the basis of the curre ntly avai lab le inform- ation regardi ng the l imi ts of head impact tol erance that to lerance can be establ ished for impacts of arbitrary di rection. INTRODUCT ION With the advent of high speed air and land transportatio n , e ngineers have become increasingly aware of the mecha nical fra ngi bi l i ty of the human body . Thus , we have seen the evol ution of vario us isolating a nd load distri- buting devices ranging from seat bel ts and padded s un visors, to ejecti on seats, crash helmets , and acceleratio n couches . While there is a large amount of informatio n availab le regarding the response of i na nimate systems to vibration a nd impact , there is a comparable dearth of k nowl edge pertai ni ng to the mechanical responses of bio logical systems . Therefore, the design of much supporting and protective equipment is ofte n based on i ntui tion beca use of the lack of informatio n available about the mechanica l behavior of the human body . In addition, such k nowl edge woul d be he l pfu l i n the treatment of injury by serving to ide ntify the mechanism of trauma . Thus , both a rational desig n procedure for impact protectio n and a rational therapy for treatment of trauma ca n not be devel oped u ntil a quantitative description of the mechanical respo nses of the huma n body is obtained. In order to properly design devices aimed at mi nimizi ng head injury i n the automotive crash enviro nme nt, e ngi neers requi re a mea ns of predicting potential injury or a so-ca lled.Head Injury Criteria . This criteria might be used in real accide nt reco nstructio ns , car crash a nd sled test experi- ments or mathematical simul ations . The automotive crash environment e ncompasses a wide ra nge of impulse durations and directions . Thus , a viable head injury criteria must provide appropriate mecbanisms that real istical ly account for the freq uently observed , but poorly doc umented , relations of head impact to lerance and impulse d uration 2 4 1

Transcript of REVIEW OF HEAD INJURY TOLERANCE TO DIRECT IMPACT · PDF fileREVIEW OF HEAD INJURY TOLERANCE TO...

ABSTRACT

REV I EW OF HEAD INJURY TOLERANCE TO DI RECT IMPACT

By

Verne L . Roberts and James H . McEl haney H ighway Safety Research Insti tute

The Un ivers i ty of M i c h i gan Ann Arbo r , Mi chi gan U . S .A . 481 05

The human tol erance l i terature perta i n i ng to di rect head impact i s re­v i ewed and d i s cussed . The bas i s for the V i enna Index , the Effecti ve Di s­pl acement Index , the Severi ty I ndex , the Head Injury Cri teri a of USMVSS #208 , the Wayne State Head Inj ury Tol erance Curve and the Maxi mum Stra i n Cri ter ia wi l l be exami ned and the correl ation of these various i ndi ces wi th the avai l ­abl e data demonstrated . Add i t i onal l y , the predi ction of i njury for various i mpact pu l ses when used wi th the vari ety of avai l ab l e cri teri a wi l l be determi ned .

Where appropri ate , new data wi l l be i ntroduced to compl ete the exi sti ng data set . I t is fel t that on the bas i s of the currently avai l ab l e i n form­ation regardi ng the l i mi ts of head i mpact tol erance that tol erance can be establ i s hed for i mpacts of arbi trary di rect i o n .

INTRODUCTION

Wi th the advent of h igh s peed a i r and l and transportation , engi neers have become i ncreas i ng ly aware of the mechan i cal frangi bi l i ty of the human body . Thus , we have seen the evol ution of vari ous i sol ati ng and l oad di stri­buting devi ces rang i ng from seat bel ts and padded sun vi sors , to ejecti on seats , crash helmets , and accel eration couches . Whi l e there i s a l arge amount of i n fo rmation avai l abl e regard i ng the response of i nanimate sys tems to vi bration and i mpact , there i s a comparabl e dearth of knowl edge pertai n i ng to the mechani cal responses of b io l ogi cal sys tems . Therefore , the des ign of much support i ng and protective equi pment i s often based on i ntui ti on because of the l ac k of i n formation avai l abl e a bout the mechan i ca l behavior of the human body . I n addi t i o n , such knowl edge woul d be hel pful i n the treatment of i njury by serv i ng to i denti fy the mechan i sm of trauma . Thus , both a rational des i gn procedure for impact protection and a rational therapy for treatment of trauma cannot be devel oped unt i l a quanti tati ve descri pt i on of the mechan i ca l responses of the human body i s obta i ned .

I n order to properly des i gn devi ces ai med at min imi z i ng head i njury i n the automoti ve crash env i ronment , engi neers requ i re a means of pred icti ng potent ia l i njury o r a so-ca l l ed . Head Injury Cri teri a . Thi s cri ter ia mi ght be used i n rea l acci dent reconstructions , car crash and s l ed test experi ­ments o r mathemati cal s i mul ati ons .

The automoti ve crash envi ronment encompasses a wide range of impu l s e durations and d i recti ons . Thus , a v iab l e head i njury cri teri a mus t provi de appropriate mecbani sms that real i s t i cal l y a ccount for the frequently observed , but poorly documented , rel at i ons of head i mpact tol erance and impul se duration

2 4 1

and d i recti o n . In addi t i on , two di sti nct types o f l oad i ng are observed .

1 . An i mpact o r b l ow i nvol v i ng a col l i s i on of the head w i th another so l i d object at an apprec i a b l e vel oci ty . Thi s s i tuation i s genera l l y char­acteri zed by l a rge l i near accel erati ons and smal l angu lar accel erati ons dur-i ng the i mpact phase .

·

2 . An i mpu l s i ve l oading i nc l udi ng a sudden head mot i on wi thout d i rect contact . The l oad i s genera l l y transmi tted through the head-neck junction upon s udden changes i n the motion of "the torso and i s associ ated wi th l a rge angu l a r accel erati ons of the head .

I t has been shown ( 1 ) that i n the moderate but survi vab l e automotive crash envi ronment (30 mph barri er equ i val ent) no s i gni fi cant head i njuri es occur when the ful l y-bel ted occupant ri des the crash down wi thout head-to -ve­h i c l e contac t . Thi s does not mean that the Type Two l oadi ng descri bed above can not produce i njury , but only that the l evel s of l i near and angul ar accl er­ation requi red to produce head i njury wi thout contact do not occur i n moderate crashes . If , however, vehi c l es are sti ffened to provi de l ess compartment i n­trus ion at h i gher vel oci t ies , i njuries of the type descri bed by Ommaya and H i rsch ( 2 ) mi ght become commonpl ace .

