- review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population -...

46
Biological Modeling of Neural Networks: Week 15 Population Dynamics: The Integral Equation Approach Wulfram Gerstner EPFL, Lausanne, Switzerland 15.1 Populations of Neurons - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity - renewal assumption 15.3 Populations with Adaptation - Quasi-renewal theory 15.4. Coupled populations - self-coupling - coupling to other populations Week 15 Integral Equation for population dynamics

Transcript of - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population -...

Page 1: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Biological Modeling

of Neural Networks:

Week 15 – Population Dynamics:

The Integral –Equation Approach

Wulfram Gerstner

EPFL, Lausanne, Switzerland

15.1 Populations of Neurons

- review: homogeneous population

- review: parameters of single neurons

15.2 Integral equation - aim: population activity

- renewal assumption

15.3 Populations with Adaptation - Quasi-renewal theory

15.4. Coupled populations

- self-coupling

- coupling to other populations

Week 15 – Integral Equation for population dynamics

Page 2: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Neuronal Dynamics – Brain dynamics is complex

motor

cortex

frontal

cortex

to motor

output

10 000 neurons

3 km of wire 1mm

Week 15-part 1: Review: The brain is complex

Page 3: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Homogeneous population: -each neuron receives input

from k neurons in the population

-each neuron receives the same

(mean) external input (could come from

other populations)

-each neuron in the population has roughly

the same parameters

Week 15-part 1: Review: Homogeneous Population

excitation

inhibition

Example: 2 populations

Page 4: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

I(t)

)(tAn

Week 15-part 1: Review: microscopic vs. macroscopic

microscopic:

-spikes are generated

by individual neurons

-spikes are transmitted

from neuron to neuron

macroscopic:

-Population activity An(t)

-Populations interact via

An(t)

Page 5: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

I(t)

)(tAn

Week 15-part 1: Review: coupled populations

Page 6: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Populations:

- pyramidal neurons in layer 5 of barrel D1

- pyramidal neurons in layer 2/3 of barrel D1

- inhibitory neurons in layer 2/3 of barrel D1

Week 15-part 1: Example: coupled populations in barrel cortex

Neuronal Populations = a homogeneous group of neurons

(more or less)

100-2000 neurons

per group (Lefort et al., NEURON, 2009)

different barrels and layers, different neuron types different populations

Page 7: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

-Extract parameters for SINGLE neuron (see NEURONAL DYNAMICS, Chs. 8-11; review now)

-Dynamics in one (homogeneous) population

Today, parts 15.2 and 15.3!

-Dynamics in coupled populations

-Understand Coding in populations

-Understand Brain dynamics

Sensory input

Week 15-part 1: Global aim and strategy

Page 8: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

ui

Spike emission

0

( ) ...s I t s ds

potential

ˆ

ˆt

t t tu

0

'

( ) ( ')t

t t t threshold

Input

I(t)

3 arbitrary

linear filters

Week 15-part 1: Review: Spike Response Mode (SRM)

Page 9: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

SRM +escape noise = Generalized Linear Model (GLM)

iui j

-spikes are events

-spike leads to reset/adapt. currents/increased threshold

-strict threshold replaced by escape noise:

spike

Pr [ ; ] ( ) [ ( ) ( )]firein t t t t t f u t t t

exp Jolivet et al., J. Comput. NS, 2006

Page 10: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

threshold

threshold

current

current

Input current:

-Slow modulation

-Fast signal

Pozzorini et al.

Nat. Neuros,

2013

Adaptation

- extends over several seconds

- power law

Page 11: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Adaptation current

Dyn. threshold

Mensi et al. 2012,

Jolivet et al. 2007

Week 15-part 1: Predict spike times + voltage with SRM/GLM

Page 12: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

threshold

current

current

Dynamic threshold

Dyn. Threshold

unimportant

Dyn. Threshold

VERY IMPORTANT

Fast Spiking Pyramidal N.

