REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda Gary Brickley

17
Distributed Hydrologic Mo deling--Jodi Eshelman Analysis of the Number of Rain Gages Required to Calibrate Radar Rainfall for the Illinois River Basin REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda Gary Brickley Jodi Eshleman

description

Analysis of the Number of Rain Gages Required to Calibrate Radar Rainfall for the Illinois River Basin. Jodi Eshleman. REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda Gary Brickley. Introduction. - PowerPoint PPT Presentation

Transcript of REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda Gary Brickley

Page 1: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

Analysis of the Number of Rain Gages Required to Calibrate Radar Rainfall for the Illinois

River Basin

REU sponsor: Dr. Baxter Vieux

Dr. Fekadu Moreda

Gary Brickley

Jodi Eshleman

Page 2: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

Introduction• Radar rainfall estimates are an important supplement to

rain gage accumulations for modeling river basins.

• Radar estimates can be biased or in error and must be corrected.

Questions:

1. How many rain gages are necessary to correct the radar?

2. What degree of accuracy can be achieved?

3. How do different correction methods compare?

Page 3: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

Background

• Are 10 gages adequate to calibrate the radar for the Illinois River Basin?

• Radar error in estimating rainfall – overshoot cloud tops– Z/R relationship transforms reflectance to rain rate

• Correction of radar by applying some correction based on rain gage accumulation

• Correcting radar estimates provides more accurate spatial estimates of rainfall for river basin simulation.

Page 4: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

WSR-88D or NEXRAD

• Weather Surveillance Radar-1988 Doppler

• Prototyped in Norman at NSSL

• Scans Every 5 or 6 minutes during precipitation

• 150+ installed in US and abroad

0.5°

1.5°2.5°

Page 5: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

Location of Gages

Page 6: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

Presentation Outline

• Test 4 different correction factors– Mean field bias

– Probability density function

– <1mm

– Weighted

• Gage density study• Size and time progression analysis

Page 7: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

Correction Factor Comparison

• Adjustment to rain gage mean

• Average difference after correction

• Simulated discharge volume

Page 8: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

MEAN VALUESStorm Event MFB PDF <1mm MFB <1mm PDF Weighted Raw Mesonet

Jan-95 0.5277 0.4950 0.5992 0.4058 0.4648 0.4302 0.4950Mar-95 0.2004 0.1964 0.1944 0.1933 0.2374 0.1832 0.1964Jun-95 0.6481 0.6413 0.6530 0.6773 0.6688 0.7317 0.6550Nov-96 0.4191 0.4256 0.4218 0.4335 0.4081 0.4312 0.4191

NovDec96 0.1889 0.1746 0.1682 0.1503 0.1700 0.2091 0.1746Apr-96 0.7290 0.7155 0.7289 0.7483 0.7322 0.8370 0.7155

May-96 0.1712 0.1729 0.1622 0.2031 0.1662 0.1956 0.1729Feb-97 0.4472 0.4507 0.4472 0.4581 0.4660 0.4582 0.4507

AVERAGE DIFFERENCE AFTER CORRECTIONStorm Event MFB PDF <1mm MFB <1mm PDF Weighted Raw

Jan-95 17% 16% 25% 21% 16% 18%Mar-95 36% 35% 34% 34% 46% 32%Jun-95 6% 6% 6% 8% 7% 12%Nov-96 10% 10% 10% 10% 10% 11%

NovDec96 27% 24% 24% 23% 24% 32%Apr-96 16% 15% 16% 17% 16% 23%

May-96 10% 11% 10% 23% 9% 20%Feb-97 11% 11% 11% 12% 12% 12%

PDF is closest to Mesonet

Page 9: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

Volume Comparison

Novdec96

Feb97

Jan95

Nov96

May96

Jun95

Apr96

Mar95

Nov96

Jun95

NovDec96Apr96

May96

Mar95

Feb97

Jan95

NOVDEC96FEB97JUN95

APR96

NOV96

JAN95

MAY96

MAR95

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

0.0E+00 1.0E+07 2.0E+07 3.0E+07 4.0E+07 5.0E+07 6.0E+07 7.0E+07 8.0E+07 9.0E+07 1.0E+08 1.1E+08 1.2E+08 1.3E+08

Observed Vol (m3)

Mod

el V

ol (

m3)

MFB

PDF

RAW

Weighted

Linear (MFB)

Linear (PDF)

Linear (RAW)

Linear(Weighted)

Page 10: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

Presentation Outline

• Test 4 different correction factors– Mean field bias

– Probability density function

– <1mm

– Weighted

• Gage density study• Size and time progression analysis

Page 11: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

Gage Density

2

22

d

stn

Statistically estimating the mean with prescribed accuracy

Where:

n=number of gages requireds2=Varianced=Allowable margin of error (5-30% mean)=% Confidence (60-90%)

Page 12: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

Calibration Comparison

555 55530

18

69

69

4

20 8076 50 2829

5

0.5

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350Number of Gages Needed to Calibrate

Allo

wab

le M

arg

in o

f Err

or

(% m

ean

)

49.545

20.321

0.499

29.915

68.781

80.343

28.172

4.264

68.921

17.789

29.23

5.259

76.008

Total Mean Depth (mm)

Page 13: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

Standard Error Approach

# gauges Variance S.E.(X) S.E.(X)% Avg. Difference X

10 1085.99 10.42 28.5 32%9 1080.25 10.39 29.1 32%8 989.36 9.95 27.6 38%7 1042.69 10.21 27.2 45%6 1045.36 10.22 27.6 48%5 1087.81 10.43 26.6 58%4 1110.16 10.54 27.0 59%3 1086.94 10.43 25.4 54%2 978.62 9.89 25.0 49%

Page 14: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

Presentation Outline

• Test 4 different correction factors– Mean field bias

– Probability density function

– <1mm

– Weighted

• Gage density study• Size and time progression analysis

Page 15: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

Mean Total Accumulation

May96

Mar95

NovDec96

Jun95

Jan95

Apr96Feb97

Nov96

y = 1.0368x

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Mesonet (mm)

Un

co

rre

cte

d R

ad

ar

(mm

)

Page 16: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

Time Progression

First 6-Hour Period

miam

cook

jayx

tahl

pryo

w estw ebb

y = 1.5943x

0

5

10

15

20

25

30

35

40

0 10 20 30 40

Mesonet (mm)

Ra

da

r (m

m)

06/08 18-23

Second 6-Hour Period

sall

w ebb

tahl cooktull

w est

y = 0.487x

0

24

68

10

1214

1618

20

0 5 10 15 20

Mesonet (mm)

Ra

da

r (m

m)

06/08 23-09 05

Seventh 6-Hour Period

miam

jayx

pryo

tahl

tull

y = 1.0587x

0

10

20

30

40

50

60

70

0 20 40 60

Mesonet (mm)

Ra

da

r (m

m)

06/10 05-11

Final 6-Hour Period

cook

tahl

west

webbsall

tulljayx

wist

miampryo

y = 0.5172x

0

1

2

3

4

5

6

0 2 4 6

Mesonet (mm)

Ra

da

r (m

m)

06/11 11-17

Page 17: REU sponsor: Dr. Baxter Vieux Dr. Fekadu Moreda                    Gary Brickley

Distributed Hydrologic Modeling--Jodi Eshelman

Conclusions

• PDF correction factor is most effective– Mean adjustment is closer to Mesonet– Average difference is less than MFB

• Weighted PDF – – Weighting gages close to the basin improve discharge

volume simulations

• Gage density study– 10 gages are sufficient for 30% of the mean and 90%

confidence– Due to large variance, smallest storms are negligible– little consideration for flooding