Review of grain boundary structure • Diffusion paths in...

7
MIT 3.21 Spring 2001 © S.M. Allen Lecture 19 Monday, April 2 1 Previous lecture Today • Review of grain boundary structure • Diffusion paths in polycrystals • Regimes of grain boundary diffusion for stationary boundaries • Migration of a moving grain boundary diffusion source • Regimes of grain boundary “short-circuit” diffusion for stationary and moving boundaries • Some grain boundary diffusion mechanisms • Dislocation core structure and dislocation “short circuits” • Some phenomena where short-circuits are important

Transcript of Review of grain boundary structure • Diffusion paths in...

  • MIT 3.21 Spring 2001 © S.M. Allen Lecture 19 Monday, April 2 1

    Pre

    vio

    us

    lect

    ure

    To

    day

    • Review of grain boundary structure

    • Diffusion paths in polycrystals

    • Regimes of grain boundary diffusion for stationary boundaries

    • Migration of a moving grain boundary diffusion source

    • Regimes of grain boundary “short-circuit” diffusion for stationary and

    moving boundaries

    • Some grain boundary diffusion mechanisms

    • Dislocation core structure and dislocation “short circuits”

    • Some phenomena where short-circuits are important

  • MIT 3.21 Spring 2001 © S.M. Allen Lecture 19 Monday, April 2 2

    • Steady-state migration of a moving boundary diffusion source

    Diffusion with respect to a frame at the interface migrating at velocity v :

    which has the solution

    −∇⋅J = −d

    dx−DL

    dc

    dx−νc

    =0

    c = c0 exp −v DL( )x[ ]

  • MIT 3.21 Spring 2001 © S.M. Allen Lecture 19 Monday, April 2 3

    Incr

    easi

    ng

    bo

    un

    dar

    y m

    igra

    tio

    n

    Increasing lattice diffusional transport

    • Regimes of grain boundary “short-circuit” diffusion for stationary and moving boundaries

  • MIT 3.21 Spring 2001 © S.M. Allen Lecture 19 Monday, April 2 4

    • Mechanism of grain boundary diffusion (continued)

    Dislocation short-circuit diffusion (continued)

    Ring mechanism:

    Vacancy mechanism:

    Figure 8.18 Schematic rep-resentation of rotational ‘ring’mechanism for grain bound-ary diffusion. In the sequence(a ) → ( b ) , t he ma rked(shaded) atom replaces atom8, 8 replaces 7, and 7 replac-es the marked atom (Suttonand Balluffi 1995, p. 492).

    Figure 8.19 Schematic rep-resen ta t i on o f vacancyexchange mechanism forgrain boundary diffusion. Inthe sequence (a) → (b), themarked ( shaded ) a t omexchanges places wi th aneighboring vacancy (Suttonand Balluffi 1995, p. 493).

  • MIT 3.21 Spring 2001 © S.M. Allen Lecture 19 Monday, April 2 5

    • Mechanism of grain boundary diffusion (continued)

    Vacancies and self-interstitials in grain boundary diffusion

    Figure 9.9 Atom jumping events insymmetric tilt boundary in BCC-Fe calculated bymolecular dynamics using pair potential model. Theratios of the scales used in the drawing are

    5 001 310∑ ( )

    1 30[ ] : 310[ ]: 001[ ] = 1:1: 5

    vacancy trajectory, con-fined to grain boundarysites

    vacancy/interstitialpair creation

  • MIT 3.21 Spring 2001 © S.M. Allen Lecture 19 Monday, April 2 6

    • Dislocation short-circuit diffusion

    Dislocations, especially edge dislocations, can act asshort-circuit diffusion paths.

    Dissociated dislocations have cores that are more spread out,connected by a ribbon of stacking fault:

    r b

    ˆ t

    AB

    AB

    r b =

    a

    21 10[ ]

    ˆ t = 1 1 2[ ] 6111( ) plane

    ˆ t

    A BA

    CA B

    ˆ t

    r b 1 =

    a

    62 11[ ]

    r b 2 =

    a

    61 21 [ ]

    (b)(a) Perfect dislocation Dislocation dissociatedinto partials

    (Allen and Thomas 1999, p. 324)

    • Surface short-circuit diffusion

  • MIT 3.21 Spring 2001 © S.M. Allen Lecture 19 Monday, April 2 7

    • Some practical phenomena where these short-circuit diffusion paths

    are important

    Sintering

    “Coble” creep

    Superplasticity