Thus a rati onal head i njury cri teri a for current automotive des i gn may be concentrated on the first type of l oadi ng . There i s , of course , a pos­s i b l e defect in th i s rationa l e that concerns the pos s i b l e i ncreased potentia l for head i nj ury i nvol ved wi th a combi nation of the fi rst and second type of head l oadi n g . An attempt to reconci l e th i s probl em has l ead to the devel op­ment of the Mean Stra i n Cri ter i on . Th is head i njury cri teri a consi ders the total l i near accel eration h i s to ry of the head but ass umes a s i ng l e i nj ury mechan i s m .

MEAN STRAIN CRITERION (MSC )

The dynami c s tructural characteri s ti cs of monkey s kul l and brai n were determined over a wide frequency range by Sta l naker and McEl haney i n 1 971 (3 ) . These resul ts , reported as the change of mechani cal impedance ( force/vel oci ty ) wi th frequency , a l l owed the conceptual characteri zati on o f the head a s two masses coupl ed by a spring and das hpot . . The mathemati cal l y predi cted dynami c response of the model agreed wel l wi th the experimental data .

Experimental impacts del i vered to the heads of vari ous s i ze primates s howed that the dynami c model postul ated an the bas i s of vi bration studies accurately pred icted head-impact i njuri e s . I t was further fo und that for head i mpacts of a known magn i tude , the resul t ing i njuries cou l d be grouped by compar ing the mean strai n as predi cted by the theoreti cal model wi th i nj u ry l evel s , (where mean stra i n i s defi ned as the di spl acement of one s i de of the head rel ative to the other , d i v i ded by tbe d i s tance across the cran i um ) . T h i s experimenta l l y deri ved head i nj ury data for l i vi ng primates formed the bas i s for a Mean Stra i n Cri terion (MSC ) for head i nj ury to humans (4 ) . U s i ng the val ue of predi cted stra i n i n the Rhesus monkey head as a cri terion of i njury , a tol erance curve was deri ved wi th rel ated average accel erati on and time for a constant l evel of mean s trai n .

The deri ved tol erance curve for the subhuman primate was val i dated by pl otti ng the experimental data poi nts necessary to produce mi nor , but i denti fiabl e , bra i n i nj ury i n the l i vi ng test subject for a wide range of pul se durati ons ( F i gure 1 ) .

l t was determined that the heads of several s pecies of subhuman primates , squi rrel monkeys , Rhesus monkeys , the chimpanzee and the fresh human cadaver had mechan i c a l impedance characteri sti cs over a broad frequency band ( 5 to 5000 Hertz ) whi ch were s i mi l ar i n s hape but varied i n the mechan i cal char­acter i s ti cs of mas s , s t i ffnes s and damp i n g . U s i ng the maxi mum pred i cted s tra i n as the bas i s for i njury , experimental head i mpacts i n the l aboratory documented the val i di ty of the theory and formed the bas i s for establ i s h i ng mode l i ng rel at i onsh ips through wh i c h extrapol ation of the MSC to other s i ze heads may be made . Thi s approach was tested by compari ng the MSC to human vol unteer and fresh human cadaver head i mpacts ( F i gure 2 ) . The mean tol er­abl e head stra i n for humans (0 . 006 i n . / i n . ) was cal cul ated from the mathemati­cal model and the scal i ng techni que referenced above .

A s tudy was undertaken to document the val i d i ty o f the MSC for arb i tr­ari l y di rected head impacts . Thi rty careful l y sel ected Rhesus monkeys were i mpacted at i ncreasi n g l evel s i n vari ous d i rections ( front , s i d e , back ,top and mid-front ) . The i mpact l evel was i ncreased unti l autopsy studies i ndi cated that an Estimated Severity of Injury ( E S I ) of a moderate but revers i b l e type ( C l a s s 3 ) was obtai ned . Only cl osed bra i n i njuri es were consi dered .

The mechani cal i mpedance was determi ned for fi ve monkeys of approximatel y the same wei ght as the ones used i n the impact study . These impedance curves were obtai ned for the top , s i d e , rear , and front of the head ( F i gure 3 ) .

The val ues of tol erabl e accel erat i on and impedance data were then i nput to the MSC model . The pred icted mean stra i n val ues for each d i rection varied l es s than 7 . 5% . Thi s i ndi cates that , wh i l e w i dely vary i ng accel erati ons are requ i red to produce an i nj ury l evel of 3 i n the Rhesus monkey , the correspon­d i ng s tra i ns are approxi mately equal . The res ul ts of th i s s tudy are g i ven i n the form of an accel erat i on surface for a constant s tra i n l evel of 0 . 032 i n . / i n . for Rhes us monkeys s ubjected to r i g i d s tri ker i mpacts ( Fi gure 4) .

Prel imi nary studies on the fresh i ntact cadaver i ndi cate that a tol er­abl e mean s trai n l evel of 0 . 0061 as pred icted by the MSC model may be used for a rbi trary impact d i recti ons wi th model constants appropri ate for that d i rection . However , a suffi ci ent number of i mpact tests and dri v i ng poi nt i mpedance meas urements have not yet been made to veri fy a d i rect extrapol ation o f the Rhes u s monkey data . Fi gure 5 s hows pred i ct i ons and measured val ues of the MSC for human head impact i n the sagi ttal pl ane .

COMPARISON O F HEAD INJURY CRITERIA

The preced i ng di scuss i on i nvol ved the mos t recent work on the Mean Stra i n Cri terion for head impact. The fol l owing section conta i n s the res ul ts o f a series o f analys i s a i med at comparing various head i njury criter i a .

Val ues for various head i nj ury i ndi ces were computed for two crash s i mul a t i ons .

1 . Dummy resu l tant head accel erations i n frontal automotive crash en­vi ronments were used . The dummy was unbel ted , and s truck the wi nds h i e l d a cl ean b l ow . The windsh i e l d was not penetrated except a smal l tear i n the l ami nate was a l l owed ( C l as s A) , or several smal l tears ( C l ass B ) .

2 . Resul tant head accel erati ons from a recent series of h i gh s peed human vol unteer and dummy tests at Hol l oman Ai r Force Base us i ng a i rbag restra i nts .

Wayne State Tol erance Curve (WSTC) The Wayne State Tol erance Curve was i ntroduced by L i s s ner i n 1 960 ( 5 ) .

