Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

33
Points for Successful Light-Front Phenomenological Applications LC2005, Cairns, July 14, 2005

description

Revealing Treacherous Points for Successful Light-Front Phenomenological Applications. LC2005, Cairns, July 14, 2005. Motivation. LFD Applications to Hadron Phenomenology -GPD,SSA,… (JLAB,Hermes,…) -B Physics (Babar,Belle,BTeV,LHCB,…) -QGP,Quark R & F (RHIC,LHC ALICE,…) - PowerPoint PPT Presentation

Transcript of Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Page 1: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Revealing Treacherous Points for Successful Light-Front

Phenomenological Applications

LC2005, Cairns, July 14, 2005

Page 2: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Motivation

• LFD Applications to Hadron Phenomenology

-GPD,SSA,…(JLAB,Hermes,…)

-B Physics (Babar,Belle,BTeV,LHCB,…)

-QGP,Quark R & F (RHIC,LHC ALICE,…)• Significance of Zero-Mode Contributions

-Even in J+ (G00 in Vector Anomaly)

-Angular Condition(Spin-1 Form Factors,…)

-Equivalence to Manifestly Covariant Formulation

How do we find where they are?

Page 3: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Outline• Common Belief of Equivalence - Exactly Solvable Model - Heuristic Regularization ~ Arc Contribution

• Vector Anomaly in W± Form Factors- Brief History- Manifestly Covariant Calculation

• Pinning Down Which Form Factors- Dependence on Formulations- Direct Power-Counting Method

• Conclusions

Page 4: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Common Belief of Equivalence

∫ 0dk

Manifestly Covariant Formulation

Equal t Formulation Equal = t + z/c Formulation

∫ −dk

(Time Ordered Amps)

However, the proof of equivalence is treacherous.B.Bakker and C.Ji, PRD62,074014 (2000)

Heuristic regularization to recover the equivalence.

B.Bakker, H.Choi and C.Ji, PRD63,074014 (2001)

Page 5: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Exactly Solvable Model of Bound-States

⎟⎟⎠

⎞⎜⎜⎝

⎛+=+=

Φ=Φ+−−+− ∫ dim11for2n

dim13for4n)(),()(})){(( 2222 llkKldkimkpimk p

npεε

S.Glazek and M.Sawicki, PRD41,2563 (1990)

...5int +ΨΨΦ+ΨΨΦ= sps gigL γ

Page 6: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Electromagnetic Form Factor

)()'(||' 2qFppipJp μμ +=

H.Choi and C.Ji, NPA679, 735 (2001)

Page 7: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Equivalent Result in LFD

)()'(||' 2qFppipJp ±±± +=

Valence Nonvalence

+

)()()()( 2222cov qFqFqFqF nvvaltot

+++ +==

)()'(||' 2qFppipJp ±±± +=

20

2 1),(

),(

)2()(

MRwhere

x

xRdx

NqFnv α

αααα

ααπ

α +=

−+= ∫−

However, the end-point singularity exists in F-(q2).

B.Bakker and C.Ji, PRD62, 074014 (2000)

Page 8: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Heuristic Regularizationto recover the equivalence

)()()(),(),( 222

cov

0

qFqFqFforx

RxRdx tottot

−+ ==−−

∫ ααααα

ε

γ μμ

ikkSwhere

pkSpkS

+Λ−

Λ=

−−=Γ

Λ

ΛΛ

22

2

)(

)'()(

⎟⎟⎠

⎞⎜⎜⎝

⎛−

−=

211221

1111

DDDDDD

Page 9: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Arc Contribution in LF-Energy Contour

dk− (k−)2

(k− − k1−)(k− − k2

−)(k− − k3−)−∞

∫ = −i dθ = −iπarc

k1− k2

− k3−

dk− = dk−

−∞

+∞

∫ + dk−

arc

∫ = 0contour

dk−

−∞

+∞

∫ = − dk−

arc

∫€

With the arc contribution, we find

Fnv− (q2) =

N

π (2 + α )dx

0

α

∫ R(x,α ) − R(α ,α )

α − x

Page 10: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Form Factor Results

( )MeVExptMeVf

MeVMeVmm du

25.04.92.5.92

900,250

±=

=Λ==

π

( )MeVExptMeVf

MeVMeVm

K

ss

1.14.113:5.112

910,480

±=

=Λ=

( )MeVExptMeVf

GeVGeVm

D

cc

9.154:6.108

79.1,78.1

≤=

=Λ=

Page 11: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Standard Model

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

μμ vv

e

vb

t

s

c

d

u

e

1

0

3/1

3/2

Q f = 0f

∑ (Anomaly − Free Condition)

• Utility of Light-Front Dynamics (LFD)• “Bottom-Up” Fitness Test of Model TheoriesB.Bakker and C.Ji, PRD71,053005(2005)

