Reverse Genetics - Part I

download Reverse Genetics - Part I

of 29

Transcript of Reverse Genetics - Part I

  • 8/2/2019 Reverse Genetics - Part I

    1/29

    Reverse Genetics of

    RNA Viruses

    Chang Won Lee, DVM, [email protected]

    Phone: 330-263-3750

    VPM 700May06

    mailto:[email protected]:[email protected]
  • 8/2/2019 Reverse Genetics - Part I

    2/29

    Reverse Genetics (RG)

    The creation of a virus with a full-length copy of the viral genome

    The most powerful tool in modernvirology

    VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    3/29

    RG of RNA viruses

    Generation or recovery (rescue) of

    infectious virus from cloned cDNA

    RNA cDNA infectious virus

    Infectious Clone

    VPM 700May06

    In vitro-transcribed RNA

    cDNA in vector

    OR

  • 8/2/2019 Reverse Genetics - Part I

    4/29

    Nature of RNA viruses

    Polarity (+ sense or sense)

    Size of the genome

    Segmented or not

    Site of replication (nucleus or cytoplasm)

    VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    5/29

    Families of RNA Viruses

    Arteriviridae: 13-15 kb(PRRS)Caliciviridae: 7.4-7.7 kb(Hepatitis E)Coronaviridae: 27-32 kb(SARS)Flaviviridae: 9.5-12.5 kb(West Nile)

    Picornaviridae: 7.2-8.4 kb(FMD)

    Rhabdoviridae: 11-15 kb(Rabies)Paramyxoviridae: 15-16 kb

    (Newcastle Disease)

    Birnaviridae: DS RNA: 6 kb(IBD)

    Reoviridae: DS RNA: 16-27 kb(Blue Tongue)

    Arenaviridae: ambisense: 10.6 kb(LCV)

    Bunyaviridae: 11-20 kb(Hanta)Orthomyxoviridae: 10-13.6 kb

    (Influenza)

    Non-segmented Segmented

    +

    vesense

    -vesens

    e

  • 8/2/2019 Reverse Genetics - Part I

    6/29

    Polarity

    Plus-stranded RNA viruses

    - deproteinated genomes of these viruses are ableto utilize the host cell machinery to initiate their lifecycle

    Negative-stranded RNA viruses

    - requires encapsidation with the viral nucleoproteinbefore it can serve as a functional template toinitiate transcription/replication

    VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    7/29

    Schematic Diagram of

    RG SystemsIn vitro transcribed RNA Purified NP and P proteins

    vRNA

    RNP complex

    mRNA

    Infectious Virus

    Ampr

    P T

    pHH21Pol I

    Ampr

    P T

    pCR3.1CMV pA

    Transcription plasmid Expression plasmids for NP and Ps

    +OR OR

    VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    8/29

    Construction of a full-

    length cDNA clone Long and tedious! Require the presence of the entire viral sequence

    - published sequence

    - or sequencing new isolate cDNA synthesis

    - require thermostable and high fidelity reversetranscriptase and DNA polymerase- require systematic assembly of large RNA genome

    - difficult to produce in vitro transcripts devoid ofvector derived sequences

    Cloning- instability of full-length cDNA clones in bacteria

    Sequence verification VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    9/29

    Plus-stranded RNA

    viruses Poliovirus infectious clone (1981)

    - Racaneillo and Baltimore, Science 214:916

    - cloned in bacterial plasmid pBR322

    Coronavirus

    - Almazan et al., 2000 (PNAS, 97:5516)- Yount et al., 2000 (J Virol, 74:10600)

    - Thiel et al., 2001 (J Gen Virol, 82:1273)

    VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    10/29

    Engineering the largest RNA virus genomeas an infectious bacterial artificial

    chromosome (Almazan et al. 2000)

    Cloning of thecDNAs into a BAC

    Nuclear expression

    of RNA

  • 8/2/2019 Reverse Genetics - Part I

    11/29

    Strategy of systematicassembly of large RNAand DNA genomes

    (Yount et al. 2000)

    Simple and rapidapproach

    - Mutagenesis and

    systematic cloning

    - Adjoining cDNA

    subclones

    - In vitro transcription

    - RNA transfection

  • 8/2/2019 Reverse Genetics - Part I

    12/29

    A cDNA copy of the humancoronavirus genome cloned

    in vaccinia virus (Thiel etal. 2001)

    In vitro DNA ligation

    Clone into vaccinia virus

    In vitro transcription

    RNA transfection

    Cytoplasmic expression

    http://vir.sgmjournals.org/content/vol82/issue6/images/large/0821273002.jpeg
  • 8/2/2019 Reverse Genetics - Part I

    13/29

    Negative-stranded RNA

    viruses Difficulties

    - precise 5 and 3 ends are required for replicationand packaging of the genomic RNA

    - the viral RNA polymerase is essential fortranscribing both mRNA and complementary,positive-sense antigenomic template RNA- both genomic and antigenomic RNAs exist as viralribonucleoprotein (RNP) complexes

    In 1994 (Schnell et al., EMBO, 13:4195-4203)- the rescue of the first NS RNA virus, rhabdovirusrabies virus, starting entirely from cDNA

    VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    14/29

    Rescue of non-segmented

    negative-stranded virusesT7 PolymeraseExpression System- Vaccinia virus

    - or Cell lines

    Transctiption plasmidfor genomic RNA

    Expression plasmidsFor NP, P, etc.

