Résumé pour les décideurs

37
CLIMATE CHANGE 2014 Mitigation of Climate Change Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Summary for Policymakers This Summary for Policymakers was formally approved at the 12th Session of Working Group III of the IPCC and accepted by the 39th Session of IPCC, Berlin, Germany, 12 April 2014 SUBJECT TO COPY EDIT EMBARGOED until 13 April 2014 11.00 Berlin time (09.00 GMT) EMBARGOED Embargoed: Not to be published before 11.00 Berlin time (09.00 GMT) Sunday 13 April a20d0b03

Transcript of Résumé pour les décideurs

Page 1: Résumé pour les décideurs

CLIMATE CHANGE 2014Mitigation of Climate Change

Working Group III Contribution to the

Fifth Assessment Report of the

Intergovernmental Panel on Climate Change

Summary for Policymakers

This Summary for Policymakers was formally approved at the 12th Session

of Working Group III of the IPCC and accepted by the 39th Session of IPCC

Berlin Germany 12 April 2014

SUBJECT TO COPY EDIT

EMBARGOED until 13 April 20141100 Berlin time (0900 GMT)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

1of33

Title SummaryforPolicymakers

DraftingAuthors

OttmarEdenhofer(Germany)RamoacutenPichsͲMadruga (Cuba)YoubaSokona(Mali)ShardulAgrawala(France)IgorAlexeyevichBashmakov(Russia)GabrielBlanco(Argentina)JohnBroome(UK)ThomasBruckner(Germany)SteffenBrunner(Germany)MercedesBustamante(Brazil)LeonClarke(USA)FelixCreutzig(Germany)ShobhakarDhakal(NepalThailand)NavrozKDubash(India)PatrickEickemeier(Germany)EllieFarahani(CanadaIran)ManfredFischedick(Germany)MarcFleurbaey(France)ReyerGerlagh(Netherlands)LuisGoacutemezͲEcheverri(ColombiaAustria)ShreekantGupta(India)SujataGupta(IndiaPhilippines)JochenHarnisch(Germany)KejunJiang(China)SusanneKadner(Germany)SivanKartha(USA)StephanKlasen(Germany)CharlesKolstad(USA)VolkerKrey(AustriaGermany)HowardKunreuther(USA)OswaldoLucon(Brazil)OmarMasera(Meacutexico)JanMinx(Germany)YacobMulugetta(UKEthiopia)AnthonyPatt(USA)NijavalliHRavindranath(India)KeywanRiahi(Austria)JoyashreeRoy(India)RobertoSchaeffer(Brazil)SteffenSchloumlmer(Germany)KarenSeto(USA)KristinSeyboth(USA)RalphSims(NewZealand)JimSkea(UK)PeteSmith(UK)EswaranSomanathan(India)RobertStavins(USA)ChristophvonStechow(Germany)ThomasSterner(Sweden)TaishiSugiyama(Japan)SangwonSuh(SouthKoreaUSA)KevinChikaUrama(NigeriaUK)DianaUumlrgeͲVorsatz(Hungary)DavidVictor(USA)DadiZhou(China)JiZou(China)TimmZwickel(Germany)

DraftContributingAuthors

GiovanniBaiocchi(UKItaly)HelenaChum (USABrazil)JanFuglestvedt(Norway)HelmutHaberl(Austria)EdgarHertwich(NorwayAustria)ElmarKriegler(Germany)JoeriRogelj(SwitzerlandBelgium)HͲHolgerRogner(AustriaGermany)MichielSchaeffer(Netherlands)SteveSmith(USA)DetlefvanVuuren(Netherlands)RyanWiser(USA)

1

2

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

2of33

SPM SummaryforPolicymakers1

2

3

Contents4

5

SPM1Introduction36

SPM2Approachestoclimatechangemitigation37

SPM3Trendsinstocksandflowsofgreenhousegasesandtheirdrivers58

SPM4Mitigationpathwaysandmeasuresinthecontextofsustainabledevelopment109

SPM41LongͲtermmitigationpathways1010

SPM42SectoralandcrossͲsectoralmitigationpathwaysandmeasures2011

SPM421CrossͲsectoralmitigationpathwaysandmeasures2012

SPM422Energysupply2313

SPM423EnergyendͲusesectors2414

SPM424AgricultureForestryandOtherLandUse(AFOLU)2715

SPM425HumanSettlementsInfrastructureandSpatialPlanning2816

SPM5Mitigationpoliciesandinstitutions2917

SPM51Sectoralandnationalpolicies2918

SPM52Internationalcooperation3319

20

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

3of33

SPM1 Introduction1

TheWorkingGroupIIIcontributiontotheIPCCrsquosFifthAssessmentReport(AR5)assessesliterature2onthescientifictechnologicalenvironmentaleconomicandsocialaspectsofmitigationofclimate3changeItbuildsupontheWorkingGroupIIIcontributiontotheIPCCrsquosFourthAssessmentReport4(AR4)theSpecialReportonRenewableEnergySourcesandClimateChangeMitigation(SRREN)and5previousreportsandincorporatessubsequentnewfindingsandresearchThereportalsoassesses6mitigationoptionsatdifferentlevelsofgovernanceandindifferenteconomicsectorsandthe7societalimplicationsofdifferentmitigationpoliciesbutdoesnotrecommendanyparticularoption8formitigation9

ThisSummaryforPolicymakers(SPM)followsthestructureoftheWorkingGroupIIIreportThe10narrativeissupportedbyaseriesofhighlightedconclusionswhichtakentogetherprovideaconcise11summaryThebasisfortheSPMcanbefoundinthechaptersectionsoftheunderlyingreportandin12theTechnicalSummary(TS)Referencestothesearegiveninsquaredbrackets13

ThedegreeofcertaintyinfindingsinthisassessmentasinthereportsofallthreeWorkingGroups14isbasedontheauthorteamsrsquoevaluationsofunderlyingscientificunderstandingandisexpressedas15aqualitativelevelofconfidence(fromverylowtoveryhigh)andwhenpossibleprobabilistically16withaquantifiedlikelihood(fromexceptionallyunlikelytovirtuallycertain)Confidenceinthe17validityofafindingisbasedonthetypeamountqualityandconsistencyofevidence(egdata18mechanisticunderstandingtheorymodelsexpertjudgment)andthedegreeofagreement119Probabilisticestimatesofquantifiedmeasuresofuncertaintyinafindingarebasedonstatistical20analysisofobservationsormodelresultsorbothandexpertjudgment2Whereappropriate21findingsarealsoformulatedasstatementsoffactwithoutusinguncertaintyqualifiersWithin22paragraphsofthissummarytheconfidenceevidenceandagreementtermsgivenforabolded23findingapplytosubsequentstatementsintheparagraphunlessadditionaltermsareprovided24

SPM2 Approachestoclimatechangemitigation25

Mitigationisahumaninterventiontoreducethesourcesorenhancethesinksofgreenhouse26gasesMitigationtogetherwithadaptationtoclimatechangecontributestotheobjective27expressedinArticle2oftheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)28

TheultimateobjectiveofthisConventionandanyrelatedlegalinstrumentsthatthe29ConferenceofthePartiesmayadoptistoachieveinaccordancewiththerelevant30provisionsoftheConventionstabilizationofgreenhousegasconcentrationsinthe31atmosphereatalevelthatwouldpreventdangerousanthropogenicinterferencewiththe32climatesystemSuchalevelshouldbeachievedwithinatimeframesufficienttoallow33

1ThefollowingsummarytermsareusedtodescribetheavailableevidencelimitedmediumorrobustandforthedegreeofagreementlowmediumorhighAlevelofconfidenceisexpressedusingfivequalifiersverylowlowmediumhighandveryhighandtypesetinitalicsegmediumconfidenceForagivenevidenceandagreementstatementdifferentconfidencelevelscanbeassignedbutincreasinglevelsofevidenceanddegreesofagreementarecorrelatedwithincreasingconfidenceFormoredetailspleaserefertotheguidancenoteforLeadAuthorsoftheIPCCFifthAssessmentReportonconsistenttreatmentofuncertainties2Thefollowingtermshavebeenusedtoindicatetheassessedlikelihoodofanoutcomeoraresultvirtuallycertain99ndash100probabilityverylikely90ndash100likely66ndash100aboutaslikelyasnot33ndash66unlikely0ndash33veryunlikely0ndash10exceptionallyunlikely0ndash1Additionalterms(morelikelythannotgt50ndash100andmoreunlikelythanlikely0Ͳlt50)mayalsobeusedwhenappropriateAssessedlikelihoodistypesetinitalicsegverylikely

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

4of33

ecosystemstoadaptnaturallytoclimatechangetoensurethatfoodproductionisnot1threatenedandtoenableeconomicdevelopmenttoproceedinasustainablemanner2

Climatepoliciescanbeinformedbythefindingsofscienceandsystematicmethodsfromother3disciplines[122425Box31]4

Sustainabledevelopmentandequityprovideabasisforassessingclimatepoliciesandhighlight5theneedforaddressingtherisksofclimatechange3Limitingtheeffectsofclimatechangeis6necessarytoachievesustainabledevelopmentandequityincludingpovertyeradicationAtthe7sametimesomemitigationeffortscouldundermineactionontherighttopromotesustainable8developmentandontheachievementofpovertyeradicationandequityConsequentlya9comprehensiveassessmentofclimatepoliciesinvolvesgoingbeyondafocusonmitigationand10adaptationpoliciesalonetoexaminedevelopmentpathwaysmorebroadlyalongwiththeir11determinants[424344454648]12

Effectivemitigationwillnotbeachievedifindividualagentsadvancetheirowninterests13independentlyClimatechangehasthecharacteristicsofacollectiveactionproblemattheglobal14scalebecausemostgreenhousegases(GHGs)accumulateovertimeandmixgloballyandemissions15byanyagent(egindividualcommunitycompanycountry)affectotheragents4International16cooperationisthereforerequiredtoeffectivelymitigateGHGemissionsandaddressotherclimate17changeissues[1242643142132133]Furthermoreresearchanddevelopmentinsupport18ofmitigationcreatesknowledgespilloversInternationalcooperationcanplayaconstructiverolein19thedevelopmentdiffusionandtransferofknowledgeandenvironmentallysoundtechnologies20[14431161181391443]21

Issuesofequityjusticeandfairnessarisewithrespecttomitigationandadaptation5Countriesrsquo22pastandfuturecontributionstotheaccumulationofGHGsintheatmospherearedifferentand23countriesalsofacevaryingchallengesandcircumstancesandhavedifferentcapacitiestoaddress24mitigationandadaptationTheevidencesuggeststhatoutcomesseenasequitablecanleadtomore25effectivecooperation[310422462]26

ManyareasofclimatepolicyͲmakinginvolvevaluejudgementsandethicalconsiderationsThese27areasrangefromthequestionofhowmuchmitigationisneededtopreventdangerousinterference28withtheclimatesystemtochoicesamongspecificpoliciesformitigationoradaptation[3132]29Socialeconomicandethicalanalysesmaybeusedtoinformvaluejudgementsandmaytakeinto30accountvaluesofvarioussortsincludinghumanwellbeingculturalvaluesandnonͲhumanvalues31[34310]32

Amongothermethodseconomicevaluationiscommonlyusedtoinformclimatepolicydesign33PracticaltoolsforeconomicassessmentincludecostͲbenefitanalysiscostͲeffectivenessanalysis34multiͲcriteriaanalysisandexpectedutilitytheory[25]ThelimitationsofthesetoolsarewellͲ35documented[35]Ethicaltheoriesbasedonsocialwelfarefunctionsimplythatdistributional36weightswhichtakeaccountofthedifferentvalueofmoneytodifferentpeopleshouldbeapplied37tomonetarymeasuresofbenefitsandharms[361BoxTS2]Whereasdistributionalweightinghas38notfrequentlybeenappliedforcomparingtheeffectsofclimatepoliciesondifferentpeopleata39singletimeitisstandardpracticeintheformofdiscountingforcomparingtheeffectsatdifferent40times[362]41

3SeeWGIIAR5SPM4InthesocialsciencesthisisreferredtoasalsquoglobalcommonsproblemlsquoAsthisexpressionisusedinthesocialsciencesithasnospecificimplicationsforlegalarrangementsorforparticularcriteriaregardingeffortͲsharing5SeeFAQ32forclarificationoftheseconceptsThephilosophicalliteratureonjusticeandotherliteraturecanilluminatetheseissues[3233462]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

5of33

ClimatepolicyintersectswithothersocietalgoalscreatingthepossibilityofcoͲbenefitsoradverse1sideͲeffectsTheseintersectionsifwellͲmanagedcanstrengthenthebasisforundertaking2climateactionMitigationandadaptationcanpositivelyornegativelyinfluencetheachievementof3othersocietalgoalssuchasthoserelatedtohumanhealthfoodsecuritybiodiversitylocal4environmentalqualityenergyaccesslivelihoodsandequitablesustainabledevelopmentandvice5versapoliciestowardothersocietalgoalscaninfluencetheachievementofmitigationand6adaptationobjectives[424344454648]Theseinfluencescanbesubstantialalthough7sometimesdifficulttoquantifyespeciallyinwelfareterms[363]ThismultiͲobjectiveperspectiveis8importantinpartbecauseithelpstoidentifyareaswheresupportforpoliciesthatadvancemultiple9goalswillberobust[1214248661]10

Climatepolicymaybeinformedbyaconsiderationofadiversearrayofrisksanduncertainties11someofwhicharedifficulttomeasurenotablyeventsthatareoflowprobabilitybutwhichwould12haveasignificantimpactiftheyoccurSinceAR4thescientificliteraturehasexaminedrisksrelated13toclimatechangeadaptationandmitigationstrategiesAccuratelyestimatingthebenefitsof14mitigationtakesintoaccountthefullrangeofpossibleimpactsofclimatechangeincludingthose15withhighconsequencesbutalowprobabilityofoccurrenceThebenefitsofmitigationmay16otherwisebeunderestimated(highconfidence)[2526Box39]Thechoiceofmitigationactionsis17alsoinfluencedbyuncertaintiesinmanysocioͲeconomicvariablesincludingtherateofeconomic18growthandtheevolutionoftechnology(highconfidence)[2663]19

Thedesignofclimatepolicyisinfluencedbyhowindividualsandorganizationsperceiverisksand20uncertaintiesandtakethemintoaccountPeopleoftenutilizesimplifieddecisionrulessuchasa21preferenceforthestatusquoIndividualsandorganizationsdifferintheirdegreeofriskaversionand22therelativeimportanceplacedonnearͲtermversuslongͲtermramificationsofspecificactions[24]23Withthehelpofformalmethodspolicydesigncanbeimprovedbytakingintoaccountrisksand24uncertaintiesinnaturalsocioͲeconomicandtechnologicalsystemsaswellasdecisionprocesses25perceptionsvaluesandwealth[25]26

SPM3 Trendsinstocksandflowsofgreenhousegasesandtheirdrivers27

TotalanthropogenicGHGemissionshavecontinuedtoincreaseover1970to2010withlarger28absolutedecadalincreasestowardtheendofthisperiod(highconfidence)Despiteagrowing29numberofclimatechangemitigationpoliciesannualGHGemissionsgrewonaverageby10giga30tonnecarbondioxideequivalent(GtCO2eq)(22)peryearfrom2000to2010comparedto0431GtCO2eq(13)peryearfrom1970to2000(FigureSPM1)67TotalanthropogenicGHGemissions32werethehighestinhumanhistoryfrom2000to2010andreached49(plusmn45)GtCO2eqyrin2010The33globaleconomiccrisis20072008onlytemporarilyreducedemissions[13521331522Box34TS5Figure151]35

CO2emissionsfromfossilfuelcombustionandindustrialprocessescontributedabout78ofthe36totalGHGemissionincreasefrom1970to2010withasimilarpercentagecontributionforthe37period2000ndash2010(highconfidence)FossilfuelͲrelatedCO2emissionsreached32(plusmn27)GtCO2yrin382010andgrewfurtherbyabout3between2010and2011andbyabout1Ͳ2between2011and392012Ofthe49(plusmn45)GtCO2eqyrintotalanthropogenicGHGemissionsin2010CO2remainsthe40majoranthropogenicGHGaccountingfor76(38plusmn38GtCO2eqyr)oftotalanthropogenicGHG41emissionsin201016(78plusmn16GtCO2eqyr)comefrommethane(CH4)62(31plusmn19GtCO2eqyr)426ThroughouttheSPMemissionsofGHGsareweightedbyGlobalWarmingPotentialswitha100Ͳyeartimehorizon(GWP100)fromtheIPCCSecondAssessmentReportAllmetricshavelimitationsanduncertaintiesinassessingconsequencesofdifferentemissions[396BoxTS5AnnexII29WGIAR5SPM]7InthisSPMuncertaintyinhistoricGHGemissiondataisreportedusing90uncertaintyintervalsunlessotherwisestatedGHGemissionlevelsareroundedtotwosignificantdigitsthroughoutthisdocument

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

6of33

fromnitrousoxide(N2O)and20(10plusmn02GtCO2eqyr)fromfluorinatedgases(FigureSPM1)1Annuallysince1970about25ofanthropogenicGHGemissionshavebeenintheformofnonͲCO22gases8[1252]3

4Figure SPM1 Total annual anthropogenic GHG emissions (GtCO2eqyr) by groups of gases 1970-52010 CO2 from fossil fuel combustion and industrial processes CO2 from Forestry and Other Land 6Use (FOLU) methane (CH4) nitrous oxide (N2O) fluorinated gases8 covered under the Kyoto 7Protocol (F-gases) At the right side of the figure GHG emissions in 2010 are shown again broken 8down into these components with the associated uncertainties (90 confidence interval) indicated by 9the error bars Total anthropogenic GHG emissions uncertainties are derived from the individual gas 10estimates as described in Chapter 5 [5236] Global CO2 emissions from fossil fuel combustion are 11known within 8 uncertainty (90 confidence interval) CO2 emissions from FOLU have very large 12uncertainties attached in the order of plusmn50 Uncertainty for global emissions of CH4 N2O and the F-13gases has been estimated as 20 60 and 20 respectively 2010 was the most recent year for 14which emission statistics on all gases as well as assessment of uncertainties were essentially 15complete at the time of data cut off for this report Emissions are converted into CO2-equivalents 16based on GWP100

6 from the IPCC Second Assessment Report The emission data from FOLU 17represents land-based CO2 emissions from forest fires peat fires and peat decay that approximate to 18net CO2 flux from the FOLU as described in chapter 11 of this report Average annual growth rate 19over different periods is highlighted with the brackets [Figure 13 Figure TS1] [Subject to final quality 20check and copy edit] 21

AbouthalfofcumulativeanthropogenicCO2emissionsbetween1750and2010haveoccurredin22thelast40years(highconfidence)In1970cumulativeCO2emissionsfromfossilfuelcombustion23cementproductionandflaringsince1750were420plusmn35GtCO2in2010thatcumulativetotalhad24tripledto1300plusmn110GtCO2(FigureSPM2)CumulativeCO2emissionsfromForestryandOtherLand25Use(FOLU)9since1750increasedfrom490plusmn180GtCO2in1970to680plusmn300GtCO2in2010[52]26

8InthisreportdataonnonͲCO2GHGsincludingfluorinatedgasesistakenfromtheEDGARdatabase(AnnexII9)whichcoverssubstancesincludedintheKyotoProtocolinitsfirstcommitmentperiod9ForestryandOtherLandUse(FOLU)mdashalsoreferredtoasLULUCF(LandUseLandͲUseChangeandForestry)mdashisthesubsetofAgricultureForestryandOtherLandUse(AFOLU)emissionsandremovalsofGHGsrelatedtodirecthumanͲinducedlanduselandͲusechangeandforestryactivitiesexcludingagriculturalemissionsandremovals(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

7of33

AnnualanthropogenicGHGemissionshaveincreasedby10GtCO2eqbetween2000and2010with1thisincreasedirectlycomingfromenergysupply(47)industry(30)transport(11)and2buildings(3)sectors(mediumconfidence)Accountingforindirectemissionsraisesthe3contributionsofthebuildingsandindustrysectors(highconfidence)Since2000GHGemissions4havebeengrowinginallsectorsexceptAFOLUOfthe49(plusmn45)GtCO2eqemissionsin201035(175GtCO2eq)ofGHGemissionswerereleasedintheenergysupplysector24(12GtCO2eqnet6emissions)inAFOLU21(10GtCO2eq)inindustry14(70GtCO2eq)intransportand64(327GtCO2eq)inbuildingsWhenemissionsfromelectricityandheatproductionareattributedtothe8sectorsthatusethefinalenergy(ieindirectemissions)thesharesoftheindustryandbuildings9sectorsinglobalGHGemissionsareincreasedto31and19respectively(FigureSPM2)[73821092103112]11

12Figure SPM2 Total anthropogenic GHG emissions (GtCO2eqyr) by economic sectors Inner circle 13shows direct GHG emission shares (in of total anthropogenic GHG emissions) of five economic 14sectors in 2010 Pull-out shows how indirect CO2 emission shares (in of total anthropogenic GHG 15emissions) from electricity and heat production are attributed to sectors of final energy use ldquoOther 16Energyrdquo refers to all GHG emission sources in the energy sector as defined in Annex II other than 17electricity and heat production [AII91] The emissions data from Agriculture Forestry and Other 18Land Use (AFOLU) includes land-based CO2 emissions from forest fires peat fires and peat decay 19that approximate to net CO2 flux from the Forestry and Other Land Use (FOLU) sub-sector as 20described in Chapter 11 of this report Emissions are converted into CO2-equivalents based on 21GWP100

6 from the IPCC Second Assessment Report Sector definitions are provided in Annex II9 22[Figure 13a Figure TS3 ab] [Subject to final quality check and copy edit] 23

Globallyeconomicandpopulationgrowthcontinuetobethemostimportantdriversofincreases24inCO2emissionsfromfossilfuelcombustionThecontributionofpopulationgrowthbetween252000and2010remainedroughlyidenticaltothepreviousthreedecadeswhilethecontributionof26economicgrowthhasrisensharply(highconfidence)Between2000and2010bothdrivers27outpacedemissionreductionsfromimprovementsinenergyintensity(FigureSPM3)Increaseduse28ofcoalrelativetootherenergysourceshasreversedthelongͲstandingtrendofgradual29decarbonizationoftheworldrsquosenergysupply[135372143TS22]30

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

8of33

1Figure SPM3 Decomposition of the decadal change in total global CO2 emissions from fossil fuel 2combustion by four driving factors population income (GDP) per capita energy intensity of GDP and 3carbon intensity of energy The bar segments show the changes associated with each factor alone 4holding the respective other factors constant Total decadal changes are indicated by a triangle 5Changes are measured in giga tonnes (Gt) of CO2 emissions per decade income is converted into 6common units using purchasing power parities [Figure 17] [Subject to final quality check and copy 7edit] 8

WithoutadditionaleffortstoreduceGHGemissionsbeyondthoseinplacetodayemissions9growthisexpectedtopersistdrivenbygrowthinglobalpopulationandeconomicactivities10Baselinescenariosthosewithoutadditionalmitigationresultinglobalmeansurfacetemperature11increasesin2100from37to48degCcomparedtopreͲindustriallevels10(medianvaluestherangeis1225degCto78degCwhenincludingclimateuncertaintyseeTableSPM1)11(highconfidence)The13emissionscenarioscollectedforthisassessmentrepresentfullradiativeforcingincludingGHGs14troposphericozoneaerosolsandalbedochangeBaselinescenarios(scenarioswithoutexplicit15additionaleffortstoconstrainemissions)exceed450partspermillion(ppm)CO2eqby2030and16reachCO2eqconcentrationlevelsbetween750andmorethan1300ppmCO2eqby2100Thisis17similartotherangeinatmosphericconcentrationlevelsbetweentheRCP60andRCP85pathways1810Basedonthelongestglobalsurfacetemperaturedatasetavailabletheobservedchangebetweentheaverageoftheperiod1850Ͳ1900andoftheAR5referenceperiod(1986ndash2005)is061degC(5ndash95confidenceinterval055to067degC)[WGIAR5SPME]whichisusedhereasanapproximationofthechangeinglobalmeansurfacetemperaturesincepreͲindustrialtimesreferredtoastheperiodbefore175011Theclimateuncertaintyreflectsthe5thto95thpercentileofclimatemodelcalculationsdescribedinTableSPM1

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

9of33

in210012ForcomparisontheCO2eqconcentrationin2011isestimatedtobe430ppm(uncertainty1range340ndash520ppm)13[63BoxTS6WGIAR5FigureSPM5WGI85WGI123] 2

12Forthepurposeofthisassessmentroughly300baselinescenariosand900mitigationscenarioswerecollectedthroughanopencallfromintegratedmodellingteamsaroundtheworldThesescenariosarecomplementarytotheRepresentativeConcentrationPathways(RCPsseeWGIIIAR5Glossary)TheRCPsareidentifiedbytheirapproximatetotalradiativeforcinginyear2100relativeto175026Wattspersquaremeter(WmͲ2)forRCP2645WmͲ2forRCP4560WmͲ2forRCP60and85WmͲ2forRCP85Thescenarioscollectedforthisassessmentspanaslightlybroaderrangeofconcentrationsintheyear2100thanthefourRCPs13Thisisbasedontheassessmentoftotalanthropogenicradiativeforcingfor2011relativeto1750inWGIie23WmͲ2uncertaintyrange11to33WmͲ2[WGIAR5FigureSPM5WGI85WGI123]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

10of33

SPM4 Mitigationpathwaysandmeasuresinthecontextofsustainable1development2

SPM41 LongͲtermmitigationpathways3

Therearemultiplescenarioswitharangeoftechnologicalandbehavioraloptionswithdifferent4characteristicsandimplicationsforsustainabledevelopmentthatareconsistentwithdifferent5levelsofmitigationForthisassessmentabout900mitigationscenarioshavebeencollectedina6databasebasedonpublishedintegratedmodels14Thisrangespansatmosphericconcentration7levelsin2100from430ppmCO2eqtoabove720ppmCO2eqwhichiscomparabletothe21008forcinglevelsbetweenRCP26andRCP60Scenariosoutsidethisrangewerealsoassessed9includingsomescenarioswithconcentrationsin2100below430ppmCO2eq(foradiscussionof10thesescenariosseebelow)Themitigationscenariosinvolveawiderangeoftechnological11socioeconomicandinstitutionaltrajectoriesbutuncertaintiesandmodellimitationsexistand12developmentsoutsidethisrangearepossible(FigureSPM4toppanel)[616263TS31Box13TS6]14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

14ThelongͲtermscenariosassessedinWGIIIweregeneratedprimarilybylargeͲscaleintegratedmodelsthatprojectmanykeycharacteristicsofmitigationpathwaystomidͲcenturyandbeyondThesemodelslinkmanyimportanthumansystems(egenergyagricultureandlanduseeconomy)withphysicalprocessesassociatedwithclimatechange(egthecarboncycle)ThemodelsapproximatecostͲeffectivesolutionsthatminimizetheaggregateeconomiccostsofachievingmitigationoutcomesunlesstheyarespecificallyconstrainedtobehaveotherwiseTheyaresimplifiedstylizedrepresentationsofhighlyͲcomplexrealͲworldprocessesandthescenariostheyproducearebasedonuncertainprojectionsaboutkeyeventsanddriversoveroftencenturyͲlongtimescalesSimplificationsanddifferencesinassumptionsarethereasonwhyoutputgeneratedfromdifferentmodelsorversionsofthesamemodelcandifferandprojectionsfromallmodelscandifferconsiderablyfromtherealitythatunfolds[BoxTS762]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

11of33

1Figure SPM4 Pathways of global GHG emissions (GtCO2eqyr) in baseline and mitigation scenarios 2for different long-term concentration levels (upper panel) and associated upscaling requirements of 3low-carbon energy ( of primary energy) for 2030 2050 and 2100 compared to 2010 levels in 4mitigation scenarios (lower panel) The upper and lower panels exclude scenarios with limited 5technology availability and the lower panel in addition excludes scenarios that assume exogenous 6carbon price trajectories [Figure 67 Figure 716] [Subject to final quality check and copy edit] 7

Mitigationscenariosinwhichitislikelythatthetemperaturechangecausedbyanthropogenic8GHGemissionscanbekepttolessthan2degCrelativetopreͲindustriallevelsarecharacterizedby9atmosphericconcentrationsin2100ofabout450ppmCO2eq(highconfidence)Mitigation10scenariosreachingconcentrationlevelsofabout500ppmCO2eqby2100aremorelikelythannotto11limittemperaturechangetolessthan2degCrelativetopreͲindustriallevelsunlesstheytemporarily12lsquoovershootrsquoconcentrationlevelsofroughly530ppmCO2eqbefore2100inwhichcasetheyare13aboutaslikelyasnottoachievethatgoal15Scenariosthatreach530to650ppmCO2eq14concentrationsby2100aremoreunlikelythanlikelytokeeptemperaturechangebelow2degCrelative15topreͲindustriallevelsScenariosthatreachabout650ppmCO2eqby2100areunlikelytolimit16temperaturechangetobelow2degCrelativetopreͲindustriallevelsMitigationscenariosinwhich1715Mitigationscenariosincludingthosereaching2100concentrationsashighasorhigherthan550ppmCO2eqcantemporarilylsquoovershootrsquoatmosphericCO2eqconcentrationlevelsbeforedescendingtolowerlevelslaterSuchconcentrationovershootinvolveslessmitigationintheneartermwithmorerapidanddeeperemissionsreductionsinthelongrunOvershootincreasestheprobabilityofexceedinganygiventemperaturegoal[63TableSPM1]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

12of33

temperatureincreaseismorelikelythannottobelessthan15degCrelativetopreͲindustriallevelsby12100arecharacterizedbyconcentrationsin2100ofbelow430ppmCO2eqTemperaturepeaks2duringthecenturyandthendeclinesinthesescenariosProbabilitystatementsregardingother3levelsoftemperaturechangecanbemadewithreferencetoTableSPM1[63BoxTS6]4

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

13of33

Table SPM1 Key characteristics of the scenarios collected and assessed for WGIII AR5 For all parameters the 10th to 90th percentile of the scenarios is 1shown12 [Table 63] 2

CO2eqConcentrationsin2100(CO2eq)

Categorylabel(concentration

range)9

SubcategoriesRelativepositionoftheRCPs5

CumulativeCO2emission3(GtCO2)

ChangeinCO2eqemissionscomparedto

2010in()4Temperaturechange(relativeto1850ndash1900)56

2011ndash2050 2011ndash2100 2050 2100 2100Temperaturechange(degC)7

Likelihoodofstayingbelowtemperatureleveloverthe21stcentury8

15degC 20degC 30degC 40degC

δͶ͵Ͳ Onlyalimitednumberofindividualmodelstudieshaveexploredlevelsbelow430ppmCO2eqͶͷͲ

ȋͶ͵ͲȂͶͺͲȌ 110 RCP26 ͷͷͲȂͳ͵ͲͲ ͵ͲȂͳͳͺͲ Ͳ72toͲ41 Ͳ118Ͳ78 ͳǤͷȂͳǤȋͳǤͲȂʹǤͺȌ Moreunlikelythanlikely Likely

