Review of HAARP Experiment and Assessment of Ionospheric ......Third ALOS PI Symposium Kona, Hawaii...

29
Third ALOS PI Symposium Kona, Hawaii November 9-13, 2009 Review of HAARP Experiment and Assessment of Ionospheric Effects T. L. Ainsworth 1 , Y. Wang 1 , J.-S. Lee 1,2 and K.-S. Chen 2 1 Naval Research Laboratory, Washington DC, USA 2 CSRSR, National Central University, TN (ROC)

Transcript of Review of HAARP Experiment and Assessment of Ionospheric ......Third ALOS PI Symposium Kona, Hawaii...

Third ALOS PI Symposium Kona, Hawaii

November 9-13, 2009

Review of HAARP Experiment and

Assessment of Ionospheric Effects

T. L. Ainsworth1, Y. Wang1, J.-S. Lee1,2

and K.-S. Chen2

1Naval Research Laboratory, Washington DC, USA2CSRSR, National Central University, TN (ROC)

2

Objectives

Determine ionospheric effects on PALSAR polarimetry

Develop ionosphere correction methods

Faraday rotation compensation

Assess required compensation tolerances

Based on desired polarimetric capabilities

Employ SAR to measure ionosphere properties

High resolution ionospheric measurements

3

TEC Effects on SAR

( )∫≈path

electron xdxnTEC

Sat

ellit

e A

ltitu

de ~

700k

m

Ionosphere F2 Layer Alt. ~300km

First-Order Effects on Pol. SAR:

Faraday Rotation ∝

TEC Value

Azimuth Shifts ∝

TEC Gradient

Total Electron Content,

θ

TEC Varies Diurnally and with Solar Sunspot Cycle

Ionosphere TEC Causes

Refraction, θ

Faraday Rotation

4

HAARP Experiment Concept

Generate artificial “TEC hole”

in ionosphere–

Use HAARP high power HF transmitter

Frequency: 3-10 MHz, Max Power: ~3.6 Mw

Synchronize with PALSAR quad-pol collect –

Image through artificially disturbed ionosphere

Compare with ionosphere electron density –

Ground based measurements

Tomographic

electron density information

High-frequency Active Auroral

Research Program

5

Observational Difficulties

Coordination of experimental conditions–

HAARP HF radar schedule

PALSAR quad-pol imagery collects

Naturally occurring phenomena•

Sufficient TEC levels

Solar activity affects the ionosphere–

Near the minimum of the 11 year solar cycle

Primary problems: –

Insufficient electron density

Limited observational opportunities

6

Opportunistic Observations

Naturally occurring ionospheric irregularity

Serendipity, or

Choose a good location –

Frequent ionosphere disturbances

Sufficient TEC variability

Frequent PALSAR quad-pol collects

Complementary, ground based dataset•

E.g. TEC / electron density mapping

7Google Earth |HH-VV|, |HV+VH|, |HH+VV| Faraday Rotation

PALSAR

PALSAR Quad-pol ImageryNear Gakona, Alaska (April 1, 2007)

8

Tomographic

Imaging Data

Ionosphere measurements taken at HAARP show spatial and day-to-day electron density variability

Quiet Day

31 March 2007; 0718 –

0736 UTC

59 62 65 68 71

Geomagnetic Latitude Nelec

[1011

e/m3]

Disturbed Day

1 April 2007; 0757 –

0814 UTC

59 62 65 68 71

Geomagnetic Latitude Nelec

[1011

e/m3]

High-frequency Active Auroral Research Program

9Faraday Rotation

Azimuth Profile of Faraday Rotation

Irregularity

Mean = 2.98127°

Polarimetric Faraday Effect

10

Observational Outlook

Better opportunities in the near-term–

Solar cycle is (should be) heading toward a maximum•

Increased free electron density –

increased TEC

Increased TEC variability

Opportunistic ionosphere observations –

Good solution at specific test sites•

Assuming routine quad-pol image collection

HAARP concept is feasible provided–

Well coordinated data collection plan•

PALSAR quad-pol imagery, HAARP HF radar, etc.

11

Faraday Compensation

How much does TEC affect SAR polarimetry?

Assess polarimetric effects on derived products

Treat Faraday rotations as a miscalibrations

Can one compensate dual-pol imagery?