Page 12: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

CP-Even Electromagnetic Form Factors of WGauge Bosons[ ]

⎭⎬⎫

⎩⎨⎧

+−Δ+−++=Γ βαμ

αμββ

μα

μβα

μαβαβ

μμαβ κ qqpp

M

QqgqggqgqgppAie

W

)'(2

)())(()(2)'(

2

At tree level, for any q2,

0,0,1 =Δ=Δ= QA κBeyond tree level,

⎭⎬⎫

⎩⎨⎧

++−++−= )()'(2

)()()()'( 232

22

21 qFpp

M

qqqFqgqgqFgppJ

W

μβαα

μββ

μααβ

μμαβ

μαβ

μαβ

κ

Jie

qFQ

qFqF

qFA

−=Γ

=Δ−

+=Δ−

=

),()(

),(2)()(

),(

23

21

22

21

Page 13: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

One-loop Contributions in S.M.

W.A.Bardeen,R.Gastmans and B.Lautrup, NPB46,319(1972)G.Couture and J.N.Ng, Z.Phys.C35,65(1987)E.N.Argyres et al.,NPB391,23(1993)J.Papavassiliou and K.Philippidas,PRD48,4255(1993)

Page 14: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

One-loop Contributions in S.M.

W.A.Bardeen,R.Gastmans and B.Lautrup, NPB46,319(1972)G.Couture and J.N.Ng, Z.Phys.C35,65(1987)E.N.Argyres et al.,NPB391,23(1993)J.Papavassiliou and K.Philippidas,PRD48,4255(1993)

Page 15: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

One-loop Contributions in S.M.

W.A.Bardeen,R.Gastmans and B.Lautrup, NPB46,319(1972)G.Couture and J.N.Ng, Z.Phys.C35,65(1987)E.N.Argyres et al.,NPB391,23(1993)J.Papavassiliou and K.Philippidas,PRD48,4255(1993)

Page 16: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

One-loop Contributions in S.M.

W.A.Bardeen,R.Gastmans and B.Lautrup, NPB46,319(1972)G.Couture and J.N.Ng, Z.Phys.C35,65(1987)E.N.Argyres et al.,NPB391,23(1993)J.Papavassiliou and K.Philippidas,PRD48,4255(1993)

Page 17: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Vector Anomaly in Fermion Triangle Loop

“Sidewise” channel “Direct” channel

""""

2

2

""""

)()(26

)()(

DirectSidewise

WFDirectSidewise

QQ

MG

Δ=Δ

+Δ=Δπ

κκ

L.DeRaad, K.Milton and W.Tsai, PRD9, 2847(1974); PRD12, 3972(1975)

Page 18: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Vector Anomaly RevisitedSmearing of charge (SMR)

Pauli-Villars Regulation (PV1, PV2)

Dimensional RegularizationDR4,DR2)

B.Bakker and C.Ji, PRD71,053005(2005)

Page 19: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Manifestly Covariant Calculation

[ ]313121

1

0

1

0321 )()(

12

1

yDDxDDDdydx

DDD

x

−+−+= ∫∫

kik == κκ ,00

∫ΓΓ

−−Γ+Γ=

+ −−)()

2(

)2

()2

(

)()(

)(

22

2

22

2

α

βαβπ

κ

κκ

βαα

β

n

nn

aa

dn

n

n

Page 20: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Manifestly Covariant Results

4323133 )()()()( DRPVPVSMR FFFF ===

2

3

1

4)2()2(

3

2

4)2()2(

6

1

4)2()2(

22

2

2

412212

2

2

412112

2

2

41212

WF

fDRPV

fDRPV

fDRSMR

MGg

QgFFFF

QgFFFF

QgFFFF

=

⎟⎠

⎞⎜⎝

⎛−++=+

⎟⎠

⎞⎜⎝

⎛++=+

⎟⎠

⎞⎜⎝

⎛++=+

π

π

π

Page 21: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

LFD Results

)22(2,2),22(2),(2

),(4/0,||',

32

21003321031

2222''

FFFpGFpGFFFpGFFpG

qQMQwithframeqinphJphG Whh

ηηηηηη

η

−−=−=++=+=

−====++++

−+++

+++

++

+++

J+

Page 22: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

LFD Results

)22(2,2),22(2),(2

),(4/0,||',

32

21003321031

2222''

FFFpGFpGFFFpGFFpG

qQMQwithframeqinphJphG Whh

ηηηηηη

η

−−=−=++=+=

−====++++

−+++

+++

++

+++

( ) ∫∫ ≠−++−−+

=⊥

⊥⊥

++ 0

)1(

)1(

2 221

2

221

22

1

023

2

..00 Qxxmk

Qxxmkkddx

M

pQgG

W

f

MZ π

J+

q+=0

Page 23: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

LFD Results

)22(2,2),22(2),(2

),(4/0,||',

32

21003321031

2222''