Likely

Likely

ͷͲͲȋͶͺͲȂͷ͵ͲȌ

ͷ͵Ͳʹ ͺͲȂͳͳͺͲ ͻͲȂͳͶ͵Ͳ Ͳ57Ͳ42 Ͳ107Ͳ73 ͳǤȂͳǤͻȋͳǤʹȂʹǤͻȌ

Unlikely

Morelikelythannot

ͷ͵Ͳʹ ͳͳ͵ͲȂͳͷ͵Ͳ ͻͻͲȂͳͷͷͲ Ͳ55Ͳ25 Ͳ114Ͳ90 ͳǤͺȂʹǤͲȋͳǤʹȂ͵Ǥ͵Ȍ Aboutaslikelyasnot

ͷͷͲȋͷ͵ͲȂͷͺͲȌ

ͷͺͲʹ ͳͲͲȂͳͶͲ ͳʹͶͲȂʹʹͶͲ Ͳ47Ͳ19 Ͳ81Ͳ59 ʹǤͲȂʹǤʹȋͳǤͶȂ͵ǤȌMoreunlikelythanlikelyͳʹ

ͷͺͲʹ ͳͶʹͲȂͳͷͲ ͳͳͲȂʹͳͲͲ Ͳ167 Ͳ183Ͳ86 ʹǤͳȂʹǤ͵ȋͳǤͶȂ͵ǤȌ

ȋͷͺͲȂͷͲȌ RCP45

ͳʹͲȂͳͶͲ ͳͺͲȂʹͶͶͲ Ͳ3824 Ͳ134toͲ50 ʹǤ͵ȂʹǤȋͳǤͷȂͶǤʹȌ

ȋͷͲȂʹͲȌ ͳ͵ͳͲȂͳͷͲ ʹͷͲȂ͵͵ͶͲ Ͳ11to17 Ͳ54Ͳ21 ʹǤȂʹǤͻȋͳǤͺȂͶǤͷȌ Unlikely

Morelikelythannot

ȋʹͲȂͳͲͲͲȌ RCP60 ͳͷͲȂͳͻͶͲ ͵ʹͲȂͶͻͻͲ 1854 Ͳ772 ͵ǤͳȂ͵ǤȋʹǤͳȂͷǤͺȌUnlikely11

Moreunlikelythanlikely

εͳͲͲͲ RCP85 ͳͺͶͲȂʹ͵ͳͲ ͷ͵ͷͲȂͲͳͲ 5295 74178 ͶǤͳȂͶǤͺȋʹǤͺȂǤͺȌ Unlikely11 Unlikely Moreunlikelythanlikely

1Thetotalrangeforthe430ndash480ppmCO2eqscenarioscorrespondstotherangeofthe10ndash90thpercentileofthesubcategoryofthesescenariosshownin3table632Baselinescenarios(seeSPM3)arecategorizedinthegt1000and750ndash1000ppmCO2eqcategoriesThelattercategoryincludesalsomitigation4scenariosThebaselinescenariosinthelattercategoryreachatemperaturechangeof25ndash58degCabovepreindustrialin2100Togetherwiththebaseline5scenariosinthegt1000ppmCO2eqcategorythisleadstoanoverall2100temperaturerangeof25ndash78degC(median37ndash48degC)forbaselinescenariosacross6bothconcentrationcategories3ForcomparisonofthecumulativeCO2emissionsestimatesassessedherewiththosepresentedinWGIanamountof5157[445to585]GtC(1890[1630to2150]GtCO2)wasalreadyemittedby2011since1870[SectionWGI125]Notethatcumulativeemissionsarepresented8herefordifferentperiodsoftime(2011ndash2050and2011ndash2100)whilecumulativeemissionsinWGIarepresentedastotalcompatibleemissionsfortheRCPs9(2012ndash2100)orfortotalcompatibleemissionsforremainingbelowagiventemperaturetargetwithagivenlikelihood[WGITableSPM3WGISPME8]410Theglobal2010emissionsare31abovethe1990emissions(consistentwiththehistoricGHGemissionestimatespresentedinthisreport)CO2eq11emissionsincludethebasketofKyotogases(CO2CH4N2OaswellasFͲgases)5TheassessmentinWGIIIinvolvesalargenumberofscenariospublishedin12thescientificliteratureandisthusnotlimitedtotheRCPsToevaluatethegreenhousegasconcentrationandclimateimplicationsofthesescenariosthe13MAGICCmodelwasusedinaprobabilisticmode(seeAnnexII)ForacomparisonbetweenMAGICCmodelresultsandtheoutcomesofthemodelsusedin14WGIseeSectionWGI12412andWGI1248and6326ReasonsfordifferenceswithWGISPMTable2includethedifferenceinreferenceyear(1986ndash15

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

14of33

2005vs1850ndash1900here)differenceinreportingyear(2081ndash2100vs2100here)setͲupofsimulation(CMIP5concentrationdrivenversusMAGICC1emissionͲdrivenhere)andthewidersetofscenarios(RCPsversusthefullsetofscenariosintheWGIIIAR5scenariodatabasehere)6Temperaturechange2isreportedfortheyear2100whichisnotdirectlycomparabletotheequilibriumwarmingreportedinAR4(Table35Chapter3WGIII)Forthe21003temperatureestimatesthetransientclimateresponse(TCR)isthemostrelevantsystempropertyTheassumed90thpercentileuncertaintyrangeofthe4TCRforMAGICCis12ndash26degC(median18degC)Thiscomparestothe90thpercentilerangeofTCRbetween12ndash24degCforCMIP5(WGI97)andanassessed5likelyrangeof1ndash25degCfrommultiplelinesofevidencereportedintheIPCCAR5WGIreport(Box122inchapter125)7Temperaturechangein2100is6providedforamedianestimateoftheMAGICCcalculationswhichillustratesdifferencesbetweentheemissionspathwaysofthescenariosineach7categoryTherangeoftemperaturechangeintheparenthesesincludesinadditionalsothecarboncycleandclimatesystemuncertaintiesasrepresented8bytheMAGICCmodel(see6326forfurtherdetails)Thetemperaturedatacomparedtothe1850ndash1900referenceyearwascalculatedbytakingall9projectedwarmingrelativeto1986ndash2005andadding061degCfor1986ndash2005comparedto1850ndash1900basedonHadCRUT4(seeWGITableSPM2)8The10assessmentinthistableisbasedontheprobabilitiescalculatedforthefullensembleofscenariosinWGIIIusingMAGICCandtheassessmentinWGIofthe11uncertaintyofthetemperatureprojectionsnotcoveredbyclimatemodelsThestatementsarethereforeconsistentwiththestatementsinWGIwhichare12basedontheCMIP5runsoftheRCPsandtheassesseduncertaintiesHencethelikelihoodstatementsreflectdifferentlinesofevidencefrombothWGs13ThisWGImethodwasalsoappliedforscenarioswithintermediateconcentrationlevelswherenoCMIP5runsareavailableThelikelihoodstatementsare14indicativeonly(63)andfollowbroadlythetermsusedbytheWGISPMfortemperatureprojectionslikely66ndash100morelikelythannotgt50ndash100about15aslikelyasnot33ndash66andunlikely0ndash33Inadditionthetermmoreunlikelythanlikely0Ͳlt50isused9TheCO2equivalentconcentrationincludesthe16forcingofallGHGsincludinghalogenatedgasesandtroposphericozoneaerosolsandalbedochange(calculatedonthebasisofthetotalforcingfroma17simplecarboncycleclimatemodelMAGICC)10Thevastmajorityofscenariosinthiscategoryovershootthecategoryboundaryof480ppmCO2eq18concentrations11ForscenariosinthiscategorynoCMIP5run(WGIAR5Chapter12Table123)aswellasnoMAGICCrealization(63)staysbelowthe19respectivetemperaturelevelStillanlsquounlikelyrsquoassignmentisgiventoreflectuncertaintiesthatmightnotbereflectedbythecurrentclimatemodels1220Scenariosinthe580ndash650ppmCO2eqcategoryincludebothovershootscenariosandscenariosthatdonotexceedtheconcentrationlevelatthehighendof21thecategory(likeRCP45)Thelattertypeofscenariosingeneralhaveanassessedprobabilityofmoreunlikelythanlikelytoexceedthe2degCtemperature22levelwhiletheformeraremostlyassessedtohaveanunlikelyprobabilityofexceedingthislevel[Subjecttofinalqualitycheckandcopyedit]23

24

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 2: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

1of33

Title SummaryforPolicymakers

DraftingAuthors

OttmarEdenhofer(Germany)RamoacutenPichsͲMadruga (Cuba)YoubaSokona(Mali)ShardulAgrawala(France)IgorAlexeyevichBashmakov(Russia)GabrielBlanco(Argentina)JohnBroome(UK)ThomasBruckner(Germany)SteffenBrunner(Germany)MercedesBustamante(Brazil)LeonClarke(USA)FelixCreutzig(Germany)ShobhakarDhakal(NepalThailand)NavrozKDubash(India)PatrickEickemeier(Germany)EllieFarahani(CanadaIran)ManfredFischedick(Germany)MarcFleurbaey(France)ReyerGerlagh(Netherlands)LuisGoacutemezͲEcheverri(ColombiaAustria)ShreekantGupta(India)SujataGupta(IndiaPhilippines)JochenHarnisch(Germany)KejunJiang(China)SusanneKadner(Germany)SivanKartha(USA)StephanKlasen(Germany)CharlesKolstad(USA)VolkerKrey(AustriaGermany)HowardKunreuther(USA)OswaldoLucon(Brazil)OmarMasera(Meacutexico)JanMinx(Germany)YacobMulugetta(UKEthiopia)AnthonyPatt(USA)NijavalliHRavindranath(India)KeywanRiahi(Austria)JoyashreeRoy(India)RobertoSchaeffer(Brazil)SteffenSchloumlmer(Germany)KarenSeto(USA)KristinSeyboth(USA)RalphSims(NewZealand)JimSkea(UK)PeteSmith(UK)EswaranSomanathan(India)RobertStavins(USA)ChristophvonStechow(Germany)ThomasSterner(Sweden)TaishiSugiyama(Japan)SangwonSuh(SouthKoreaUSA)KevinChikaUrama(NigeriaUK)DianaUumlrgeͲVorsatz(Hungary)DavidVictor(USA)DadiZhou(China)JiZou(China)TimmZwickel(Germany)

DraftContributingAuthors

GiovanniBaiocchi(UKItaly)HelenaChum (USABrazil)JanFuglestvedt(Norway)HelmutHaberl(Austria)EdgarHertwich(NorwayAustria)ElmarKriegler(Germany)JoeriRogelj(SwitzerlandBelgium)HͲHolgerRogner(AustriaGermany)MichielSchaeffer(Netherlands)SteveSmith(USA)DetlefvanVuuren(Netherlands)RyanWiser(USA)

1

2

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

2of33

SPM SummaryforPolicymakers1

2

3

Contents4

5

SPM1Introduction36

SPM2Approachestoclimatechangemitigation37

SPM3Trendsinstocksandflowsofgreenhousegasesandtheirdrivers58

SPM4Mitigationpathwaysandmeasuresinthecontextofsustainabledevelopment109

SPM41LongͲtermmitigationpathways1010

SPM42SectoralandcrossͲsectoralmitigationpathwaysandmeasures2011

SPM421CrossͲsectoralmitigationpathwaysandmeasures2012

SPM422Energysupply2313

SPM423EnergyendͲusesectors2414

SPM424AgricultureForestryandOtherLandUse(AFOLU)2715

SPM425HumanSettlementsInfrastructureandSpatialPlanning2816

SPM5Mitigationpoliciesandinstitutions2917

SPM51Sectoralandnationalpolicies2918

SPM52Internationalcooperation3319

20

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

3of33

SPM1 Introduction1

TheWorkingGroupIIIcontributiontotheIPCCrsquosFifthAssessmentReport(AR5)assessesliterature2onthescientifictechnologicalenvironmentaleconomicandsocialaspectsofmitigationofclimate3changeItbuildsupontheWorkingGroupIIIcontributiontotheIPCCrsquosFourthAssessmentReport4(AR4)theSpecialReportonRenewableEnergySourcesandClimateChangeMitigation(SRREN)and5previousreportsandincorporatessubsequentnewfindingsandresearchThereportalsoassesses6mitigationoptionsatdifferentlevelsofgovernanceandindifferenteconomicsectorsandthe7societalimplicationsofdifferentmitigationpoliciesbutdoesnotrecommendanyparticularoption8formitigation9

ThisSummaryforPolicymakers(SPM)followsthestructureoftheWorkingGroupIIIreportThe10narrativeissupportedbyaseriesofhighlightedconclusionswhichtakentogetherprovideaconcise11summaryThebasisfortheSPMcanbefoundinthechaptersectionsoftheunderlyingreportandin12theTechnicalSummary(TS)Referencestothesearegiveninsquaredbrackets13

ThedegreeofcertaintyinfindingsinthisassessmentasinthereportsofallthreeWorkingGroups14isbasedontheauthorteamsrsquoevaluationsofunderlyingscientificunderstandingandisexpressedas15aqualitativelevelofconfidence(fromverylowtoveryhigh)andwhenpossibleprobabilistically16withaquantifiedlikelihood(fromexceptionallyunlikelytovirtuallycertain)Confidenceinthe17validityofafindingisbasedonthetypeamountqualityandconsistencyofevidence(egdata18mechanisticunderstandingtheorymodelsexpertjudgment)andthedegreeofagreement119Probabilisticestimatesofquantifiedmeasuresofuncertaintyinafindingarebasedonstatistical20analysisofobservationsormodelresultsorbothandexpertjudgment2Whereappropriate21findingsarealsoformulatedasstatementsoffactwithoutusinguncertaintyqualifiersWithin22paragraphsofthissummarytheconfidenceevidenceandagreementtermsgivenforabolded23findingapplytosubsequentstatementsintheparagraphunlessadditionaltermsareprovided24

SPM2 Approachestoclimatechangemitigation25

Mitigationisahumaninterventiontoreducethesourcesorenhancethesinksofgreenhouse26gasesMitigationtogetherwithadaptationtoclimatechangecontributestotheobjective27expressedinArticle2oftheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)28

TheultimateobjectiveofthisConventionandanyrelatedlegalinstrumentsthatthe29ConferenceofthePartiesmayadoptistoachieveinaccordancewiththerelevant30provisionsoftheConventionstabilizationofgreenhousegasconcentrationsinthe31atmosphereatalevelthatwouldpreventdangerousanthropogenicinterferencewiththe32climatesystemSuchalevelshouldbeachievedwithinatimeframesufficienttoallow33

1ThefollowingsummarytermsareusedtodescribetheavailableevidencelimitedmediumorrobustandforthedegreeofagreementlowmediumorhighAlevelofconfidenceisexpressedusingfivequalifiersverylowlowmediumhighandveryhighandtypesetinitalicsegmediumconfidenceForagivenevidenceandagreementstatementdifferentconfidencelevelscanbeassignedbutincreasinglevelsofevidenceanddegreesofagreementarecorrelatedwithincreasingconfidenceFormoredetailspleaserefertotheguidancenoteforLeadAuthorsoftheIPCCFifthAssessmentReportonconsistenttreatmentofuncertainties2Thefollowingtermshavebeenusedtoindicatetheassessedlikelihoodofanoutcomeoraresultvirtuallycertain99ndash100probabilityverylikely90ndash100likely66ndash100aboutaslikelyasnot33ndash66unlikely0ndash33veryunlikely0ndash10exceptionallyunlikely0ndash1Additionalterms(morelikelythannotgt50ndash100andmoreunlikelythanlikely0Ͳlt50)mayalsobeusedwhenappropriateAssessedlikelihoodistypesetinitalicsegverylikely

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

4of33

ecosystemstoadaptnaturallytoclimatechangetoensurethatfoodproductionisnot1threatenedandtoenableeconomicdevelopmenttoproceedinasustainablemanner2

Climatepoliciescanbeinformedbythefindingsofscienceandsystematicmethodsfromother3disciplines[122425Box31]4

Sustainabledevelopmentandequityprovideabasisforassessingclimatepoliciesandhighlight5theneedforaddressingtherisksofclimatechange3Limitingtheeffectsofclimatechangeis6necessarytoachievesustainabledevelopmentandequityincludingpovertyeradicationAtthe7sametimesomemitigationeffortscouldundermineactionontherighttopromotesustainable8developmentandontheachievementofpovertyeradicationandequityConsequentlya9comprehensiveassessmentofclimatepoliciesinvolvesgoingbeyondafocusonmitigationand10adaptationpoliciesalonetoexaminedevelopmentpathwaysmorebroadlyalongwiththeir11determinants[424344454648]12

Effectivemitigationwillnotbeachievedifindividualagentsadvancetheirowninterests13independentlyClimatechangehasthecharacteristicsofacollectiveactionproblemattheglobal14scalebecausemostgreenhousegases(GHGs)accumulateovertimeandmixgloballyandemissions15byanyagent(egindividualcommunitycompanycountry)affectotheragents4International16cooperationisthereforerequiredtoeffectivelymitigateGHGemissionsandaddressotherclimate17changeissues[1242643142132133]Furthermoreresearchanddevelopmentinsupport18ofmitigationcreatesknowledgespilloversInternationalcooperationcanplayaconstructiverolein19thedevelopmentdiffusionandtransferofknowledgeandenvironmentallysoundtechnologies20[14431161181391443]21

Issuesofequityjusticeandfairnessarisewithrespecttomitigationandadaptation5Countriesrsquo22pastandfuturecontributionstotheaccumulationofGHGsintheatmospherearedifferentand23countriesalsofacevaryingchallengesandcircumstancesandhavedifferentcapacitiestoaddress24mitigationandadaptationTheevidencesuggeststhatoutcomesseenasequitablecanleadtomore25effectivecooperation[310422462]26

ManyareasofclimatepolicyͲmakinginvolvevaluejudgementsandethicalconsiderationsThese27areasrangefromthequestionofhowmuchmitigationisneededtopreventdangerousinterference28withtheclimatesystemtochoicesamongspecificpoliciesformitigationoradaptation[3132]29Socialeconomicandethicalanalysesmaybeusedtoinformvaluejudgementsandmaytakeinto30accountvaluesofvarioussortsincludinghumanwellbeingculturalvaluesandnonͲhumanvalues31[34310]32

Amongothermethodseconomicevaluationiscommonlyusedtoinformclimatepolicydesign33PracticaltoolsforeconomicassessmentincludecostͲbenefitanalysiscostͲeffectivenessanalysis34multiͲcriteriaanalysisandexpectedutilitytheory[25]ThelimitationsofthesetoolsarewellͲ35documented[35]Ethicaltheoriesbasedonsocialwelfarefunctionsimplythatdistributional36weightswhichtakeaccountofthedifferentvalueofmoneytodifferentpeopleshouldbeapplied37tomonetarymeasuresofbenefitsandharms[361BoxTS2]Whereasdistributionalweightinghas38notfrequentlybeenappliedforcomparingtheeffectsofclimatepoliciesondifferentpeopleata39singletimeitisstandardpracticeintheformofdiscountingforcomparingtheeffectsatdifferent40times[362]41

3SeeWGIIAR5SPM4InthesocialsciencesthisisreferredtoasalsquoglobalcommonsproblemlsquoAsthisexpressionisusedinthesocialsciencesithasnospecificimplicationsforlegalarrangementsorforparticularcriteriaregardingeffortͲsharing5SeeFAQ32forclarificationoftheseconceptsThephilosophicalliteratureonjusticeandotherliteraturecanilluminatetheseissues[3233462]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

5of33

ClimatepolicyintersectswithothersocietalgoalscreatingthepossibilityofcoͲbenefitsoradverse1sideͲeffectsTheseintersectionsifwellͲmanagedcanstrengthenthebasisforundertaking2climateactionMitigationandadaptationcanpositivelyornegativelyinfluencetheachievementof3othersocietalgoalssuchasthoserelatedtohumanhealthfoodsecuritybiodiversitylocal4environmentalqualityenergyaccesslivelihoodsandequitablesustainabledevelopmentandvice5versapoliciestowardothersocietalgoalscaninfluencetheachievementofmitigationand6adaptationobjectives[424344454648]Theseinfluencescanbesubstantialalthough7sometimesdifficulttoquantifyespeciallyinwelfareterms[363]ThismultiͲobjectiveperspectiveis8importantinpartbecauseithelpstoidentifyareaswheresupportforpoliciesthatadvancemultiple9goalswillberobust[1214248661]10

Climatepolicymaybeinformedbyaconsiderationofadiversearrayofrisksanduncertainties11someofwhicharedifficulttomeasurenotablyeventsthatareoflowprobabilitybutwhichwould12haveasignificantimpactiftheyoccurSinceAR4thescientificliteraturehasexaminedrisksrelated13toclimatechangeadaptationandmitigationstrategiesAccuratelyestimatingthebenefitsof14mitigationtakesintoaccountthefullrangeofpossibleimpactsofclimatechangeincludingthose15withhighconsequencesbutalowprobabilityofoccurrenceThebenefitsofmitigationmay16otherwisebeunderestimated(highconfidence)[2526Box39]Thechoiceofmitigationactionsis17alsoinfluencedbyuncertaintiesinmanysocioͲeconomicvariablesincludingtherateofeconomic18growthandtheevolutionoftechnology(highconfidence)[2663]19

Thedesignofclimatepolicyisinfluencedbyhowindividualsandorganizationsperceiverisksand20uncertaintiesandtakethemintoaccountPeopleoftenutilizesimplifieddecisionrulessuchasa21preferenceforthestatusquoIndividualsandorganizationsdifferintheirdegreeofriskaversionand22therelativeimportanceplacedonnearͲtermversuslongͲtermramificationsofspecificactions[24]23Withthehelpofformalmethodspolicydesigncanbeimprovedbytakingintoaccountrisksand24uncertaintiesinnaturalsocioͲeconomicandtechnologicalsystemsaswellasdecisionprocesses25perceptionsvaluesandwealth[25]26

SPM3 Trendsinstocksandflowsofgreenhousegasesandtheirdrivers27

TotalanthropogenicGHGemissionshavecontinuedtoincreaseover1970to2010withlarger28absolutedecadalincreasestowardtheendofthisperiod(highconfidence)Despiteagrowing29numberofclimatechangemitigationpoliciesannualGHGemissionsgrewonaverageby10giga30tonnecarbondioxideequivalent(GtCO2eq)(22)peryearfrom2000to2010comparedto0431GtCO2eq(13)peryearfrom1970to2000(FigureSPM1)67TotalanthropogenicGHGemissions32werethehighestinhumanhistoryfrom2000to2010andreached49(plusmn45)GtCO2eqyrin2010The33globaleconomiccrisis20072008onlytemporarilyreducedemissions[13521331522Box34TS5Figure151]35

CO2emissionsfromfossilfuelcombustionandindustrialprocessescontributedabout78ofthe36totalGHGemissionincreasefrom1970to2010withasimilarpercentagecontributionforthe37period2000ndash2010(highconfidence)FossilfuelͲrelatedCO2emissionsreached32(plusmn27)GtCO2yrin382010andgrewfurtherbyabout3between2010and2011andbyabout1Ͳ2between2011and392012Ofthe49(plusmn45)GtCO2eqyrintotalanthropogenicGHGemissionsin2010CO2remainsthe40majoranthropogenicGHGaccountingfor76(38plusmn38GtCO2eqyr)oftotalanthropogenicGHG41emissionsin201016(78plusmn16GtCO2eqyr)comefrommethane(CH4)62(31plusmn19GtCO2eqyr)426ThroughouttheSPMemissionsofGHGsareweightedbyGlobalWarmingPotentialswitha100Ͳyeartimehorizon(GWP100)fromtheIPCCSecondAssessmentReportAllmetricshavelimitationsanduncertaintiesinassessingconsequencesofdifferentemissions[396BoxTS5AnnexII29WGIAR5SPM]7InthisSPMuncertaintyinhistoricGHGemissiondataisreportedusing90uncertaintyintervalsunlessotherwisestatedGHGemissionlevelsareroundedtotwosignificantdigitsthroughoutthisdocument

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

6of33

fromnitrousoxide(N2O)and20(10plusmn02GtCO2eqyr)fromfluorinatedgases(FigureSPM1)1Annuallysince1970about25ofanthropogenicGHGemissionshavebeenintheformofnonͲCO22gases8[1252]3

4Figure SPM1 Total annual anthropogenic GHG emissions (GtCO2eqyr) by groups of gases 1970-52010 CO2 from fossil fuel combustion and industrial processes CO2 from Forestry and Other Land 6Use (FOLU) methane (CH4) nitrous oxide (N2O) fluorinated gases8 covered under the Kyoto 7Protocol (F-gases) At the right side of the figure GHG emissions in 2010 are shown again broken 8down into these components with the associated uncertainties (90 confidence interval) indicated by 9the error bars Total anthropogenic GHG emissions uncertainties are derived from the individual gas 10estimates as described in Chapter 5 [5236] Global CO2 emissions from fossil fuel combustion are 11known within 8 uncertainty (90 confidence interval) CO2 emissions from FOLU have very large 12uncertainties attached in the order of plusmn50 Uncertainty for global emissions of CH4 N2O and the F-13gases has been estimated as 20 60 and 20 respectively 2010 was the most recent year for 14which emission statistics on all gases as well as assessment of uncertainties were essentially 15complete at the time of data cut off for this report Emissions are converted into CO2-equivalents 16based on GWP100

6 from the IPCC Second Assessment Report The emission data from FOLU 17represents land-based CO2 emissions from forest fires peat fires and peat decay that approximate to 18net CO2 flux from the FOLU as described in chapter 11 of this report Average annual growth rate 19over different periods is highlighted with the brackets [Figure 13 Figure TS1] [Subject to final quality 20check and copy edit] 21

AbouthalfofcumulativeanthropogenicCO2emissionsbetween1750and2010haveoccurredin22thelast40years(highconfidence)In1970cumulativeCO2emissionsfromfossilfuelcombustion23cementproductionandflaringsince1750were420plusmn35GtCO2in2010thatcumulativetotalhad24tripledto1300plusmn110GtCO2(FigureSPM2)CumulativeCO2emissionsfromForestryandOtherLand25Use(FOLU)9since1750increasedfrom490plusmn180GtCO2in1970to680plusmn300GtCO2in2010[52]26

8InthisreportdataonnonͲCO2GHGsincludingfluorinatedgasesistakenfromtheEDGARdatabase(AnnexII9)whichcoverssubstancesincludedintheKyotoProtocolinitsfirstcommitmentperiod9ForestryandOtherLandUse(FOLU)mdashalsoreferredtoasLULUCF(LandUseLandͲUseChangeandForestry)mdashisthesubsetofAgricultureForestryandOtherLandUse(AFOLU)emissionsandremovalsofGHGsrelatedtodirecthumanͲinducedlanduselandͲusechangeandforestryactivitiesexcludingagriculturalemissionsandremovals(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

7of33

AnnualanthropogenicGHGemissionshaveincreasedby10GtCO2eqbetween2000and2010with1thisincreasedirectlycomingfromenergysupply(47)industry(30)transport(11)and2buildings(3)sectors(mediumconfidence)Accountingforindirectemissionsraisesthe3contributionsofthebuildingsandindustrysectors(highconfidence)Since2000GHGemissions4havebeengrowinginallsectorsexceptAFOLUOfthe49(plusmn45)GtCO2eqemissionsin201035(175GtCO2eq)ofGHGemissionswerereleasedintheenergysupplysector24(12GtCO2eqnet6emissions)inAFOLU21(10GtCO2eq)inindustry14(70GtCO2eq)intransportand64(327GtCO2eq)inbuildingsWhenemissionsfromelectricityandheatproductionareattributedtothe8sectorsthatusethefinalenergy(ieindirectemissions)thesharesoftheindustryandbuildings9sectorsinglobalGHGemissionsareincreasedto31and19respectively(FigureSPM2)[73821092103112]11

12Figure SPM2 Total anthropogenic GHG emissions (GtCO2eqyr) by economic sectors Inner circle 13shows direct GHG emission shares (in of total anthropogenic GHG emissions) of five economic 14sectors in 2010 Pull-out shows how indirect CO2 emission shares (in of total anthropogenic GHG 15emissions) from electricity and heat production are attributed to sectors of final energy use ldquoOther 16Energyrdquo refers to all GHG emission sources in the energy sector as defined in Annex II other than 17electricity and heat production [AII91] The emissions data from Agriculture Forestry and Other 18Land Use (AFOLU) includes land-based CO2 emissions from forest fires peat fires and peat decay 19that approximate to net CO2 flux from the Forestry and Other Land Use (FOLU) sub-sector as 20described in Chapter 11 of this report Emissions are converted into CO2-equivalents based on 21GWP100

6 from the IPCC Second Assessment Report Sector definitions are provided in Annex II9 22[Figure 13a Figure TS3 ab] [Subject to final quality check and copy edit] 23

Globallyeconomicandpopulationgrowthcontinuetobethemostimportantdriversofincreases24inCO2emissionsfromfossilfuelcombustionThecontributionofpopulationgrowthbetween252000and2010remainedroughlyidenticaltothepreviousthreedecadeswhilethecontributionof26economicgrowthhasrisensharply(highconfidence)Between2000and2010bothdrivers27outpacedemissionreductionsfromimprovementsinenergyintensity(FigureSPM3)Increaseduse28ofcoalrelativetootherenergysourceshasreversedthelongͲstandingtrendofgradual29decarbonizationoftheworldrsquosenergysupply[135372143TS22]30

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

8of33

1Figure SPM3 Decomposition of the decadal change in total global CO2 emissions from fossil fuel 2combustion by four driving factors population income (GDP) per capita energy intensity of GDP and 3carbon intensity of energy The bar segments show the changes associated with each factor alone 4holding the respective other factors constant Total decadal changes are indicated by a triangle 5Changes are measured in giga tonnes (Gt) of CO2 emissions per decade income is converted into 6common units using purchasing power parities [Figure 17] [Subject to final quality check and copy 7edit] 8

WithoutadditionaleffortstoreduceGHGemissionsbeyondthoseinplacetodayemissions9growthisexpectedtopersistdrivenbygrowthinglobalpopulationandeconomicactivities10Baselinescenariosthosewithoutadditionalmitigationresultinglobalmeansurfacetemperature11increasesin2100from37to48degCcomparedtopreͲindustriallevels10(medianvaluestherangeis1225degCto78degCwhenincludingclimateuncertaintyseeTableSPM1)11(highconfidence)The13emissionscenarioscollectedforthisassessmentrepresentfullradiativeforcingincludingGHGs14troposphericozoneaerosolsandalbedochangeBaselinescenarios(scenarioswithoutexplicit15additionaleffortstoconstrainemissions)exceed450partspermillion(ppm)CO2eqby2030and16reachCO2eqconcentrationlevelsbetween750andmorethan1300ppmCO2eqby2100Thisis17similartotherangeinatmosphericconcentrationlevelsbetweentheRCP60andRCP85pathways1810Basedonthelongestglobalsurfacetemperaturedatasetavailabletheobservedchangebetweentheaverageoftheperiod1850Ͳ1900andoftheAR5referenceperiod(1986ndash2005)is061degC(5ndash95confidenceinterval055to067degC)[WGIAR5SPME]whichisusedhereasanapproximationofthechangeinglobalmeansurfacetemperaturesincepreͲindustrialtimesreferredtoastheperiodbefore175011Theclimateuncertaintyreflectsthe5thto95thpercentileofclimatemodelcalculationsdescribedinTableSPM1

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

9of33

in210012ForcomparisontheCO2eqconcentrationin2011isestimatedtobe430ppm(uncertainty1range340ndash520ppm)13[63BoxTS6WGIAR5FigureSPM5WGI85WGI123] 2

12Forthepurposeofthisassessmentroughly300baselinescenariosand900mitigationscenarioswerecollectedthroughanopencallfromintegratedmodellingteamsaroundtheworldThesescenariosarecomplementarytotheRepresentativeConcentrationPathways(RCPsseeWGIIIAR5Glossary)TheRCPsareidentifiedbytheirapproximatetotalradiativeforcinginyear2100relativeto175026Wattspersquaremeter(WmͲ2)forRCP2645WmͲ2forRCP4560WmͲ2forRCP60and85WmͲ2forRCP85Thescenarioscollectedforthisassessmentspanaslightlybroaderrangeofconcentrationsintheyear2100thanthefourRCPs13Thisisbasedontheassessmentoftotalanthropogenicradiativeforcingfor2011relativeto1750inWGIie23WmͲ2uncertaintyrange11to33WmͲ2[WGIAR5FigureSPM5WGI85WGI123]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

10of33

SPM4 Mitigationpathwaysandmeasuresinthecontextofsustainable1development2

SPM41 LongͲtermmitigationpathways3

Therearemultiplescenarioswitharangeoftechnologicalandbehavioraloptionswithdifferent4characteristicsandimplicationsforsustainabledevelopmentthatareconsistentwithdifferent5levelsofmitigationForthisassessmentabout900mitigationscenarioshavebeencollectedina6databasebasedonpublishedintegratedmodels14Thisrangespansatmosphericconcentration7levelsin2100from430ppmCO2eqtoabove720ppmCO2eqwhichiscomparabletothe21008forcinglevelsbetweenRCP26andRCP60Scenariosoutsidethisrangewerealsoassessed9includingsomescenarioswithconcentrationsin2100below430ppmCO2eq(foradiscussionof10thesescenariosseebelow)Themitigationscenariosinvolveawiderangeoftechnological11socioeconomicandinstitutionaltrajectoriesbutuncertaintiesandmodellimitationsexistand12developmentsoutsidethisrangearepossible(FigureSPM4toppanel)[616263TS31Box13TS6]14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