    Helper virus

    OR

    + +

    Infectious virus

    VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    15/29

    Rescue of Influenza Virus

    Family : Orthomyxoviridae

    Genera influenza A virus

    influenza B virus

    influenza C virus

    thogotovirus

    Segmented RNA genome Negative polarity

    Replicates in the nucleus ofinfected cells

    Chang-Won Lee, 1996 VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    16/29

    Genomes

    RNA segments (bp) Protein (aa)1. Polymerase (basic) 2 (2341) PB2 (759)

    2. Polymerase (basic) 1 (2341) PB1 (757)

    3. Polymerase (acidic) (2233) PA (716)

    4. Hemagglutinin (1775) HA (565)

    5. Nucleoprotein (1565) NP (498)

    6. Neuraminidase (1413) NA (454)

    7. Matrix (1027) M1 (252)

    M2 (97)

    8. Nonstructural (890) NS2(NEP)(121)

    NS1 (230)

    Virionconstituents

    Infected cells

  • 8/2/2019 Reverse Genetics - Part I

    17/29

    Structure of influenza

    virus

    VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    18/29

    Binding

    Endocytosis

    Conformationchange of HA

    Fusion

    Uncoating

    Replication Glycosylation

    Budding

    Life cycle

    VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    19/29

    Key to generation of

    influenza virus vRNA encapsidated by NP must be transcribed into

    mRNA by the viral polymerase complex

    The vRNP complex is the minimal functional unit

    VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    20/29

    Helper virus-based

    method

    VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    21/29

    RNA polymerase I

    A nucleolar enzyme, which transcribes ribosomal RNA- In growing cells, rRNA accounts for 80% of the total RNA

    A Replacement of the rDNA template with a cDNA encoding

    an influenza viral gene did not impair the precise initiation andtermination of transcription (Neumann et al., 1994)

    Ampr

    P T

    pHH21

    -235 -130 -40 +12 +30

    +1

    UCE Core T1 T2

    Influenza viral cDNA

    Promoter Terminator VPM 700May06

    http://www.pnas.org/content/vol96/issue16/images/large/pq1692169003.jpeg
  • 8/2/2019 Reverse Genetics - Part I

    22/29

    Plasmid-Based

    Reverse Genetics293T

    Neumann et al. PNAS

    96:9345-9350, 1999

    http://www.pnas.org/content/vol96/issue16/images/large/pq1692169003.jpeghttp://www.pnas.org/content/vol96/issue16/images/large/pq1692169003.jpeg
  • 8/2/2019 Reverse Genetics - Part I

    23/29

    Hoffmann, 2000

    Bidirectional pol I - pol II transcription system

    Hoffmann et al. PNAS, 97:6108-6113, 2000

    http://www.pnas.org/content/vol97/issue11/images/large/pq1101336001.jpeghttp://www.pnas.org/content/vol97/issue11/images/large/pq1101336001.jpeg
  • 8/2/2019 Reverse Genetics - Part I

    24/29

    P T

    P T

    P T

    P T

    P T

    P T

    P T

    P T

    P A

    P A

    P A

    P A

    PB2PB1PAHANPNAMNS

    PB2PB1PA

    NP

    Transcription Plasmid Expression Plasmid

    Transfection

    Amplification

    Infectious virus

    T P

    T P

    T P

    T P

    T P

    T P

    T P

    T P

    PB2PB1PAHANPNAMNS

    Bi-directional Pol I-Pol II Plasmid

    CMV

    CMV

    CMV

    CMV

    CMV

    CMV

    CMV

    CMV

    293T or Vero

    MDCK or MDBK

    VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    25/29

    Ampr

    P T

    pHH21

    Ampr

    T P

    Bi-pCR3.1CMV pA

    Generation of RNA polymerase I constructs

    AGTAGAA....TTTTGCT

    TCATCTT....AAAACGA

    CGTCTCNTATTAGTAGAA....TTTTGCTCCCNGAGACG

    GCAGAGNATAATCATCTT....AAAACGAGGGNCTCTGC

    GGGTTATTGGAGACGGTACCGTCTCCTCCCCCC

    CCCAATAACCTCTGCCATGGCAGAGGAGGGGGG

    GGGT TCCCCCC

    CCCAATAA GGG

    TATTAGTAGAA....TTTTGC

    TCATCTT....AAAACGAGGG

    GGGTTATTAGTAGAA.TTTTGCTCCCCCC

    CCCAATAATCATCTT.AAAACGAGGGGGG

    ORInfluenza viral cDNA

    Viral RNA

    PCR

    BsmBIBsmBI

    P TInfluenza viral cDNA

    BsmBI

    RT-PCR

    VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    26/29

    Cell lines for transfection

    Species-specificity of the RNA polymerase I- Human RNA Pol I : 293T, Vero, Cos-1- Murine RNA Pol I : BHK21- Chicken RNA Pol I : CEFs, QT-6

    Replication of avian influenza virus

    - MDCK > SJPL>..Vero or 293T

    Transfection efficiency

    VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    27/29

    Tranfection Efficiency

    MDCK Vero 293T

    VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    28/29

    Ampr

    P T

    pHH21

    Ampr

    Bi-pCR3.1CMV pA

    OR

    ECE

    293T

    Rescued Virus

    Transfection

    Amplification

    2-3 days

    2-3 days

    MDCK

    4 or 9Expression

    Plasmid+

    VPM 700May06

  • 8/2/2019 Reverse Genetics - Part I

    29/29

    References

    Boyer and Haenni. 1994, Virology198:415-426

    Walpita and Flick. 2005, FEMSMicrobiol Letters 244:9-18

    Neumann and Kawaoka. 2001,

    Virology 287:243-250

    VPM 700May06