Different neuron types have different parameters

Dyn. Threshold

important

Non-fast Spiking

Mensi et al.

2011

Week 15-part 1: Extract parameter for different neuron types

Page 13: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

-We can extract parameters for SINGLE neuron (see NEURONAL DYNAMICS, Chs. 8-11)

-Different neuron types have different parameters

Model Dynamics in one (homogeneous) population

Today, parts 15.2 and 15.3!

Couple different populations Today, parts 15.4!

Sensory input

Week 15-part 1: Summary and aims

Eventually: Understand Coding and Brain dynamics

Page 14: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Biological Modeling

of Neural Networks:

Week 15 – Population Dynamics:

The Integral –Equation Approach

Wulfram Gerstner

EPFL, Lausanne, Switzerland

15.1 Populations of Neurons

- review: homogeneous population

- review: parameters of single neurons

15.2 Integral equation - aim: population activity

- renewal assumption

15.3 Populations with Adaptation - Quasi-renewal theory

15.4. Coupled populations

- self-coupling

- coupling to other populations

Week 15 – Integral Equation for population dynamics

Page 15: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

I(t)

Population of Neurons?

( )u t

Single neurons - model exists

- parameters extracted from data

- works well for step current

- works well for time-dep. current

Population equation for A(t)

Week 15-part 2: Aim: from single neuron to population

-existing models

- integral equation

Page 16: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

h(t)

I(t) ?

( ) ( ( )) ( ( ) ( ) )A t f h t f s I t s ds A(t)

A(t) ))(()( tIgtA

potential

A(t) ( ) ( ) ( ( ))d

A t A t f h tdt

t

tN

tttntA

);()(population

activity

Question: – what is correct?

Poll!!!

A(t) ( ) ( ( ) ( ) ( ) )A t g I t G s A t s ds

Wilson-Cowan

Benda-Herz

LNP

current

Ostojic-Brunel

Paninski, Pillow

Week 15-part 2: population equation for A(t) ?

Page 17: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Experimental data: Tchumatchenko et al. 2011

See also: Poliakov et al. 1997

Week 15-part 2: A(t) in experiments: step current, (in vitro)

Page 18: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

25000 identical model neurons (GLM/SRM with escape noise)

parameters extracted from experimental data

response to step current

I(t) h(t)

0

( ) ...s I t s ds

potential

'

't

t t tu

simulation data:

Naud and Gerstner, 2012

Week 15-part 2: A(t) in simulations : step current

Page 19: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Week 15-part 2: A(t) in theory: an equation?

Can we write down an equation for A(t) ?

Simplification: Renewal assumption

0

( )s I t s ds

Potential (SRM/GLM) of one neuron

'

't

t t tu

h(t) Sum over all past spikes

Keep only last spike

time-dependent renewal theory

Page 20: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Week 15-part 2: Renewal theory (time dependent)

( )h t

Potential (SRM/GLM) of one neuron

ˆt t tu

last spike

Keep only last spike time-dependent renewal theory

Page 21: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Week 15-part 2: Renewal model –Example

( ) ( )d

u F u RI tdt

f f

rif spike at t u t u

Example:

nonlinear integrate-and-fire model

deterministic part of input

( ) ( )I t u t

noisy part of input/intrinsic noise

escape rate

( ) ( ( )) exp( ( ) )t f u t u t

Example:

exponential stochastic intensity

t

Page 22: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

escape process A

u(t)

t

t

dtt^

)')'(exp( )ˆ( ttS I

Survivor function

t

)(t

))(()( tuft

escape rate

t

t

dttt^

)')'(exp()( )ˆ( ttPI

Interval distribution

Survivor function

escape

rate

)ˆ()()ˆ( ttStttS IIdtd

u

Week 15-part 2: Renewal model - Interspike Intervals

Page 23: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

t

t

dttt^

)')'(exp()( )ˆ( ttPI

Interval distribution

Survivor function

escape

rate

Week 15-part 2: Renewal model – Integral equation

population activity

ˆ ˆ ˆ( ) ( ) ( )

t

IA t P t t A t dt

Image:

Gerstner et al.,

Neuronal Dynamics, Cambridge

Univ. Press (2014)

Gerstner 1995, 2000; Gerstner&Kistler 2002

See also: Wilson&Cowan 1972

Blackboard!