14ThelongͲtermscenariosassessedinWGIIIweregeneratedprimarilybylargeͲscaleintegratedmodelsthatprojectmanykeycharacteristicsofmitigationpathwaystomidͲcenturyandbeyondThesemodelslinkmanyimportanthumansystems(egenergyagricultureandlanduseeconomy)withphysicalprocessesassociatedwithclimatechange(egthecarboncycle)ThemodelsapproximatecostͲeffectivesolutionsthatminimizetheaggregateeconomiccostsofachievingmitigationoutcomesunlesstheyarespecificallyconstrainedtobehaveotherwiseTheyaresimplifiedstylizedrepresentationsofhighlyͲcomplexrealͲworldprocessesandthescenariostheyproducearebasedonuncertainprojectionsaboutkeyeventsanddriversoveroftencenturyͲlongtimescalesSimplificationsanddifferencesinassumptionsarethereasonwhyoutputgeneratedfromdifferentmodelsorversionsofthesamemodelcandifferandprojectionsfromallmodelscandifferconsiderablyfromtherealitythatunfolds[BoxTS762]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

11of33

1Figure SPM4 Pathways of global GHG emissions (GtCO2eqyr) in baseline and mitigation scenarios 2for different long-term concentration levels (upper panel) and associated upscaling requirements of 3low-carbon energy ( of primary energy) for 2030 2050 and 2100 compared to 2010 levels in 4mitigation scenarios (lower panel) The upper and lower panels exclude scenarios with limited 5technology availability and the lower panel in addition excludes scenarios that assume exogenous 6carbon price trajectories [Figure 67 Figure 716] [Subject to final quality check and copy edit] 7

Mitigationscenariosinwhichitislikelythatthetemperaturechangecausedbyanthropogenic8GHGemissionscanbekepttolessthan2degCrelativetopreͲindustriallevelsarecharacterizedby9atmosphericconcentrationsin2100ofabout450ppmCO2eq(highconfidence)Mitigation10scenariosreachingconcentrationlevelsofabout500ppmCO2eqby2100aremorelikelythannotto11limittemperaturechangetolessthan2degCrelativetopreͲindustriallevelsunlesstheytemporarily12lsquoovershootrsquoconcentrationlevelsofroughly530ppmCO2eqbefore2100inwhichcasetheyare13aboutaslikelyasnottoachievethatgoal15Scenariosthatreach530to650ppmCO2eq14concentrationsby2100aremoreunlikelythanlikelytokeeptemperaturechangebelow2degCrelative15topreͲindustriallevelsScenariosthatreachabout650ppmCO2eqby2100areunlikelytolimit16temperaturechangetobelow2degCrelativetopreͲindustriallevelsMitigationscenariosinwhich1715Mitigationscenariosincludingthosereaching2100concentrationsashighasorhigherthan550ppmCO2eqcantemporarilylsquoovershootrsquoatmosphericCO2eqconcentrationlevelsbeforedescendingtolowerlevelslaterSuchconcentrationovershootinvolveslessmitigationintheneartermwithmorerapidanddeeperemissionsreductionsinthelongrunOvershootincreasestheprobabilityofexceedinganygiventemperaturegoal[63TableSPM1]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

12of33

temperatureincreaseismorelikelythannottobelessthan15degCrelativetopreͲindustriallevelsby12100arecharacterizedbyconcentrationsin2100ofbelow430ppmCO2eqTemperaturepeaks2duringthecenturyandthendeclinesinthesescenariosProbabilitystatementsregardingother3levelsoftemperaturechangecanbemadewithreferencetoTableSPM1[63BoxTS6]4

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

13of33

Table SPM1 Key characteristics of the scenarios collected and assessed for WGIII AR5 For all parameters the 10th to 90th percentile of the scenarios is 1shown12 [Table 63] 2

CO2eqConcentrationsin2100(CO2eq)

Categorylabel(concentration

range)9

SubcategoriesRelativepositionoftheRCPs5

CumulativeCO2emission3(GtCO2)

ChangeinCO2eqemissionscomparedto

2010in()4Temperaturechange(relativeto1850ndash1900)56

2011ndash2050 2011ndash2100 2050 2100 2100Temperaturechange(degC)7

Likelihoodofstayingbelowtemperatureleveloverthe21stcentury8

15degC 20degC 30degC 40degC

δͶ͵Ͳ Onlyalimitednumberofindividualmodelstudieshaveexploredlevelsbelow430ppmCO2eqͶͷͲ

ȋͶ͵ͲȂͶͺͲȌ 110 RCP26 ͷͷͲȂͳ͵ͲͲ ͵ͲȂͳͳͺͲ Ͳ72toͲ41 Ͳ118Ͳ78 ͳǤͷȂͳǤȋͳǤͲȂʹǤͺȌ Moreunlikelythanlikely Likely

Likely

Likely

ͷͲͲȋͶͺͲȂͷ͵ͲȌ

ͷ͵Ͳʹ ͺͲȂͳͳͺͲ ͻͲȂͳͶ͵Ͳ Ͳ57Ͳ42 Ͳ107Ͳ73 ͳǤȂͳǤͻȋͳǤʹȂʹǤͻȌ

Unlikely

Morelikelythannot

ͷ͵Ͳʹ ͳͳ͵ͲȂͳͷ͵Ͳ ͻͻͲȂͳͷͷͲ Ͳ55Ͳ25 Ͳ114Ͳ90 ͳǤͺȂʹǤͲȋͳǤʹȂ͵Ǥ͵Ȍ Aboutaslikelyasnot

ͷͷͲȋͷ͵ͲȂͷͺͲȌ

ͷͺͲʹ ͳͲͲȂͳͶͲ ͳʹͶͲȂʹʹͶͲ Ͳ47Ͳ19 Ͳ81Ͳ59 ʹǤͲȂʹǤʹȋͳǤͶȂ͵ǤȌMoreunlikelythanlikelyͳʹ

ͷͺͲʹ ͳͶʹͲȂͳͷͲ ͳͳͲȂʹͳͲͲ Ͳ167 Ͳ183Ͳ86 ʹǤͳȂʹǤ͵ȋͳǤͶȂ͵ǤȌ

ȋͷͺͲȂͷͲȌ RCP45

ͳʹͲȂͳͶͲ ͳͺͲȂʹͶͶͲ Ͳ3824 Ͳ134toͲ50 ʹǤ͵ȂʹǤȋͳǤͷȂͶǤʹȌ

ȋͷͲȂʹͲȌ ͳ͵ͳͲȂͳͷͲ ʹͷͲȂ͵͵ͶͲ Ͳ11to17 Ͳ54Ͳ21 ʹǤȂʹǤͻȋͳǤͺȂͶǤͷȌ Unlikely

Morelikelythannot

ȋʹͲȂͳͲͲͲȌ RCP60 ͳͷͲȂͳͻͶͲ ͵ʹͲȂͶͻͻͲ 1854 Ͳ772 ͵ǤͳȂ͵ǤȋʹǤͳȂͷǤͺȌUnlikely11

Moreunlikelythanlikely

εͳͲͲͲ RCP85 ͳͺͶͲȂʹ͵ͳͲ ͷ͵ͷͲȂͲͳͲ 5295 74178 ͶǤͳȂͶǤͺȋʹǤͺȂǤͺȌ Unlikely11 Unlikely Moreunlikelythanlikely

1Thetotalrangeforthe430ndash480ppmCO2eqscenarioscorrespondstotherangeofthe10ndash90thpercentileofthesubcategoryofthesescenariosshownin3table632Baselinescenarios(seeSPM3)arecategorizedinthegt1000and750ndash1000ppmCO2eqcategoriesThelattercategoryincludesalsomitigation4scenariosThebaselinescenariosinthelattercategoryreachatemperaturechangeof25ndash58degCabovepreindustrialin2100Togetherwiththebaseline5scenariosinthegt1000ppmCO2eqcategorythisleadstoanoverall2100temperaturerangeof25ndash78degC(median37ndash48degC)forbaselinescenariosacross6bothconcentrationcategories3ForcomparisonofthecumulativeCO2emissionsestimatesassessedherewiththosepresentedinWGIanamountof5157[445to585]GtC(1890[1630to2150]GtCO2)wasalreadyemittedby2011since1870[SectionWGI125]Notethatcumulativeemissionsarepresented8herefordifferentperiodsoftime(2011ndash2050and2011ndash2100)whilecumulativeemissionsinWGIarepresentedastotalcompatibleemissionsfortheRCPs9(2012ndash2100)orfortotalcompatibleemissionsforremainingbelowagiventemperaturetargetwithagivenlikelihood[WGITableSPM3WGISPME8]410Theglobal2010emissionsare31abovethe1990emissions(consistentwiththehistoricGHGemissionestimatespresentedinthisreport)CO2eq11emissionsincludethebasketofKyotogases(CO2CH4N2OaswellasFͲgases)5TheassessmentinWGIIIinvolvesalargenumberofscenariospublishedin12thescientificliteratureandisthusnotlimitedtotheRCPsToevaluatethegreenhousegasconcentrationandclimateimplicationsofthesescenariosthe13MAGICCmodelwasusedinaprobabilisticmode(seeAnnexII)ForacomparisonbetweenMAGICCmodelresultsandtheoutcomesofthemodelsusedin14WGIseeSectionWGI12412andWGI1248and6326ReasonsfordifferenceswithWGISPMTable2includethedifferenceinreferenceyear(1986ndash15

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

14of33

2005vs1850ndash1900here)differenceinreportingyear(2081ndash2100vs2100here)setͲupofsimulation(CMIP5concentrationdrivenversusMAGICC1emissionͲdrivenhere)andthewidersetofscenarios(RCPsversusthefullsetofscenariosintheWGIIIAR5scenariodatabasehere)6Temperaturechange2isreportedfortheyear2100whichisnotdirectlycomparabletotheequilibriumwarmingreportedinAR4(Table35Chapter3WGIII)Forthe21003temperatureestimatesthetransientclimateresponse(TCR)isthemostrelevantsystempropertyTheassumed90thpercentileuncertaintyrangeofthe4TCRforMAGICCis12ndash26degC(median18degC)Thiscomparestothe90thpercentilerangeofTCRbetween12ndash24degCforCMIP5(WGI97)andanassessed5likelyrangeof1ndash25degCfrommultiplelinesofevidencereportedintheIPCCAR5WGIreport(Box122inchapter125)7Temperaturechangein2100is6providedforamedianestimateoftheMAGICCcalculationswhichillustratesdifferencesbetweentheemissionspathwaysofthescenariosineach7categoryTherangeoftemperaturechangeintheparenthesesincludesinadditionalsothecarboncycleandclimatesystemuncertaintiesasrepresented8bytheMAGICCmodel(see6326forfurtherdetails)Thetemperaturedatacomparedtothe1850ndash1900referenceyearwascalculatedbytakingall9projectedwarmingrelativeto1986ndash2005andadding061degCfor1986ndash2005comparedto1850ndash1900basedonHadCRUT4(seeWGITableSPM2)8The10assessmentinthistableisbasedontheprobabilitiescalculatedforthefullensembleofscenariosinWGIIIusingMAGICCandtheassessmentinWGIofthe11uncertaintyofthetemperatureprojectionsnotcoveredbyclimatemodelsThestatementsarethereforeconsistentwiththestatementsinWGIwhichare12basedontheCMIP5runsoftheRCPsandtheassesseduncertaintiesHencethelikelihoodstatementsreflectdifferentlinesofevidencefrombothWGs13ThisWGImethodwasalsoappliedforscenarioswithintermediateconcentrationlevelswherenoCMIP5runsareavailableThelikelihoodstatementsare14indicativeonly(63)andfollowbroadlythetermsusedbytheWGISPMfortemperatureprojectionslikely66ndash100morelikelythannotgt50ndash100about15aslikelyasnot33ndash66andunlikely0ndash33Inadditionthetermmoreunlikelythanlikely0Ͳlt50isused9TheCO2equivalentconcentrationincludesthe16forcingofallGHGsincludinghalogenatedgasesandtroposphericozoneaerosolsandalbedochange(calculatedonthebasisofthetotalforcingfroma17simplecarboncycleclimatemodelMAGICC)10Thevastmajorityofscenariosinthiscategoryovershootthecategoryboundaryof480ppmCO2eq18concentrations11ForscenariosinthiscategorynoCMIP5run(WGIAR5Chapter12Table123)aswellasnoMAGICCrealization(63)staysbelowthe19respectivetemperaturelevelStillanlsquounlikelyrsquoassignmentisgiventoreflectuncertaintiesthatmightnotbereflectedbythecurrentclimatemodels1220Scenariosinthe580ndash650ppmCO2eqcategoryincludebothovershootscenariosandscenariosthatdonotexceedtheconcentrationlevelatthehighendof21thecategory(likeRCP45)Thelattertypeofscenariosingeneralhaveanassessedprobabilityofmoreunlikelythanlikelytoexceedthe2degCtemperature22levelwhiletheformeraremostlyassessedtohaveanunlikelyprobabilityofexceedingthislevel[Subjecttofinalqualitycheckandcopyedit]23

24

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 3: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

2of33

SPM SummaryforPolicymakers1

2

3

Contents4

5

SPM1Introduction36

SPM2Approachestoclimatechangemitigation37

SPM3Trendsinstocksandflowsofgreenhousegasesandtheirdrivers58

SPM4Mitigationpathwaysandmeasuresinthecontextofsustainabledevelopment109

SPM41LongͲtermmitigationpathways1010

SPM42SectoralandcrossͲsectoralmitigationpathwaysandmeasures2011

SPM421CrossͲsectoralmitigationpathwaysandmeasures2012

SPM422Energysupply2313

SPM423EnergyendͲusesectors2414

SPM424AgricultureForestryandOtherLandUse(AFOLU)2715

SPM425HumanSettlementsInfrastructureandSpatialPlanning2816

SPM5Mitigationpoliciesandinstitutions2917

SPM51Sectoralandnationalpolicies2918

SPM52Internationalcooperation3319

20

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

3of33

SPM1 Introduction1

TheWorkingGroupIIIcontributiontotheIPCCrsquosFifthAssessmentReport(AR5)assessesliterature2onthescientifictechnologicalenvironmentaleconomicandsocialaspectsofmitigationofclimate3changeItbuildsupontheWorkingGroupIIIcontributiontotheIPCCrsquosFourthAssessmentReport4(AR4)theSpecialReportonRenewableEnergySourcesandClimateChangeMitigation(SRREN)and5previousreportsandincorporatessubsequentnewfindingsandresearchThereportalsoassesses6mitigationoptionsatdifferentlevelsofgovernanceandindifferenteconomicsectorsandthe7societalimplicationsofdifferentmitigationpoliciesbutdoesnotrecommendanyparticularoption8formitigation9

ThisSummaryforPolicymakers(SPM)followsthestructureoftheWorkingGroupIIIreportThe10narrativeissupportedbyaseriesofhighlightedconclusionswhichtakentogetherprovideaconcise11summaryThebasisfortheSPMcanbefoundinthechaptersectionsoftheunderlyingreportandin12theTechnicalSummary(TS)Referencestothesearegiveninsquaredbrackets13

ThedegreeofcertaintyinfindingsinthisassessmentasinthereportsofallthreeWorkingGroups14isbasedontheauthorteamsrsquoevaluationsofunderlyingscientificunderstandingandisexpressedas15aqualitativelevelofconfidence(fromverylowtoveryhigh)andwhenpossibleprobabilistically16withaquantifiedlikelihood(fromexceptionallyunlikelytovirtuallycertain)Confidenceinthe17validityofafindingisbasedonthetypeamountqualityandconsistencyofevidence(egdata18mechanisticunderstandingtheorymodelsexpertjudgment)andthedegreeofagreement119Probabilisticestimatesofquantifiedmeasuresofuncertaintyinafindingarebasedonstatistical20analysisofobservationsormodelresultsorbothandexpertjudgment2Whereappropriate21findingsarealsoformulatedasstatementsoffactwithoutusinguncertaintyqualifiersWithin22paragraphsofthissummarytheconfidenceevidenceandagreementtermsgivenforabolded23findingapplytosubsequentstatementsintheparagraphunlessadditionaltermsareprovided24

SPM2 Approachestoclimatechangemitigation25

Mitigationisahumaninterventiontoreducethesourcesorenhancethesinksofgreenhouse26gasesMitigationtogetherwithadaptationtoclimatechangecontributestotheobjective27expressedinArticle2oftheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)28

TheultimateobjectiveofthisConventionandanyrelatedlegalinstrumentsthatthe29ConferenceofthePartiesmayadoptistoachieveinaccordancewiththerelevant30provisionsoftheConventionstabilizationofgreenhousegasconcentrationsinthe31atmosphereatalevelthatwouldpreventdangerousanthropogenicinterferencewiththe32climatesystemSuchalevelshouldbeachievedwithinatimeframesufficienttoallow33

1ThefollowingsummarytermsareusedtodescribetheavailableevidencelimitedmediumorrobustandforthedegreeofagreementlowmediumorhighAlevelofconfidenceisexpressedusingfivequalifiersverylowlowmediumhighandveryhighandtypesetinitalicsegmediumconfidenceForagivenevidenceandagreementstatementdifferentconfidencelevelscanbeassignedbutincreasinglevelsofevidenceanddegreesofagreementarecorrelatedwithincreasingconfidenceFormoredetailspleaserefertotheguidancenoteforLeadAuthorsoftheIPCCFifthAssessmentReportonconsistenttreatmentofuncertainties2Thefollowingtermshavebeenusedtoindicatetheassessedlikelihoodofanoutcomeoraresultvirtuallycertain99ndash100probabilityverylikely90ndash100likely66ndash100aboutaslikelyasnot33ndash66unlikely0ndash33veryunlikely0ndash10exceptionallyunlikely0ndash1Additionalterms(morelikelythannotgt50ndash100andmoreunlikelythanlikely0Ͳlt50)mayalsobeusedwhenappropriateAssessedlikelihoodistypesetinitalicsegverylikely

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

4of33

ecosystemstoadaptnaturallytoclimatechangetoensurethatfoodproductionisnot1threatenedandtoenableeconomicdevelopmenttoproceedinasustainablemanner2

Climatepoliciescanbeinformedbythefindingsofscienceandsystematicmethodsfromother3disciplines[122425Box31]4

Sustainabledevelopmentandequityprovideabasisforassessingclimatepoliciesandhighlight5theneedforaddressingtherisksofclimatechange3Limitingtheeffectsofclimatechangeis6necessarytoachievesustainabledevelopmentandequityincludingpovertyeradicationAtthe7sametimesomemitigationeffortscouldundermineactionontherighttopromotesustainable8developmentandontheachievementofpovertyeradicationandequityConsequentlya9comprehensiveassessmentofclimatepoliciesinvolvesgoingbeyondafocusonmitigationand10adaptationpoliciesalonetoexaminedevelopmentpathwaysmorebroadlyalongwiththeir11determinants[424344454648]12

Effectivemitigationwillnotbeachievedifindividualagentsadvancetheirowninterests13independentlyClimatechangehasthecharacteristicsofacollectiveactionproblemattheglobal14scalebecausemostgreenhousegases(GHGs)accumulateovertimeandmixgloballyandemissions15byanyagent(egindividualcommunitycompanycountry)affectotheragents4International16cooperationisthereforerequiredtoeffectivelymitigateGHGemissionsandaddressotherclimate17changeissues[1242643142132133]Furthermoreresearchanddevelopmentinsupport18ofmitigationcreatesknowledgespilloversInternationalcooperationcanplayaconstructiverolein19thedevelopmentdiffusionandtransferofknowledgeandenvironmentallysoundtechnologies20[14431161181391443]21

Issuesofequityjusticeandfairnessarisewithrespecttomitigationandadaptation5Countriesrsquo22pastandfuturecontributionstotheaccumulationofGHGsintheatmospherearedifferentand23countriesalsofacevaryingchallengesandcircumstancesandhavedifferentcapacitiestoaddress24mitigationandadaptationTheevidencesuggeststhatoutcomesseenasequitablecanleadtomore25effectivecooperation[310422462]26

ManyareasofclimatepolicyͲmakinginvolvevaluejudgementsandethicalconsiderationsThese27areasrangefromthequestionofhowmuchmitigationisneededtopreventdangerousinterference28withtheclimatesystemtochoicesamongspecificpoliciesformitigationoradaptation[3132]29Socialeconomicandethicalanalysesmaybeusedtoinformvaluejudgementsandmaytakeinto30accountvaluesofvarioussortsincludinghumanwellbeingculturalvaluesandnonͲhumanvalues31[34310]32

Amongothermethodseconomicevaluationiscommonlyusedtoinformclimatepolicydesign33PracticaltoolsforeconomicassessmentincludecostͲbenefitanalysiscostͲeffectivenessanalysis34multiͲcriteriaanalysisandexpectedutilitytheory[25]ThelimitationsofthesetoolsarewellͲ35documented[35]Ethicaltheoriesbasedonsocialwelfarefunctionsimplythatdistributional36weightswhichtakeaccountofthedifferentvalueofmoneytodifferentpeopleshouldbeapplied37tomonetarymeasuresofbenefitsandharms[361BoxTS2]Whereasdistributionalweightinghas38notfrequentlybeenappliedforcomparingtheeffectsofclimatepoliciesondifferentpeopleata39singletimeitisstandardpracticeintheformofdiscountingforcomparingtheeffectsatdifferent40times[362]41

3SeeWGIIAR5SPM4InthesocialsciencesthisisreferredtoasalsquoglobalcommonsproblemlsquoAsthisexpressionisusedinthesocialsciencesithasnospecificimplicationsforlegalarrangementsorforparticularcriteriaregardingeffortͲsharing5SeeFAQ32forclarificationoftheseconceptsThephilosophicalliteratureonjusticeandotherliteraturecanilluminatetheseissues[3233462]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

5of33

ClimatepolicyintersectswithothersocietalgoalscreatingthepossibilityofcoͲbenefitsoradverse1sideͲeffectsTheseintersectionsifwellͲmanagedcanstrengthenthebasisforundertaking2climateactionMitigationandadaptationcanpositivelyornegativelyinfluencetheachievementof3othersocietalgoalssuchasthoserelatedtohumanhealthfoodsecuritybiodiversitylocal4environmentalqualityenergyaccesslivelihoodsandequitablesustainabledevelopmentandvice5versapoliciestowardothersocietalgoalscaninfluencetheachievementofmitigationand6adaptationobjectives[424344454648]Theseinfluencescanbesubstantialalthough7sometimesdifficulttoquantifyespeciallyinwelfareterms[363]ThismultiͲobjectiveperspectiveis8importantinpartbecauseithelpstoidentifyareaswheresupportforpoliciesthatadvancemultiple9goalswillberobust[1214248661]10

Climatepolicymaybeinformedbyaconsiderationofadiversearrayofrisksanduncertainties11someofwhicharedifficulttomeasurenotablyeventsthatareoflowprobabilitybutwhichwould12haveasignificantimpactiftheyoccurSinceAR4thescientificliteraturehasexaminedrisksrelated13toclimatechangeadaptationandmitigationstrategiesAccuratelyestimatingthebenefitsof14mitigationtakesintoaccountthefullrangeofpossibleimpactsofclimatechangeincludingthose15withhighconsequencesbutalowprobabilityofoccurrenceThebenefitsofmitigationmay16otherwisebeunderestimated(highconfidence)[2526Box39]Thechoiceofmitigationactionsis17alsoinfluencedbyuncertaintiesinmanysocioͲeconomicvariablesincludingtherateofeconomic18growthandtheevolutionoftechnology(highconfidence)[2663]19

Thedesignofclimatepolicyisinfluencedbyhowindividualsandorganizationsperceiverisksand20uncertaintiesandtakethemintoaccountPeopleoftenutilizesimplifieddecisionrulessuchasa21preferenceforthestatusquoIndividualsandorganizationsdifferintheirdegreeofriskaversionand22therelativeimportanceplacedonnearͲtermversuslongͲtermramificationsofspecificactions[24]23Withthehelpofformalmethodspolicydesigncanbeimprovedbytakingintoaccountrisksand24uncertaintiesinnaturalsocioͲeconomicandtechnologicalsystemsaswellasdecisionprocesses25perceptionsvaluesandwealth[25]26

SPM3 Trendsinstocksandflowsofgreenhousegasesandtheirdrivers27

TotalanthropogenicGHGemissionshavecontinuedtoincreaseover1970to2010withlarger28absolutedecadalincreasestowardtheendofthisperiod(highconfidence)Despiteagrowing29numberofclimatechangemitigationpoliciesannualGHGemissionsgrewonaverageby10giga30tonnecarbondioxideequivalent(GtCO2eq)(22)peryearfrom2000to2010comparedto0431GtCO2eq(13)peryearfrom1970to2000(FigureSPM1)67TotalanthropogenicGHGemissions32werethehighestinhumanhistoryfrom2000to2010andreached49(plusmn45)GtCO2eqyrin2010The33globaleconomiccrisis20072008onlytemporarilyreducedemissions[13521331522Box34TS5Figure151]35

CO2emissionsfromfossilfuelcombustionandindustrialprocessescontributedabout78ofthe36totalGHGemissionincreasefrom1970to2010withasimilarpercentagecontributionforthe37period2000ndash2010(highconfidence)FossilfuelͲrelatedCO2emissionsreached32(plusmn27)GtCO2yrin382010andgrewfurtherbyabout3between2010and2011andbyabout1Ͳ2between2011and392012Ofthe49(plusmn45)GtCO2eqyrintotalanthropogenicGHGemissionsin2010CO2remainsthe40majoranthropogenicGHGaccountingfor76(38plusmn38GtCO2eqyr)oftotalanthropogenicGHG41emissionsin201016(78plusmn16GtCO2eqyr)comefrommethane(CH4)62(31plusmn19GtCO2eqyr)426ThroughouttheSPMemissionsofGHGsareweightedbyGlobalWarmingPotentialswitha100Ͳyeartimehorizon(GWP100)fromtheIPCCSecondAssessmentReportAllmetricshavelimitationsanduncertaintiesinassessingconsequencesofdifferentemissions[396BoxTS5AnnexII29WGIAR5SPM]7InthisSPMuncertaintyinhistoricGHGemissiondataisreportedusing90uncertaintyintervalsunlessotherwisestatedGHGemissionlevelsareroundedtotwosignificantdigitsthroughoutthisdocument

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

6of33

fromnitrousoxide(N2O)and20(10plusmn02GtCO2eqyr)fromfluorinatedgases(FigureSPM1)1Annuallysince1970about25ofanthropogenicGHGemissionshavebeenintheformofnonͲCO22gases8[1252]3

4Figure SPM1 Total annual anthropogenic GHG emissions (GtCO2eqyr) by groups of gases 1970-52010 CO2 from fossil fuel combustion and industrial processes CO2 from Forestry and Other Land 6Use (FOLU) methane (CH4) nitrous oxide (N2O) fluorinated gases8 covered under the Kyoto 7Protocol (F-gases) At the right side of the figure GHG emissions in 2010 are shown again broken 8down into these components with the associated uncertainties (90 confidence interval) indicated by 9the error bars Total anthropogenic GHG emissions uncertainties are derived from the individual gas 10estimates as described in Chapter 5 [5236] Global CO2 emissions from fossil fuel combustion are 11known within 8 uncertainty (90 confidence interval) CO2 emissions from FOLU have very large 12uncertainties attached in the order of plusmn50 Uncertainty for global emissions of CH4 N2O and the F-13gases has been estimated as 20 60 and 20 respectively 2010 was the most recent year for 14which emission statistics on all gases as well as assessment of uncertainties were essentially 15complete at the time of data cut off for this report Emissions are converted into CO2-equivalents 16based on GWP100

6 from the IPCC Second Assessment Report The emission data from FOLU 17represents land-based CO2 emissions from forest fires peat fires and peat decay that approximate to 18net CO2 flux from the FOLU as described in chapter 11 of this report Average annual growth rate 19over different periods is highlighted with the brackets [Figure 13 Figure TS1] [Subject to final quality 20check and copy edit] 21

AbouthalfofcumulativeanthropogenicCO2emissionsbetween1750and2010haveoccurredin22thelast40years(highconfidence)In1970cumulativeCO2emissionsfromfossilfuelcombustion23cementproductionandflaringsince1750were420plusmn35GtCO2in2010thatcumulativetotalhad24tripledto1300plusmn110GtCO2(FigureSPM2)CumulativeCO2emissionsfromForestryandOtherLand25Use(FOLU)9since1750increasedfrom490plusmn180GtCO2in1970to680plusmn300GtCO2in2010[52]26

8InthisreportdataonnonͲCO2GHGsincludingfluorinatedgasesistakenfromtheEDGARdatabase(AnnexII9)whichcoverssubstancesincludedintheKyotoProtocolinitsfirstcommitmentperiod9ForestryandOtherLandUse(FOLU)mdashalsoreferredtoasLULUCF(LandUseLandͲUseChangeandForestry)mdashisthesubsetofAgricultureForestryandOtherLandUse(AFOLU)emissionsandremovalsofGHGsrelatedtodirecthumanͲinducedlanduselandͲusechangeandforestryactivitiesexcludingagriculturalemissionsandremovals(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

7of33

AnnualanthropogenicGHGemissionshaveincreasedby10GtCO2eqbetween2000and2010with1thisincreasedirectlycomingfromenergysupply(47)industry(30)transport(11)and2buildings(3)sectors(mediumconfidence)Accountingforindirectemissionsraisesthe3contributionsofthebuildingsandindustrysectors(highconfidence)Since2000GHGemissions4havebeengrowinginallsectorsexceptAFOLUOfthe49(plusmn45)GtCO2eqemissionsin201035(175GtCO2eq)ofGHGemissionswerereleasedintheenergysupplysector24(12GtCO2eqnet6emissions)inAFOLU21(10GtCO2eq)inindustry14(70GtCO2eq)intransportand64(327GtCO2eq)inbuildingsWhenemissionsfromelectricityandheatproductionareattributedtothe8sectorsthatusethefinalenergy(ieindirectemissions)thesharesoftheindustryandbuildings9sectorsinglobalGHGemissionsareincreasedto31and19respectively(FigureSPM2)[73821092103112]11

12Figure SPM2 Total anthropogenic GHG emissions (GtCO2eqyr) by economic sectors Inner circle 13shows direct GHG emission shares (in of total anthropogenic GHG emissions) of five economic 14sectors in 2010 Pull-out shows how indirect CO2 emission shares (in of total anthropogenic GHG 15emissions) from electricity and heat production are attributed to sectors of final energy use ldquoOther 16Energyrdquo refers to all GHG emission sources in the energy sector as defined in Annex II other than 17electricity and heat production [AII91] The emissions data from Agriculture Forestry and Other 18Land Use (AFOLU) includes land-based CO2 emissions from forest fires peat fires and peat decay 19that approximate to net CO2 flux from the Forestry and Other Land Use (FOLU) sub-sector as 20described in Chapter 11 of this report Emissions are converted into CO2-equivalents based on 21GWP100

6 from the IPCC Second Assessment Report Sector definitions are provided in Annex II9 22[Figure 13a Figure TS3 ab] [Subject to final quality check and copy edit] 23

Globallyeconomicandpopulationgrowthcontinuetobethemostimportantdriversofincreases24inCO2emissionsfromfossilfuelcombustionThecontributionofpopulationgrowthbetween252000and2010remainedroughlyidenticaltothepreviousthreedecadeswhilethecontributionof26economicgrowthhasrisensharply(highconfidence)Between2000and2010bothdrivers27outpacedemissionreductionsfromimprovementsinenergyintensity(FigureSPM3)Increaseduse28ofcoalrelativetootherenergysourceshasreversedthelongͲstandingtrendofgradual29decarbonizationoftheworldrsquosenergysupply[135372143TS22]30

