Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y r=|z|

16
Review of Complex numbers 1 Exponential Form: = + = = | | Rectangular Form: Real Imag x y f r=|z|

Transcript of Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y r=|z|

Page 1: Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y  r=|z|

Review of Complex numbers

1

Exponential Form:

𝑧=π‘₯+ 𝑖𝑦 𝑧=π‘Ÿ π‘’π‘–πœ™=|𝑧|𝑒𝑖 πœ™Rectangular Form:

Real

Imag

x

y

f

r=|z|

𝑧

Page 2: Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y  r=|z|

𝑅𝑒 (𝑧 )=π‘₯

πΌπ‘š (𝑧 )=𝑦

The real and imaginary parts of a complex number in rectangular form are real numbers:

Real

Imag

x=Re(z)

y=Im(z)

𝑧

π‘₯+ 𝑖𝑦=𝑅𝑒 (𝑧 )+π‘–πΌπ‘š(𝑧)

Therefore, rectangular form can be equivalently written as:

Real & Imaginary Parts of Rectangular Form

Page 3: Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y  r=|z|

Real

Imag

x

f

r=|z|

𝑧

The real and imaginary components of exponential form can be found using trigonometry:

cosπœ™=π‘Žπ‘‘π‘—h𝑦𝑝

=π‘₯π‘Ÿ

Geometry Relating the Forms

y

Real

Imag

f

r=|z|

𝑧

sin πœ™=π‘œπ‘π‘h𝑦𝑝

=π‘¦π‘Ÿ

π‘₯=π‘Ÿ cosπœ™

𝑦=π‘Ÿ sin πœ™

β†’

β†’

Page 4: Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y  r=|z|

πΌπ‘š (𝑧 )=𝑦=π‘Ÿ sin πœ™=|𝑧|sin πœ™

Geometry Relating the Forms: Real & Imaginary Parts

Real

Imag

πœ™

r=|z|

𝑧The real and imaginary parts of a complex number can be expressed as follows:

Page 5: Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y  r=|z|

Geometry Relating the Forms: Quadrants

In exponential form, the positive angle, , is always defined from the positive real axis. If the complex number is not in the first quadrant, then the β€œtriangle” has lengths which are negative numbers.

cosπœƒ=π‘Žπ‘‘π‘—h𝑦𝑝

=ΒΏ π‘₯∨ ΒΏπ‘Ÿ

ΒΏ

Real

Imag

x

y

f

r=|z|

𝑧

πœƒ

π‘₯=βˆ’π‘Ÿ cosπœƒ=π‘Ÿ cosπœ™Real

Imag

π‘₯>0𝑦>0

π‘₯>0𝑦<0

π‘₯<0𝑦<0

π‘₯<0𝑦>0

Page 6: Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y  r=|z|

Real

Imag

x

y

r=|z|

𝑧

π‘Ÿ2=|𝑧|2=π‘₯2+𝑦 2

Use Pythagorean Theorem

π‘Ÿ=|𝑧|=√π‘₯2+𝑦2

to find in terms of and :

Geometry Relating the Forms: in terms of and

Page 7: Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y  r=|z|

Geometry Relating the Forms: in terms of and

tanπœ™= π‘Ÿ sin πœ™π‘Ÿ cosπœ™

=πΌπ‘š(𝑧)𝑅𝑒(𝑧)

= 𝑦π‘₯

Real

Imag

x

y

f

r=|z|

𝑧

tanπœƒ=π‘œπ‘π‘π‘Žπ‘‘π‘—

adj

opp

πœƒ

hypUse trigonometry

to find in terms of and

πœ™=tanβˆ’1( 𝑦π‘₯ )

Page 8: Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y  r=|z|

Summary of Algebraic Relationships between Forms

Real

Imag

x

y

f

r=|z|

𝑧 π‘₯=π‘Ÿ cosπœ™

𝑦=π‘Ÿ sin πœ™

π‘Ÿ=|𝑧|=√π‘₯2+𝑦2

πœ™=tanβˆ’1( 𝑦π‘₯ )

Page 9: Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y  r=|z|

π‘’π‘–πœ™=cosπœ™+ 𝑖 sinπœ™

Euler’s Formula

Page 10: Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y  r=|z|

𝑧=π‘₯+ 𝑖𝑦

ΒΏπ‘Ÿ cosπœ™+π‘–π‘Ÿ sin πœ™=|𝑧|cosπœ™+𝑖|𝑧|sin πœ™

)

ΒΏπ‘Ÿ π‘’π‘–πœ™=ΒΏ π‘§βˆ¨π‘’π‘–πœ™

Rectangular Form:

Exponential Form:

Consistency argument

If these represent the same thing, then the assumed Euler relationship says:

𝑧=π‘₯+ 𝑖𝑦 𝑧=π‘Ÿ π‘’π‘–πœ™=ΒΏ π‘§βˆ¨π‘’π‘–πœ™

Page 11: Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y  r=|z|

11

π‘’π‘–πœ™=exp (π‘–πœ™ )=cosπœ™+𝑖 sinπœ™

Euler’s Formula

π‘’π‘–πœ” 0𝑑=exp (π‘–πœ”0𝑑)=cosπœ”0 𝑑+𝑖 sinπœ”0 𝑑

Can be used with functions:

Page 12: Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y  r=|z|

Addition and subtraction of complexnumbers is easy in rectangular form

12

Addition & Subtraction of Complex Numbers

𝑧1=π‘Ž+𝑖𝑏 𝑧 2=𝑐+𝑖𝑑

𝑧=𝑧1+𝑧 2=π‘Ž+𝑖𝑏  +𝑐+𝑖𝑑¿ (π‘Ž+𝑐)+𝑖 (𝑏+𝑑)  

Addition and subtraction are analogous to vector addition and subtraction

Real

Imag

ab

d

c

𝑧 2

𝑧1

οΏ½βƒ—οΏ½1=π‘Ž οΏ½Μ‚οΏ½+𝑏 οΏ½Μ‚οΏ½ οΏ½βƒ—οΏ½ 2=𝑐 οΏ½Μ‚οΏ½+𝑑 οΏ½Μ‚οΏ½

οΏ½βƒ—οΏ½= οΏ½βƒ—οΏ½1+𝑧 2=(π‘Ž+𝑐 ) οΏ½Μ‚οΏ½+(𝑏+𝑑) οΏ½Μ‚οΏ½

x

y

ab

d

c

οΏ½βƒ—οΏ½1

οΏ½βƒ—οΏ½1

οΏ½βƒ—οΏ½ 2

οΏ½βƒ—οΏ½

𝑧

Page 13: Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y  r=|z|

Multiplication of Complex Numbers

13

Multiplication of complex numbers is easy in exponential form

𝑧1=π‘Ÿ1𝑒𝑖 πœ™ 𝑧 2=π‘Ÿ2𝑒

π‘–πœƒ

𝑧=𝑧1 𝑧2=π‘Ÿ1𝑒𝑖 πœ™π‘Ÿ 2𝑒

𝑖 πœƒ

ΒΏπ‘Ÿ1π‘Ÿ2𝑒𝑖(πœ™+πœƒ )

ΒΏΒΏ 𝑧 1∨¿ 𝑧 2βˆ¨π‘’π‘–(πœ™+πœƒ )

Multiplication by a complex number, , can be thought of as scaling by and rotation by

Real

Imag

𝑧

π‘§π‘Ÿ 𝑒𝑖 πœƒ

πœƒMagnitude scaled by

Angle rotated counterclockwise by

Page 14: Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y  r=|z|

14

Division of Complex NumbersDivision of complex numbers is

easy in exponential form

𝑧1=π‘Ÿ1𝑒𝑖 πœ™ 𝑧 2=π‘Ÿ2𝑒

π‘–πœƒ

𝑧=𝑧1

𝑧2

=π‘Ÿ1𝑒

𝑖 πœ™

π‘Ÿ2𝑒𝑖 πœƒ  

ΒΏπ‘Ÿ1

π‘Ÿ2

𝑒𝑖(πœ™βˆ’πœƒ )

ΒΏΒΏ 𝑧 1∨¿

ΒΏ 𝑧2βˆ¨ΒΏπ‘’π‘–(πœ™βˆ’πœƒ )ΒΏΒΏ

Division of complex numbers is sometimes easy in rectangular form

𝑧=π‘Ž+𝑖𝑏𝑐+𝑖𝑑

ΒΏπ‘Ž+𝑖𝑏𝑐+ 𝑖𝑑

π‘βˆ’ π‘–π‘‘π‘βˆ’ 𝑖𝑑

ΒΏπ‘Žπ‘+𝑏𝑑+𝑖 (π‘π‘βˆ’π‘Žπ‘‘)

𝑐2+𝑑2

ΒΏ π‘Žπ‘+𝑏𝑑𝑐2+𝑑2 +𝑖

(π‘π‘βˆ’π‘Žπ‘‘)𝑐2βˆ’π‘‘2

¿𝑅𝑒(𝑧 )+π‘–πΌπ‘š(𝑧 )ΒΏβˆ¨π‘§βˆ¨π‘’π‘–(πœ™βˆ’πœƒ )

Multiply by 1 using the complex conjugate of the denominator

Page 15: Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y  r=|z|

Complex Conjugate

Another important idea is the COMPLEX CONJUGATE of a complex number. To form the c.c.: change i -i

𝑧=π‘₯+ π‘–π‘¦π‘§βˆ—=π‘₯βˆ’π‘– 𝑦

𝑧=π‘Ÿ π‘’π‘–πœ™

π‘§βˆ—=π‘Ÿ π‘’βˆ’ π‘–πœ™

Real

Imag

x

y

f

r=|z|

𝑧

π‘§βˆ—

The complex conjugate is a reflection about the real axis

Page 16: Review of Complex numbers 1 Exponential Form:Rectangular Form: Real Imag x y  r=|z|

The product of a complex number and its complex conjugate is REAL.

Common Operations with the Complex Conjugate

Addition of the complex number and its complex conjugate results in a real number

𝑧+π‘§βˆ—=π‘₯+ 𝑖𝑦+π‘₯βˆ’π‘–π‘¦ΒΏ2 π‘₯

𝑧 π‘§βˆ—=π‘Ÿ 𝑒𝑖 πœ™π‘Ÿ π‘’βˆ’π‘– πœ™

ΒΏπ‘Ÿ 2𝑒𝑖(πœ™βˆ’πœ™ )

ΒΏπ‘Ÿ 2

ΒΏΒΏ π‘§βˆ¨ΒΏ2 ΒΏ

Real

Imag

x

y

f

r=|z|

𝑧

π‘§βˆ—

x