Page 24: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Week 15-part 2: Integral equation – example: LIF

ˆ ˆ ˆ( ) ( ) ( )

t

IA t P t t A t dt

input

population of

leaky integrate-and-fire

neurons w. escape noise

simulation

Image: Gerstner et al., Neuronal Dynamics, Cambridge Univ. Press

exact for large population

N infinity

Page 25: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Biological Modeling

of Neural Networks:

Week 15 – Population Dynamics:

The Integral –Equation Approach

Wulfram Gerstner

EPFL, Lausanne, Switzerland

15.1 Populations of Neurons

- review: homogeneous population

- review: parameters of single neurons

15.2 Integral equation - aim: population activity

- renewal assumption

15.3 Populations with Adaptation - Quasi-renewal theory

15.4. Coupled populations

- self-coupling

- coupling to other populations

Week 15 – Integral Equation for population dynamics

Page 26: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

I(t)

Population of adapting Neurons?

( )u t

Single neurons - model exists

- parameters extracted from data

- works well for step current

- works well for time-dep. current

Population equation for A(t)

- existing modes

- integral equation

Week 15-part 3: Neurons with adapation

Real neurons show adapation on multipe time scales

Page 27: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

h(t)

I(t) ?

( ) ( ( )) ( ( ) ( ) )A t f h t f s I t s ds A(t)

A(t) ))(()( tIgtA

potential

A(t) ( ) ( ) ( ( ))d

A t A t f h tdt

t

tN

tttntA

);()(population

activity

A(t) ( ) ( ( ) ( ) ( ) )A t g I t G s A t s ds

Wilson-Cowan

Benda-Herz

LNP

current

Week 15-part 3: population equation for A(t) ?

Page 28: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

I(t)

Rate adapt.

( )( ) ( ( )) h tA t f h t e

optimal filter

(rate

adaptation)

Benda-Herz

Week 15-part 3: neurons with adaptation – A(t) ?

simulation

LNP theory

Page 29: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

I(t)

Population of

Adapting Neurons? ( )u t

1) Linear-Nonlinear-Poisson (LNP): fails!

2) Phenomenological rate adaptation: fails! 3) Time-Dependent-Renewal Theory ?

Week 15-part 3: population equation for adapting neurons ?

Integral equation of previous section

Page 30: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Spike Response Model (SRM)

ui

Spike emission

0

( ) ...s I t s ds

potential

ˆ

ˆt

t t tu

Input

I(t)

Pr [ ; ] ( ) [ ( ) ( )]firein t t t t t f u t t t

h(t)

1 2 3ˆ ˆ ˆ( ) ( | ( ), , , ,...)t t h t t t t

1̂t

Page 31: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

1 2 3ˆ ˆ ˆ ˆ( | ( ), , , ,...) ( | ( ), )t h t t t t t h t t

ˆ ˆ ˆ( ) ( | , ) ( )isiA t P t h t A t dt

interspike interval distribution

last firing

time

Gerstner 1995, 2000; Gerstner&Kistler 2002

See also: Wilson&Cowan 1972

Page 32: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Week 15-part 3: population equation for adapting neurons ?

Page 33: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

I

Rate adapt.

Week 15-part 3: population equation for adapting neurons ?

OK in late phase OK in initial phase

Page 34: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

I(t)

Population of

Adapting Neurons ( )u t

1) Linear-Nonlinear-Poisson (LNP): fails!

2) Phenomenological rate adaptation: fails!

3) Time-Dependent-Renewal Theory: fails!