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

8of33

1Figure SPM3 Decomposition of the decadal change in total global CO2 emissions from fossil fuel 2combustion by four driving factors population income (GDP) per capita energy intensity of GDP and 3carbon intensity of energy The bar segments show the changes associated with each factor alone 4holding the respective other factors constant Total decadal changes are indicated by a triangle 5Changes are measured in giga tonnes (Gt) of CO2 emissions per decade income is converted into 6common units using purchasing power parities [Figure 17] [Subject to final quality check and copy 7edit] 8

WithoutadditionaleffortstoreduceGHGemissionsbeyondthoseinplacetodayemissions9growthisexpectedtopersistdrivenbygrowthinglobalpopulationandeconomicactivities10Baselinescenariosthosewithoutadditionalmitigationresultinglobalmeansurfacetemperature11increasesin2100from37to48degCcomparedtopreͲindustriallevels10(medianvaluestherangeis1225degCto78degCwhenincludingclimateuncertaintyseeTableSPM1)11(highconfidence)The13emissionscenarioscollectedforthisassessmentrepresentfullradiativeforcingincludingGHGs14troposphericozoneaerosolsandalbedochangeBaselinescenarios(scenarioswithoutexplicit15additionaleffortstoconstrainemissions)exceed450partspermillion(ppm)CO2eqby2030and16reachCO2eqconcentrationlevelsbetween750andmorethan1300ppmCO2eqby2100Thisis17similartotherangeinatmosphericconcentrationlevelsbetweentheRCP60andRCP85pathways1810Basedonthelongestglobalsurfacetemperaturedatasetavailabletheobservedchangebetweentheaverageoftheperiod1850Ͳ1900andoftheAR5referenceperiod(1986ndash2005)is061degC(5ndash95confidenceinterval055to067degC)[WGIAR5SPME]whichisusedhereasanapproximationofthechangeinglobalmeansurfacetemperaturesincepreͲindustrialtimesreferredtoastheperiodbefore175011Theclimateuncertaintyreflectsthe5thto95thpercentileofclimatemodelcalculationsdescribedinTableSPM1

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

9of33

in210012ForcomparisontheCO2eqconcentrationin2011isestimatedtobe430ppm(uncertainty1range340ndash520ppm)13[63BoxTS6WGIAR5FigureSPM5WGI85WGI123] 2

12Forthepurposeofthisassessmentroughly300baselinescenariosand900mitigationscenarioswerecollectedthroughanopencallfromintegratedmodellingteamsaroundtheworldThesescenariosarecomplementarytotheRepresentativeConcentrationPathways(RCPsseeWGIIIAR5Glossary)TheRCPsareidentifiedbytheirapproximatetotalradiativeforcinginyear2100relativeto175026Wattspersquaremeter(WmͲ2)forRCP2645WmͲ2forRCP4560WmͲ2forRCP60and85WmͲ2forRCP85Thescenarioscollectedforthisassessmentspanaslightlybroaderrangeofconcentrationsintheyear2100thanthefourRCPs13Thisisbasedontheassessmentoftotalanthropogenicradiativeforcingfor2011relativeto1750inWGIie23WmͲ2uncertaintyrange11to33WmͲ2[WGIAR5FigureSPM5WGI85WGI123]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

10of33

SPM4 Mitigationpathwaysandmeasuresinthecontextofsustainable1development2

SPM41 LongͲtermmitigationpathways3

Therearemultiplescenarioswitharangeoftechnologicalandbehavioraloptionswithdifferent4characteristicsandimplicationsforsustainabledevelopmentthatareconsistentwithdifferent5levelsofmitigationForthisassessmentabout900mitigationscenarioshavebeencollectedina6databasebasedonpublishedintegratedmodels14Thisrangespansatmosphericconcentration7levelsin2100from430ppmCO2eqtoabove720ppmCO2eqwhichiscomparabletothe21008forcinglevelsbetweenRCP26andRCP60Scenariosoutsidethisrangewerealsoassessed9includingsomescenarioswithconcentrationsin2100below430ppmCO2eq(foradiscussionof10thesescenariosseebelow)Themitigationscenariosinvolveawiderangeoftechnological11socioeconomicandinstitutionaltrajectoriesbutuncertaintiesandmodellimitationsexistand12developmentsoutsidethisrangearepossible(FigureSPM4toppanel)[616263TS31Box13TS6]14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

14ThelongͲtermscenariosassessedinWGIIIweregeneratedprimarilybylargeͲscaleintegratedmodelsthatprojectmanykeycharacteristicsofmitigationpathwaystomidͲcenturyandbeyondThesemodelslinkmanyimportanthumansystems(egenergyagricultureandlanduseeconomy)withphysicalprocessesassociatedwithclimatechange(egthecarboncycle)ThemodelsapproximatecostͲeffectivesolutionsthatminimizetheaggregateeconomiccostsofachievingmitigationoutcomesunlesstheyarespecificallyconstrainedtobehaveotherwiseTheyaresimplifiedstylizedrepresentationsofhighlyͲcomplexrealͲworldprocessesandthescenariostheyproducearebasedonuncertainprojectionsaboutkeyeventsanddriversoveroftencenturyͲlongtimescalesSimplificationsanddifferencesinassumptionsarethereasonwhyoutputgeneratedfromdifferentmodelsorversionsofthesamemodelcandifferandprojectionsfromallmodelscandifferconsiderablyfromtherealitythatunfolds[BoxTS762]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

11of33

1Figure SPM4 Pathways of global GHG emissions (GtCO2eqyr) in baseline and mitigation scenarios 2for different long-term concentration levels (upper panel) and associated upscaling requirements of 3low-carbon energy ( of primary energy) for 2030 2050 and 2100 compared to 2010 levels in 4mitigation scenarios (lower panel) The upper and lower panels exclude scenarios with limited 5technology availability and the lower panel in addition excludes scenarios that assume exogenous 6carbon price trajectories [Figure 67 Figure 716] [Subject to final quality check and copy edit] 7

Mitigationscenariosinwhichitislikelythatthetemperaturechangecausedbyanthropogenic8GHGemissionscanbekepttolessthan2degCrelativetopreͲindustriallevelsarecharacterizedby9atmosphericconcentrationsin2100ofabout450ppmCO2eq(highconfidence)Mitigation10scenariosreachingconcentrationlevelsofabout500ppmCO2eqby2100aremorelikelythannotto11limittemperaturechangetolessthan2degCrelativetopreͲindustriallevelsunlesstheytemporarily12lsquoovershootrsquoconcentrationlevelsofroughly530ppmCO2eqbefore2100inwhichcasetheyare13aboutaslikelyasnottoachievethatgoal15Scenariosthatreach530to650ppmCO2eq14concentrationsby2100aremoreunlikelythanlikelytokeeptemperaturechangebelow2degCrelative15topreͲindustriallevelsScenariosthatreachabout650ppmCO2eqby2100areunlikelytolimit16temperaturechangetobelow2degCrelativetopreͲindustriallevelsMitigationscenariosinwhich1715Mitigationscenariosincludingthosereaching2100concentrationsashighasorhigherthan550ppmCO2eqcantemporarilylsquoovershootrsquoatmosphericCO2eqconcentrationlevelsbeforedescendingtolowerlevelslaterSuchconcentrationovershootinvolveslessmitigationintheneartermwithmorerapidanddeeperemissionsreductionsinthelongrunOvershootincreasestheprobabilityofexceedinganygiventemperaturegoal[63TableSPM1]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

12of33

temperatureincreaseismorelikelythannottobelessthan15degCrelativetopreͲindustriallevelsby12100arecharacterizedbyconcentrationsin2100ofbelow430ppmCO2eqTemperaturepeaks2duringthecenturyandthendeclinesinthesescenariosProbabilitystatementsregardingother3levelsoftemperaturechangecanbemadewithreferencetoTableSPM1[63BoxTS6]4

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

13of33

Table SPM1 Key characteristics of the scenarios collected and assessed for WGIII AR5 For all parameters the 10th to 90th percentile of the scenarios is 1shown12 [Table 63] 2

CO2eqConcentrationsin2100(CO2eq)

Categorylabel(concentration

range)9

SubcategoriesRelativepositionoftheRCPs5

CumulativeCO2emission3(GtCO2)

ChangeinCO2eqemissionscomparedto

2010in()4Temperaturechange(relativeto1850ndash1900)56

2011ndash2050 2011ndash2100 2050 2100 2100Temperaturechange(degC)7

Likelihoodofstayingbelowtemperatureleveloverthe21stcentury8

15degC 20degC 30degC 40degC

δͶ͵Ͳ Onlyalimitednumberofindividualmodelstudieshaveexploredlevelsbelow430ppmCO2eqͶͷͲ

ȋͶ͵ͲȂͶͺͲȌ 110 RCP26 ͷͷͲȂͳ͵ͲͲ ͵ͲȂͳͳͺͲ Ͳ72toͲ41 Ͳ118Ͳ78 ͳǤͷȂͳǤȋͳǤͲȂʹǤͺȌ Moreunlikelythanlikely Likely

Likely

Likely

ͷͲͲȋͶͺͲȂͷ͵ͲȌ

ͷ͵Ͳʹ ͺͲȂͳͳͺͲ ͻͲȂͳͶ͵Ͳ Ͳ57Ͳ42 Ͳ107Ͳ73 ͳǤȂͳǤͻȋͳǤʹȂʹǤͻȌ

Unlikely

Morelikelythannot

ͷ͵Ͳʹ ͳͳ͵ͲȂͳͷ͵Ͳ ͻͻͲȂͳͷͷͲ Ͳ55Ͳ25 Ͳ114Ͳ90 ͳǤͺȂʹǤͲȋͳǤʹȂ͵Ǥ͵Ȍ Aboutaslikelyasnot

ͷͷͲȋͷ͵ͲȂͷͺͲȌ

ͷͺͲʹ ͳͲͲȂͳͶͲ ͳʹͶͲȂʹʹͶͲ Ͳ47Ͳ19 Ͳ81Ͳ59 ʹǤͲȂʹǤʹȋͳǤͶȂ͵ǤȌMoreunlikelythanlikelyͳʹ

ͷͺͲʹ ͳͶʹͲȂͳͷͲ ͳͳͲȂʹͳͲͲ Ͳ167 Ͳ183Ͳ86 ʹǤͳȂʹǤ͵ȋͳǤͶȂ͵ǤȌ

ȋͷͺͲȂͷͲȌ RCP45

ͳʹͲȂͳͶͲ ͳͺͲȂʹͶͶͲ Ͳ3824 Ͳ134toͲ50 ʹǤ͵ȂʹǤȋͳǤͷȂͶǤʹȌ

ȋͷͲȂʹͲȌ ͳ͵ͳͲȂͳͷͲ ʹͷͲȂ͵͵ͶͲ Ͳ11to17 Ͳ54Ͳ21 ʹǤȂʹǤͻȋͳǤͺȂͶǤͷȌ Unlikely

Morelikelythannot

ȋʹͲȂͳͲͲͲȌ RCP60 ͳͷͲȂͳͻͶͲ ͵ʹͲȂͶͻͻͲ 1854 Ͳ772 ͵ǤͳȂ͵ǤȋʹǤͳȂͷǤͺȌUnlikely11

Moreunlikelythanlikely

εͳͲͲͲ RCP85 ͳͺͶͲȂʹ͵ͳͲ ͷ͵ͷͲȂͲͳͲ 5295 74178 ͶǤͳȂͶǤͺȋʹǤͺȂǤͺȌ Unlikely11 Unlikely Moreunlikelythanlikely

1Thetotalrangeforthe430ndash480ppmCO2eqscenarioscorrespondstotherangeofthe10ndash90thpercentileofthesubcategoryofthesescenariosshownin3table632Baselinescenarios(seeSPM3)arecategorizedinthegt1000and750ndash1000ppmCO2eqcategoriesThelattercategoryincludesalsomitigation4scenariosThebaselinescenariosinthelattercategoryreachatemperaturechangeof25ndash58degCabovepreindustrialin2100Togetherwiththebaseline5scenariosinthegt1000ppmCO2eqcategorythisleadstoanoverall2100temperaturerangeof25ndash78degC(median37ndash48degC)forbaselinescenariosacross6bothconcentrationcategories3ForcomparisonofthecumulativeCO2emissionsestimatesassessedherewiththosepresentedinWGIanamountof5157[445to585]GtC(1890[1630to2150]GtCO2)wasalreadyemittedby2011since1870[SectionWGI125]Notethatcumulativeemissionsarepresented8herefordifferentperiodsoftime(2011ndash2050and2011ndash2100)whilecumulativeemissionsinWGIarepresentedastotalcompatibleemissionsfortheRCPs9(2012ndash2100)orfortotalcompatibleemissionsforremainingbelowagiventemperaturetargetwithagivenlikelihood[WGITableSPM3WGISPME8]410Theglobal2010emissionsare31abovethe1990emissions(consistentwiththehistoricGHGemissionestimatespresentedinthisreport)CO2eq11emissionsincludethebasketofKyotogases(CO2CH4N2OaswellasFͲgases)5TheassessmentinWGIIIinvolvesalargenumberofscenariospublishedin12thescientificliteratureandisthusnotlimitedtotheRCPsToevaluatethegreenhousegasconcentrationandclimateimplicationsofthesescenariosthe13MAGICCmodelwasusedinaprobabilisticmode(seeAnnexII)ForacomparisonbetweenMAGICCmodelresultsandtheoutcomesofthemodelsusedin14WGIseeSectionWGI12412andWGI1248and6326ReasonsfordifferenceswithWGISPMTable2includethedifferenceinreferenceyear(1986ndash15

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

14of33

2005vs1850ndash1900here)differenceinreportingyear(2081ndash2100vs2100here)setͲupofsimulation(CMIP5concentrationdrivenversusMAGICC1emissionͲdrivenhere)andthewidersetofscenarios(RCPsversusthefullsetofscenariosintheWGIIIAR5scenariodatabasehere)6Temperaturechange2isreportedfortheyear2100whichisnotdirectlycomparabletotheequilibriumwarmingreportedinAR4(Table35Chapter3WGIII)Forthe21003temperatureestimatesthetransientclimateresponse(TCR)isthemostrelevantsystempropertyTheassumed90thpercentileuncertaintyrangeofthe4TCRforMAGICCis12ndash26degC(median18degC)Thiscomparestothe90thpercentilerangeofTCRbetween12ndash24degCforCMIP5(WGI97)andanassessed5likelyrangeof1ndash25degCfrommultiplelinesofevidencereportedintheIPCCAR5WGIreport(Box122inchapter125)7Temperaturechangein2100is6providedforamedianestimateoftheMAGICCcalculationswhichillustratesdifferencesbetweentheemissionspathwaysofthescenariosineach7categoryTherangeoftemperaturechangeintheparenthesesincludesinadditionalsothecarboncycleandclimatesystemuncertaintiesasrepresented8bytheMAGICCmodel(see6326forfurtherdetails)Thetemperaturedatacomparedtothe1850ndash1900referenceyearwascalculatedbytakingall9projectedwarmingrelativeto1986ndash2005andadding061degCfor1986ndash2005comparedto1850ndash1900basedonHadCRUT4(seeWGITableSPM2)8The10assessmentinthistableisbasedontheprobabilitiescalculatedforthefullensembleofscenariosinWGIIIusingMAGICCandtheassessmentinWGIofthe11uncertaintyofthetemperatureprojectionsnotcoveredbyclimatemodelsThestatementsarethereforeconsistentwiththestatementsinWGIwhichare12basedontheCMIP5runsoftheRCPsandtheassesseduncertaintiesHencethelikelihoodstatementsreflectdifferentlinesofevidencefrombothWGs13ThisWGImethodwasalsoappliedforscenarioswithintermediateconcentrationlevelswherenoCMIP5runsareavailableThelikelihoodstatementsare14indicativeonly(63)andfollowbroadlythetermsusedbytheWGISPMfortemperatureprojectionslikely66ndash100morelikelythannotgt50ndash100about15aslikelyasnot33ndash66andunlikely0ndash33Inadditionthetermmoreunlikelythanlikely0Ͳlt50isused9TheCO2equivalentconcentrationincludesthe16forcingofallGHGsincludinghalogenatedgasesandtroposphericozoneaerosolsandalbedochange(calculatedonthebasisofthetotalforcingfroma17simplecarboncycleclimatemodelMAGICC)10Thevastmajorityofscenariosinthiscategoryovershootthecategoryboundaryof480ppmCO2eq18concentrations11ForscenariosinthiscategorynoCMIP5run(WGIAR5Chapter12Table123)aswellasnoMAGICCrealization(63)staysbelowthe19respectivetemperaturelevelStillanlsquounlikelyrsquoassignmentisgiventoreflectuncertaintiesthatmightnotbereflectedbythecurrentclimatemodels1220Scenariosinthe580ndash650ppmCO2eqcategoryincludebothovershootscenariosandscenariosthatdonotexceedtheconcentrationlevelatthehighendof21thecategory(likeRCP45)Thelattertypeofscenariosingeneralhaveanassessedprobabilityofmoreunlikelythanlikelytoexceedthe2degCtemperature22levelwhiletheformeraremostlyassessedtohaveanunlikelyprobabilityofexceedingthislevel[Subjecttofinalqualitycheckandcopyedit]23

24

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 4: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

3of33

SPM1 Introduction1

TheWorkingGroupIIIcontributiontotheIPCCrsquosFifthAssessmentReport(AR5)assessesliterature2onthescientifictechnologicalenvironmentaleconomicandsocialaspectsofmitigationofclimate3changeItbuildsupontheWorkingGroupIIIcontributiontotheIPCCrsquosFourthAssessmentReport4(AR4)theSpecialReportonRenewableEnergySourcesandClimateChangeMitigation(SRREN)and5previousreportsandincorporatessubsequentnewfindingsandresearchThereportalsoassesses6mitigationoptionsatdifferentlevelsofgovernanceandindifferenteconomicsectorsandthe7societalimplicationsofdifferentmitigationpoliciesbutdoesnotrecommendanyparticularoption8formitigation9

ThisSummaryforPolicymakers(SPM)followsthestructureoftheWorkingGroupIIIreportThe10narrativeissupportedbyaseriesofhighlightedconclusionswhichtakentogetherprovideaconcise11summaryThebasisfortheSPMcanbefoundinthechaptersectionsoftheunderlyingreportandin12theTechnicalSummary(TS)Referencestothesearegiveninsquaredbrackets13

ThedegreeofcertaintyinfindingsinthisassessmentasinthereportsofallthreeWorkingGroups14isbasedontheauthorteamsrsquoevaluationsofunderlyingscientificunderstandingandisexpressedas15aqualitativelevelofconfidence(fromverylowtoveryhigh)andwhenpossibleprobabilistically16withaquantifiedlikelihood(fromexceptionallyunlikelytovirtuallycertain)Confidenceinthe17validityofafindingisbasedonthetypeamountqualityandconsistencyofevidence(egdata18mechanisticunderstandingtheorymodelsexpertjudgment)andthedegreeofagreement119Probabilisticestimatesofquantifiedmeasuresofuncertaintyinafindingarebasedonstatistical20analysisofobservationsormodelresultsorbothandexpertjudgment2Whereappropriate21findingsarealsoformulatedasstatementsoffactwithoutusinguncertaintyqualifiersWithin22paragraphsofthissummarytheconfidenceevidenceandagreementtermsgivenforabolded23findingapplytosubsequentstatementsintheparagraphunlessadditionaltermsareprovided24

SPM2 Approachestoclimatechangemitigation25

Mitigationisahumaninterventiontoreducethesourcesorenhancethesinksofgreenhouse26gasesMitigationtogetherwithadaptationtoclimatechangecontributestotheobjective27expressedinArticle2oftheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)28

TheultimateobjectiveofthisConventionandanyrelatedlegalinstrumentsthatthe29ConferenceofthePartiesmayadoptistoachieveinaccordancewiththerelevant30provisionsoftheConventionstabilizationofgreenhousegasconcentrationsinthe31atmosphereatalevelthatwouldpreventdangerousanthropogenicinterferencewiththe32climatesystemSuchalevelshouldbeachievedwithinatimeframesufficienttoallow33

1ThefollowingsummarytermsareusedtodescribetheavailableevidencelimitedmediumorrobustandforthedegreeofagreementlowmediumorhighAlevelofconfidenceisexpressedusingfivequalifiersverylowlowmediumhighandveryhighandtypesetinitalicsegmediumconfidenceForagivenevidenceandagreementstatementdifferentconfidencelevelscanbeassignedbutincreasinglevelsofevidenceanddegreesofagreementarecorrelatedwithincreasingconfidenceFormoredetailspleaserefertotheguidancenoteforLeadAuthorsoftheIPCCFifthAssessmentReportonconsistenttreatmentofuncertainties2Thefollowingtermshavebeenusedtoindicatetheassessedlikelihoodofanoutcomeoraresultvirtuallycertain99ndash100probabilityverylikely90ndash100likely66ndash100aboutaslikelyasnot33ndash66unlikely0ndash33veryunlikely0ndash10exceptionallyunlikely0ndash1Additionalterms(morelikelythannotgt50ndash100andmoreunlikelythanlikely0Ͳlt50)mayalsobeusedwhenappropriateAssessedlikelihoodistypesetinitalicsegverylikely

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

4of33

ecosystemstoadaptnaturallytoclimatechangetoensurethatfoodproductionisnot1threatenedandtoenableeconomicdevelopmenttoproceedinasustainablemanner2

Climatepoliciescanbeinformedbythefindingsofscienceandsystematicmethodsfromother3disciplines[122425Box31]4

Sustainabledevelopmentandequityprovideabasisforassessingclimatepoliciesandhighlight5theneedforaddressingtherisksofclimatechange3Limitingtheeffectsofclimatechangeis6necessarytoachievesustainabledevelopmentandequityincludingpovertyeradicationAtthe7sametimesomemitigationeffortscouldundermineactionontherighttopromotesustainable8developmentandontheachievementofpovertyeradicationandequityConsequentlya9comprehensiveassessmentofclimatepoliciesinvolvesgoingbeyondafocusonmitigationand10adaptationpoliciesalonetoexaminedevelopmentpathwaysmorebroadlyalongwiththeir11determinants[424344454648]12

Effectivemitigationwillnotbeachievedifindividualagentsadvancetheirowninterests13independentlyClimatechangehasthecharacteristicsofacollectiveactionproblemattheglobal14scalebecausemostgreenhousegases(GHGs)accumulateovertimeandmixgloballyandemissions15byanyagent(egindividualcommunitycompanycountry)affectotheragents4International16cooperationisthereforerequiredtoeffectivelymitigateGHGemissionsandaddressotherclimate17changeissues[1242643142132133]Furthermoreresearchanddevelopmentinsupport18ofmitigationcreatesknowledgespilloversInternationalcooperationcanplayaconstructiverolein19thedevelopmentdiffusionandtransferofknowledgeandenvironmentallysoundtechnologies20[14431161181391443]21

Issuesofequityjusticeandfairnessarisewithrespecttomitigationandadaptation5Countriesrsquo22pastandfuturecontributionstotheaccumulationofGHGsintheatmospherearedifferentand23countriesalsofacevaryingchallengesandcircumstancesandhavedifferentcapacitiestoaddress24mitigationandadaptationTheevidencesuggeststhatoutcomesseenasequitablecanleadtomore25effectivecooperation[310422462]26

ManyareasofclimatepolicyͲmakinginvolvevaluejudgementsandethicalconsiderationsThese27areasrangefromthequestionofhowmuchmitigationisneededtopreventdangerousinterference28withtheclimatesystemtochoicesamongspecificpoliciesformitigationoradaptation[3132]29Socialeconomicandethicalanalysesmaybeusedtoinformvaluejudgementsandmaytakeinto30accountvaluesofvarioussortsincludinghumanwellbeingculturalvaluesandnonͲhumanvalues31[34310]32

Amongothermethodseconomicevaluationiscommonlyusedtoinformclimatepolicydesign33PracticaltoolsforeconomicassessmentincludecostͲbenefitanalysiscostͲeffectivenessanalysis34multiͲcriteriaanalysisandexpectedutilitytheory[25]ThelimitationsofthesetoolsarewellͲ35documented[35]Ethicaltheoriesbasedonsocialwelfarefunctionsimplythatdistributional36weightswhichtakeaccountofthedifferentvalueofmoneytodifferentpeopleshouldbeapplied37tomonetarymeasuresofbenefitsandharms[361BoxTS2]Whereasdistributionalweightinghas38notfrequentlybeenappliedforcomparingtheeffectsofclimatepoliciesondifferentpeopleata39singletimeitisstandardpracticeintheformofdiscountingforcomparingtheeffectsatdifferent40times[362]41

3SeeWGIIAR5SPM4InthesocialsciencesthisisreferredtoasalsquoglobalcommonsproblemlsquoAsthisexpressionisusedinthesocialsciencesithasnospecificimplicationsforlegalarrangementsorforparticularcriteriaregardingeffortͲsharing5SeeFAQ32forclarificationoftheseconceptsThephilosophicalliteratureonjusticeandotherliteraturecanilluminatetheseissues[3233462]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

5of33

ClimatepolicyintersectswithothersocietalgoalscreatingthepossibilityofcoͲbenefitsoradverse1sideͲeffectsTheseintersectionsifwellͲmanagedcanstrengthenthebasisforundertaking2climateactionMitigationandadaptationcanpositivelyornegativelyinfluencetheachievementof3othersocietalgoalssuchasthoserelatedtohumanhealthfoodsecuritybiodiversitylocal4environmentalqualityenergyaccesslivelihoodsandequitablesustainabledevelopmentandvice5versapoliciestowardothersocietalgoalscaninfluencetheachievementofmitigationand6adaptationobjectives[424344454648]Theseinfluencescanbesubstantialalthough7sometimesdifficulttoquantifyespeciallyinwelfareterms[363]ThismultiͲobjectiveperspectiveis8importantinpartbecauseithelpstoidentifyareaswheresupportforpoliciesthatadvancemultiple9goalswillberobust[1214248661]10

Climatepolicymaybeinformedbyaconsiderationofadiversearrayofrisksanduncertainties11someofwhicharedifficulttomeasurenotablyeventsthatareoflowprobabilitybutwhichwould12haveasignificantimpactiftheyoccurSinceAR4thescientificliteraturehasexaminedrisksrelated13toclimatechangeadaptationandmitigationstrategiesAccuratelyestimatingthebenefitsof14mitigationtakesintoaccountthefullrangeofpossibleimpactsofclimatechangeincludingthose15withhighconsequencesbutalowprobabilityofoccurrenceThebenefitsofmitigationmay16otherwisebeunderestimated(highconfidence)[2526Box39]Thechoiceofmitigationactionsis17alsoinfluencedbyuncertaintiesinmanysocioͲeconomicvariablesincludingtherateofeconomic18growthandtheevolutionoftechnology(highconfidence)[2663]19

Thedesignofclimatepolicyisinfluencedbyhowindividualsandorganizationsperceiverisksand20uncertaintiesandtakethemintoaccountPeopleoftenutilizesimplifieddecisionrulessuchasa21preferenceforthestatusquoIndividualsandorganizationsdifferintheirdegreeofriskaversionand22therelativeimportanceplacedonnearͲtermversuslongͲtermramificationsofspecificactions[24]23Withthehelpofformalmethodspolicydesigncanbeimprovedbytakingintoaccountrisksand24uncertaintiesinnaturalsocioͲeconomicandtechnologicalsystemsaswellasdecisionprocesses25perceptionsvaluesandwealth[25]26

SPM3 Trendsinstocksandflowsofgreenhousegasesandtheirdrivers27

TotalanthropogenicGHGemissionshavecontinuedtoincreaseover1970to2010withlarger28absolutedecadalincreasestowardtheendofthisperiod(highconfidence)Despiteagrowing29numberofclimatechangemitigationpoliciesannualGHGemissionsgrewonaverageby10giga30tonnecarbondioxideequivalent(GtCO2eq)(22)peryearfrom2000to2010comparedto0431GtCO2eq(13)peryearfrom1970to2000(FigureSPM1)67TotalanthropogenicGHGemissions32werethehighestinhumanhistoryfrom2000to2010andreached49(plusmn45)GtCO2eqyrin2010The33globaleconomiccrisis20072008onlytemporarilyreducedemissions[13521331522Box34TS5Figure151]35

CO2emissionsfromfossilfuelcombustionandindustrialprocessescontributedabout78ofthe36totalGHGemissionincreasefrom1970to2010withasimilarpercentagecontributionforthe37period2000ndash2010(highconfidence)FossilfuelͲrelatedCO2emissionsreached32(plusmn27)GtCO2yrin382010andgrewfurtherbyabout3between2010and2011andbyabout1Ͳ2between2011and392012Ofthe49(plusmn45)GtCO2eqyrintotalanthropogenicGHGemissionsin2010CO2remainsthe40majoranthropogenicGHGaccountingfor76(38plusmn38GtCO2eqyr)oftotalanthropogenicGHG41emissionsin201016(78plusmn16GtCO2eqyr)comefrommethane(CH4)62(31plusmn19GtCO2eqyr)426ThroughouttheSPMemissionsofGHGsareweightedbyGlobalWarmingPotentialswitha100Ͳyeartimehorizon(GWP100)fromtheIPCCSecondAssessmentReportAllmetricshavelimitationsanduncertaintiesinassessingconsequencesofdifferentemissions[396BoxTS5AnnexII29WGIAR5SPM]7InthisSPMuncertaintyinhistoricGHGemissiondataisreportedusing90uncertaintyintervalsunlessotherwisestatedGHGemissionlevelsareroundedtotwosignificantdigitsthroughoutthisdocument

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

6of33

fromnitrousoxide(N2O)and20(10plusmn02GtCO2eqyr)fromfluorinatedgases(FigureSPM1)1Annuallysince1970about25ofanthropogenicGHGemissionshavebeenintheformofnonͲCO22gases8[1252]3

4Figure SPM1 Total annual anthropogenic GHG emissions (GtCO2eqyr) by groups of gases 1970-52010 CO2 from fossil fuel combustion and industrial processes CO2 from Forestry and Other Land 6Use (FOLU) methane (CH4) nitrous oxide (N2O) fluorinated gases8 covered under the Kyoto 7Protocol (F-gases) At the right side of the figure GHG emissions in 2010 are shown again broken 8down into these components with the associated uncertainties (90 confidence interval) indicated by 9the error bars Total anthropogenic GHG emissions uncertainties are derived from the individual gas 10estimates as described in Chapter 5 [5236] Global CO2 emissions from fossil fuel combustion are 11known within 8 uncertainty (90 confidence interval) CO2 emissions from FOLU have very large 12uncertainties attached in the order of plusmn50 Uncertainty for global emissions of CH4 N2O and the F-13gases has been estimated as 20 60 and 20 respectively 2010 was the most recent year for 14which emission statistics on all gases as well as assessment of uncertainties were essentially 15complete at the time of data cut off for this report Emissions are converted into CO2-equivalents 16based on GWP100

6 from the IPCC Second Assessment Report The emission data from FOLU 17represents land-based CO2 emissions from forest fires peat fires and peat decay that approximate to 18net CO2 flux from the FOLU as described in chapter 11 of this report Average annual growth rate 19over different periods is highlighted with the brackets [Figure 13 Figure TS1] [Subject to final quality 20check and copy edit] 21

AbouthalfofcumulativeanthropogenicCO2emissionsbetween1750and2010haveoccurredin22thelast40years(highconfidence)In1970cumulativeCO2emissionsfromfossilfuelcombustion23cementproductionandflaringsince1750were420plusmn35GtCO2in2010thatcumulativetotalhad24tripledto1300plusmn110GtCO2(FigureSPM2)CumulativeCO2emissionsfromForestryandOtherLand25Use(FOLU)9since1750increasedfrom490plusmn180GtCO2in1970to680plusmn300GtCO2in2010[52]26

8InthisreportdataonnonͲCO2GHGsincludingfluorinatedgasesistakenfromtheEDGARdatabase(AnnexII9)whichcoverssubstancesincludedintheKyotoProtocolinitsfirstcommitmentperiod9ForestryandOtherLandUse(FOLU)mdashalsoreferredtoasLULUCF(LandUseLandͲUseChangeandForestry)mdashisthesubsetofAgricultureForestryandOtherLandUse(AFOLU)emissionsandremovalsofGHGsrelatedtodirecthumanͲinducedlanduselandͲusechangeandforestryactivitiesexcludingagriculturalemissionsandremovals(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