uncompensated

12

Faraday Effects

Faraday rotation affects polarimetric calibration

Generates non-reciprocal SAR returns

Circular basis: Phase of RL·LR* correlation

Non-unique cross-talk / Faraday separation

Cross-talk induces non-reciprocal returns •

Affects RL·LR* correlations

PALSAR: cross-talk level not an issue

13

Faraday Rotation Estimation

⎥⎦

⎤⎢⎣

⎡ΩΩ−ΩΩ

⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡ΩΩ−ΩΩ

=⎥⎦

⎤⎢⎣

⎡cossinsincos

cossinsincos

vvhv

hvhh

vvvh

hvhh

SSSS

OOOO

Estimate

Faraday rotation, Ω, in the circular basis–

Well-defined –

based on second-order statistics–

Insensitive to target orientation angles –

Insensitive to scattering mechanisms in the scene

)]([21

vvhhvhhvRL OOjOOO ++−=

)]([21

vvhhhvvhLR OOjOOO ++−=

( )444

1 ππ≤Ω≤−−=Ω with*

LRRLOOArg

14

Faraday Rotation Matrix

where γ

= tan Ω, and Ω

is the Faraday rotation angle

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

−−

−−

−−

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

ΩΩΩΩΩ−Ω−

ΩΩ−ΩΩΩΩ−

ΩΩΩΩΩΩ

Ω−ΩΩΩΩ−Ω

=

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

VV

VH

HV

HH

VV

VH

HV

HH

VV

VH

HV

HH

S

S

S

S

S

S

S

S

O

O

O

O

1

1

1

1

cossincossincossin

sincoscossinsincos

sincossincossincos

sinsincossincoscos

2

2

2

2

22

22

22

22

γγγ

γγγ

γγγ

γγγ

⎥⎦

⎤⎢⎣

⎡ΩΩ−ΩΩ

⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡ΩΩ−ΩΩ

=⎥⎦

⎤⎢⎣

⎡cossinsincos

cossinsincos

vvhv

hvhh

vvvh

hvhh

SSSS

OOOO

15

⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡ΩΩ−Ω+Ω

⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡ΩΩ−Ω+Ω

⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

VVVH

HVHH

VVVH

HVHH

VVVH

HVHH

VVVH

HVHH

tttt

SSSS

rrrr

OOOO

cossinsincos

cossinsincos

⎥⎥⎥⎥

⎢⎢⎢⎢

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

−−

−−−−

⎥⎥⎥⎥

⎢⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

−−

VV

VH

HV

HH

VV

VH

HV

HH

SSSS

k

k

zuuzvuvuwwzzvwwv

OOOO

11

11

11

11

2

2

2

2

11

1

γγγγγγγγγγγγ

αα

αα

Full Calibration Model

where γ

= tan Ω, and Ω

is the Faraday rotation angle

Faraday rotations

destroy diagonal dominance of the [X][G][F] calibration matrix. γ

is not necessarily a small parameter.

X-talk, [X] Gain, [G] Faraday, [F]

T.L. Ainsworth, L. Ferro-Famil & J.-S. Lee, TGRS, vol. 44, 2006, pp. 994-1003.

16

Faraday Rotations

( )[ ]

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

−−

−−

−−

∝Ω

1

1

1

1

2

2

2

2

γγγ

γγγ

γγγ

γγγ

F

where γ

= tan Ω, and Ω

is the Faraday rotation angle

Faraday rotation and cross-talk matrices are similar

Faraday rotations affect cross-talk calibration−

Setting z = -u = -v = w and cross-talk generates “Faraday rotation”

[ ]⎥⎥⎥⎥

⎢⎢⎢⎢

11

11

zuuzvuvuwwzzvwwv

X

where u, v, w

and z

are the cross-talk coefficients

Cross-talk MatrixFaraday Rotation Matrix

17

Generic Error Metrics

Metrics should be simple

Similar metrics for point and distributed targets

Point targets metrics

Apply to scattering matrix formalism

Distributed target metrics

Apply to covariance / coherency matrices

18

Point Target Error Metric•

Define a point target metric to assess impacts of Faraday rotations and other polarization errors

( )Ω= FD( )( ) ( )

( )2

2

2

2

t

t

St

S SSID

Se

tt vecvec

maxvec

max−

=

Seek for the maximum normalized errors in the target space:

Evaluated as the induced norm:

( ) ( ) ( )( )

2

22

t

t4

S4 SSAID

AIDt vec

vecmax

−=−

Canonical targets display reciprocal scattering.Observations are not reciprocal due to Faraday rotations.

( )( ) ( )

( )2

2

2

2

t

t4

St

S SSAID

Se

tt vecvec

maxvec

max−

=⎥⎥⎥⎥

⎢⎢⎢⎢

=

1000

02121

0

0001

4A

Faraday correction

19

Evaluation•

The defined metric is used to evaluate the compromised polarimetric accuracy due to Faraday rotation.–

Worst case situation: quad-pol and several dual-pol modes

( )Ω− 212 cos

20

Error Evaluation

Cross-pol coupling increases significantly with Faraday rotation and orientation angle rotations

Induced cross-talk is the similar for orientation and Faraday rotations

To maintain a -20 dB measurement accuracy, the Faraday rotation should be compensated better than 3 deg, which translates to a cross-talk of -25 dB.