4) Quasi-Renewal Theory!!!

Week 15-part 3: population equation for adapting neurons

Page 35: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

and

h(t)

Expand the moment

generating functional

1 2 3ˆ ˆ ˆ ˆ( | ( ), , , ,...) ( | , )t h t t t t t t A

g(t-s)

ˆ ˆ ˆ( ) ( | , ) ( )isiA t P t t A A t dt

Week 15-part 3: Quasi-renewal theory

Blackboard!

Page 36: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

I

Rate adapt. Quasi-Renewal

RA

OK in initial

AND late phase

Page 37: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

1 2 3ˆ ˆ ˆ ˆ( | ( ), , , ,...) ( | , )t h t t t t t t A ˆ ˆ ˆ( ) ( | , ) ( )isiA t P t t A A t dt

Week 15-part 3: Quasi-renewal theory

Image:

Gerstner et al.,

Neuronal Dynamics,

Cambridge Univ. Press

PSTH or

population activity A(t)

predicted by

quasi-renewal theory

Page 38: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

I(t)

Population of

Adapting Neurons? ( )u t

1) Linear-Nonlinear-Poisson (LNP): fails!

2) Phenomenological rate adaptation: fails!

3) Time-Dependent-Renewal Theory: fails!

4) Quasi-Renewal Theory: works!!!!

Week 15-part 3: population equation for adapting neurons

Page 39: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Biological Modeling

of Neural Networks:

Week 15 – Population Dynamics:

The Integral –Equation Approach

Wulfram Gerstner

EPFL, Lausanne, Switzerland

15.1 Populations of Neurons

- review: homogeneous population

- review: parameters of single neurons

15.2 Integral equation - aim: population activity

- renewal assumption

15.3 Populations with Adaptation - Quasi-renewal theory

15.4. Coupled populations

- self-coupling

- coupling to other populations

Week 15 – Integral Equation for population dynamics

Page 40: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Week 15-part 4: population with self-coupling

Same theory works

- Include the self-coupling in h(t)

00 0

( ) ( )s I t s ds J s A t s ds

Potential (SRM/GLM) of one neuron

'

't

t t tu

h(t)

J0

ˆ ˆ ˆ( ) ( | , ) ( )isiA t P t t A A t dt

Page 41: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Week 15-part 4: population with self-coupling

Image: Gerstner et al.,

Neuronal Dynamics, Cambridge Univ. Press

Page 42: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Week 15-part 4: population with self-coupling

Image: Gerstner et al.,

Neuronal Dynamics, Cambridge Univ. Press

J0

Page 43: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Week 15-part 4: population with self-coupling

instabilities

and oscillations

noise level

delay

stable asynchronous state

Image:

Gerstner et al.,

Neuronal Dynamics,

Cambridge Univ. Press

Page 44: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

Week 15-part 4: multipe coupled populations

Same theory works - Include the cross-coupling in h(t)

0 0

( ) ( )n n nk k k

k

s I t s ds J s A t s ds

Potential (SRM/GLM) of one neuron in population n

'

't

t t nu t

hn(t)

J11

J22

J21

J12

ˆ ˆ ˆ( ) ( | , ) ( )n isi n nA t P t t A A t dt

Page 45: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

-We can extract parameters for SINGLE neuron (see NEURONAL DYNAMICS, Chs. 8-11)

-Different neuron types have different parameters

Model Dynamics in one (homogeneous) population

Today, parts 15.2 and 15.3!

Couple different populations Today, parts 15.4!

Sensory input

Week 15-part 1: Summary and aims

Eventually: Understand Coding and Brain dynamics

Page 46: - review: homogeneous population Biological Modeling ...lcn · - review: homogeneous population - review: parameters of single neurons 15.2 Integral equation - aim: population activity

The end

Reading: Chapter 14 of

NEURONAL DYNAMICS,

Gerstner et al., Cambridge Univ. Press (2014)