7of33

AnnualanthropogenicGHGemissionshaveincreasedby10GtCO2eqbetween2000and2010with1thisincreasedirectlycomingfromenergysupply(47)industry(30)transport(11)and2buildings(3)sectors(mediumconfidence)Accountingforindirectemissionsraisesthe3contributionsofthebuildingsandindustrysectors(highconfidence)Since2000GHGemissions4havebeengrowinginallsectorsexceptAFOLUOfthe49(plusmn45)GtCO2eqemissionsin201035(175GtCO2eq)ofGHGemissionswerereleasedintheenergysupplysector24(12GtCO2eqnet6emissions)inAFOLU21(10GtCO2eq)inindustry14(70GtCO2eq)intransportand64(327GtCO2eq)inbuildingsWhenemissionsfromelectricityandheatproductionareattributedtothe8sectorsthatusethefinalenergy(ieindirectemissions)thesharesoftheindustryandbuildings9sectorsinglobalGHGemissionsareincreasedto31and19respectively(FigureSPM2)[73821092103112]11

12Figure SPM2 Total anthropogenic GHG emissions (GtCO2eqyr) by economic sectors Inner circle 13shows direct GHG emission shares (in of total anthropogenic GHG emissions) of five economic 14sectors in 2010 Pull-out shows how indirect CO2 emission shares (in of total anthropogenic GHG 15emissions) from electricity and heat production are attributed to sectors of final energy use ldquoOther 16Energyrdquo refers to all GHG emission sources in the energy sector as defined in Annex II other than 17electricity and heat production [AII91] The emissions data from Agriculture Forestry and Other 18Land Use (AFOLU) includes land-based CO2 emissions from forest fires peat fires and peat decay 19that approximate to net CO2 flux from the Forestry and Other Land Use (FOLU) sub-sector as 20described in Chapter 11 of this report Emissions are converted into CO2-equivalents based on 21GWP100

6 from the IPCC Second Assessment Report Sector definitions are provided in Annex II9 22[Figure 13a Figure TS3 ab] [Subject to final quality check and copy edit] 23

Globallyeconomicandpopulationgrowthcontinuetobethemostimportantdriversofincreases24inCO2emissionsfromfossilfuelcombustionThecontributionofpopulationgrowthbetween252000and2010remainedroughlyidenticaltothepreviousthreedecadeswhilethecontributionof26economicgrowthhasrisensharply(highconfidence)Between2000and2010bothdrivers27outpacedemissionreductionsfromimprovementsinenergyintensity(FigureSPM3)Increaseduse28ofcoalrelativetootherenergysourceshasreversedthelongͲstandingtrendofgradual29decarbonizationoftheworldrsquosenergysupply[135372143TS22]30

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

8of33

1Figure SPM3 Decomposition of the decadal change in total global CO2 emissions from fossil fuel 2combustion by four driving factors population income (GDP) per capita energy intensity of GDP and 3carbon intensity of energy The bar segments show the changes associated with each factor alone 4holding the respective other factors constant Total decadal changes are indicated by a triangle 5Changes are measured in giga tonnes (Gt) of CO2 emissions per decade income is converted into 6common units using purchasing power parities [Figure 17] [Subject to final quality check and copy 7edit] 8

WithoutadditionaleffortstoreduceGHGemissionsbeyondthoseinplacetodayemissions9growthisexpectedtopersistdrivenbygrowthinglobalpopulationandeconomicactivities10Baselinescenariosthosewithoutadditionalmitigationresultinglobalmeansurfacetemperature11increasesin2100from37to48degCcomparedtopreͲindustriallevels10(medianvaluestherangeis1225degCto78degCwhenincludingclimateuncertaintyseeTableSPM1)11(highconfidence)The13emissionscenarioscollectedforthisassessmentrepresentfullradiativeforcingincludingGHGs14troposphericozoneaerosolsandalbedochangeBaselinescenarios(scenarioswithoutexplicit15additionaleffortstoconstrainemissions)exceed450partspermillion(ppm)CO2eqby2030and16reachCO2eqconcentrationlevelsbetween750andmorethan1300ppmCO2eqby2100Thisis17similartotherangeinatmosphericconcentrationlevelsbetweentheRCP60andRCP85pathways1810Basedonthelongestglobalsurfacetemperaturedatasetavailabletheobservedchangebetweentheaverageoftheperiod1850Ͳ1900andoftheAR5referenceperiod(1986ndash2005)is061degC(5ndash95confidenceinterval055to067degC)[WGIAR5SPME]whichisusedhereasanapproximationofthechangeinglobalmeansurfacetemperaturesincepreͲindustrialtimesreferredtoastheperiodbefore175011Theclimateuncertaintyreflectsthe5thto95thpercentileofclimatemodelcalculationsdescribedinTableSPM1

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

9of33

in210012ForcomparisontheCO2eqconcentrationin2011isestimatedtobe430ppm(uncertainty1range340ndash520ppm)13[63BoxTS6WGIAR5FigureSPM5WGI85WGI123] 2

12Forthepurposeofthisassessmentroughly300baselinescenariosand900mitigationscenarioswerecollectedthroughanopencallfromintegratedmodellingteamsaroundtheworldThesescenariosarecomplementarytotheRepresentativeConcentrationPathways(RCPsseeWGIIIAR5Glossary)TheRCPsareidentifiedbytheirapproximatetotalradiativeforcinginyear2100relativeto175026Wattspersquaremeter(WmͲ2)forRCP2645WmͲ2forRCP4560WmͲ2forRCP60and85WmͲ2forRCP85Thescenarioscollectedforthisassessmentspanaslightlybroaderrangeofconcentrationsintheyear2100thanthefourRCPs13Thisisbasedontheassessmentoftotalanthropogenicradiativeforcingfor2011relativeto1750inWGIie23WmͲ2uncertaintyrange11to33WmͲ2[WGIAR5FigureSPM5WGI85WGI123]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

10of33

SPM4 Mitigationpathwaysandmeasuresinthecontextofsustainable1development2

SPM41 LongͲtermmitigationpathways3

Therearemultiplescenarioswitharangeoftechnologicalandbehavioraloptionswithdifferent4characteristicsandimplicationsforsustainabledevelopmentthatareconsistentwithdifferent5levelsofmitigationForthisassessmentabout900mitigationscenarioshavebeencollectedina6databasebasedonpublishedintegratedmodels14Thisrangespansatmosphericconcentration7levelsin2100from430ppmCO2eqtoabove720ppmCO2eqwhichiscomparabletothe21008forcinglevelsbetweenRCP26andRCP60Scenariosoutsidethisrangewerealsoassessed9includingsomescenarioswithconcentrationsin2100below430ppmCO2eq(foradiscussionof10thesescenariosseebelow)Themitigationscenariosinvolveawiderangeoftechnological11socioeconomicandinstitutionaltrajectoriesbutuncertaintiesandmodellimitationsexistand12developmentsoutsidethisrangearepossible(FigureSPM4toppanel)[616263TS31Box13TS6]14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

14ThelongͲtermscenariosassessedinWGIIIweregeneratedprimarilybylargeͲscaleintegratedmodelsthatprojectmanykeycharacteristicsofmitigationpathwaystomidͲcenturyandbeyondThesemodelslinkmanyimportanthumansystems(egenergyagricultureandlanduseeconomy)withphysicalprocessesassociatedwithclimatechange(egthecarboncycle)ThemodelsapproximatecostͲeffectivesolutionsthatminimizetheaggregateeconomiccostsofachievingmitigationoutcomesunlesstheyarespecificallyconstrainedtobehaveotherwiseTheyaresimplifiedstylizedrepresentationsofhighlyͲcomplexrealͲworldprocessesandthescenariostheyproducearebasedonuncertainprojectionsaboutkeyeventsanddriversoveroftencenturyͲlongtimescalesSimplificationsanddifferencesinassumptionsarethereasonwhyoutputgeneratedfromdifferentmodelsorversionsofthesamemodelcandifferandprojectionsfromallmodelscandifferconsiderablyfromtherealitythatunfolds[BoxTS762]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

11of33

1Figure SPM4 Pathways of global GHG emissions (GtCO2eqyr) in baseline and mitigation scenarios 2for different long-term concentration levels (upper panel) and associated upscaling requirements of 3low-carbon energy ( of primary energy) for 2030 2050 and 2100 compared to 2010 levels in 4mitigation scenarios (lower panel) The upper and lower panels exclude scenarios with limited 5technology availability and the lower panel in addition excludes scenarios that assume exogenous 6carbon price trajectories [Figure 67 Figure 716] [Subject to final quality check and copy edit] 7

Mitigationscenariosinwhichitislikelythatthetemperaturechangecausedbyanthropogenic8GHGemissionscanbekepttolessthan2degCrelativetopreͲindustriallevelsarecharacterizedby9atmosphericconcentrationsin2100ofabout450ppmCO2eq(highconfidence)Mitigation10scenariosreachingconcentrationlevelsofabout500ppmCO2eqby2100aremorelikelythannotto11limittemperaturechangetolessthan2degCrelativetopreͲindustriallevelsunlesstheytemporarily12lsquoovershootrsquoconcentrationlevelsofroughly530ppmCO2eqbefore2100inwhichcasetheyare13aboutaslikelyasnottoachievethatgoal15Scenariosthatreach530to650ppmCO2eq14concentrationsby2100aremoreunlikelythanlikelytokeeptemperaturechangebelow2degCrelative15topreͲindustriallevelsScenariosthatreachabout650ppmCO2eqby2100areunlikelytolimit16temperaturechangetobelow2degCrelativetopreͲindustriallevelsMitigationscenariosinwhich1715Mitigationscenariosincludingthosereaching2100concentrationsashighasorhigherthan550ppmCO2eqcantemporarilylsquoovershootrsquoatmosphericCO2eqconcentrationlevelsbeforedescendingtolowerlevelslaterSuchconcentrationovershootinvolveslessmitigationintheneartermwithmorerapidanddeeperemissionsreductionsinthelongrunOvershootincreasestheprobabilityofexceedinganygiventemperaturegoal[63TableSPM1]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

12of33

temperatureincreaseismorelikelythannottobelessthan15degCrelativetopreͲindustriallevelsby12100arecharacterizedbyconcentrationsin2100ofbelow430ppmCO2eqTemperaturepeaks2duringthecenturyandthendeclinesinthesescenariosProbabilitystatementsregardingother3levelsoftemperaturechangecanbemadewithreferencetoTableSPM1[63BoxTS6]4

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

13of33

Table SPM1 Key characteristics of the scenarios collected and assessed for WGIII AR5 For all parameters the 10th to 90th percentile of the scenarios is 1shown12 [Table 63] 2

CO2eqConcentrationsin2100(CO2eq)

Categorylabel(concentration

range)9

SubcategoriesRelativepositionoftheRCPs5

CumulativeCO2emission3(GtCO2)

ChangeinCO2eqemissionscomparedto

2010in()4Temperaturechange(relativeto1850ndash1900)56

2011ndash2050 2011ndash2100 2050 2100 2100Temperaturechange(degC)7

Likelihoodofstayingbelowtemperatureleveloverthe21stcentury8

15degC 20degC 30degC 40degC

δͶ͵Ͳ Onlyalimitednumberofindividualmodelstudieshaveexploredlevelsbelow430ppmCO2eqͶͷͲ

ȋͶ͵ͲȂͶͺͲȌ 110 RCP26 ͷͷͲȂͳ͵ͲͲ ͵ͲȂͳͳͺͲ Ͳ72toͲ41 Ͳ118Ͳ78 ͳǤͷȂͳǤȋͳǤͲȂʹǤͺȌ Moreunlikelythanlikely Likely

Likely

Likely

ͷͲͲȋͶͺͲȂͷ͵ͲȌ

ͷ͵Ͳʹ ͺͲȂͳͳͺͲ ͻͲȂͳͶ͵Ͳ Ͳ57Ͳ42 Ͳ107Ͳ73 ͳǤȂͳǤͻȋͳǤʹȂʹǤͻȌ

Unlikely

Morelikelythannot

ͷ͵Ͳʹ ͳͳ͵ͲȂͳͷ͵Ͳ ͻͻͲȂͳͷͷͲ Ͳ55Ͳ25 Ͳ114Ͳ90 ͳǤͺȂʹǤͲȋͳǤʹȂ͵Ǥ͵Ȍ Aboutaslikelyasnot

ͷͷͲȋͷ͵ͲȂͷͺͲȌ

ͷͺͲʹ ͳͲͲȂͳͶͲ ͳʹͶͲȂʹʹͶͲ Ͳ47Ͳ19 Ͳ81Ͳ59 ʹǤͲȂʹǤʹȋͳǤͶȂ͵ǤȌMoreunlikelythanlikelyͳʹ

ͷͺͲʹ ͳͶʹͲȂͳͷͲ ͳͳͲȂʹͳͲͲ Ͳ167 Ͳ183Ͳ86 ʹǤͳȂʹǤ͵ȋͳǤͶȂ͵ǤȌ

ȋͷͺͲȂͷͲȌ RCP45

ͳʹͲȂͳͶͲ ͳͺͲȂʹͶͶͲ Ͳ3824 Ͳ134toͲ50 ʹǤ͵ȂʹǤȋͳǤͷȂͶǤʹȌ

ȋͷͲȂʹͲȌ ͳ͵ͳͲȂͳͷͲ ʹͷͲȂ͵͵ͶͲ Ͳ11to17 Ͳ54Ͳ21 ʹǤȂʹǤͻȋͳǤͺȂͶǤͷȌ Unlikely

Morelikelythannot

ȋʹͲȂͳͲͲͲȌ RCP60 ͳͷͲȂͳͻͶͲ ͵ʹͲȂͶͻͻͲ 1854 Ͳ772 ͵ǤͳȂ͵ǤȋʹǤͳȂͷǤͺȌUnlikely11

Moreunlikelythanlikely

εͳͲͲͲ RCP85 ͳͺͶͲȂʹ͵ͳͲ ͷ͵ͷͲȂͲͳͲ 5295 74178 ͶǤͳȂͶǤͺȋʹǤͺȂǤͺȌ Unlikely11 Unlikely Moreunlikelythanlikely

1Thetotalrangeforthe430ndash480ppmCO2eqscenarioscorrespondstotherangeofthe10ndash90thpercentileofthesubcategoryofthesescenariosshownin3table632Baselinescenarios(seeSPM3)arecategorizedinthegt1000and750ndash1000ppmCO2eqcategoriesThelattercategoryincludesalsomitigation4scenariosThebaselinescenariosinthelattercategoryreachatemperaturechangeof25ndash58degCabovepreindustrialin2100Togetherwiththebaseline5scenariosinthegt1000ppmCO2eqcategorythisleadstoanoverall2100temperaturerangeof25ndash78degC(median37ndash48degC)forbaselinescenariosacross6bothconcentrationcategories3ForcomparisonofthecumulativeCO2emissionsestimatesassessedherewiththosepresentedinWGIanamountof5157[445to585]GtC(1890[1630to2150]GtCO2)wasalreadyemittedby2011since1870[SectionWGI125]Notethatcumulativeemissionsarepresented8herefordifferentperiodsoftime(2011ndash2050and2011ndash2100)whilecumulativeemissionsinWGIarepresentedastotalcompatibleemissionsfortheRCPs9(2012ndash2100)orfortotalcompatibleemissionsforremainingbelowagiventemperaturetargetwithagivenlikelihood[WGITableSPM3WGISPME8]410Theglobal2010emissionsare31abovethe1990emissions(consistentwiththehistoricGHGemissionestimatespresentedinthisreport)CO2eq11emissionsincludethebasketofKyotogases(CO2CH4N2OaswellasFͲgases)5TheassessmentinWGIIIinvolvesalargenumberofscenariospublishedin12thescientificliteratureandisthusnotlimitedtotheRCPsToevaluatethegreenhousegasconcentrationandclimateimplicationsofthesescenariosthe13MAGICCmodelwasusedinaprobabilisticmode(seeAnnexII)ForacomparisonbetweenMAGICCmodelresultsandtheoutcomesofthemodelsusedin14WGIseeSectionWGI12412andWGI1248and6326ReasonsfordifferenceswithWGISPMTable2includethedifferenceinreferenceyear(1986ndash15

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

14of33

2005vs1850ndash1900here)differenceinreportingyear(2081ndash2100vs2100here)setͲupofsimulation(CMIP5concentrationdrivenversusMAGICC1emissionͲdrivenhere)andthewidersetofscenarios(RCPsversusthefullsetofscenariosintheWGIIIAR5scenariodatabasehere)6Temperaturechange2isreportedfortheyear2100whichisnotdirectlycomparabletotheequilibriumwarmingreportedinAR4(Table35Chapter3WGIII)Forthe21003temperatureestimatesthetransientclimateresponse(TCR)isthemostrelevantsystempropertyTheassumed90thpercentileuncertaintyrangeofthe4TCRforMAGICCis12ndash26degC(median18degC)Thiscomparestothe90thpercentilerangeofTCRbetween12ndash24degCforCMIP5(WGI97)andanassessed5likelyrangeof1ndash25degCfrommultiplelinesofevidencereportedintheIPCCAR5WGIreport(Box122inchapter125)7Temperaturechangein2100is6providedforamedianestimateoftheMAGICCcalculationswhichillustratesdifferencesbetweentheemissionspathwaysofthescenariosineach7categoryTherangeoftemperaturechangeintheparenthesesincludesinadditionalsothecarboncycleandclimatesystemuncertaintiesasrepresented8bytheMAGICCmodel(see6326forfurtherdetails)Thetemperaturedatacomparedtothe1850ndash1900referenceyearwascalculatedbytakingall9projectedwarmingrelativeto1986ndash2005andadding061degCfor1986ndash2005comparedto1850ndash1900basedonHadCRUT4(seeWGITableSPM2)8The10assessmentinthistableisbasedontheprobabilitiescalculatedforthefullensembleofscenariosinWGIIIusingMAGICCandtheassessmentinWGIofthe11uncertaintyofthetemperatureprojectionsnotcoveredbyclimatemodelsThestatementsarethereforeconsistentwiththestatementsinWGIwhichare12basedontheCMIP5runsoftheRCPsandtheassesseduncertaintiesHencethelikelihoodstatementsreflectdifferentlinesofevidencefrombothWGs13ThisWGImethodwasalsoappliedforscenarioswithintermediateconcentrationlevelswherenoCMIP5runsareavailableThelikelihoodstatementsare14indicativeonly(63)andfollowbroadlythetermsusedbytheWGISPMfortemperatureprojectionslikely66ndash100morelikelythannotgt50ndash100about15aslikelyasnot33ndash66andunlikely0ndash33Inadditionthetermmoreunlikelythanlikely0Ͳlt50isused9TheCO2equivalentconcentrationincludesthe16forcingofallGHGsincludinghalogenatedgasesandtroposphericozoneaerosolsandalbedochange(calculatedonthebasisofthetotalforcingfroma17simplecarboncycleclimatemodelMAGICC)10Thevastmajorityofscenariosinthiscategoryovershootthecategoryboundaryof480ppmCO2eq18concentrations11ForscenariosinthiscategorynoCMIP5run(WGIAR5Chapter12Table123)aswellasnoMAGICCrealization(63)staysbelowthe19respectivetemperaturelevelStillanlsquounlikelyrsquoassignmentisgiventoreflectuncertaintiesthatmightnotbereflectedbythecurrentclimatemodels1220Scenariosinthe580ndash650ppmCO2eqcategoryincludebothovershootscenariosandscenariosthatdonotexceedtheconcentrationlevelatthehighendof21thecategory(likeRCP45)Thelattertypeofscenariosingeneralhaveanassessedprobabilityofmoreunlikelythanlikelytoexceedthe2degCtemperature22levelwhiletheformeraremostlyassessedtohaveanunlikelyprobabilityofexceedingthislevel[Subjecttofinalqualitycheckandcopyedit]23

24

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 5: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

4of33

ecosystemstoadaptnaturallytoclimatechangetoensurethatfoodproductionisnot1threatenedandtoenableeconomicdevelopmenttoproceedinasustainablemanner2

Climatepoliciescanbeinformedbythefindingsofscienceandsystematicmethodsfromother3disciplines[122425Box31]4

Sustainabledevelopmentandequityprovideabasisforassessingclimatepoliciesandhighlight5theneedforaddressingtherisksofclimatechange3Limitingtheeffectsofclimatechangeis6necessarytoachievesustainabledevelopmentandequityincludingpovertyeradicationAtthe7sametimesomemitigationeffortscouldundermineactionontherighttopromotesustainable8developmentandontheachievementofpovertyeradicationandequityConsequentlya9comprehensiveassessmentofclimatepoliciesinvolvesgoingbeyondafocusonmitigationand10adaptationpoliciesalonetoexaminedevelopmentpathwaysmorebroadlyalongwiththeir11determinants[424344454648]12

Effectivemitigationwillnotbeachievedifindividualagentsadvancetheirowninterests13independentlyClimatechangehasthecharacteristicsofacollectiveactionproblemattheglobal14scalebecausemostgreenhousegases(GHGs)accumulateovertimeandmixgloballyandemissions15byanyagent(egindividualcommunitycompanycountry)affectotheragents4International16cooperationisthereforerequiredtoeffectivelymitigateGHGemissionsandaddressotherclimate17changeissues[1242643142132133]Furthermoreresearchanddevelopmentinsupport18ofmitigationcreatesknowledgespilloversInternationalcooperationcanplayaconstructiverolein19thedevelopmentdiffusionandtransferofknowledgeandenvironmentallysoundtechnologies20[14431161181391443]21

Issuesofequityjusticeandfairnessarisewithrespecttomitigationandadaptation5Countriesrsquo22pastandfuturecontributionstotheaccumulationofGHGsintheatmospherearedifferentand23countriesalsofacevaryingchallengesandcircumstancesandhavedifferentcapacitiestoaddress24mitigationandadaptationTheevidencesuggeststhatoutcomesseenasequitablecanleadtomore25effectivecooperation[310422462]26

ManyareasofclimatepolicyͲmakinginvolvevaluejudgementsandethicalconsiderationsThese27areasrangefromthequestionofhowmuchmitigationisneededtopreventdangerousinterference28withtheclimatesystemtochoicesamongspecificpoliciesformitigationoradaptation[3132]29Socialeconomicandethicalanalysesmaybeusedtoinformvaluejudgementsandmaytakeinto30accountvaluesofvarioussortsincludinghumanwellbeingculturalvaluesandnonͲhumanvalues31[34310]32

Amongothermethodseconomicevaluationiscommonlyusedtoinformclimatepolicydesign33PracticaltoolsforeconomicassessmentincludecostͲbenefitanalysiscostͲeffectivenessanalysis34multiͲcriteriaanalysisandexpectedutilitytheory[25]ThelimitationsofthesetoolsarewellͲ35documented[35]Ethicaltheoriesbasedonsocialwelfarefunctionsimplythatdistributional36weightswhichtakeaccountofthedifferentvalueofmoneytodifferentpeopleshouldbeapplied37tomonetarymeasuresofbenefitsandharms[361BoxTS2]Whereasdistributionalweightinghas38notfrequentlybeenappliedforcomparingtheeffectsofclimatepoliciesondifferentpeopleata39singletimeitisstandardpracticeintheformofdiscountingforcomparingtheeffectsatdifferent40times[362]41

3SeeWGIIAR5SPM4InthesocialsciencesthisisreferredtoasalsquoglobalcommonsproblemlsquoAsthisexpressionisusedinthesocialsciencesithasnospecificimplicationsforlegalarrangementsorforparticularcriteriaregardingeffortͲsharing5SeeFAQ32forclarificationoftheseconceptsThephilosophicalliteratureonjusticeandotherliteraturecanilluminatetheseissues[3233462]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

5of33

ClimatepolicyintersectswithothersocietalgoalscreatingthepossibilityofcoͲbenefitsoradverse1sideͲeffectsTheseintersectionsifwellͲmanagedcanstrengthenthebasisforundertaking2climateactionMitigationandadaptationcanpositivelyornegativelyinfluencetheachievementof3othersocietalgoalssuchasthoserelatedtohumanhealthfoodsecuritybiodiversitylocal4environmentalqualityenergyaccesslivelihoodsandequitablesustainabledevelopmentandvice5versapoliciestowardothersocietalgoalscaninfluencetheachievementofmitigationand6adaptationobjectives[424344454648]Theseinfluencescanbesubstantialalthough7sometimesdifficulttoquantifyespeciallyinwelfareterms[363]ThismultiͲobjectiveperspectiveis8importantinpartbecauseithelpstoidentifyareaswheresupportforpoliciesthatadvancemultiple9goalswillberobust[1214248661]10

Climatepolicymaybeinformedbyaconsiderationofadiversearrayofrisksanduncertainties11someofwhicharedifficulttomeasurenotablyeventsthatareoflowprobabilitybutwhichwould12haveasignificantimpactiftheyoccurSinceAR4thescientificliteraturehasexaminedrisksrelated13toclimatechangeadaptationandmitigationstrategiesAccuratelyestimatingthebenefitsof14mitigationtakesintoaccountthefullrangeofpossibleimpactsofclimatechangeincludingthose15withhighconsequencesbutalowprobabilityofoccurrenceThebenefitsofmitigationmay16otherwisebeunderestimated(highconfidence)[2526Box39]Thechoiceofmitigationactionsis17alsoinfluencedbyuncertaintiesinmanysocioͲeconomicvariablesincludingtherateofeconomic18growthandtheevolutionoftechnology(highconfidence)[2663]19

Thedesignofclimatepolicyisinfluencedbyhowindividualsandorganizationsperceiverisksand20uncertaintiesandtakethemintoaccountPeopleoftenutilizesimplifieddecisionrulessuchasa21preferenceforthestatusquoIndividualsandorganizationsdifferintheirdegreeofriskaversionand22therelativeimportanceplacedonnearͲtermversuslongͲtermramificationsofspecificactions[24]23Withthehelpofformalmethodspolicydesigncanbeimprovedbytakingintoaccountrisksand24uncertaintiesinnaturalsocioͲeconomicandtechnologicalsystemsaswellasdecisionprocesses25perceptionsvaluesandwealth[25]26

SPM3 Trendsinstocksandflowsofgreenhousegasesandtheirdrivers27

TotalanthropogenicGHGemissionshavecontinuedtoincreaseover1970to2010withlarger28absolutedecadalincreasestowardtheendofthisperiod(highconfidence)Despiteagrowing29numberofclimatechangemitigationpoliciesannualGHGemissionsgrewonaverageby10giga30tonnecarbondioxideequivalent(GtCO2eq)(22)peryearfrom2000to2010comparedto0431GtCO2eq(13)peryearfrom1970to2000(FigureSPM1)67TotalanthropogenicGHGemissions32werethehighestinhumanhistoryfrom2000to2010andreached49(plusmn45)GtCO2eqyrin2010The33globaleconomiccrisis20072008onlytemporarilyreducedemissions[13521331522Box34TS5Figure151]35

CO2emissionsfromfossilfuelcombustionandindustrialprocessescontributedabout78ofthe36totalGHGemissionincreasefrom1970to2010withasimilarpercentagecontributionforthe37period2000ndash2010(highconfidence)FossilfuelͲrelatedCO2emissionsreached32(plusmn27)GtCO2yrin382010andgrewfurtherbyabout3between2010and2011andbyabout1Ͳ2between2011and392012Ofthe49(plusmn45)GtCO2eqyrintotalanthropogenicGHGemissionsin2010CO2remainsthe40majoranthropogenicGHGaccountingfor76(38plusmn38GtCO2eqyr)oftotalanthropogenicGHG41emissionsin201016(78plusmn16GtCO2eqyr)comefrommethane(CH4)62(31plusmn19GtCO2eqyr)426ThroughouttheSPMemissionsofGHGsareweightedbyGlobalWarmingPotentialswitha100Ͳyeartimehorizon(GWP100)fromtheIPCCSecondAssessmentReportAllmetricshavelimitationsanduncertaintiesinassessingconsequencesofdifferentemissions[396BoxTS5AnnexII29WGIAR5SPM]7InthisSPMuncertaintyinhistoricGHGemissiondataisreportedusing90uncertaintyintervalsunlessotherwisestatedGHGemissionlevelsareroundedtotwosignificantdigitsthroughoutthisdocument

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

6of33

fromnitrousoxide(N2O)and20(10plusmn02GtCO2eqyr)fromfluorinatedgases(FigureSPM1)1Annuallysince1970about25ofanthropogenicGHGemissionshavebeenintheformofnonͲCO22gases8[1252]3

4Figure SPM1 Total annual anthropogenic GHG emissions (GtCO2eqyr) by groups of gases 1970-52010 CO2 from fossil fuel combustion and industrial processes CO2 from Forestry and Other Land 6Use (FOLU) methane (CH4) nitrous oxide (N2O) fluorinated gases8 covered under the Kyoto 7Protocol (F-gases) At the right side of the figure GHG emissions in 2010 are shown again broken 8down into these components with the associated uncertainties (90 confidence interval) indicated by 9the error bars Total anthropogenic GHG emissions uncertainties are derived from the individual gas 10estimates as described in Chapter 5 [5236] Global CO2 emissions from fossil fuel combustion are 11known within 8 uncertainty (90 confidence interval) CO2 emissions from FOLU have very large 12uncertainties attached in the order of plusmn50 Uncertainty for global emissions of CH4 N2O and the F-13gases has been estimated as 20 60 and 20 respectively 2010 was the most recent year for 14which emission statistics on all gases as well as assessment of uncertainties were essentially 15complete at the time of data cut off for this report Emissions are converted into CO2-equivalents 16based on GWP100

6 from the IPCC Second Assessment Report The emission data from FOLU 17represents land-based CO2 emissions from forest fires peat fires and peat decay that approximate to 18net CO2 flux from the FOLU as described in chapter 11 of this report Average annual growth rate 19over different periods is highlighted with the brackets [Figure 13 Figure TS1] [Subject to final quality 20check and copy edit] 21

AbouthalfofcumulativeanthropogenicCO2emissionsbetween1750and2010haveoccurredin22thelast40years(highconfidence)In1970cumulativeCO2emissionsfromfossilfuelcombustion23cementproductionandflaringsince1750were420plusmn35GtCO2in2010thatcumulativetotalhad24tripledto1300plusmn110GtCO2(FigureSPM2)CumulativeCO2emissionsfromForestryandOtherLand25Use(FOLU)9since1750increasedfrom490plusmn180GtCO2in1970to680plusmn300GtCO2in2010[52]26

8InthisreportdataonnonͲCO2GHGsincludingfluorinatedgasesistakenfromtheEDGARdatabase(AnnexII9)whichcoverssubstancesincludedintheKyotoProtocolinitsfirstcommitmentperiod9ForestryandOtherLandUse(FOLU)mdashalsoreferredtoasLULUCF(LandUseLandͲUseChangeandForestry)mdashisthesubsetofAgricultureForestryandOtherLandUse(AFOLU)emissionsandremovalsofGHGsrelatedtodirecthumanͲinducedlanduselandͲusechangeandforestryactivitiesexcludingagriculturalemissionsandremovals(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

7of33

AnnualanthropogenicGHGemissionshaveincreasedby10GtCO2eqbetween2000and2010with1thisincreasedirectlycomingfromenergysupply(47)industry(30)transport(11)and2buildings(3)sectors(mediumconfidence)Accountingforindirectemissionsraisesthe3contributionsofthebuildingsandindustrysectors(highconfidence)Since2000GHGemissions4havebeengrowinginallsectorsexceptAFOLUOfthe49(plusmn45)GtCO2eqemissionsin201035(175GtCO2eq)ofGHGemissionswerereleasedintheenergysupplysector24(12GtCO2eqnet6emissions)inAFOLU21(10GtCO2eq)inindustry14(70GtCO2eq)intransportand64(327GtCO2eq)inbuildingsWhenemissionsfromelectricityandheatproductionareattributedtothe8sectorsthatusethefinalenergy(ieindirectemissions)thesharesoftheindustryandbuildings9sectorsinglobalGHGemissionsareincreasedto31and19respectively(FigureSPM2)[73821092103112]11