Ori g i nal l y thi s curve was devel oped from data obtai ned by droppi ng embalmed cadaver heads on to unyi el d i ng fl at su rfaces . L i nea r s ku l l fracture was used as the cri teri on of i njury . I n 1 962 Gurdj i a n publ i s hed the Wayne State Tol erance Curve as i t appears today ( 6 ) . Th is curve was devel oped by com­b i n i ng a wi de vari ety of pul se shapes , animal types and i njury mechani sms . The fa i l ure cri ter i a used was genera l l y s ku l l fracture and/or concus s i on , except for l ong pu l se duration from human vol unteers wi th no di scern i b l e i n­j ury. In 1 965 Patri ck et al ( 7 ) proposed that tbe ori g i na l hori zontal asymp­tote of 45 G ' s be ra i sed to 80 G ' s to adjust for addi tional data from tests aga inst y ie ld ing s u rfaces . Si nce that t ime numerous papers have been wri tten prov id i ng s upporting data for the tol erance curve (8 ,9 , 1 0 , 1 1 , 1 2 , 1 3 ) .

The i nj ury assessment i s based on the average accel erati on and pu l se dur­ation . A g i ven average accel eration at a parti cul ar pul se durati on wh i ch l i es bel ow the WSTC i s cons i dered to . cause at mos t cerebral concus s i on wi thout permanent after-effects , wh i l e any poi nt whi ch l i es above the curve i s con­s i dered to be dangerous to l i fe . For s i ngl e head i mpacts i nto a ri g i d fl at su rface the average accel erati on and pul se du rati on is qui te easy to determi ne , but for s l ed test i n g where mul t i p l e i mpacts are q u i te common the 11effecti ve1 1 pul se , that i s , the part of the pul se upon wh ich the average i s based , i s not wel l defi ned . I n spi te of the many i nterpretive d i ffi cul ties associ ated wi th th i s curve , i t has been the pri nc ipal source for head i njury tol erance i nform­ation used by the automoti ve safety commun i ty .

Gadd Severi ty I ndex (GSI) Because of various i nterpretive d i ffi cul ties associated w i th the use of

the WST curve , C . W . Gadd i ntroduced the Gadd Severity I ndex as a general ­i zati on of the Wayne curve ( 1 4 , 1 5 , 1 6 ) . More recen tly the GSI has been ex­tended for l ong pul se duration by means of the Ei band tol erance data and other primate s l ed runs . The severity i ndex equati on has the fo l l owi ng form :

where a = head accel erati on response function n = we i ght factor , general 2 . 5 ' = pul se duration t = i ntegral parameter of t ime

( 1 )

The head i njury threshol d sever i ty i ndex number was determi ned from compari son wi th the WST curve and the n umber 1 000 recornmended .

The assessment of i njury hazard i s obtai ned perfonn ing the above cal cul ­ation . I f th i s number (GS I ) i s greater than 1 000 , the accel eration pul se i s con s i dered to be dangerous to l i fe . I f this i ndex i s l es s than 1 000 , the accel erat i on pul se i s then cons i dered not to be l i fe threaten i ng .

Head I njury Cri teri on ( H I C )

The Head Inj ury Cri teri on was first proposed by J . Versace ( 1 7 ) and then modi fied by NHTSA ( 1 8 ) . Thi s cri teri o n i s based on a new i nterpretation of the Gadd Sever i ty I ndex .

Versace poi nted out that because the WST curve was pl otted for average a ccel erati on , any compari son to the WST curve shoul d be made u s i ng the average accel eration of the pul se of i nterest .

The question of l ong pu l se head accel erations has posed some probl ems when us i ng the S . I . to predict head i njuries . I n order to provi de a better compari so n wi th human vol unteer tes ts , a head cri teria has been proposed as

where

( 2 )

t 1 = a n arbi trary time i n the pul se t2 = for a g i ve t 1 , a time in the pul se wh ich maximi zes the H IC a = resu l tant accel eration at the head center of g rav i ty

I f thi s i ndex i s l ess than 1 000 , the s i tuation i s consi dered not to be l i fe-threaten i ng .

V i enna I nsti tute Index (JTI)

The V i enna I nsti tute I ndex was i ntroduced by A . S l attenschek ( 1 9 ) and i s based on a s i ng l e degree-of-freedom vi bration model .

Wi th the damp i ng assumed to be cri ti cal ß = 1 , and two triang l e accel er­ation pul ses determi ned from the WST curve , the natural angu l ar frequency va l ue of w = 635 rad/sec and a maxi mum tol erance d i spl acement xT = 0 . 092 ( 2 . 35mm) i nches was obta i ned from the fol l owi ng equation : ow

where X

.

x , x w ß

y ( t )

=

= = = =

x + 2ß • + w2x = y ( t ) wx

rel ative di spl acement of bra i n mass to s kul l rel ati ve vel o c i ty and rel at ive accel eration natural angul ar frequency o f Vi brat i on 635 rad/sec v i s cous damp i ng coeffi c i en t of 1 .0 accel eration pul se meas ured at the head

( 3 )

2 4 5

The maxi mum devi ation between the model and the WST curve i s -4 percent . To access an impact , the ampl i tude x correspondi ng to the accel eration pul se to be anal yzed i s determi ned f�B� the model and compared to the tol er­abl e ampl i tude xTo i r = 0 . 092 i nches . A J tol erance i ndex i s then defi ned by :

xmax J = --XTo l r

( 4 )

where : xmax xTol r

= maxi mum x generated by the model for a g i ven accel eration pul se = tol erabl e ampl i tude from the Wayne State Tol erance Curve 0 . 092

i nc hes ( 2 . 35mm)

According to S l attenschek , i mpacts wi th a J tol erance of J 2 = 1 j us t reach the threshol d of human tol erance ; val ues J < 1 at warst cause cerebral con­cus s ion wi thout permanent after-effects , wh i l e val ues J > 1 are consi dered to be h azardous to l i fe ( 20 ) .