21

Distributed Target Metric•

Polarization synthesis determines the maximum error for all allowed combinations of transmitted and received polarizations

Synthesis bias is obtained from a general eigen problem,

where A4

restricts error maximization to reciprocal scattering

( )( ) ( )

( )vvmaxvv

vvmax HHH

vAΣAvHH

HHH

tHH 44

144

44

44

ADDΣAAΣAADDΣA

tt

t

==

This error metric represents a worst case scenario.

[ ] basis V)(H, linear

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

3001

0110

0110

1003

volumeC

22

Polarization SynthesisPredicted synthesis errors for typical natural targets.

⎥⎥⎥⎥

⎢⎢⎢⎢

−−

977130097

130150140

097140976

57130

571452

30452

.e.e.

e..e.

e.e..

oo

oo

oo

.j.j

.j.j

.j.j

⎥⎥⎥⎥

⎢⎢⎢⎢

−−

721180182

180170360

182360865

8146164

8144133

61644133

.e.e.

e..e.

e.e..

oo

oo

oo

.j.j

.j.j

.j.j

⎥⎥⎥⎥

⎢⎢⎢⎢

132070640

070841160

640160383

0102615

01027113

6157113

.e.e.

e..e.

e.e..

oo

oo

oo

.j.j

.j.j

.j.j

Sample covariance matrices drawn from PALSAR imagery

Urban Target

23

Pauli Basis Effects

Only the surface scattering component is affected.

Overall, the Pauli decomposition shows little change.

Pauli Display: Ω

= 0°

Pauli Display: Ω

= 10°

Double Bounce

|HH-VV|/√2 (dB)

Surface

|HH+VV|/√2 (dB)

Ω = 10°

|HH-VV|

|HV+VH|

|HH+VV|

24

Pauli Basis Effects

Only the surface scattering component is affected.

Overall, the Pauli decomposition shows little change.

Pauli Display: Ω

= 0°

Pauli Display: Ω

= 20°|HH-VV|/√2 (dB)

Double Bounce

|HH+VV|/√2 (dB)

Surface

Ω = 20°

|HH-VV|

|HV+VH|

|HH+VV|

25

Freeman-Durden Model

Even though the cross-pol power does not change, the Freeman-

Durden volume scattering is reduced to keep the model positive semi-definite.

Overall, Freeman-Durden shows more yellow, i.e. less blue.

Freeman-Durden Display: Ω

= 0°

Freeman-Durden Display: Ω

= 10°

Volume Scattering (dB)

Double Bounce (dB) Surface Scattering (dB)

Ω = 10°

26

Freeman-Durden ModelFreeman-Durden Display: Ω

= 0°

Freeman-Durden Display: Ω

= 20°

Even though the cross-pol power does not change, the Freeman-

Durden volume scattering is reduced to keep the model positive semi-definite.

Overall, Freeman-Durden shows more yellow, i.e. less blue.

Volume Scattering (dB)

Double Bounce (dB) Surface Scattering (dB)

Ω = 20°

27

Conclusions

Quad-pol PALSAR data provides precise Faraday rotation estimates–

L-band quad-pol imagery can be polarimetrically calibrated in the presence of Faraday rotations

Faraday effects on PALSAR polarimetry –

Surface scattering shows greatest effect, i.e. |HH+VV|–

Quad-pol imagery •

Appears to tolerate up to ~10°

of uncompensated Faraday rotation–

Freeman-Durden classification comparison–

Standard distributed targets analysis

Quad-pol easily compensated for Faraday rotations

Dual-pol imagery•

Circular transmit modes display smallest Faraday effects •

Linear transmit dual-pol modes strongly effected –

Especially for surface and double bounce scattering –

Linear dual-pol modes require better Faraday compensation

28

Thank you

29

Orientation Angle

( )[ ]

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

ΓΓΓΓ−Γ−ΓΓ−Γ−Γ

ΓΓ−Γ−

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

−−−−

−−

=

11

11

2

2

2

2

22

22

22

22

θθθθθθθθθθθθθθθθθθ

θθθθθθ

θ

cossincossincossinsincoscossinsincossincossincossincos

sinsincossincoscos

R

where Γ

= tan θ, and θ

is the orientation angle, a rotation about the line of sight.

Rotation, Faraday and Cross-talk matrices have similar forms

( )[ ]⎥⎥⎦

⎢⎢⎣

+

⎥⎥⎦

⎢⎢⎣

⎥⎥⎦

⎢⎢⎣

+=

θθ

θθ

θθ

θθθ

cossin

sincos

SS

SS

cossin

sincosS

VVVH

HVHH

[ ]⎥⎥⎥⎥

⎢⎢⎢⎢

11

11

zuuzvuvuwwzzvwwv

X( )[ ]

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

ΓΓΓ

Γ−Γ−Γ

Γ−Γ−Γ

ΓΓ−Γ−

1

1

1

1

2

2

2

2

θR ( )[ ]

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

−−

−−

−−

∝Ω

1

1

1

1

2

2

2

2

γγγ

γγγ

γγγ

γγγ

F

Rotation Faraday Cross-talk