12Figure SPM2 Total anthropogenic GHG emissions (GtCO2eqyr) by economic sectors Inner circle 13shows direct GHG emission shares (in of total anthropogenic GHG emissions) of five economic 14sectors in 2010 Pull-out shows how indirect CO2 emission shares (in of total anthropogenic GHG 15emissions) from electricity and heat production are attributed to sectors of final energy use ldquoOther 16Energyrdquo refers to all GHG emission sources in the energy sector as defined in Annex II other than 17electricity and heat production [AII91] The emissions data from Agriculture Forestry and Other 18Land Use (AFOLU) includes land-based CO2 emissions from forest fires peat fires and peat decay 19that approximate to net CO2 flux from the Forestry and Other Land Use (FOLU) sub-sector as 20described in Chapter 11 of this report Emissions are converted into CO2-equivalents based on 21GWP100

6 from the IPCC Second Assessment Report Sector definitions are provided in Annex II9 22[Figure 13a Figure TS3 ab] [Subject to final quality check and copy edit] 23

Globallyeconomicandpopulationgrowthcontinuetobethemostimportantdriversofincreases24inCO2emissionsfromfossilfuelcombustionThecontributionofpopulationgrowthbetween252000and2010remainedroughlyidenticaltothepreviousthreedecadeswhilethecontributionof26economicgrowthhasrisensharply(highconfidence)Between2000and2010bothdrivers27outpacedemissionreductionsfromimprovementsinenergyintensity(FigureSPM3)Increaseduse28ofcoalrelativetootherenergysourceshasreversedthelongͲstandingtrendofgradual29decarbonizationoftheworldrsquosenergysupply[135372143TS22]30

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

8of33

1Figure SPM3 Decomposition of the decadal change in total global CO2 emissions from fossil fuel 2combustion by four driving factors population income (GDP) per capita energy intensity of GDP and 3carbon intensity of energy The bar segments show the changes associated with each factor alone 4holding the respective other factors constant Total decadal changes are indicated by a triangle 5Changes are measured in giga tonnes (Gt) of CO2 emissions per decade income is converted into 6common units using purchasing power parities [Figure 17] [Subject to final quality check and copy 7edit] 8

WithoutadditionaleffortstoreduceGHGemissionsbeyondthoseinplacetodayemissions9growthisexpectedtopersistdrivenbygrowthinglobalpopulationandeconomicactivities10Baselinescenariosthosewithoutadditionalmitigationresultinglobalmeansurfacetemperature11increasesin2100from37to48degCcomparedtopreͲindustriallevels10(medianvaluestherangeis1225degCto78degCwhenincludingclimateuncertaintyseeTableSPM1)11(highconfidence)The13emissionscenarioscollectedforthisassessmentrepresentfullradiativeforcingincludingGHGs14troposphericozoneaerosolsandalbedochangeBaselinescenarios(scenarioswithoutexplicit15additionaleffortstoconstrainemissions)exceed450partspermillion(ppm)CO2eqby2030and16reachCO2eqconcentrationlevelsbetween750andmorethan1300ppmCO2eqby2100Thisis17similartotherangeinatmosphericconcentrationlevelsbetweentheRCP60andRCP85pathways1810Basedonthelongestglobalsurfacetemperaturedatasetavailabletheobservedchangebetweentheaverageoftheperiod1850Ͳ1900andoftheAR5referenceperiod(1986ndash2005)is061degC(5ndash95confidenceinterval055to067degC)[WGIAR5SPME]whichisusedhereasanapproximationofthechangeinglobalmeansurfacetemperaturesincepreͲindustrialtimesreferredtoastheperiodbefore175011Theclimateuncertaintyreflectsthe5thto95thpercentileofclimatemodelcalculationsdescribedinTableSPM1

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

9of33

in210012ForcomparisontheCO2eqconcentrationin2011isestimatedtobe430ppm(uncertainty1range340ndash520ppm)13[63BoxTS6WGIAR5FigureSPM5WGI85WGI123] 2

12Forthepurposeofthisassessmentroughly300baselinescenariosand900mitigationscenarioswerecollectedthroughanopencallfromintegratedmodellingteamsaroundtheworldThesescenariosarecomplementarytotheRepresentativeConcentrationPathways(RCPsseeWGIIIAR5Glossary)TheRCPsareidentifiedbytheirapproximatetotalradiativeforcinginyear2100relativeto175026Wattspersquaremeter(WmͲ2)forRCP2645WmͲ2forRCP4560WmͲ2forRCP60and85WmͲ2forRCP85Thescenarioscollectedforthisassessmentspanaslightlybroaderrangeofconcentrationsintheyear2100thanthefourRCPs13Thisisbasedontheassessmentoftotalanthropogenicradiativeforcingfor2011relativeto1750inWGIie23WmͲ2uncertaintyrange11to33WmͲ2[WGIAR5FigureSPM5WGI85WGI123]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

10of33

SPM4 Mitigationpathwaysandmeasuresinthecontextofsustainable1development2

SPM41 LongͲtermmitigationpathways3

Therearemultiplescenarioswitharangeoftechnologicalandbehavioraloptionswithdifferent4characteristicsandimplicationsforsustainabledevelopmentthatareconsistentwithdifferent5levelsofmitigationForthisassessmentabout900mitigationscenarioshavebeencollectedina6databasebasedonpublishedintegratedmodels14Thisrangespansatmosphericconcentration7levelsin2100from430ppmCO2eqtoabove720ppmCO2eqwhichiscomparabletothe21008forcinglevelsbetweenRCP26andRCP60Scenariosoutsidethisrangewerealsoassessed9includingsomescenarioswithconcentrationsin2100below430ppmCO2eq(foradiscussionof10thesescenariosseebelow)Themitigationscenariosinvolveawiderangeoftechnological11socioeconomicandinstitutionaltrajectoriesbutuncertaintiesandmodellimitationsexistand12developmentsoutsidethisrangearepossible(FigureSPM4toppanel)[616263TS31Box13TS6]14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

14ThelongͲtermscenariosassessedinWGIIIweregeneratedprimarilybylargeͲscaleintegratedmodelsthatprojectmanykeycharacteristicsofmitigationpathwaystomidͲcenturyandbeyondThesemodelslinkmanyimportanthumansystems(egenergyagricultureandlanduseeconomy)withphysicalprocessesassociatedwithclimatechange(egthecarboncycle)ThemodelsapproximatecostͲeffectivesolutionsthatminimizetheaggregateeconomiccostsofachievingmitigationoutcomesunlesstheyarespecificallyconstrainedtobehaveotherwiseTheyaresimplifiedstylizedrepresentationsofhighlyͲcomplexrealͲworldprocessesandthescenariostheyproducearebasedonuncertainprojectionsaboutkeyeventsanddriversoveroftencenturyͲlongtimescalesSimplificationsanddifferencesinassumptionsarethereasonwhyoutputgeneratedfromdifferentmodelsorversionsofthesamemodelcandifferandprojectionsfromallmodelscandifferconsiderablyfromtherealitythatunfolds[BoxTS762]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

11of33

1Figure SPM4 Pathways of global GHG emissions (GtCO2eqyr) in baseline and mitigation scenarios 2for different long-term concentration levels (upper panel) and associated upscaling requirements of 3low-carbon energy ( of primary energy) for 2030 2050 and 2100 compared to 2010 levels in 4mitigation scenarios (lower panel) The upper and lower panels exclude scenarios with limited 5technology availability and the lower panel in addition excludes scenarios that assume exogenous 6carbon price trajectories [Figure 67 Figure 716] [Subject to final quality check and copy edit] 7

Mitigationscenariosinwhichitislikelythatthetemperaturechangecausedbyanthropogenic8GHGemissionscanbekepttolessthan2degCrelativetopreͲindustriallevelsarecharacterizedby9atmosphericconcentrationsin2100ofabout450ppmCO2eq(highconfidence)Mitigation10scenariosreachingconcentrationlevelsofabout500ppmCO2eqby2100aremorelikelythannotto11limittemperaturechangetolessthan2degCrelativetopreͲindustriallevelsunlesstheytemporarily12lsquoovershootrsquoconcentrationlevelsofroughly530ppmCO2eqbefore2100inwhichcasetheyare13aboutaslikelyasnottoachievethatgoal15Scenariosthatreach530to650ppmCO2eq14concentrationsby2100aremoreunlikelythanlikelytokeeptemperaturechangebelow2degCrelative15topreͲindustriallevelsScenariosthatreachabout650ppmCO2eqby2100areunlikelytolimit16temperaturechangetobelow2degCrelativetopreͲindustriallevelsMitigationscenariosinwhich1715Mitigationscenariosincludingthosereaching2100concentrationsashighasorhigherthan550ppmCO2eqcantemporarilylsquoovershootrsquoatmosphericCO2eqconcentrationlevelsbeforedescendingtolowerlevelslaterSuchconcentrationovershootinvolveslessmitigationintheneartermwithmorerapidanddeeperemissionsreductionsinthelongrunOvershootincreasestheprobabilityofexceedinganygiventemperaturegoal[63TableSPM1]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

12of33

temperatureincreaseismorelikelythannottobelessthan15degCrelativetopreͲindustriallevelsby12100arecharacterizedbyconcentrationsin2100ofbelow430ppmCO2eqTemperaturepeaks2duringthecenturyandthendeclinesinthesescenariosProbabilitystatementsregardingother3levelsoftemperaturechangecanbemadewithreferencetoTableSPM1[63BoxTS6]4

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

13of33

Table SPM1 Key characteristics of the scenarios collected and assessed for WGIII AR5 For all parameters the 10th to 90th percentile of the scenarios is 1shown12 [Table 63] 2

CO2eqConcentrationsin2100(CO2eq)

Categorylabel(concentration

range)9

SubcategoriesRelativepositionoftheRCPs5

CumulativeCO2emission3(GtCO2)

ChangeinCO2eqemissionscomparedto

2010in()4Temperaturechange(relativeto1850ndash1900)56

2011ndash2050 2011ndash2100 2050 2100 2100Temperaturechange(degC)7

Likelihoodofstayingbelowtemperatureleveloverthe21stcentury8

15degC 20degC 30degC 40degC

δͶ͵Ͳ Onlyalimitednumberofindividualmodelstudieshaveexploredlevelsbelow430ppmCO2eqͶͷͲ

ȋͶ͵ͲȂͶͺͲȌ 110 RCP26 ͷͷͲȂͳ͵ͲͲ ͵ͲȂͳͳͺͲ Ͳ72toͲ41 Ͳ118Ͳ78 ͳǤͷȂͳǤȋͳǤͲȂʹǤͺȌ Moreunlikelythanlikely Likely

Likely

Likely

ͷͲͲȋͶͺͲȂͷ͵ͲȌ

ͷ͵Ͳʹ ͺͲȂͳͳͺͲ ͻͲȂͳͶ͵Ͳ Ͳ57Ͳ42 Ͳ107Ͳ73 ͳǤȂͳǤͻȋͳǤʹȂʹǤͻȌ

Unlikely

Morelikelythannot

ͷ͵Ͳʹ ͳͳ͵ͲȂͳͷ͵Ͳ ͻͻͲȂͳͷͷͲ Ͳ55Ͳ25 Ͳ114Ͳ90 ͳǤͺȂʹǤͲȋͳǤʹȂ͵Ǥ͵Ȍ Aboutaslikelyasnot

ͷͷͲȋͷ͵ͲȂͷͺͲȌ

ͷͺͲʹ ͳͲͲȂͳͶͲ ͳʹͶͲȂʹʹͶͲ Ͳ47Ͳ19 Ͳ81Ͳ59 ʹǤͲȂʹǤʹȋͳǤͶȂ͵ǤȌMoreunlikelythanlikelyͳʹ

ͷͺͲʹ ͳͶʹͲȂͳͷͲ ͳͳͲȂʹͳͲͲ Ͳ167 Ͳ183Ͳ86 ʹǤͳȂʹǤ͵ȋͳǤͶȂ͵ǤȌ

ȋͷͺͲȂͷͲȌ RCP45

ͳʹͲȂͳͶͲ ͳͺͲȂʹͶͶͲ Ͳ3824 Ͳ134toͲ50 ʹǤ͵ȂʹǤȋͳǤͷȂͶǤʹȌ

ȋͷͲȂʹͲȌ ͳ͵ͳͲȂͳͷͲ ʹͷͲȂ͵͵ͶͲ Ͳ11to17 Ͳ54Ͳ21 ʹǤȂʹǤͻȋͳǤͺȂͶǤͷȌ Unlikely

Morelikelythannot

ȋʹͲȂͳͲͲͲȌ RCP60 ͳͷͲȂͳͻͶͲ ͵ʹͲȂͶͻͻͲ 1854 Ͳ772 ͵ǤͳȂ͵ǤȋʹǤͳȂͷǤͺȌUnlikely11

Moreunlikelythanlikely

εͳͲͲͲ RCP85 ͳͺͶͲȂʹ͵ͳͲ ͷ͵ͷͲȂͲͳͲ 5295 74178 ͶǤͳȂͶǤͺȋʹǤͺȂǤͺȌ Unlikely11 Unlikely Moreunlikelythanlikely

1Thetotalrangeforthe430ndash480ppmCO2eqscenarioscorrespondstotherangeofthe10ndash90thpercentileofthesubcategoryofthesescenariosshownin3table632Baselinescenarios(seeSPM3)arecategorizedinthegt1000and750ndash1000ppmCO2eqcategoriesThelattercategoryincludesalsomitigation4scenariosThebaselinescenariosinthelattercategoryreachatemperaturechangeof25ndash58degCabovepreindustrialin2100Togetherwiththebaseline5scenariosinthegt1000ppmCO2eqcategorythisleadstoanoverall2100temperaturerangeof25ndash78degC(median37ndash48degC)forbaselinescenariosacross6bothconcentrationcategories3ForcomparisonofthecumulativeCO2emissionsestimatesassessedherewiththosepresentedinWGIanamountof5157[445to585]GtC(1890[1630to2150]GtCO2)wasalreadyemittedby2011since1870[SectionWGI125]Notethatcumulativeemissionsarepresented8herefordifferentperiodsoftime(2011ndash2050and2011ndash2100)whilecumulativeemissionsinWGIarepresentedastotalcompatibleemissionsfortheRCPs9(2012ndash2100)orfortotalcompatibleemissionsforremainingbelowagiventemperaturetargetwithagivenlikelihood[WGITableSPM3WGISPME8]410Theglobal2010emissionsare31abovethe1990emissions(consistentwiththehistoricGHGemissionestimatespresentedinthisreport)CO2eq11emissionsincludethebasketofKyotogases(CO2CH4N2OaswellasFͲgases)5TheassessmentinWGIIIinvolvesalargenumberofscenariospublishedin12thescientificliteratureandisthusnotlimitedtotheRCPsToevaluatethegreenhousegasconcentrationandclimateimplicationsofthesescenariosthe13MAGICCmodelwasusedinaprobabilisticmode(seeAnnexII)ForacomparisonbetweenMAGICCmodelresultsandtheoutcomesofthemodelsusedin14WGIseeSectionWGI12412andWGI1248and6326ReasonsfordifferenceswithWGISPMTable2includethedifferenceinreferenceyear(1986ndash15

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

14of33

2005vs1850ndash1900here)differenceinreportingyear(2081ndash2100vs2100here)setͲupofsimulation(CMIP5concentrationdrivenversusMAGICC1emissionͲdrivenhere)andthewidersetofscenarios(RCPsversusthefullsetofscenariosintheWGIIIAR5scenariodatabasehere)6Temperaturechange2isreportedfortheyear2100whichisnotdirectlycomparabletotheequilibriumwarmingreportedinAR4(Table35Chapter3WGIII)Forthe21003temperatureestimatesthetransientclimateresponse(TCR)isthemostrelevantsystempropertyTheassumed90thpercentileuncertaintyrangeofthe4TCRforMAGICCis12ndash26degC(median18degC)Thiscomparestothe90thpercentilerangeofTCRbetween12ndash24degCforCMIP5(WGI97)andanassessed5likelyrangeof1ndash25degCfrommultiplelinesofevidencereportedintheIPCCAR5WGIreport(Box122inchapter125)7Temperaturechangein2100is6providedforamedianestimateoftheMAGICCcalculationswhichillustratesdifferencesbetweentheemissionspathwaysofthescenariosineach7categoryTherangeoftemperaturechangeintheparenthesesincludesinadditionalsothecarboncycleandclimatesystemuncertaintiesasrepresented8bytheMAGICCmodel(see6326forfurtherdetails)Thetemperaturedatacomparedtothe1850ndash1900referenceyearwascalculatedbytakingall9projectedwarmingrelativeto1986ndash2005andadding061degCfor1986ndash2005comparedto1850ndash1900basedonHadCRUT4(seeWGITableSPM2)8The10assessmentinthistableisbasedontheprobabilitiescalculatedforthefullensembleofscenariosinWGIIIusingMAGICCandtheassessmentinWGIofthe11uncertaintyofthetemperatureprojectionsnotcoveredbyclimatemodelsThestatementsarethereforeconsistentwiththestatementsinWGIwhichare12basedontheCMIP5runsoftheRCPsandtheassesseduncertaintiesHencethelikelihoodstatementsreflectdifferentlinesofevidencefrombothWGs13ThisWGImethodwasalsoappliedforscenarioswithintermediateconcentrationlevelswherenoCMIP5runsareavailableThelikelihoodstatementsare14indicativeonly(63)andfollowbroadlythetermsusedbytheWGISPMfortemperatureprojectionslikely66ndash100morelikelythannotgt50ndash100about15aslikelyasnot33ndash66andunlikely0ndash33Inadditionthetermmoreunlikelythanlikely0Ͳlt50isused9TheCO2equivalentconcentrationincludesthe16forcingofallGHGsincludinghalogenatedgasesandtroposphericozoneaerosolsandalbedochange(calculatedonthebasisofthetotalforcingfroma17simplecarboncycleclimatemodelMAGICC)10Thevastmajorityofscenariosinthiscategoryovershootthecategoryboundaryof480ppmCO2eq18concentrations11ForscenariosinthiscategorynoCMIP5run(WGIAR5Chapter12Table123)aswellasnoMAGICCrealization(63)staysbelowthe19respectivetemperaturelevelStillanlsquounlikelyrsquoassignmentisgiventoreflectuncertaintiesthatmightnotbereflectedbythecurrentclimatemodels1220Scenariosinthe580ndash650ppmCO2eqcategoryincludebothovershootscenariosandscenariosthatdonotexceedtheconcentrationlevelatthehighendof21thecategory(likeRCP45)Thelattertypeofscenariosingeneralhaveanassessedprobabilityofmoreunlikelythanlikelytoexceedthe2degCtemperature22levelwhiletheformeraremostlyassessedtohaveanunlikelyprobabilityofexceedingthislevel[Subjecttofinalqualitycheckandcopyedit]23

24

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 6: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

5of33

ClimatepolicyintersectswithothersocietalgoalscreatingthepossibilityofcoͲbenefitsoradverse1sideͲeffectsTheseintersectionsifwellͲmanagedcanstrengthenthebasisforundertaking2climateactionMitigationandadaptationcanpositivelyornegativelyinfluencetheachievementof3othersocietalgoalssuchasthoserelatedtohumanhealthfoodsecuritybiodiversitylocal4environmentalqualityenergyaccesslivelihoodsandequitablesustainabledevelopmentandvice5versapoliciestowardothersocietalgoalscaninfluencetheachievementofmitigationand6adaptationobjectives[424344454648]Theseinfluencescanbesubstantialalthough7sometimesdifficulttoquantifyespeciallyinwelfareterms[363]ThismultiͲobjectiveperspectiveis8importantinpartbecauseithelpstoidentifyareaswheresupportforpoliciesthatadvancemultiple9goalswillberobust[1214248661]10

Climatepolicymaybeinformedbyaconsiderationofadiversearrayofrisksanduncertainties11someofwhicharedifficulttomeasurenotablyeventsthatareoflowprobabilitybutwhichwould12haveasignificantimpactiftheyoccurSinceAR4thescientificliteraturehasexaminedrisksrelated13toclimatechangeadaptationandmitigationstrategiesAccuratelyestimatingthebenefitsof14mitigationtakesintoaccountthefullrangeofpossibleimpactsofclimatechangeincludingthose15withhighconsequencesbutalowprobabilityofoccurrenceThebenefitsofmitigationmay16otherwisebeunderestimated(highconfidence)[2526Box39]Thechoiceofmitigationactionsis17alsoinfluencedbyuncertaintiesinmanysocioͲeconomicvariablesincludingtherateofeconomic18growthandtheevolutionoftechnology(highconfidence)[2663]19

Thedesignofclimatepolicyisinfluencedbyhowindividualsandorganizationsperceiverisksand20uncertaintiesandtakethemintoaccountPeopleoftenutilizesimplifieddecisionrulessuchasa21preferenceforthestatusquoIndividualsandorganizationsdifferintheirdegreeofriskaversionand22therelativeimportanceplacedonnearͲtermversuslongͲtermramificationsofspecificactions[24]23Withthehelpofformalmethodspolicydesigncanbeimprovedbytakingintoaccountrisksand24uncertaintiesinnaturalsocioͲeconomicandtechnologicalsystemsaswellasdecisionprocesses25perceptionsvaluesandwealth[25]26

SPM3 Trendsinstocksandflowsofgreenhousegasesandtheirdrivers27

TotalanthropogenicGHGemissionshavecontinuedtoincreaseover1970to2010withlarger28absolutedecadalincreasestowardtheendofthisperiod(highconfidence)Despiteagrowing29numberofclimatechangemitigationpoliciesannualGHGemissionsgrewonaverageby10giga30tonnecarbondioxideequivalent(GtCO2eq)(22)peryearfrom2000to2010comparedto0431GtCO2eq(13)peryearfrom1970to2000(FigureSPM1)67TotalanthropogenicGHGemissions32werethehighestinhumanhistoryfrom2000to2010andreached49(plusmn45)GtCO2eqyrin2010The33globaleconomiccrisis20072008onlytemporarilyreducedemissions[13521331522Box34TS5Figure151]35

CO2emissionsfromfossilfuelcombustionandindustrialprocessescontributedabout78ofthe36totalGHGemissionincreasefrom1970to2010withasimilarpercentagecontributionforthe37period2000ndash2010(highconfidence)FossilfuelͲrelatedCO2emissionsreached32(plusmn27)GtCO2yrin382010andgrewfurtherbyabout3between2010and2011andbyabout1Ͳ2between2011and392012Ofthe49(plusmn45)GtCO2eqyrintotalanthropogenicGHGemissionsin2010CO2remainsthe40majoranthropogenicGHGaccountingfor76(38plusmn38GtCO2eqyr)oftotalanthropogenicGHG41emissionsin201016(78plusmn16GtCO2eqyr)comefrommethane(CH4)62(31plusmn19GtCO2eqyr)426ThroughouttheSPMemissionsofGHGsareweightedbyGlobalWarmingPotentialswitha100Ͳyeartimehorizon(GWP100)fromtheIPCCSecondAssessmentReportAllmetricshavelimitationsanduncertaintiesinassessingconsequencesofdifferentemissions[396BoxTS5AnnexII29WGIAR5SPM]7InthisSPMuncertaintyinhistoricGHGemissiondataisreportedusing90uncertaintyintervalsunlessotherwisestatedGHGemissionlevelsareroundedtotwosignificantdigitsthroughoutthisdocument

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

6of33

fromnitrousoxide(N2O)and20(10plusmn02GtCO2eqyr)fromfluorinatedgases(FigureSPM1)1Annuallysince1970about25ofanthropogenicGHGemissionshavebeenintheformofnonͲCO22gases8[1252]3

4Figure SPM1 Total annual anthropogenic GHG emissions (GtCO2eqyr) by groups of gases 1970-52010 CO2 from fossil fuel combustion and industrial processes CO2 from Forestry and Other Land 6Use (FOLU) methane (CH4) nitrous oxide (N2O) fluorinated gases8 covered under the Kyoto 7Protocol (F-gases) At the right side of the figure GHG emissions in 2010 are shown again broken 8down into these components with the associated uncertainties (90 confidence interval) indicated by 9the error bars Total anthropogenic GHG emissions uncertainties are derived from the individual gas 10estimates as described in Chapter 5 [5236] Global CO2 emissions from fossil fuel combustion are 11known within 8 uncertainty (90 confidence interval) CO2 emissions from FOLU have very large 12uncertainties attached in the order of plusmn50 Uncertainty for global emissions of CH4 N2O and the F-13gases has been estimated as 20 60 and 20 respectively 2010 was the most recent year for 14which emission statistics on all gases as well as assessment of uncertainties were essentially 15complete at the time of data cut off for this report Emissions are converted into CO2-equivalents 16based on GWP100

6 from the IPCC Second Assessment Report The emission data from FOLU 17represents land-based CO2 emissions from forest fires peat fires and peat decay that approximate to 18net CO2 flux from the FOLU as described in chapter 11 of this report Average annual growth rate 19over different periods is highlighted with the brackets [Figure 13 Figure TS1] [Subject to final quality 20check and copy edit] 21

AbouthalfofcumulativeanthropogenicCO2emissionsbetween1750and2010haveoccurredin22thelast40years(highconfidence)In1970cumulativeCO2emissionsfromfossilfuelcombustion23cementproductionandflaringsince1750were420plusmn35GtCO2in2010thatcumulativetotalhad24tripledto1300plusmn110GtCO2(FigureSPM2)CumulativeCO2emissionsfromForestryandOtherLand25Use(FOLU)9since1750increasedfrom490plusmn180GtCO2in1970to680plusmn300GtCO2in2010[52]26

8InthisreportdataonnonͲCO2GHGsincludingfluorinatedgasesistakenfromtheEDGARdatabase(AnnexII9)whichcoverssubstancesincludedintheKyotoProtocolinitsfirstcommitmentperiod9ForestryandOtherLandUse(FOLU)mdashalsoreferredtoasLULUCF(LandUseLandͲUseChangeandForestry)mdashisthesubsetofAgricultureForestryandOtherLandUse(AFOLU)emissionsandremovalsofGHGsrelatedtodirecthumanͲinducedlanduselandͲusechangeandforestryactivitiesexcludingagriculturalemissionsandremovals(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

7of33

AnnualanthropogenicGHGemissionshaveincreasedby10GtCO2eqbetween2000and2010with1thisincreasedirectlycomingfromenergysupply(47)industry(30)transport(11)and2buildings(3)sectors(mediumconfidence)Accountingforindirectemissionsraisesthe3contributionsofthebuildingsandindustrysectors(highconfidence)Since2000GHGemissions4havebeengrowinginallsectorsexceptAFOLUOfthe49(plusmn45)GtCO2eqemissionsin201035(175GtCO2eq)ofGHGemissionswerereleasedintheenergysupplysector24(12GtCO2eqnet6emissions)inAFOLU21(10GtCO2eq)inindustry14(70GtCO2eq)intransportand64(327GtCO2eq)inbuildingsWhenemissionsfromelectricityandheatproductionareattributedtothe8sectorsthatusethefinalenergy(ieindirectemissions)thesharesoftheindustryandbuildings9sectorsinglobalGHGemissionsareincreasedto31and19respectively(FigureSPM2)[73821092103112]11

12Figure SPM2 Total anthropogenic GHG emissions (GtCO2eqyr) by economic sectors Inner circle 13shows direct GHG emission shares (in of total anthropogenic GHG emissions) of five economic 14sectors in 2010 Pull-out shows how indirect CO2 emission shares (in of total anthropogenic GHG 15emissions) from electricity and heat production are attributed to sectors of final energy use ldquoOther 16Energyrdquo refers to all GHG emission sources in the energy sector as defined in Annex II other than 17electricity and heat production [AII91] The emissions data from Agriculture Forestry and Other 18Land Use (AFOLU) includes land-based CO2 emissions from forest fires peat fires and peat decay 19that approximate to net CO2 flux from the Forestry and Other Land Use (FOLU) sub-sector as 20described in Chapter 11 of this report Emissions are converted into CO2-equivalents based on 21GWP100

6 from the IPCC Second Assessment Report Sector definitions are provided in Annex II9 22[Figure 13a Figure TS3 ab] [Subject to final quality check and copy edit] 23

Globallyeconomicandpopulationgrowthcontinuetobethemostimportantdriversofincreases24inCO2emissionsfromfossilfuelcombustionThecontributionofpopulationgrowthbetween252000and2010remainedroughlyidenticaltothepreviousthreedecadeswhilethecontributionof26economicgrowthhasrisensharply(highconfidence)Between2000and2010bothdrivers27outpacedemissionreductionsfromimprovementsinenergyintensity(FigureSPM3)Increaseduse28ofcoalrelativetootherenergysourceshasreversedthelongͲstandingtrendofgradual29decarbonizationoftheworldrsquosenergysupply[135372143TS22]30

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

8of33

1Figure SPM3 Decomposition of the decadal change in total global CO2 emissions from fossil fuel 2combustion by four driving factors population income (GDP) per capita energy intensity of GDP and 3carbon intensity of energy The bar segments show the changes associated with each factor alone 4holding the respective other factors constant Total decadal changes are indicated by a triangle 5Changes are measured in giga tonnes (Gt) of CO2 emissions per decade income is converted into 6common units using purchasing power parities [Figure 17] [Subject to final quality check and copy 7edit] 8

WithoutadditionaleffortstoreduceGHGemissionsbeyondthoseinplacetodayemissions9growthisexpectedtopersistdrivenbygrowthinglobalpopulationandeconomicactivities10Baselinescenariosthosewithoutadditionalmitigationresultinglobalmeansurfacetemperature11increasesin2100from37to48degCcomparedtopreͲindustriallevels10(medianvaluestherangeis1225degCto78degCwhenincludingclimateuncertaintyseeTableSPM1)11(highconfidence)The13emissionscenarioscollectedforthisassessmentrepresentfullradiativeforcingincludingGHGs14troposphericozoneaerosolsandalbedochangeBaselinescenarios(scenarioswithoutexplicit15additionaleffortstoconstrainemissions)exceed450partspermillion(ppm)CO2eqby2030and16reachCO2eqconcentrationlevelsbetween750andmorethan1300ppmCO2eqby2100Thisis17similartotherangeinatmosphericconcentrationlevelsbetweentheRCP60andRCP85pathways1810Basedonthelongestglobalsurfacetemperaturedatasetavailabletheobservedchangebetweentheaverageoftheperiod1850Ͳ1900andoftheAR5referenceperiod(1986ndash2005)is061degC(5ndash95confidenceinterval055to067degC)[WGIAR5SPME]whichisusedhereasanapproximationofthechangeinglobalmeansurfacetemperaturesincepreͲindustrialtimesreferredtoastheperiodbefore175011Theclimateuncertaintyreflectsthe5thto95thpercentileofclimatemodelcalculationsdescribedinTableSPM1

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

9of33

in210012ForcomparisontheCO2eqconcentrationin2011isestimatedtobe430ppm(uncertainty1range340ndash520ppm)13[63BoxTS6WGIAR5FigureSPM5WGI85WGI123] 2

12Forthepurposeofthisassessmentroughly300baselinescenariosand900mitigationscenarioswerecollectedthroughanopencallfromintegratedmodellingteamsaroundtheworldThesescenariosarecomplementarytotheRepresentativeConcentrationPathways(RCPsseeWGIIIAR5Glossary)TheRCPsareidentifiedbytheirapproximatetotalradiativeforcinginyear2100relativeto175026Wattspersquaremeter(WmͲ2)forRCP2645WmͲ2forRCP4560WmͲ2forRCP60and85WmͲ2forRCP85Thescenarioscollectedforthisassessmentspanaslightlybroaderrangeofconcentrationsintheyear2100thanthefourRCPs13Thisisbasedontheassessmentoftotalanthropogenicradiativeforcingfor2011relativeto1750inWGIie23WmͲ2uncertaintyrange11to33WmͲ2[WGIAR5FigureSPM5WGI85WGI123]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

10of33

SPM4 Mitigationpathwaysandmeasuresinthecontextofsustainable1development2

SPM41 LongͲtermmitigationpathways3

Therearemultiplescenarioswitharangeoftechnologicalandbehavioraloptionswithdifferent4characteristicsandimplicationsforsustainabledevelopmentthatareconsistentwithdifferent5levelsofmitigationForthisassessmentabout900mitigationscenarioshavebeencollectedina6databasebasedonpublishedintegratedmodels14Thisrangespansatmosphericconcentration7levelsin2100from430ppmCO2eqtoabove720ppmCO2eqwhichiscomparabletothe21008forcinglevelsbetweenRCP26andRCP60Scenariosoutsidethisrangewerealsoassessed9includingsomescenarioswithconcentrationsin2100below430ppmCO2eq(foradiscussionof10thesescenariosseebelow)Themitigationscenariosinvolveawiderangeoftechnological11socioeconomicandinstitutionaltrajectoriesbutuncertaintiesandmodellimitationsexistand12developmentsoutsidethisrangearepossible(FigureSPM4toppanel)[616263TS31Box13TS6]14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