Effect i ve D i spl acement I ndex ( ED !) The effecti ve di spl acement i ndex was i ntroduced by J . Bri nn ( 21 ) and

is s imi l ar to the Vi enna Insti tute model with c hanged damping and the angu l ar frequency . New angu l ar frequency and dampi ng val ues for the S l attenschek model were determi ned by match i ng the model to the WST curve . The empha s i s was p laced on matchi ng for short duration events ( 3-5msec pul se durat i on ) . The best fi t of the model to thi s porti on of the WST curve was found by us i ng the model parameters w 482 rad/sec and ß = 0 . 707 . These model parameters and the Sl attenschek model were exerci sed for poi nts on the WST curve and a di s ­pl acement va l ue o f 0 . 1 5 i nches was determined a s a 1 1Des i g n Bogi e 11 for human AP he�d i mpacts . Because of the unhuman l i ke res ponse of dummy heads , the Des i gn Bog i e i s rai sed to a dummy Test L imit of 0 . 1 7 i nches i n the AP d i rec­tion . When the res ul tant accel eration i s used , a Des i gn Bog i e of 0 . 1 8 i nches and a d ummy Test Limi t of 0 . 20 i nches i s recommended .

Revi s ed Bra i n Model ( RBM )

The rev i sed b ra i n model was i ntroduced by W . R . S . Fa n ( 22 ) and i s a mod i ­fi cat i on o f the V i enna Insti tute model . Li ke the JTI , the RBM i s a s i ngl e degree-of-freedom mas s-spr ing-das hpot model of the brai n . The v i s cous damp i ng coeffi c i ent for thi s model was esti mated from publ i s hed val ues of b ra i n mater­i a l properti es . Wi th an estimated damping coeffi c i ent of 0 . 4 data from the WSTC for l ong duration i nputs , a natural angul ar frequency of 1 75 rad/sec and the theoreti cal tol erabl e brai n deformation ( Sd ) of 1 . 2 5 i nches was estimated . A tol erabl e brai n vel oci ty Sv was then cal cu l ated from the WST curve for s hort pul se duration and was found to be 1 35 . 3 i n/ sec .

The recommended measure of brai n i njury potenti a l i s x<S for i mpact pul se durati ons l ess than 20 msec and x<S for pul se duration� greater than 20 msec , as cal cul ated from the d i fferent9a1 equation of the S l a ttenschek model wi th revi sed coeffi ci ents .

RESULTS OF COMPARISON

The res u l ts of the computati ons of the various head i nj ury cri teri a are presented i n Tabl e 2 . F i gure 6 shows a l l of the model s and the i r constants for purposes of compari son wh i l e Fi gure 7 g i ves normal i zed val ues of the head i njury i ndi ces obtai ned by d i v i d i n g the part i c u l ar computed i ndex by the appropri ate cut off val ue ( i . e . 1 500 for the SI and 1 000 for the H I C ) .

Based an acci dent stati sti cs , i t i s fel t that head i mpacts of thi s type i nto the HPR windsh i e l d sel dom i nvol ve seri ous head i nj ury and an appropri ate head i njury . cri teri a s hou l d so i nd i cate . Study of Tabl e 2 shows the GSI to be qui te cons ervati ve i n th is s i tuati on . The H IC i s l es s conservati ve , but sti l l i nd i cates four l i fe-threateni ng s i tuations in the wi ndshi el d tests . The RBM , EDI and MSC a l l pred ict essenti a l l y the same i njury l evel s for both seri es .

Mathemati ca l Mode l i ng

Whi l e the previous authors have d i rected the i r efforts primary toward the acqu i s i ti on of experimental data and i ts expl anat i on i n terms of ei ther l umped parameter model s or mathemati cal correl ates to publ i s hed head i nj ury data , others have concerned themsel ves wi th mathemati cal model s of the head wh ich defi ne i ts response to impact . Both approaches can yi e l d i n s i ght i nto head i nj ury tol erance wi th the former prov i d i ng near term tool s whi l e the l ater . because of the i r greater attenti on to model i ng the enti re· system hol d great hope for future eval uation of protecti ve devices wi thout the extens i ve l aboratory werk requi red at th i s time .

Anzel i us ( 2 3 ) model ed the head as a fl u i d fi l l ed r i g i d shel l brought s uddenly to res t whi l e Gutti nger (24) so l ved essenti a l l y the s ame probl em wi th the shel l ach iev i ng a vel oc i ty from res t . Further attempts to model the head duri ng impact l ay dormant unti l proposed by Gol dsmi th ( 2 5 ) i n h i s revi ew of the phys i ca l processes of head i njury . Eng i n ( 26 ) sol ved the case concern­i n g the asymmetri c response of a s pheri cal shel l fi l l ed wi th an i nvi sc id fl u i d subjected to a l ocal rad i a l impul s i ve l oad . Recently L i u et a l ( 27 ) extended Engi n ' s work for the axi symetri c so l ution for a Di rac-del ta time funct i on to the case for a fi n i te time funct i on . Chan (28) has devel oped the theory further i n hi s study of the asymmetri c res ponse of a fl u i d fi l l ed s hel l . Benedi c t et a l ( 29 ) sol ved a pro b l em s imi l ar to that of Engi n ' s al l ow­i ng for on ly membrane effects whi l e H ick l i ng and Wenner ( 30 ) model ed the head as a two l ayered v i s coel asti c sphere s ubjected to axi symmetri c i mpact . Kenner and Gol dsmi th ( 31 ) experimenta l l y i nvesti gated the probl em so l ved by the various analyti cal stud ies .

Another series of i nvesti gators h ave model ed the response of the head to impact for the case where the pu l se durati on i s l ang rel ative to the trans i t time of a press ure wave through the contai ner . Grass (32 ) i n 1 958 deve loped a gl ass , fl u i d fi l l ed model and compared the resu l ts of cavi tation i nduced i n the f l u i d wi th h i s analys i s . Unterharnschei dt and Sel l i er ( 33 ) a l so per­formed exten s i ve studies of th is nature uti l i zi n g analyti cal and experimental model s extend i n g the i r work to ani mal s subjects to confi rm thei r analys i s . Concurrently L i n dgren (34) devel oped an exten s i ve s tudy o f mechani cal i nputs to a model of the head when s truck from di fferent d i rections wi th vary i ng

2 4 7

boundary cond i ti ons . Kopecky and Ri pperger ( 35 ) extended the model i ng treat­ment to i nc l ude a deformabl e fl u i d fi l l ed cyl i nder and confi rmed the previ ous res u l ts ( 1 2 ) i n d i cati ng that the l ocation of the nodal po int i s a functi on of the conta i ner deformation .