FFFpGFpGFFFpGFFpG

qQMQwithframeqinphJphG Whh

ηηηηηη

η

−−=−=++=+=

−====++++

−+++

+++

++

+++

( ) ( ) [ ]+−++++++

+−+

++

++ ++−+=+

⎥⎥⎦

⎢⎢⎣

⎡+=+ GGG

pFFG

G

pFF )41()21(

4

12,

2

12 00

0012

0012 ηη

ηη

( ) ∫∫ ≠−++−−+

=⊥

⊥⊥

++ 0

)1(

)1(

2 221

2

221

22

1

023

2

..00 Qxxmk

Qxxmkkddx

M

pQgG

W

f

MZ π

Page 24: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

LFD Results for Other Regularizations

⎟⎠

⎞⎜⎝

⎛++=+=+=+ +

6

1

4)2()2()2()2(

2

2

412cov

1200

120

12 πf

DRSMRSMRSMR

QgFFFFFFFF

0212 )2( ++ PVFF

⎟⎠

⎞⎜⎝

⎛++=+=+=+ +

3

2

4)2()2()2()2(

2

2

412cov

11200

1120

112 πf

DRPVPVPV

QgFFFFFFFF

00212 )2( PVFF + ⎟

⎞⎜⎝

⎛−++=+3

1

4)2()2(

2

2

412cov

212 πf

DRPV

QgFFFF

Page 25: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Pinning Down Which Form Factors• Jaus’s -dependent formulation yields

zero-mode contributions both in G00 and G01.

W.Jaus, PRD60,054026(1999);PRD67,094010(2003)

• However, we find only G00 gets zm-contribution.

B.Bakker,H.Choi and C.Ji,PRD67,113007(2003)

H.Choi and C.Ji,PRD70, 053015(2004)• Also,discrepancy exists in weak transition form

factor A1(q2)=f(q2)/(MP+MV).

Power Counting Method

H.Choi and C.Ji, PRD, in press.

Page 26: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Electroweak Transition Form Factors

< P2;1h | JV −Aμ | P1;00 >= ig(q2)εμναβεν

* Pα qβ

− f (q2)ε*μ − a+(q2)(ε* ⋅P)P μ − a−(q2)(ε* ⋅P)qμ

where

P = P1 + P2, q = P1 − P2

Page 27: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

< JV −Aμ >h = i

d4k

(2π )4

SΛ1(P1 − k)Sh

μ SΛ 2(P2 − k)

Dm1DmDm2

where

Dm = k 2 − m2 + iε,

SΛ i(Pi) = Λi

2 /(Pi2 − Λi

2 + iε),

Shμ = Tr ( / p 2 + m2)γ μ (1− γ 5)( / p 1 + m1)γ 5(−/ k + m)ε* ⋅Γ[ ],

Γ μ = γ μ −(P2 − 2k)μ

D,

and

(1) Dcov (MV ) = MV + m2 + m,

(2) Dcov (k ⋅P2) = 2k ⋅P2 + MV (m2 + m) − iε[ ] / MV ,

(3) DLF (M0) = M0 + m2 + m.

Page 28: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Power Counting Method

< JA+ >z.m.

h ∝ limα →1

dxα

1

∫ (1− x)2

(1−α )2Sh

+(km1

− ) ⋅⋅⋅[ ]

= limα →1

(1−α ) dz0

1

∫ (1− z)2 Sh+(km1

− ) ⋅⋅⋅[ ],

where

x = α + (1−α )z and ⋅⋅⋅[ ] is regular as α →1.

Sh= 0+ Power Counting :

(1) (1− x)−1 = (1−α )(1− z)[ ]−1

for Dcov (MV ),

(2) (1− x)0 for Dcov (k ⋅P2),

(3) (1− x)−1/ 2 = (1−α )(1− z)[ ]−1/ 2

for DLF (M0).

Page 29: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications
Page 30: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications
Page 31: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications
Page 32: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications
Page 33: Revealing Treacherous Points for Successful Light-Front Phenomenological Applications

Conclusions• The common belief of equivalence between manifestly

covariant and LF Hamiltonian formulations is quite treacherous unless the amplitude is absolutely convergent.

• The equivalence can be restored by using regularizations with a cutoff parameter even for the point interactions taking

limit.• The vector anomaly in the fermion-triangle-loop is real and

shows non-zero zero-mode contribution to helicity zero-to zero amplitude for the good current.

• In LFD, the helicity dependence of vector anomaly is also seen as a violation of Lorentz symmetry.

• For the good phenomenology, it is significant to pin down which physical observables receive non-zero zero-mode contribution.

• Power counting method provides a good way to pin down this.