14ThelongͲtermscenariosassessedinWGIIIweregeneratedprimarilybylargeͲscaleintegratedmodelsthatprojectmanykeycharacteristicsofmitigationpathwaystomidͲcenturyandbeyondThesemodelslinkmanyimportanthumansystems(egenergyagricultureandlanduseeconomy)withphysicalprocessesassociatedwithclimatechange(egthecarboncycle)ThemodelsapproximatecostͲeffectivesolutionsthatminimizetheaggregateeconomiccostsofachievingmitigationoutcomesunlesstheyarespecificallyconstrainedtobehaveotherwiseTheyaresimplifiedstylizedrepresentationsofhighlyͲcomplexrealͲworldprocessesandthescenariostheyproducearebasedonuncertainprojectionsaboutkeyeventsanddriversoveroftencenturyͲlongtimescalesSimplificationsanddifferencesinassumptionsarethereasonwhyoutputgeneratedfromdifferentmodelsorversionsofthesamemodelcandifferandprojectionsfromallmodelscandifferconsiderablyfromtherealitythatunfolds[BoxTS762]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

11of33

1Figure SPM4 Pathways of global GHG emissions (GtCO2eqyr) in baseline and mitigation scenarios 2for different long-term concentration levels (upper panel) and associated upscaling requirements of 3low-carbon energy ( of primary energy) for 2030 2050 and 2100 compared to 2010 levels in 4mitigation scenarios (lower panel) The upper and lower panels exclude scenarios with limited 5technology availability and the lower panel in addition excludes scenarios that assume exogenous 6carbon price trajectories [Figure 67 Figure 716] [Subject to final quality check and copy edit] 7

Mitigationscenariosinwhichitislikelythatthetemperaturechangecausedbyanthropogenic8GHGemissionscanbekepttolessthan2degCrelativetopreͲindustriallevelsarecharacterizedby9atmosphericconcentrationsin2100ofabout450ppmCO2eq(highconfidence)Mitigation10scenariosreachingconcentrationlevelsofabout500ppmCO2eqby2100aremorelikelythannotto11limittemperaturechangetolessthan2degCrelativetopreͲindustriallevelsunlesstheytemporarily12lsquoovershootrsquoconcentrationlevelsofroughly530ppmCO2eqbefore2100inwhichcasetheyare13aboutaslikelyasnottoachievethatgoal15Scenariosthatreach530to650ppmCO2eq14concentrationsby2100aremoreunlikelythanlikelytokeeptemperaturechangebelow2degCrelative15topreͲindustriallevelsScenariosthatreachabout650ppmCO2eqby2100areunlikelytolimit16temperaturechangetobelow2degCrelativetopreͲindustriallevelsMitigationscenariosinwhich1715Mitigationscenariosincludingthosereaching2100concentrationsashighasorhigherthan550ppmCO2eqcantemporarilylsquoovershootrsquoatmosphericCO2eqconcentrationlevelsbeforedescendingtolowerlevelslaterSuchconcentrationovershootinvolveslessmitigationintheneartermwithmorerapidanddeeperemissionsreductionsinthelongrunOvershootincreasestheprobabilityofexceedinganygiventemperaturegoal[63TableSPM1]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

12of33

temperatureincreaseismorelikelythannottobelessthan15degCrelativetopreͲindustriallevelsby12100arecharacterizedbyconcentrationsin2100ofbelow430ppmCO2eqTemperaturepeaks2duringthecenturyandthendeclinesinthesescenariosProbabilitystatementsregardingother3levelsoftemperaturechangecanbemadewithreferencetoTableSPM1[63BoxTS6]4

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

13of33

Table SPM1 Key characteristics of the scenarios collected and assessed for WGIII AR5 For all parameters the 10th to 90th percentile of the scenarios is 1shown12 [Table 63] 2

CO2eqConcentrationsin2100(CO2eq)

Categorylabel(concentration

range)9

SubcategoriesRelativepositionoftheRCPs5

CumulativeCO2emission3(GtCO2)

ChangeinCO2eqemissionscomparedto

2010in()4Temperaturechange(relativeto1850ndash1900)56

2011ndash2050 2011ndash2100 2050 2100 2100Temperaturechange(degC)7

Likelihoodofstayingbelowtemperatureleveloverthe21stcentury8

15degC 20degC 30degC 40degC

δͶ͵Ͳ Onlyalimitednumberofindividualmodelstudieshaveexploredlevelsbelow430ppmCO2eqͶͷͲ

ȋͶ͵ͲȂͶͺͲȌ 110 RCP26 ͷͷͲȂͳ͵ͲͲ ͵ͲȂͳͳͺͲ Ͳ72toͲ41 Ͳ118Ͳ78 ͳǤͷȂͳǤȋͳǤͲȂʹǤͺȌ Moreunlikelythanlikely Likely

Likely

Likely

ͷͲͲȋͶͺͲȂͷ͵ͲȌ

ͷ͵Ͳʹ ͺͲȂͳͳͺͲ ͻͲȂͳͶ͵Ͳ Ͳ57Ͳ42 Ͳ107Ͳ73 ͳǤȂͳǤͻȋͳǤʹȂʹǤͻȌ

Unlikely

Morelikelythannot

ͷ͵Ͳʹ ͳͳ͵ͲȂͳͷ͵Ͳ ͻͻͲȂͳͷͷͲ Ͳ55Ͳ25 Ͳ114Ͳ90 ͳǤͺȂʹǤͲȋͳǤʹȂ͵Ǥ͵Ȍ Aboutaslikelyasnot

ͷͷͲȋͷ͵ͲȂͷͺͲȌ

ͷͺͲʹ ͳͲͲȂͳͶͲ ͳʹͶͲȂʹʹͶͲ Ͳ47Ͳ19 Ͳ81Ͳ59 ʹǤͲȂʹǤʹȋͳǤͶȂ͵ǤȌMoreunlikelythanlikelyͳʹ

ͷͺͲʹ ͳͶʹͲȂͳͷͲ ͳͳͲȂʹͳͲͲ Ͳ167 Ͳ183Ͳ86 ʹǤͳȂʹǤ͵ȋͳǤͶȂ͵ǤȌ

ȋͷͺͲȂͷͲȌ RCP45

ͳʹͲȂͳͶͲ ͳͺͲȂʹͶͶͲ Ͳ3824 Ͳ134toͲ50 ʹǤ͵ȂʹǤȋͳǤͷȂͶǤʹȌ

ȋͷͲȂʹͲȌ ͳ͵ͳͲȂͳͷͲ ʹͷͲȂ͵͵ͶͲ Ͳ11to17 Ͳ54Ͳ21 ʹǤȂʹǤͻȋͳǤͺȂͶǤͷȌ Unlikely

Morelikelythannot

ȋʹͲȂͳͲͲͲȌ RCP60 ͳͷͲȂͳͻͶͲ ͵ʹͲȂͶͻͻͲ 1854 Ͳ772 ͵ǤͳȂ͵ǤȋʹǤͳȂͷǤͺȌUnlikely11

Moreunlikelythanlikely

εͳͲͲͲ RCP85 ͳͺͶͲȂʹ͵ͳͲ ͷ͵ͷͲȂͲͳͲ 5295 74178 ͶǤͳȂͶǤͺȋʹǤͺȂǤͺȌ Unlikely11 Unlikely Moreunlikelythanlikely

1Thetotalrangeforthe430ndash480ppmCO2eqscenarioscorrespondstotherangeofthe10ndash90thpercentileofthesubcategoryofthesescenariosshownin3table632Baselinescenarios(seeSPM3)arecategorizedinthegt1000and750ndash1000ppmCO2eqcategoriesThelattercategoryincludesalsomitigation4scenariosThebaselinescenariosinthelattercategoryreachatemperaturechangeof25ndash58degCabovepreindustrialin2100Togetherwiththebaseline5scenariosinthegt1000ppmCO2eqcategorythisleadstoanoverall2100temperaturerangeof25ndash78degC(median37ndash48degC)forbaselinescenariosacross6bothconcentrationcategories3ForcomparisonofthecumulativeCO2emissionsestimatesassessedherewiththosepresentedinWGIanamountof5157[445to585]GtC(1890[1630to2150]GtCO2)wasalreadyemittedby2011since1870[SectionWGI125]Notethatcumulativeemissionsarepresented8herefordifferentperiodsoftime(2011ndash2050and2011ndash2100)whilecumulativeemissionsinWGIarepresentedastotalcompatibleemissionsfortheRCPs9(2012ndash2100)orfortotalcompatibleemissionsforremainingbelowagiventemperaturetargetwithagivenlikelihood[WGITableSPM3WGISPME8]410Theglobal2010emissionsare31abovethe1990emissions(consistentwiththehistoricGHGemissionestimatespresentedinthisreport)CO2eq11emissionsincludethebasketofKyotogases(CO2CH4N2OaswellasFͲgases)5TheassessmentinWGIIIinvolvesalargenumberofscenariospublishedin12thescientificliteratureandisthusnotlimitedtotheRCPsToevaluatethegreenhousegasconcentrationandclimateimplicationsofthesescenariosthe13MAGICCmodelwasusedinaprobabilisticmode(seeAnnexII)ForacomparisonbetweenMAGICCmodelresultsandtheoutcomesofthemodelsusedin14WGIseeSectionWGI12412andWGI1248and6326ReasonsfordifferenceswithWGISPMTable2includethedifferenceinreferenceyear(1986ndash15

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

14of33

2005vs1850ndash1900here)differenceinreportingyear(2081ndash2100vs2100here)setͲupofsimulation(CMIP5concentrationdrivenversusMAGICC1emissionͲdrivenhere)andthewidersetofscenarios(RCPsversusthefullsetofscenariosintheWGIIIAR5scenariodatabasehere)6Temperaturechange2isreportedfortheyear2100whichisnotdirectlycomparabletotheequilibriumwarmingreportedinAR4(Table35Chapter3WGIII)Forthe21003temperatureestimatesthetransientclimateresponse(TCR)isthemostrelevantsystempropertyTheassumed90thpercentileuncertaintyrangeofthe4TCRforMAGICCis12ndash26degC(median18degC)Thiscomparestothe90thpercentilerangeofTCRbetween12ndash24degCforCMIP5(WGI97)andanassessed5likelyrangeof1ndash25degCfrommultiplelinesofevidencereportedintheIPCCAR5WGIreport(Box122inchapter125)7Temperaturechangein2100is6providedforamedianestimateoftheMAGICCcalculationswhichillustratesdifferencesbetweentheemissionspathwaysofthescenariosineach7categoryTherangeoftemperaturechangeintheparenthesesincludesinadditionalsothecarboncycleandclimatesystemuncertaintiesasrepresented8bytheMAGICCmodel(see6326forfurtherdetails)Thetemperaturedatacomparedtothe1850ndash1900referenceyearwascalculatedbytakingall9projectedwarmingrelativeto1986ndash2005andadding061degCfor1986ndash2005comparedto1850ndash1900basedonHadCRUT4(seeWGITableSPM2)8The10assessmentinthistableisbasedontheprobabilitiescalculatedforthefullensembleofscenariosinWGIIIusingMAGICCandtheassessmentinWGIofthe11uncertaintyofthetemperatureprojectionsnotcoveredbyclimatemodelsThestatementsarethereforeconsistentwiththestatementsinWGIwhichare12basedontheCMIP5runsoftheRCPsandtheassesseduncertaintiesHencethelikelihoodstatementsreflectdifferentlinesofevidencefrombothWGs13ThisWGImethodwasalsoappliedforscenarioswithintermediateconcentrationlevelswherenoCMIP5runsareavailableThelikelihoodstatementsare14indicativeonly(63)andfollowbroadlythetermsusedbytheWGISPMfortemperatureprojectionslikely66ndash100morelikelythannotgt50ndash100about15aslikelyasnot33ndash66andunlikely0ndash33Inadditionthetermmoreunlikelythanlikely0Ͳlt50isused9TheCO2equivalentconcentrationincludesthe16forcingofallGHGsincludinghalogenatedgasesandtroposphericozoneaerosolsandalbedochange(calculatedonthebasisofthetotalforcingfroma17simplecarboncycleclimatemodelMAGICC)10Thevastmajorityofscenariosinthiscategoryovershootthecategoryboundaryof480ppmCO2eq18concentrations11ForscenariosinthiscategorynoCMIP5run(WGIAR5Chapter12Table123)aswellasnoMAGICCrealization(63)staysbelowthe19respectivetemperaturelevelStillanlsquounlikelyrsquoassignmentisgiventoreflectuncertaintiesthatmightnotbereflectedbythecurrentclimatemodels1220Scenariosinthe580ndash650ppmCO2eqcategoryincludebothovershootscenariosandscenariosthatdonotexceedtheconcentrationlevelatthehighendof21thecategory(likeRCP45)Thelattertypeofscenariosingeneralhaveanassessedprobabilityofmoreunlikelythanlikelytoexceedthe2degCtemperature22levelwhiletheformeraremostlyassessedtohaveanunlikelyprobabilityofexceedingthislevel[Subjecttofinalqualitycheckandcopyedit]23

24

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 7: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

6of33

fromnitrousoxide(N2O)and20(10plusmn02GtCO2eqyr)fromfluorinatedgases(FigureSPM1)1Annuallysince1970about25ofanthropogenicGHGemissionshavebeenintheformofnonͲCO22gases8[1252]3

4Figure SPM1 Total annual anthropogenic GHG emissions (GtCO2eqyr) by groups of gases 1970-52010 CO2 from fossil fuel combustion and industrial processes CO2 from Forestry and Other Land 6Use (FOLU) methane (CH4) nitrous oxide (N2O) fluorinated gases8 covered under the Kyoto 7Protocol (F-gases) At the right side of the figure GHG emissions in 2010 are shown again broken 8down into these components with the associated uncertainties (90 confidence interval) indicated by 9the error bars Total anthropogenic GHG emissions uncertainties are derived from the individual gas 10estimates as described in Chapter 5 [5236] Global CO2 emissions from fossil fuel combustion are 11known within 8 uncertainty (90 confidence interval) CO2 emissions from FOLU have very large 12uncertainties attached in the order of plusmn50 Uncertainty for global emissions of CH4 N2O and the F-13gases has been estimated as 20 60 and 20 respectively 2010 was the most recent year for 14which emission statistics on all gases as well as assessment of uncertainties were essentially 15complete at the time of data cut off for this report Emissions are converted into CO2-equivalents 16based on GWP100

6 from the IPCC Second Assessment Report The emission data from FOLU 17represents land-based CO2 emissions from forest fires peat fires and peat decay that approximate to 18net CO2 flux from the FOLU as described in chapter 11 of this report Average annual growth rate 19over different periods is highlighted with the brackets [Figure 13 Figure TS1] [Subject to final quality 20check and copy edit] 21

AbouthalfofcumulativeanthropogenicCO2emissionsbetween1750and2010haveoccurredin22thelast40years(highconfidence)In1970cumulativeCO2emissionsfromfossilfuelcombustion23cementproductionandflaringsince1750were420plusmn35GtCO2in2010thatcumulativetotalhad24tripledto1300plusmn110GtCO2(FigureSPM2)CumulativeCO2emissionsfromForestryandOtherLand25Use(FOLU)9since1750increasedfrom490plusmn180GtCO2in1970to680plusmn300GtCO2in2010[52]26

8InthisreportdataonnonͲCO2GHGsincludingfluorinatedgasesistakenfromtheEDGARdatabase(AnnexII9)whichcoverssubstancesincludedintheKyotoProtocolinitsfirstcommitmentperiod9ForestryandOtherLandUse(FOLU)mdashalsoreferredtoasLULUCF(LandUseLandͲUseChangeandForestry)mdashisthesubsetofAgricultureForestryandOtherLandUse(AFOLU)emissionsandremovalsofGHGsrelatedtodirecthumanͲinducedlanduselandͲusechangeandforestryactivitiesexcludingagriculturalemissionsandremovals(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

7of33

AnnualanthropogenicGHGemissionshaveincreasedby10GtCO2eqbetween2000and2010with1thisincreasedirectlycomingfromenergysupply(47)industry(30)transport(11)and2buildings(3)sectors(mediumconfidence)Accountingforindirectemissionsraisesthe3contributionsofthebuildingsandindustrysectors(highconfidence)Since2000GHGemissions4havebeengrowinginallsectorsexceptAFOLUOfthe49(plusmn45)GtCO2eqemissionsin201035(175GtCO2eq)ofGHGemissionswerereleasedintheenergysupplysector24(12GtCO2eqnet6emissions)inAFOLU21(10GtCO2eq)inindustry14(70GtCO2eq)intransportand64(327GtCO2eq)inbuildingsWhenemissionsfromelectricityandheatproductionareattributedtothe8sectorsthatusethefinalenergy(ieindirectemissions)thesharesoftheindustryandbuildings9sectorsinglobalGHGemissionsareincreasedto31and19respectively(FigureSPM2)[73821092103112]11

12Figure SPM2 Total anthropogenic GHG emissions (GtCO2eqyr) by economic sectors Inner circle 13shows direct GHG emission shares (in of total anthropogenic GHG emissions) of five economic 14sectors in 2010 Pull-out shows how indirect CO2 emission shares (in of total anthropogenic GHG 15emissions) from electricity and heat production are attributed to sectors of final energy use ldquoOther 16Energyrdquo refers to all GHG emission sources in the energy sector as defined in Annex II other than 17electricity and heat production [AII91] The emissions data from Agriculture Forestry and Other 18Land Use (AFOLU) includes land-based CO2 emissions from forest fires peat fires and peat decay 19that approximate to net CO2 flux from the Forestry and Other Land Use (FOLU) sub-sector as 20described in Chapter 11 of this report Emissions are converted into CO2-equivalents based on 21GWP100

6 from the IPCC Second Assessment Report Sector definitions are provided in Annex II9 22[Figure 13a Figure TS3 ab] [Subject to final quality check and copy edit] 23

Globallyeconomicandpopulationgrowthcontinuetobethemostimportantdriversofincreases24inCO2emissionsfromfossilfuelcombustionThecontributionofpopulationgrowthbetween252000and2010remainedroughlyidenticaltothepreviousthreedecadeswhilethecontributionof26economicgrowthhasrisensharply(highconfidence)Between2000and2010bothdrivers27outpacedemissionreductionsfromimprovementsinenergyintensity(FigureSPM3)Increaseduse28ofcoalrelativetootherenergysourceshasreversedthelongͲstandingtrendofgradual29decarbonizationoftheworldrsquosenergysupply[135372143TS22]30

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

8of33

1Figure SPM3 Decomposition of the decadal change in total global CO2 emissions from fossil fuel 2combustion by four driving factors population income (GDP) per capita energy intensity of GDP and 3carbon intensity of energy The bar segments show the changes associated with each factor alone 4holding the respective other factors constant Total decadal changes are indicated by a triangle 5Changes are measured in giga tonnes (Gt) of CO2 emissions per decade income is converted into 6common units using purchasing power parities [Figure 17] [Subject to final quality check and copy 7edit] 8

WithoutadditionaleffortstoreduceGHGemissionsbeyondthoseinplacetodayemissions9growthisexpectedtopersistdrivenbygrowthinglobalpopulationandeconomicactivities10Baselinescenariosthosewithoutadditionalmitigationresultinglobalmeansurfacetemperature11increasesin2100from37to48degCcomparedtopreͲindustriallevels10(medianvaluestherangeis1225degCto78degCwhenincludingclimateuncertaintyseeTableSPM1)11(highconfidence)The13emissionscenarioscollectedforthisassessmentrepresentfullradiativeforcingincludingGHGs14troposphericozoneaerosolsandalbedochangeBaselinescenarios(scenarioswithoutexplicit15additionaleffortstoconstrainemissions)exceed450partspermillion(ppm)CO2eqby2030and16reachCO2eqconcentrationlevelsbetween750andmorethan1300ppmCO2eqby2100Thisis17similartotherangeinatmosphericconcentrationlevelsbetweentheRCP60andRCP85pathways1810Basedonthelongestglobalsurfacetemperaturedatasetavailabletheobservedchangebetweentheaverageoftheperiod1850Ͳ1900andoftheAR5referenceperiod(1986ndash2005)is061degC(5ndash95confidenceinterval055to067degC)[WGIAR5SPME]whichisusedhereasanapproximationofthechangeinglobalmeansurfacetemperaturesincepreͲindustrialtimesreferredtoastheperiodbefore175011Theclimateuncertaintyreflectsthe5thto95thpercentileofclimatemodelcalculationsdescribedinTableSPM1

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

9of33

in210012ForcomparisontheCO2eqconcentrationin2011isestimatedtobe430ppm(uncertainty1range340ndash520ppm)13[63BoxTS6WGIAR5FigureSPM5WGI85WGI123] 2

12Forthepurposeofthisassessmentroughly300baselinescenariosand900mitigationscenarioswerecollectedthroughanopencallfromintegratedmodellingteamsaroundtheworldThesescenariosarecomplementarytotheRepresentativeConcentrationPathways(RCPsseeWGIIIAR5Glossary)TheRCPsareidentifiedbytheirapproximatetotalradiativeforcinginyear2100relativeto175026Wattspersquaremeter(WmͲ2)forRCP2645WmͲ2forRCP4560WmͲ2forRCP60and85WmͲ2forRCP85Thescenarioscollectedforthisassessmentspanaslightlybroaderrangeofconcentrationsintheyear2100thanthefourRCPs13Thisisbasedontheassessmentoftotalanthropogenicradiativeforcingfor2011relativeto1750inWGIie23WmͲ2uncertaintyrange11to33WmͲ2[WGIAR5FigureSPM5WGI85WGI123]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

10of33

SPM4 Mitigationpathwaysandmeasuresinthecontextofsustainable1development2

SPM41 LongͲtermmitigationpathways3

Therearemultiplescenarioswitharangeoftechnologicalandbehavioraloptionswithdifferent4characteristicsandimplicationsforsustainabledevelopmentthatareconsistentwithdifferent5levelsofmitigationForthisassessmentabout900mitigationscenarioshavebeencollectedina6databasebasedonpublishedintegratedmodels14Thisrangespansatmosphericconcentration7levelsin2100from430ppmCO2eqtoabove720ppmCO2eqwhichiscomparabletothe21008forcinglevelsbetweenRCP26andRCP60Scenariosoutsidethisrangewerealsoassessed9includingsomescenarioswithconcentrationsin2100below430ppmCO2eq(foradiscussionof10thesescenariosseebelow)Themitigationscenariosinvolveawiderangeoftechnological11socioeconomicandinstitutionaltrajectoriesbutuncertaintiesandmodellimitationsexistand12developmentsoutsidethisrangearepossible(FigureSPM4toppanel)[616263TS31Box13TS6]14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

14ThelongͲtermscenariosassessedinWGIIIweregeneratedprimarilybylargeͲscaleintegratedmodelsthatprojectmanykeycharacteristicsofmitigationpathwaystomidͲcenturyandbeyondThesemodelslinkmanyimportanthumansystems(egenergyagricultureandlanduseeconomy)withphysicalprocessesassociatedwithclimatechange(egthecarboncycle)ThemodelsapproximatecostͲeffectivesolutionsthatminimizetheaggregateeconomiccostsofachievingmitigationoutcomesunlesstheyarespecificallyconstrainedtobehaveotherwiseTheyaresimplifiedstylizedrepresentationsofhighlyͲcomplexrealͲworldprocessesandthescenariostheyproducearebasedonuncertainprojectionsaboutkeyeventsanddriversoveroftencenturyͲlongtimescalesSimplificationsanddifferencesinassumptionsarethereasonwhyoutputgeneratedfromdifferentmodelsorversionsofthesamemodelcandifferandprojectionsfromallmodelscandifferconsiderablyfromtherealitythatunfolds[BoxTS762]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

11of33

1Figure SPM4 Pathways of global GHG emissions (GtCO2eqyr) in baseline and mitigation scenarios 2for different long-term concentration levels (upper panel) and associated upscaling requirements of 3low-carbon energy ( of primary energy) for 2030 2050 and 2100 compared to 2010 levels in 4mitigation scenarios (lower panel) The upper and lower panels exclude scenarios with limited 5technology availability and the lower panel in addition excludes scenarios that assume exogenous 6carbon price trajectories [Figure 67 Figure 716] [Subject to final quality check and copy edit] 7

Mitigationscenariosinwhichitislikelythatthetemperaturechangecausedbyanthropogenic8GHGemissionscanbekepttolessthan2degCrelativetopreͲindustriallevelsarecharacterizedby9atmosphericconcentrationsin2100ofabout450ppmCO2eq(highconfidence)Mitigation10scenariosreachingconcentrationlevelsofabout500ppmCO2eqby2100aremorelikelythannotto11limittemperaturechangetolessthan2degCrelativetopreͲindustriallevelsunlesstheytemporarily12lsquoovershootrsquoconcentrationlevelsofroughly530ppmCO2eqbefore2100inwhichcasetheyare13aboutaslikelyasnottoachievethatgoal15Scenariosthatreach530to650ppmCO2eq14concentrationsby2100aremoreunlikelythanlikelytokeeptemperaturechangebelow2degCrelative15topreͲindustriallevelsScenariosthatreachabout650ppmCO2eqby2100areunlikelytolimit16temperaturechangetobelow2degCrelativetopreͲindustriallevelsMitigationscenariosinwhich1715Mitigationscenariosincludingthosereaching2100concentrationsashighasorhigherthan550ppmCO2eqcantemporarilylsquoovershootrsquoatmosphericCO2eqconcentrationlevelsbeforedescendingtolowerlevelslaterSuchconcentrationovershootinvolveslessmitigationintheneartermwithmorerapidanddeeperemissionsreductionsinthelongrunOvershootincreasestheprobabilityofexceedinganygiventemperaturegoal[63TableSPM1]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

12of33

temperatureincreaseismorelikelythannottobelessthan15degCrelativetopreͲindustriallevelsby12100arecharacterizedbyconcentrationsin2100ofbelow430ppmCO2eqTemperaturepeaks2duringthecenturyandthendeclinesinthesescenariosProbabilitystatementsregardingother3levelsoftemperaturechangecanbemadewithreferencetoTableSPM1[63BoxTS6]4

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

13of33

Table SPM1 Key characteristics of the scenarios collected and assessed for WGIII AR5 For all parameters the 10th to 90th percentile of the scenarios is 1shown12 [Table 63] 2

CO2eqConcentrationsin2100(CO2eq)

Categorylabel(concentration

range)9

SubcategoriesRelativepositionoftheRCPs5

CumulativeCO2emission3(GtCO2)

ChangeinCO2eqemissionscomparedto

2010in()4Temperaturechange(relativeto1850ndash1900)56

2011ndash2050 2011ndash2100 2050 2100 2100Temperaturechange(degC)7

Likelihoodofstayingbelowtemperatureleveloverthe21stcentury8

15degC 20degC 30degC 40degC

δͶ͵Ͳ Onlyalimitednumberofindividualmodelstudieshaveexploredlevelsbelow430ppmCO2eqͶͷͲ

ȋͶ͵ͲȂͶͺͲȌ 110 RCP26 ͷͷͲȂͳ͵ͲͲ ͵ͲȂͳͳͺͲ Ͳ72toͲ41 Ͳ118Ͳ78 ͳǤͷȂͳǤȋͳǤͲȂʹǤͺȌ Moreunlikelythanlikely Likely

Likely

Likely

ͷͲͲȋͶͺͲȂͷ͵ͲȌ

ͷ͵Ͳʹ ͺͲȂͳͳͺͲ ͻͲȂͳͶ͵Ͳ Ͳ57Ͳ42 Ͳ107Ͳ73 ͳǤȂͳǤͻȋͳǤʹȂʹǤͻȌ

Unlikely

Morelikelythannot

ͷ͵Ͳʹ ͳͳ͵ͲȂͳͷ͵Ͳ ͻͻͲȂͳͷͷͲ Ͳ55Ͳ25 Ͳ114Ͳ90 ͳǤͺȂʹǤͲȋͳǤʹȂ͵Ǥ͵Ȍ Aboutaslikelyasnot

ͷͷͲȋͷ͵ͲȂͷͺͲȌ

ͷͺͲʹ ͳͲͲȂͳͶͲ ͳʹͶͲȂʹʹͶͲ Ͳ47Ͳ19 Ͳ81Ͳ59 ʹǤͲȂʹǤʹȋͳǤͶȂ͵ǤȌMoreunlikelythanlikelyͳʹ

ͷͺͲʹ ͳͶʹͲȂͳͷͲ ͳͳͲȂʹͳͲͲ Ͳ167 Ͳ183Ͳ86 ʹǤͳȂʹǤ͵ȋͳǤͶȂ͵ǤȌ

ȋͷͺͲȂͷͲȌ RCP45

ͳʹͲȂͳͶͲ ͳͺͲȂʹͶͶͲ Ͳ3824 Ͳ134toͲ50 ʹǤ͵ȂʹǤȋͳǤͷȂͶǤʹȌ

ȋͷͲȂʹͲȌ ͳ͵ͳͲȂͳͷͲ ʹͷͲȂ͵͵ͶͲ Ͳ11to17 Ͳ54Ͳ21 ʹǤȂʹǤͻȋͳǤͺȂͶǤͷȌ Unlikely

Morelikelythannot

ȋʹͲȂͳͲͲͲȌ RCP60 ͳͷͲȂͳͻͶͲ ͵ʹͲȂͶͻͻͲ 1854 Ͳ772 ͵ǤͳȂ͵ǤȋʹǤͳȂͷǤͺȌUnlikely11

Moreunlikelythanlikely

εͳͲͲͲ RCP85 ͳͺͶͲȂʹ͵ͳͲ ͷ͵ͷͲȂͲͳͲ 5295 74178 ͶǤͳȂͶǤͺȋʹǤͺȂǤͺȌ Unlikely11 Unlikely Moreunlikelythanlikely

1Thetotalrangeforthe430ndash480ppmCO2eqscenarioscorrespondstotherangeofthe10ndash90thpercentileofthesubcategoryofthesescenariosshownin3table632Baselinescenarios(seeSPM3)arecategorizedinthegt1000and750ndash1000ppmCO2eqcategoriesThelattercategoryincludesalsomitigation4scenariosThebaselinescenariosinthelattercategoryreachatemperaturechangeof25ndash58degCabovepreindustrialin2100Togetherwiththebaseline5scenariosinthegt1000ppmCO2eqcategorythisleadstoanoverall2100temperaturerangeof25ndash78degC(median37ndash48degC)forbaselinescenariosacross6bothconcentrationcategories3ForcomparisonofthecumulativeCO2emissionsestimatesassessedherewiththosepresentedinWGIanamountof5157[445to585]GtC(1890[1630to2150]GtCO2)wasalreadyemittedby2011since1870[SectionWGI125]Notethatcumulativeemissionsarepresented8herefordifferentperiodsoftime(2011ndash2050and2011ndash2100)whilecumulativeemissionsinWGIarepresentedastotalcompatibleemissionsfortheRCPs9(2012ndash2100)orfortotalcompatibleemissionsforremainingbelowagiventemperaturetargetwithagivenlikelihood[WGITableSPM3WGISPME8]410Theglobal2010emissionsare31abovethe1990emissions(consistentwiththehistoricGHGemissionestimatespresentedinthisreport)CO2eq11emissionsincludethebasketofKyotogases(CO2CH4N2OaswellasFͲgases)5TheassessmentinWGIIIinvolvesalargenumberofscenariospublishedin12thescientificliteratureandisthusnotlimitedtotheRCPsToevaluatethegreenhousegasconcentrationandclimateimplicationsofthesescenariosthe13MAGICCmodelwasusedinaprobabilisticmode(seeAnnexII)ForacomparisonbetweenMAGICCmodelresultsandtheoutcomesofthemodelsusedin14WGIseeSectionWGI12412andWGI1248and6326ReasonsfordifferenceswithWGISPMTable2includethedifferenceinreferenceyear(1986ndash15