D ISCUSS ION

The dri v i ng poi nt i mpedance studies i n d i cate that the mechani cal response of the pri mate head may be approximated as a two-mas s sys tem . Injury l evel s for b l unt i mpacts have been rel a ted to the compress i on of a spring i n the s impl e two-mass model . The MSC model i ndi cates decreas i ng tol erance w i th i m­pul se duration for pul ses of approxi mately 1 0 t imes the resonance period or l es s . For pul ses l anger than 1 0 t imes the resonance period , a quas i -s tati c response i s i ndi cated that i s unaffected by further i ncreases i n pul se dur­ati on . The predi ct i on i s qui te s i mi l ar to that produced by ED! , JTI and the RBM , but cons i derably d i fferent from the SI and H IC , wh i c h i ndi cate that a quas i - s tat i c response i s never obtai ned . Obvious l y , as wi th a l l s i mple model s of compl ex phenomena , extrapol ation of model pred i ctions beyond the range of val i dation or to new s i tuations i s dangerous and shoul d be done wi th cauti on . The MSC model has been devel oped for bl unt i mpacts where the amount of bone and s ca l p i n contact wi th the i mpactor approximates that l oaded by the coupl i ng cl amp during the i mpedance tests . When the l oads are appl i ed to l a rge sections of the head or through the neck , many of the arguments used i n the model devel opment do not apply . I n add i t i o n , i t i s probabl e that the i nj ury mechani sms change cons i derably wi th these di fferent types of l oadi ng , and a s i ng l e mecha n i sm mode l , as are a l l the ones d i s cussed i n thi s paper , woul d be i nadequate .

No treatment of th i s s ubject wou l d be compl ete w i thout acknowl edg i ng the numerous s tud ies which poi n t out the combi nation of l i near and angu l ar motion of the bra i n subs tance i n contri buti ng to the head i nj u ry proces s . However the exi s tence i n th i s sympo s i um of a separate paper on head i njury i n the absence of i mpact wi l l undoubted l y cover th i s materi a l i n i ts ful ly expanded form .

REFERENCES

1 ) McEl haney , J . ·H . , V . L . Roberts and J . W . Mel vi n , 1 1 B iomechani cs of Sea t Be 1 t Des i gn , 11 Pro c . l 6th Stapp Conf . , 1 972 .

2 ) Ommaya , A . K . and A . E . H i rsch , 1 1Protection o f the Bra i n From Injury Duri ng Impact : Experi mental Studies i n the B i omechani cs of Head Injury , 11 AGARD Conference Pre- Print No . 88 on L i near Accel eration ( Impact Type) , 1 969 .

3 ) S cal nake r , R . L . , J . L . Fog l e and J . H . McEl haney , 11Dr iv ing Poi nt Im­pedance Characteri s t i cs of the Head , 11 J . of B i omechan i cs , Vol . 4 , No . 2 , pp . 1 27- 1 39 , March 1 97 1 .

4 ) McEl haney , J . H . , R . L . Sta l naker , V . L . Roberts and R . G . Snyde r , 1 1 Door Crashworthi ness Cri teri a , 1 1 Proc . l 5th Stapp Conf . , Paper 71 0864 , p . 39 , New York : Soci ety of Automotive Engi neers , I nc . , 1 97 1 .

5 ) L i s sner , H . R . , M . Lebow and F . G . Evans , " Experimental Stud i es o n the Rel at i on Between Accel erati on and Intracran ia l Pressure Changes i n Man , 11 Surgery, Gynecol ogy and Obstetri cs , 1 1 1 : 329-338 , 1 960 .

6 ) Gurdj i an , E . S . , H . R . L i ss ner and L . M . Patri ck , 1 1 Protect i on of the Head and Neck i n Sports , 1 1 Journal of Ameri can Med i c a l As sociation 1 82 pp . 509-51 2 , November 1 96 2 .

7 ) Patr i ck , L . M . , H . R . L i ssner and E . S . Gurdj ian , 1 1Surv i va l by Des i gn -Head Protecti on , 11 Proc . 7th Stapp Conf . , Soci ety of Automot i ve Engi neers , I nc . , New York , pp . 483-499 , 1 96 5 .

8 ) Gurdj i a n , E . S . , V . R . Hodgson , L . M . Thomas and L . M . Patri c k , 1 1Si gni ­fi cance of Rel at ive Movements of Scal p , Skul l , and Intracran i al Contents Duri ng Impact Inj ury of the Head , 1 1 Journal of Neurosurgery, Val . 29 , P P . 70-72 , 1 968 .

9 ) Hayas h i , T . , 1 1Study o f Intracran i a l Press ure Caused by Head Impact , 11 ( 2nd Report ) , Journal of the Facul ty of Engi neeri ng, U n i vers i ty of Tokyo , Vol . XXX , No . 2 , 1 969 .

1 0 ) Hodgson , V . R . and L . M . Patrick , 1 1Dynami c ResponsP. o f the Human Ca da ver Head Compared to a S imp l e Mathemati cal Model , 11 Proc . 1 2th Stapp Conf . , 1 968 , Soci ety o f Automoti ve Engi neers , Inc . , New York, pp . 280-301 , 1968 .

1 1 ) Hodgson , V . R . and L . M . Thomas , 11Test ing the Val i d i ty and L i mi tati ons of the Severi ty I ndex , 1 1 Proc . 1 4th Stapp Conf . , Nov . 1 7-1 8 , 1 970 , Paper 70090 1 , Soci ety of Automotive Engineers , Inc . , New York , pp . 1 69-1 87 , 1 970 .

1 2 ) Roberts , V . L . , V . R . Hodgson and L . M . Thomas , 1 1Fl u i d Pres sure Gradi ents Caused by Impact to the Human Skul l , 1 1 Proceedi ngs of the Human Factors Conference , ASME , Paper No . 66-HUF- l , 1 966 .

1 3 ) Hodgson , V . R . and L . M . Thomas , 11Compari son of Head Accel eration Injury I ndi ces i n Cadaver Skul l Fracture , 11 Proc . 1 5th Stapp Conf . pp . 1 90-206 , 1 972 .

1 4 ) Gadd , C . W . , 1 1 Criteri a for Injury Potenti a l , 11 i n , Impact Accel erati on Stres s . A sympos i um hel d at Brooks A i r Force Base , Texas , 27-29 November 1 961 . National Academy of Sci ence/Nati onal Research Counc i l ( 1 962 ) . Pub 1 i cati on 977 .

1 5 ) Gadd , C . W . , 1 1Use of a Wei ghted- Impul se Cri terion for Estimating Injury Hazard , 11 Pr') c . l Oth Stapp. Conf„ Uni vers i ty of Minnesota , Mi nneapol i s , pp . 1 64 - 1 7 4 . Society of Automoti ve Engi neers , I nc . , New York , SAE Paper No . 660793 , 1 966 .

1 6 ) Gadd , C . W . and L . M . Patri ck , "System Versus Laboratory Impact Tests for Esti mati ng Injury Hazard , 1 1 Soci ety of Automoti ve Engi neers , I n c . , New York . SAE Paper , No . 680053 , 1 968 .

1 7 ) Vers ace , J . , 1 1 A Rev i ew of the Severi ty I ndex , 11 Ford Techn i c a l Report, No . S-71 -43 , November 1 2 , 1 97 1 .

2 4 9

1 8 ) Department of Transportat ion Nati onal Hi ghway Traffic Safety Admi n i s tr­ation (49 CFR Part 571 ) [Docket No . 69- 7 ; Noti ce 1 7 ] , 1 10ccupant Crash Protection Head Injury Criteri on . 11

1 9 ) Sl attenschek , A . and W . Tauffki rchen , 1 1Cri teri cal Eval uation of Asses s ­ment Methods for Head Impact Appl i ed i n Appra i sa l of Bra i n Injury Hazard , I n Part i cu l a r i n Head Impact on Wi ndsh ie l ds , 1 1 I nternat i onal Automobi l e Safety Conference Compend i um , 1 97 0 , Paper 700426 , Soci ety of Automotive Engi neers , I nc . , New York , pp . 280-301 , 1 968 .

20 ) S l attenschek , A . , W . Tauffki rchen and G . Bened i kter , 11The Quanti fi cation of Internal Head Inj ury by Means of the Phantom Head and the Impact Assessment Methods , 1 1 Pro c . 1 5th Stapp Conf . , pp . 742-766 , 1 972 .

2 1 ) Bri n n , J . and S . E . Staffel d , " Eval uation of Impact Test Accel erati ons : A Damage I ndex for the Head and Torso , 11 Proc . l 4th Stapp Conf . , November 1 7- 1 8 , 1 970 , Paper 700902 , Soci ety of Automotive Engi neers , I nc . , New York , pp . 1 88-202 , 1 970 .

22) Fan , W . R . S . , 1 1 I nternal Head Inj ury Assessment , 11 Proc . 1 5th Stapp Conf „ pp . 645-66 5 , 1 972 .

23 ) Anzel i us , A . , 11The Effect of an Impact on a Spheri cal L i q u i d Mas s , 11 Acta . Path . M i crobio l . Scand . Suppl . 48 , pp . 1 53-1 59 , 1 943 .

24) Gutti nger , W . , "Der Stosseffekt aufeine Fl uss i gkei ts kugel a l s Grundl age ei ner Phys i kal i schen Theori e der Entstehung von Gehi rnverl etzungen . Z . Naturf . AS , pp . 622-628 , 1 950 .

2 5 ) Gol dsmi th , W . , 1 1The Phys i ca l Processes Produc i ng Head Injury , 1 1 Proc . Head Injury Conf . , L 1 ppi ncott , pp. 350-382 , 1 966 .

26 ) Engi n , A . E . , 1 1The Axi symmetri c Response o f a Fl u i d-Fi l l ed Spheri cal Shel l to a Local Rad ia 1 Impul se-A Model for Head Injury , 11 J . of B io­mechan i cs , Vol . 2 ,No . 3 , pp . 325-341 , 1 969 .

27 ) L i u , Y . K . , H . S . Chan and J . A . Nel son , 1 1 I ntracrani al Pressur.e Wave Pro­pagati on i n Head Impact , 1 1 Proc . Summer Computer S i m . Conf . , pp . 984-994 , 1 97 1 .

28) Cha n , H . S . , 1 1The Asymmetri e Response of a Fl ui d-fi l l ed Spheri cal Shel l ­A Mathematica l S i mu l ation of Head Injury , 11 Ph . D . D i s sertati on , Tul ane U . , New Orl eans , La . , 1 97 1 .

29 ) Bened i c t , J . V . , Harri s , E . H . and 0 . H . Von Rosenberg , "An Analyt ica l Invest i gati on of the Cavi tation Hypothes i s of Bra i n Damage , 11 J . of Bas i c Engr . , Vo1 . 9 2 , No . 3 , pp . 597 -603 , 1 970 .

30) Hi ckl i n g , Robert and M . L . Wenner , 11Mathemati cal Model of a Head Subject­ed to an Axi symmetri c Impact , 11 J . of B i omechan i cs ,Vol . 6 ,No . 2 , pp . 1 1 5- 1 32 , 1 973 .

31 ) Kenner , V . H . and W . Gol dsmi th , " Impact on a S impl e Phys i ca l Model of the Head , 1 1 J . of Bi omechan ics , Vol . 6 , No . l , pp . 1 -1 2 , 1 973 .

32) Gras s , A . G . , " Impact Thres hol ds of Bra i n Concu s s i on , 11 J . Am . Med . , Vol . 29 , pp . 725-732 , 1 958 .

33 ) Unterharnschei dt , F . and K . Sel l i er, " C l osed . Bra i n Injuries : Mechan ics and Pathomorphol ogy , 11 Proc . Head Injury Conf . , L i ppi ncott , pp . 32 1 - 341 , 1 966 .

34) L i ndgren , Sten 0 . , " Experimental Studies of Mechan ica l Effects i n Head Injury , 11 Acta Chi r . Scand . Suppl . 360 , 1 966 .

35) Kopecky , J . A . and E . A . Ri pperger , 1 1Cl osed Bra i n Injuries : An Engi neer­i ng Analys i s , '' J . of Bi omechani cs , Vol . 2 , No . l , pp . 29-34 , 1 969 .

2 5 1

TABLE 1 RESULTS OF RHESUS MONKEY HEAD IMPACTS AND IMPEDANCE TESTS

D i recti on Pul s e Model Constants Mean of Head Accel eration Durati on Stra i n Imoact (G ' s) (msec) wl k c w2 E:

Front 1 800 3 . 6 . 051 39 , 000 1 . 6 1 . 1 0 . 032

Si de 1 500 2 . 8 . 040 33 , 000 2 . 1 1 . 0 0 . 032

Top 980 7 . 0 . 030 1 8 , 000 1 . 2 0 . 9 0 . 032

Back 1 000 3 . 4 . 035 20 , 000 2 . 9 1 • 1 0 . 032

TABLE 2 SUMMARY OF HEAD INJURY INDICE COMPARI SONS

Accel . Pul se H IC Dura- Dura- Aver .

Pul se t ion Peak t i on Accel . r . D . {msec} (g' s} GSI {msec} {g' s} HIC JTI RBM EDI MSC Sine 1 0 1 00 4S8 7 . 8 83 41 S 0 . 8S3 0 . 1 46 . 0039 Tri ang 1 0 1 00 286 S . 7 72 247 0 .691 0 . 1 1 8 .004S Square 1 0 1 00 1 000 1 0 . 0 1 00 1 000 1 . 026 0 . 1 72 . 0061

22 1 28 1 62 1 1 70 40 49 680 0 . 749 0 . 909 0 . 1 20 . 0037 23 l OS 207 1 609* 4 l 2S 702 1 . 087* 0 . 90S 0 . 1 80 . 0053 24 1 87 1 44 922 33 S4 704 0 � 7 1 8 0 . 950 0 . 1 23 . 0027

-0 2S 1 88 1 09 7 1 7 28 S2 SS5 0 . 683 0 . 937 0 . 1 1 1 .0039 .--26 1 82 1 1 1 825 43 45 597 0 . 764 0 . 934 0 . 1 22 . 0028 Q)

.,... ...c 41 1 87 248 2080* 38 61 1 082* 1 . 1 1 7* 0 . 890 0 . 1 82 . 0056 \/l c:( -0 42 2 1 1 290 3066* 2 254 2057* 1 . 608* 1 . 283* 0 . 269* . 0065* s:: \/l .,... \/l 43 202 l SO 91 7 46 47 71 6 0 . 668 0 . 741 0 . 1 09 . 0041 3 '°

.-- 44 2SO 1 1 7 l l S4 32 S9 841 0 . 839 0 . 863 0 . 1 37 .0033 :;:.., u E 4S 2SO 1 1 1 82S 1 8 66 644 0 . 901 1 . 098 0 . 1 47 .0037 E ::J Cl

-0 1 1 300 4 1 8 2229* 36 7S 1 273* 1 . 01 8* 1 . 373* 0 . 1 64 .0046 .--Q) 1 2 l S5 1 51 1 020 50 46 701 0 . 721 0 . 909 0 . 1 1 5 . 0030 .,... ...c 1 3 1 53 1 74 1 1 94 24 68 903 0 . 81 2 1 . 087 0 . 1 30 . 0028 \/l CO -0 21 l OS 1 50 l 27S l S 61 438 0 . 922 0 . 940 0 . 1 53 . 0038 s:: \/l .,... \/l 31 88 85 39S 43 31 232 0 . 603 0 . 685 0 . 1 00 . 001 8 3 '°

.-- 32 62 S8 400 31 42 3SS O . S27 0 . 733 0 . 088 . 0024 >,U � 47 2SO 98 1 577* 34 69 1 360* 0 . 9 1 3 0 . 1 1 6 0 . 1 46 . 0060 ::J Cl O'> '° 51 1 62 80 1 246 26 60 7 1 8 0 . 79S 1 . OSl 0 . 1 30 . 0047 CO S- S3 1 67 66 91 S 1 2 49 544 0 . 666 0 . 858 0 . 1 07 . 0038

.,... S4 1 89 S6 697 36 41 392 O . S68 0 . 782 0 . 092 . 0029 c:( s:: \/l s s 1 69 7S 1 249 30 S5 682 0 . 759 0 . 980 0 . 1 22 . 0043 '° .µ S7 l S4 76 1 324 26 61 76S 0 . 764 0 . 997 0 . 1 22 . 0043 E \/l ::J Q) 58 1 73 7Q 1 21 2 24 63 763 0 . 798 1 . 059 0 . 1 28 . 0044 :c 1--

S9 1 87 78 1 224 28 S9 751 0 . 783 1 . 031 0 . 1 26 . 0041 s:: '° SB 1 59 78 1 446 30 61 875 0 . 754 1 .Ol l 0 . 1 20 . 0044 E 0 SC 1 54 67 1 077 1 26 29 563 0 . 666 0 . 866 0 . 1 09 . 0038 .--

.--0 :c

S- SA 1 47 78 1 305 1 24 34 848 0 . 683 0 . 892 0 . 1 1 0 . 0042 .,... c:( S2 1 58 65 987 1 22 29 546 0 . 628 0 . 81 9 0 . 1 02 . 0036 � E O'>

S6 1 44 7 1 1 394 1 24 34 832 0 . 7 1 6 0 . 975 0 . 1 1 6 . 0041 ::J '° Cl CO

*Exceeds tol erab l e val ue of appl i cab l e cri teri on .

2 5 3

. ·. �

Dummy Wi nd-s h i e l d Tests

C l as s ' A '

Dummy W i nd-s h i e l d Tests

C l as s ' B '

Ho 1 1 o-man A ir Bag Tests

Human

Ho l l o­man A i r Bag : Dummy

TABLE 3 COMPARISON OF NORMAL IZED HEAD I NJURY INDICES

TEST I . D .

22 23 24 25 26 41 42 43 44 45

1 1 1 2 1 3 2 1 3 1 32 47

5 1 5 3 54 55 57 58 59 58 5C

52 56 SA

S I HIC

. 780 0 . 680 1 . 073 0. 702

. 6 1 4 0 . 704

. 478 0. 555

. 550 0 . 597 1 . 386 1 . 082 2 . 043 2 . 0 57

. 6 1 1 0 . 7 1 6

. 769 0 . 841

. 550 0 . 644

l . 485 l . 273 . 680 0 . 701 . 746 0 . 903 . 850 0 . 438 . 263 0 . 232 • 267 0 . 355

1 . 051 l . 360

. 831 0 . 7 1 8

. 61 0 0 . 544

. 46 5 0 . 39 2

. 832 0 . 682

. 882 0 . 765

. 808 0 . 763

. 81 6 0 . 7 5 1 • 964 0 . 87 5 . 71 8 0 . 563

. 658 0 . 546

. 929 0 . 832

. 870 0 . 848

JTI

0 . 749 1 . 087 0 . 7 1 8 0 . 683 0 . 764 1 . 1 1 7 1 . 608 0 . 668 0 . 839 o. 901

l . 0 1 8 o . 721 0 . 8 1 2 0 . 922 0 . 603 0 . 527 0 . 9 1 3

0 . 79 5 0 . 666 0 . 568 0 . 759 0 . 764 0. 798 0 . 783 0 . 7 54 0 . 666

0 . 628 0 . 7 1 6 0 . 683

RBM

0 . 727 0 . 724 0 . 760 0 . 750 0 . 747 0 . 7 1 2 1 . 026 0. 593 0 . 690 0 . 878

l . 098 0 . 727 0 . 870 0 . 752 0 . 548 0 . 586 0 . 893

0 . 841 0 . 686 0 . 627 0 . 784 0 . 798 0 . 847 0 . 825 0 . 809 0 . 693

0 . 655 0. 780 0 . 7 1 4

ED I

0 . 600 0 . 900 0 . 6 1 5 0 . 555 0 . 6 1 0 0 . 9 1 0 1 . 345 0 . 545 o. 685 0 . 735

0 . 820 0 . 575 0 . 650 0 . 76 5 0 . 500 0 . 440 0 . 81 1

o . 722 0 . 59 4 o . 5 1 1 0 . 677 0 . 677 0 . 7 1 1 0 . 700 0 . 666 0 . 605

0 . 566 0 . 644 o . 61 1

MSC

0 . 607 0 . 869 0 . 443 0 . 639 0 . 459 0 . 9 1 8 1 . 066 0 . 672 0 . 54 1 0 . 607

0 . 7 54 0 . 49 2 0 . 459 0 . 623 0 . 295 0 . 393 0 . 983

o . 770 0 . 623 0 . 47 5 0 . 705 0 . 705 0 . 721 0 . 672 o . 721 0 . 623

0 . 590 0 . 672 0 . 689

.06

c ' .S .05

z .04 <i a: 1-

.03 U> z <l w .02 :::E

.01

0

0

Rigid lmpactor

A

--1 J

ESI

o 1 No lnjury

• 2 A 3

o 5 Fatal

� 1 � D 1 &

_ _ _ _ _A _ _ _ _ _ _ _ _ _ _

• '! • .t>. 1 TOLERABLE MEAN STRAIN

0 LI & t = 0.0320 in/in • •• f' 1 o

•o

• o

o e 1 • • • o

1 2

1 3

1 4

1 0 0

1 1 5

00

1 . 6

1 7

PULSE DURATION (msec)

1 8 1 9

1 10

Fi gure 1 . MSC Stra i n Level s for Rhesus Head Impacts Vari ab l e Di rection and Pul se Duration .

. 016

0(5) .014 0(5) 0 HUMAN CAOAVER IMPACTS WITH ESTIMATEO

o(5) SEVERITY OF INJURY ( )

0(5) A COLONEL STAPP VOLUNTEER SLEO RUNS

.012

:s 0(5) • HUMAN VOLUNTEER SLEO RUNS ' ! .010 (/) "' 3 ;; .008

z 0(3)

C( 0:: TOLERABLE MEAN STRAIN c • 0.0061 in/in 1- .006 (/)

0 (/) � :i; l .004 0(2) •

0(2) 0 ( 1 ) • . 002 0 ( 1 ) " "

0 ( 1 ) " 0

50 100 500 1000 2000

PULSE DURATION (msec)

Fi gure 2 . Mean Stra i n Criterion for Humans vs Pul se Durati on .

2 5 5

t - 180 � 1 : :� f +180 1000

s,,„,"e 500 /6/ ... � L 100

50

10 ö � 5 r" } 1

0.5

0.1

.--.--�--.,,.---��---�--,,��----..-,��-.--�

10 50 100 500 1000 Frequency, hertz

'>

\0 o� ,..,,.

ll'o•'· Q) p'>

5000

Fi gure 3 . Mechani cal Impedance of Rhesus Monkey Head .

F i gure 4 . Cri t i cal Accel eration Surface for Rhesus Monkey , lnjury I ndex = 3 .

H.S.R.I. Cadaver Tests (no skull fractures): A Rigid Striker

3000 D. Padded Striker

� '2 1000 :>

• Human Volunteer Runs 0 Wayne State Cadaver Test (skull fracture)

1 cn 500 c ·� l:! ..!! GI V 100 V <

lnjury c Index (in/in) - 5 .00964 - 4 .00787 - 3 .00610 - 2 .00433

GI so � - 1 .00256 . . . GI cl

10 0.6 5 10 50 100 200

Pulse Duration (msec)

Fi gure 5 . Mean Stra i n Cri teri on for Humans , Sagi ttal Pl ane Loadi ng .

S I H I C J T I R B M E D I MSC HIAO INJUU J • TOUIANCE ltf\llSEO lltAIN UHCTIVE MAX IM.UM SllAIN

SIVUITY INOIX CllTUION INDEX MOO(l Ol"lACIMENJ INOIX CltlTU:ION

IGADDI I VlllSACI 1. NHUA l ISlATU NSCH l l( I 1 FAN ) l llUNN) ( SlAlNAKfl)

. ' . Weighted lmpvlu Weighted Impulse � � a� 93+8 ol oltl

SI = f fam]'" dt •

11"'' III tHDllth

Au. I" 1-1111iti

s1,,, = 1000

ol olfl

Let ö -{�[l)lt "-Tl."='iJ

H I C = r„1, a„ c1,1,) t �-· · � 0( t,( 11( T

HIC1,1= 1000

l�l w,• .JkTm (roill1H

ß • c/c<

W,•635. ß ' 1 .0

J = � � O.Ot2S • h•

J101 ::= LO

1 ' . X(I)

'

----1 W,' 175. ß .o.4

�·� ,,, ,,, -lU.3 .fc ! 1.:U in

: ( ' lWI �- · -:

W,•482. ß ' 0.707

�� � 1 0.2 .„ _J

< l(ll) ,----

m,,0.6 llbtl

m,,10.0 Ob1I

c ' 2.0 (lb •••i„J

k ,50 000. 1 „ ,.,

c = x,..o./l

HUMAN: l ; S,1S i11IA·":

C101" 0.0061 ;„ ;„

Fi gure 6 . Summary o f Head Injury Cri teri a .

2 5 7

VI ... u ö z >-°' ::::> ..... a; Q c ... ::c Q ... .... ::; c � °' 0 z

x:Windshield o•Airbag

1 . 8

1.4

1 .0 . . :1 •• . • • 1 • . . . · � ;l +i : . '

�1 y� • • . . 0.6 �. 1 8• • . . � . . . � · . . „ . .. .

0.2 S I H I C J T I RBM E D I MSC

F igure 7 . Compari son of Head I nj u ry Cri teri a .