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

14of33

2005vs1850ndash1900here)differenceinreportingyear(2081ndash2100vs2100here)setͲupofsimulation(CMIP5concentrationdrivenversusMAGICC1emissionͲdrivenhere)andthewidersetofscenarios(RCPsversusthefullsetofscenariosintheWGIIIAR5scenariodatabasehere)6Temperaturechange2isreportedfortheyear2100whichisnotdirectlycomparabletotheequilibriumwarmingreportedinAR4(Table35Chapter3WGIII)Forthe21003temperatureestimatesthetransientclimateresponse(TCR)isthemostrelevantsystempropertyTheassumed90thpercentileuncertaintyrangeofthe4TCRforMAGICCis12ndash26degC(median18degC)Thiscomparestothe90thpercentilerangeofTCRbetween12ndash24degCforCMIP5(WGI97)andanassessed5likelyrangeof1ndash25degCfrommultiplelinesofevidencereportedintheIPCCAR5WGIreport(Box122inchapter125)7Temperaturechangein2100is6providedforamedianestimateoftheMAGICCcalculationswhichillustratesdifferencesbetweentheemissionspathwaysofthescenariosineach7categoryTherangeoftemperaturechangeintheparenthesesincludesinadditionalsothecarboncycleandclimatesystemuncertaintiesasrepresented8bytheMAGICCmodel(see6326forfurtherdetails)Thetemperaturedatacomparedtothe1850ndash1900referenceyearwascalculatedbytakingall9projectedwarmingrelativeto1986ndash2005andadding061degCfor1986ndash2005comparedto1850ndash1900basedonHadCRUT4(seeWGITableSPM2)8The10assessmentinthistableisbasedontheprobabilitiescalculatedforthefullensembleofscenariosinWGIIIusingMAGICCandtheassessmentinWGIofthe11uncertaintyofthetemperatureprojectionsnotcoveredbyclimatemodelsThestatementsarethereforeconsistentwiththestatementsinWGIwhichare12basedontheCMIP5runsoftheRCPsandtheassesseduncertaintiesHencethelikelihoodstatementsreflectdifferentlinesofevidencefrombothWGs13ThisWGImethodwasalsoappliedforscenarioswithintermediateconcentrationlevelswherenoCMIP5runsareavailableThelikelihoodstatementsare14indicativeonly(63)andfollowbroadlythetermsusedbytheWGISPMfortemperatureprojectionslikely66ndash100morelikelythannotgt50ndash100about15aslikelyasnot33ndash66andunlikely0ndash33Inadditionthetermmoreunlikelythanlikely0Ͳlt50isused9TheCO2equivalentconcentrationincludesthe16forcingofallGHGsincludinghalogenatedgasesandtroposphericozoneaerosolsandalbedochange(calculatedonthebasisofthetotalforcingfroma17simplecarboncycleclimatemodelMAGICC)10Thevastmajorityofscenariosinthiscategoryovershootthecategoryboundaryof480ppmCO2eq18concentrations11ForscenariosinthiscategorynoCMIP5run(WGIAR5Chapter12Table123)aswellasnoMAGICCrealization(63)staysbelowthe19respectivetemperaturelevelStillanlsquounlikelyrsquoassignmentisgiventoreflectuncertaintiesthatmightnotbereflectedbythecurrentclimatemodels1220Scenariosinthe580ndash650ppmCO2eqcategoryincludebothovershootscenariosandscenariosthatdonotexceedtheconcentrationlevelatthehighendof21thecategory(likeRCP45)Thelattertypeofscenariosingeneralhaveanassessedprobabilityofmoreunlikelythanlikelytoexceedthe2degCtemperature22levelwhiletheformeraremostlyassessedtohaveanunlikelyprobabilityofexceedingthislevel[Subjecttofinalqualitycheckandcopyedit]23

24

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 8: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

7of33

AnnualanthropogenicGHGemissionshaveincreasedby10GtCO2eqbetween2000and2010with1thisincreasedirectlycomingfromenergysupply(47)industry(30)transport(11)and2buildings(3)sectors(mediumconfidence)Accountingforindirectemissionsraisesthe3contributionsofthebuildingsandindustrysectors(highconfidence)Since2000GHGemissions4havebeengrowinginallsectorsexceptAFOLUOfthe49(plusmn45)GtCO2eqemissionsin201035(175GtCO2eq)ofGHGemissionswerereleasedintheenergysupplysector24(12GtCO2eqnet6emissions)inAFOLU21(10GtCO2eq)inindustry14(70GtCO2eq)intransportand64(327GtCO2eq)inbuildingsWhenemissionsfromelectricityandheatproductionareattributedtothe8sectorsthatusethefinalenergy(ieindirectemissions)thesharesoftheindustryandbuildings9sectorsinglobalGHGemissionsareincreasedto31and19respectively(FigureSPM2)[73821092103112]11

12Figure SPM2 Total anthropogenic GHG emissions (GtCO2eqyr) by economic sectors Inner circle 13shows direct GHG emission shares (in of total anthropogenic GHG emissions) of five economic 14sectors in 2010 Pull-out shows how indirect CO2 emission shares (in of total anthropogenic GHG 15emissions) from electricity and heat production are attributed to sectors of final energy use ldquoOther 16Energyrdquo refers to all GHG emission sources in the energy sector as defined in Annex II other than 17electricity and heat production [AII91] The emissions data from Agriculture Forestry and Other 18Land Use (AFOLU) includes land-based CO2 emissions from forest fires peat fires and peat decay 19that approximate to net CO2 flux from the Forestry and Other Land Use (FOLU) sub-sector as 20described in Chapter 11 of this report Emissions are converted into CO2-equivalents based on 21GWP100

6 from the IPCC Second Assessment Report Sector definitions are provided in Annex II9 22[Figure 13a Figure TS3 ab] [Subject to final quality check and copy edit] 23

Globallyeconomicandpopulationgrowthcontinuetobethemostimportantdriversofincreases24inCO2emissionsfromfossilfuelcombustionThecontributionofpopulationgrowthbetween252000and2010remainedroughlyidenticaltothepreviousthreedecadeswhilethecontributionof26economicgrowthhasrisensharply(highconfidence)Between2000and2010bothdrivers27outpacedemissionreductionsfromimprovementsinenergyintensity(FigureSPM3)Increaseduse28ofcoalrelativetootherenergysourceshasreversedthelongͲstandingtrendofgradual29decarbonizationoftheworldrsquosenergysupply[135372143TS22]30

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

8of33

1Figure SPM3 Decomposition of the decadal change in total global CO2 emissions from fossil fuel 2combustion by four driving factors population income (GDP) per capita energy intensity of GDP and 3carbon intensity of energy The bar segments show the changes associated with each factor alone 4holding the respective other factors constant Total decadal changes are indicated by a triangle 5Changes are measured in giga tonnes (Gt) of CO2 emissions per decade income is converted into 6common units using purchasing power parities [Figure 17] [Subject to final quality check and copy 7edit] 8

WithoutadditionaleffortstoreduceGHGemissionsbeyondthoseinplacetodayemissions9growthisexpectedtopersistdrivenbygrowthinglobalpopulationandeconomicactivities10Baselinescenariosthosewithoutadditionalmitigationresultinglobalmeansurfacetemperature11increasesin2100from37to48degCcomparedtopreͲindustriallevels10(medianvaluestherangeis1225degCto78degCwhenincludingclimateuncertaintyseeTableSPM1)11(highconfidence)The13emissionscenarioscollectedforthisassessmentrepresentfullradiativeforcingincludingGHGs14troposphericozoneaerosolsandalbedochangeBaselinescenarios(scenarioswithoutexplicit15additionaleffortstoconstrainemissions)exceed450partspermillion(ppm)CO2eqby2030and16reachCO2eqconcentrationlevelsbetween750andmorethan1300ppmCO2eqby2100Thisis17similartotherangeinatmosphericconcentrationlevelsbetweentheRCP60andRCP85pathways1810Basedonthelongestglobalsurfacetemperaturedatasetavailabletheobservedchangebetweentheaverageoftheperiod1850Ͳ1900andoftheAR5referenceperiod(1986ndash2005)is061degC(5ndash95confidenceinterval055to067degC)[WGIAR5SPME]whichisusedhereasanapproximationofthechangeinglobalmeansurfacetemperaturesincepreͲindustrialtimesreferredtoastheperiodbefore175011Theclimateuncertaintyreflectsthe5thto95thpercentileofclimatemodelcalculationsdescribedinTableSPM1

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

9of33

in210012ForcomparisontheCO2eqconcentrationin2011isestimatedtobe430ppm(uncertainty1range340ndash520ppm)13[63BoxTS6WGIAR5FigureSPM5WGI85WGI123] 2

12Forthepurposeofthisassessmentroughly300baselinescenariosand900mitigationscenarioswerecollectedthroughanopencallfromintegratedmodellingteamsaroundtheworldThesescenariosarecomplementarytotheRepresentativeConcentrationPathways(RCPsseeWGIIIAR5Glossary)TheRCPsareidentifiedbytheirapproximatetotalradiativeforcinginyear2100relativeto175026Wattspersquaremeter(WmͲ2)forRCP2645WmͲ2forRCP4560WmͲ2forRCP60and85WmͲ2forRCP85Thescenarioscollectedforthisassessmentspanaslightlybroaderrangeofconcentrationsintheyear2100thanthefourRCPs13Thisisbasedontheassessmentoftotalanthropogenicradiativeforcingfor2011relativeto1750inWGIie23WmͲ2uncertaintyrange11to33WmͲ2[WGIAR5FigureSPM5WGI85WGI123]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

10of33

SPM4 Mitigationpathwaysandmeasuresinthecontextofsustainable1development2

SPM41 LongͲtermmitigationpathways3

Therearemultiplescenarioswitharangeoftechnologicalandbehavioraloptionswithdifferent4characteristicsandimplicationsforsustainabledevelopmentthatareconsistentwithdifferent5levelsofmitigationForthisassessmentabout900mitigationscenarioshavebeencollectedina6databasebasedonpublishedintegratedmodels14Thisrangespansatmosphericconcentration7levelsin2100from430ppmCO2eqtoabove720ppmCO2eqwhichiscomparabletothe21008forcinglevelsbetweenRCP26andRCP60Scenariosoutsidethisrangewerealsoassessed9includingsomescenarioswithconcentrationsin2100below430ppmCO2eq(foradiscussionof10thesescenariosseebelow)Themitigationscenariosinvolveawiderangeoftechnological11socioeconomicandinstitutionaltrajectoriesbutuncertaintiesandmodellimitationsexistand12developmentsoutsidethisrangearepossible(FigureSPM4toppanel)[616263TS31Box13TS6]14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

14ThelongͲtermscenariosassessedinWGIIIweregeneratedprimarilybylargeͲscaleintegratedmodelsthatprojectmanykeycharacteristicsofmitigationpathwaystomidͲcenturyandbeyondThesemodelslinkmanyimportanthumansystems(egenergyagricultureandlanduseeconomy)withphysicalprocessesassociatedwithclimatechange(egthecarboncycle)ThemodelsapproximatecostͲeffectivesolutionsthatminimizetheaggregateeconomiccostsofachievingmitigationoutcomesunlesstheyarespecificallyconstrainedtobehaveotherwiseTheyaresimplifiedstylizedrepresentationsofhighlyͲcomplexrealͲworldprocessesandthescenariostheyproducearebasedonuncertainprojectionsaboutkeyeventsanddriversoveroftencenturyͲlongtimescalesSimplificationsanddifferencesinassumptionsarethereasonwhyoutputgeneratedfromdifferentmodelsorversionsofthesamemodelcandifferandprojectionsfromallmodelscandifferconsiderablyfromtherealitythatunfolds[BoxTS762]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

11of33

1Figure SPM4 Pathways of global GHG emissions (GtCO2eqyr) in baseline and mitigation scenarios 2for different long-term concentration levels (upper panel) and associated upscaling requirements of 3low-carbon energy ( of primary energy) for 2030 2050 and 2100 compared to 2010 levels in 4mitigation scenarios (lower panel) The upper and lower panels exclude scenarios with limited 5technology availability and the lower panel in addition excludes scenarios that assume exogenous 6carbon price trajectories [Figure 67 Figure 716] [Subject to final quality check and copy edit] 7

Mitigationscenariosinwhichitislikelythatthetemperaturechangecausedbyanthropogenic8GHGemissionscanbekepttolessthan2degCrelativetopreͲindustriallevelsarecharacterizedby9atmosphericconcentrationsin2100ofabout450ppmCO2eq(highconfidence)Mitigation10scenariosreachingconcentrationlevelsofabout500ppmCO2eqby2100aremorelikelythannotto11limittemperaturechangetolessthan2degCrelativetopreͲindustriallevelsunlesstheytemporarily12lsquoovershootrsquoconcentrationlevelsofroughly530ppmCO2eqbefore2100inwhichcasetheyare13aboutaslikelyasnottoachievethatgoal15Scenariosthatreach530to650ppmCO2eq14concentrationsby2100aremoreunlikelythanlikelytokeeptemperaturechangebelow2degCrelative15topreͲindustriallevelsScenariosthatreachabout650ppmCO2eqby2100areunlikelytolimit16temperaturechangetobelow2degCrelativetopreͲindustriallevelsMitigationscenariosinwhich1715Mitigationscenariosincludingthosereaching2100concentrationsashighasorhigherthan550ppmCO2eqcantemporarilylsquoovershootrsquoatmosphericCO2eqconcentrationlevelsbeforedescendingtolowerlevelslaterSuchconcentrationovershootinvolveslessmitigationintheneartermwithmorerapidanddeeperemissionsreductionsinthelongrunOvershootincreasestheprobabilityofexceedinganygiventemperaturegoal[63TableSPM1]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

12of33

temperatureincreaseismorelikelythannottobelessthan15degCrelativetopreͲindustriallevelsby12100arecharacterizedbyconcentrationsin2100ofbelow430ppmCO2eqTemperaturepeaks2duringthecenturyandthendeclinesinthesescenariosProbabilitystatementsregardingother3levelsoftemperaturechangecanbemadewithreferencetoTableSPM1[63BoxTS6]4

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

13of33

Table SPM1 Key characteristics of the scenarios collected and assessed for WGIII AR5 For all parameters the 10th to 90th percentile of the scenarios is 1shown12 [Table 63] 2

CO2eqConcentrationsin2100(CO2eq)

Categorylabel(concentration

range)9

SubcategoriesRelativepositionoftheRCPs5

CumulativeCO2emission3(GtCO2)

ChangeinCO2eqemissionscomparedto

2010in()4Temperaturechange(relativeto1850ndash1900)56

2011ndash2050 2011ndash2100 2050 2100 2100Temperaturechange(degC)7

Likelihoodofstayingbelowtemperatureleveloverthe21stcentury8

15degC 20degC 30degC 40degC

δͶ͵Ͳ Onlyalimitednumberofindividualmodelstudieshaveexploredlevelsbelow430ppmCO2eqͶͷͲ

ȋͶ͵ͲȂͶͺͲȌ 110 RCP26 ͷͷͲȂͳ͵ͲͲ ͵ͲȂͳͳͺͲ Ͳ72toͲ41 Ͳ118Ͳ78 ͳǤͷȂͳǤȋͳǤͲȂʹǤͺȌ Moreunlikelythanlikely Likely

Likely

Likely

ͷͲͲȋͶͺͲȂͷ͵ͲȌ

ͷ͵Ͳʹ ͺͲȂͳͳͺͲ ͻͲȂͳͶ͵Ͳ Ͳ57Ͳ42 Ͳ107Ͳ73 ͳǤȂͳǤͻȋͳǤʹȂʹǤͻȌ

Unlikely

Morelikelythannot

ͷ͵Ͳʹ ͳͳ͵ͲȂͳͷ͵Ͳ ͻͻͲȂͳͷͷͲ Ͳ55Ͳ25 Ͳ114Ͳ90 ͳǤͺȂʹǤͲȋͳǤʹȂ͵Ǥ͵Ȍ Aboutaslikelyasnot

ͷͷͲȋͷ͵ͲȂͷͺͲȌ

ͷͺͲʹ ͳͲͲȂͳͶͲ ͳʹͶͲȂʹʹͶͲ Ͳ47Ͳ19 Ͳ81Ͳ59 ʹǤͲȂʹǤʹȋͳǤͶȂ͵ǤȌMoreunlikelythanlikelyͳʹ

ͷͺͲʹ ͳͶʹͲȂͳͷͲ ͳͳͲȂʹͳͲͲ Ͳ167 Ͳ183Ͳ86 ʹǤͳȂʹǤ͵ȋͳǤͶȂ͵ǤȌ

ȋͷͺͲȂͷͲȌ RCP45

ͳʹͲȂͳͶͲ ͳͺͲȂʹͶͶͲ Ͳ3824 Ͳ134toͲ50 ʹǤ͵ȂʹǤȋͳǤͷȂͶǤʹȌ

ȋͷͲȂʹͲȌ ͳ͵ͳͲȂͳͷͲ ʹͷͲȂ͵͵ͶͲ Ͳ11to17 Ͳ54Ͳ21 ʹǤȂʹǤͻȋͳǤͺȂͶǤͷȌ Unlikely

Morelikelythannot

ȋʹͲȂͳͲͲͲȌ RCP60 ͳͷͲȂͳͻͶͲ ͵ʹͲȂͶͻͻͲ 1854 Ͳ772 ͵ǤͳȂ͵ǤȋʹǤͳȂͷǤͺȌUnlikely11

Moreunlikelythanlikely

εͳͲͲͲ RCP85 ͳͺͶͲȂʹ͵ͳͲ ͷ͵ͷͲȂͲͳͲ 5295 74178 ͶǤͳȂͶǤͺȋʹǤͺȂǤͺȌ Unlikely11 Unlikely Moreunlikelythanlikely

1Thetotalrangeforthe430ndash480ppmCO2eqscenarioscorrespondstotherangeofthe10ndash90thpercentileofthesubcategoryofthesescenariosshownin3table632Baselinescenarios(seeSPM3)arecategorizedinthegt1000and750ndash1000ppmCO2eqcategoriesThelattercategoryincludesalsomitigation4scenariosThebaselinescenariosinthelattercategoryreachatemperaturechangeof25ndash58degCabovepreindustrialin2100Togetherwiththebaseline5scenariosinthegt1000ppmCO2eqcategorythisleadstoanoverall2100temperaturerangeof25ndash78degC(median37ndash48degC)forbaselinescenariosacross6bothconcentrationcategories3ForcomparisonofthecumulativeCO2emissionsestimatesassessedherewiththosepresentedinWGIanamountof5157[445to585]GtC(1890[1630to2150]GtCO2)wasalreadyemittedby2011since1870[SectionWGI125]Notethatcumulativeemissionsarepresented8herefordifferentperiodsoftime(2011ndash2050and2011ndash2100)whilecumulativeemissionsinWGIarepresentedastotalcompatibleemissionsfortheRCPs9(2012ndash2100)orfortotalcompatibleemissionsforremainingbelowagiventemperaturetargetwithagivenlikelihood[WGITableSPM3WGISPME8]410Theglobal2010emissionsare31abovethe1990emissions(consistentwiththehistoricGHGemissionestimatespresentedinthisreport)CO2eq11emissionsincludethebasketofKyotogases(CO2CH4N2OaswellasFͲgases)5TheassessmentinWGIIIinvolvesalargenumberofscenariospublishedin12thescientificliteratureandisthusnotlimitedtotheRCPsToevaluatethegreenhousegasconcentrationandclimateimplicationsofthesescenariosthe13MAGICCmodelwasusedinaprobabilisticmode(seeAnnexII)ForacomparisonbetweenMAGICCmodelresultsandtheoutcomesofthemodelsusedin14WGIseeSectionWGI12412andWGI1248and6326ReasonsfordifferenceswithWGISPMTable2includethedifferenceinreferenceyear(1986ndash15

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

14of33

2005vs1850ndash1900here)differenceinreportingyear(2081ndash2100vs2100here)setͲupofsimulation(CMIP5concentrationdrivenversusMAGICC1emissionͲdrivenhere)andthewidersetofscenarios(RCPsversusthefullsetofscenariosintheWGIIIAR5scenariodatabasehere)6Temperaturechange2isreportedfortheyear2100whichisnotdirectlycomparabletotheequilibriumwarmingreportedinAR4(Table35Chapter3WGIII)Forthe21003temperatureestimatesthetransientclimateresponse(TCR)isthemostrelevantsystempropertyTheassumed90thpercentileuncertaintyrangeofthe4TCRforMAGICCis12ndash26degC(median18degC)Thiscomparestothe90thpercentilerangeofTCRbetween12ndash24degCforCMIP5(WGI97)andanassessed5likelyrangeof1ndash25degCfrommultiplelinesofevidencereportedintheIPCCAR5WGIreport(Box122inchapter125)7Temperaturechangein2100is6providedforamedianestimateoftheMAGICCcalculationswhichillustratesdifferencesbetweentheemissionspathwaysofthescenariosineach7categoryTherangeoftemperaturechangeintheparenthesesincludesinadditionalsothecarboncycleandclimatesystemuncertaintiesasrepresented8bytheMAGICCmodel(see6326forfurtherdetails)Thetemperaturedatacomparedtothe1850ndash1900referenceyearwascalculatedbytakingall9projectedwarmingrelativeto1986ndash2005andadding061degCfor1986ndash2005comparedto1850ndash1900basedonHadCRUT4(seeWGITableSPM2)8The10assessmentinthistableisbasedontheprobabilitiescalculatedforthefullensembleofscenariosinWGIIIusingMAGICCandtheassessmentinWGIofthe11uncertaintyofthetemperatureprojectionsnotcoveredbyclimatemodelsThestatementsarethereforeconsistentwiththestatementsinWGIwhichare12basedontheCMIP5runsoftheRCPsandtheassesseduncertaintiesHencethelikelihoodstatementsreflectdifferentlinesofevidencefrombothWGs13ThisWGImethodwasalsoappliedforscenarioswithintermediateconcentrationlevelswherenoCMIP5runsareavailableThelikelihoodstatementsare14indicativeonly(63)andfollowbroadlythetermsusedbytheWGISPMfortemperatureprojectionslikely66ndash100morelikelythannotgt50ndash100about15aslikelyasnot33ndash66andunlikely0ndash33Inadditionthetermmoreunlikelythanlikely0Ͳlt50isused9TheCO2equivalentconcentrationincludesthe16forcingofallGHGsincludinghalogenatedgasesandtroposphericozoneaerosolsandalbedochange(calculatedonthebasisofthetotalforcingfroma17simplecarboncycleclimatemodelMAGICC)10Thevastmajorityofscenariosinthiscategoryovershootthecategoryboundaryof480ppmCO2eq18concentrations11ForscenariosinthiscategorynoCMIP5run(WGIAR5Chapter12Table123)aswellasnoMAGICCrealization(63)staysbelowthe19respectivetemperaturelevelStillanlsquounlikelyrsquoassignmentisgiventoreflectuncertaintiesthatmightnotbereflectedbythecurrentclimatemodels1220Scenariosinthe580ndash650ppmCO2eqcategoryincludebothovershootscenariosandscenariosthatdonotexceedtheconcentrationlevelatthehighendof21thecategory(likeRCP45)Thelattertypeofscenariosingeneralhaveanassessedprobabilityofmoreunlikelythanlikelytoexceedthe2degCtemperature22levelwhiletheformeraremostlyassessedtohaveanunlikelyprobabilityofexceedingthislevel[Subjecttofinalqualitycheckandcopyedit]23

24

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 9: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

8of33

1Figure SPM3 Decomposition of the decadal change in total global CO2 emissions from fossil fuel 2combustion by four driving factors population income (GDP) per capita energy intensity of GDP and 3carbon intensity of energy The bar segments show the changes associated with each factor alone 4holding the respective other factors constant Total decadal changes are indicated by a triangle 5Changes are measured in giga tonnes (Gt) of CO2 emissions per decade income is converted into 6common units using purchasing power parities [Figure 17] [Subject to final quality check and copy 7edit] 8

WithoutadditionaleffortstoreduceGHGemissionsbeyondthoseinplacetodayemissions9growthisexpectedtopersistdrivenbygrowthinglobalpopulationandeconomicactivities10Baselinescenariosthosewithoutadditionalmitigationresultinglobalmeansurfacetemperature11increasesin2100from37to48degCcomparedtopreͲindustriallevels10(medianvaluestherangeis1225degCto78degCwhenincludingclimateuncertaintyseeTableSPM1)11(highconfidence)The13emissionscenarioscollectedforthisassessmentrepresentfullradiativeforcingincludingGHGs14troposphericozoneaerosolsandalbedochangeBaselinescenarios(scenarioswithoutexplicit15additionaleffortstoconstrainemissions)exceed450partspermillion(ppm)CO2eqby2030and16reachCO2eqconcentrationlevelsbetween750andmorethan1300ppmCO2eqby2100Thisis17similartotherangeinatmosphericconcentrationlevelsbetweentheRCP60andRCP85pathways1810Basedonthelongestglobalsurfacetemperaturedatasetavailabletheobservedchangebetweentheaverageoftheperiod1850Ͳ1900andoftheAR5referenceperiod(1986ndash2005)is061degC(5ndash95confidenceinterval055to067degC)[WGIAR5SPME]whichisusedhereasanapproximationofthechangeinglobalmeansurfacetemperaturesincepreͲindustrialtimesreferredtoastheperiodbefore175011Theclimateuncertaintyreflectsthe5thto95thpercentileofclimatemodelcalculationsdescribedinTableSPM1

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

9of33

in210012ForcomparisontheCO2eqconcentrationin2011isestimatedtobe430ppm(uncertainty1range340ndash520ppm)13[63BoxTS6WGIAR5FigureSPM5WGI85WGI123] 2

12Forthepurposeofthisassessmentroughly300baselinescenariosand900mitigationscenarioswerecollectedthroughanopencallfromintegratedmodellingteamsaroundtheworldThesescenariosarecomplementarytotheRepresentativeConcentrationPathways(RCPsseeWGIIIAR5Glossary)TheRCPsareidentifiedbytheirapproximatetotalradiativeforcinginyear2100relativeto175026Wattspersquaremeter(WmͲ2)forRCP2645WmͲ2forRCP4560WmͲ2forRCP60and85WmͲ2forRCP85Thescenarioscollectedforthisassessmentspanaslightlybroaderrangeofconcentrationsintheyear2100thanthefourRCPs13Thisisbasedontheassessmentoftotalanthropogenicradiativeforcingfor2011relativeto1750inWGIie23WmͲ2uncertaintyrange11to33WmͲ2[WGIAR5FigureSPM5WGI85WGI123]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

10of33

SPM4 Mitigationpathwaysandmeasuresinthecontextofsustainable1development2

SPM41 LongͲtermmitigationpathways3

Therearemultiplescenarioswitharangeoftechnologicalandbehavioraloptionswithdifferent4characteristicsandimplicationsforsustainabledevelopmentthatareconsistentwithdifferent5levelsofmitigationForthisassessmentabout900mitigationscenarioshavebeencollectedina6databasebasedonpublishedintegratedmodels14Thisrangespansatmosphericconcentration7levelsin2100from430ppmCO2eqtoabove720ppmCO2eqwhichiscomparabletothe21008forcinglevelsbetweenRCP26andRCP60Scenariosoutsidethisrangewerealsoassessed9includingsomescenarioswithconcentrationsin2100below430ppmCO2eq(foradiscussionof10thesescenariosseebelow)Themitigationscenariosinvolveawiderangeoftechnological11socioeconomicandinstitutionaltrajectoriesbutuncertaintiesandmodellimitationsexistand12developmentsoutsidethisrangearepossible(FigureSPM4toppanel)[616263TS31Box13TS6]14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

14ThelongͲtermscenariosassessedinWGIIIweregeneratedprimarilybylargeͲscaleintegratedmodelsthatprojectmanykeycharacteristicsofmitigationpathwaystomidͲcenturyandbeyondThesemodelslinkmanyimportanthumansystems(egenergyagricultureandlanduseeconomy)withphysicalprocessesassociatedwithclimatechange(egthecarboncycle)ThemodelsapproximatecostͲeffectivesolutionsthatminimizetheaggregateeconomiccostsofachievingmitigationoutcomesunlesstheyarespecificallyconstrainedtobehaveotherwiseTheyaresimplifiedstylizedrepresentationsofhighlyͲcomplexrealͲworldprocessesandthescenariostheyproducearebasedonuncertainprojectionsaboutkeyeventsanddriversoveroftencenturyͲlongtimescalesSimplificationsanddifferencesinassumptionsarethereasonwhyoutputgeneratedfromdifferentmodelsorversionsofthesamemodelcandifferandprojectionsfromallmodelscandifferconsiderablyfromtherealitythatunfolds[BoxTS762]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

11of33

1Figure SPM4 Pathways of global GHG emissions (GtCO2eqyr) in baseline and mitigation scenarios 2for different long-term concentration levels (upper panel) and associated upscaling requirements of 3low-carbon energy ( of primary energy) for 2030 2050 and 2100 compared to 2010 levels in 4mitigation scenarios (lower panel) The upper and lower panels exclude scenarios with limited 5technology availability and the lower panel in addition excludes scenarios that assume exogenous 6carbon price trajectories [Figure 67 Figure 716] [Subject to final quality check and copy edit] 7

Mitigationscenariosinwhichitislikelythatthetemperaturechangecausedbyanthropogenic8GHGemissionscanbekepttolessthan2degCrelativetopreͲindustriallevelsarecharacterizedby9atmosphericconcentrationsin2100ofabout450ppmCO2eq(highconfidence)Mitigation10scenariosreachingconcentrationlevelsofabout500ppmCO2eqby2100aremorelikelythannotto11limittemperaturechangetolessthan2degCrelativetopreͲindustriallevelsunlesstheytemporarily12lsquoovershootrsquoconcentrationlevelsofroughly530ppmCO2eqbefore2100inwhichcasetheyare13aboutaslikelyasnottoachievethatgoal15Scenariosthatreach530to650ppmCO2eq14concentrationsby2100aremoreunlikelythanlikelytokeeptemperaturechangebelow2degCrelative15topreͲindustriallevelsScenariosthatreachabout650ppmCO2eqby2100areunlikelytolimit16temperaturechangetobelow2degCrelativetopreͲindustriallevelsMitigationscenariosinwhich1715Mitigationscenariosincludingthosereaching2100concentrationsashighasorhigherthan550ppmCO2eqcantemporarilylsquoovershootrsquoatmosphericCO2eqconcentrationlevelsbeforedescendingtolowerlevelslaterSuchconcentrationovershootinvolveslessmitigationintheneartermwithmorerapidanddeeperemissionsreductionsinthelongrunOvershootincreasestheprobabilityofexceedinganygiventemperaturegoal[63TableSPM1]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

12of33

temperatureincreaseismorelikelythannottobelessthan15degCrelativetopreͲindustriallevelsby12100arecharacterizedbyconcentrationsin2100ofbelow430ppmCO2eqTemperaturepeaks2duringthecenturyandthendeclinesinthesescenariosProbabilitystatementsregardingother3levelsoftemperaturechangecanbemadewithreferencetoTableSPM1[63BoxTS6]4

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

13of33

Table SPM1 Key characteristics of the scenarios collected and assessed for WGIII AR5 For all parameters the 10th to 90th percentile of the scenarios is 1shown12 [Table 63] 2

CO2eqConcentrationsin2100(CO2eq)

Categorylabel(concentration

range)9

SubcategoriesRelativepositionoftheRCPs5

CumulativeCO2emission3(GtCO2)

ChangeinCO2eqemissionscomparedto

2010in()4Temperaturechange(relativeto1850ndash1900)56

2011ndash2050 2011ndash2100 2050 2100 2100Temperaturechange(degC)7

Likelihoodofstayingbelowtemperatureleveloverthe21stcentury8

15degC 20degC 30degC 40degC

δͶ͵Ͳ Onlyalimitednumberofindividualmodelstudieshaveexploredlevelsbelow430ppmCO2eqͶͷͲ

ȋͶ͵ͲȂͶͺͲȌ 110 RCP26 ͷͷͲȂͳ͵ͲͲ ͵ͲȂͳͳͺͲ Ͳ72toͲ41 Ͳ118Ͳ78 ͳǤͷȂͳǤȋͳǤͲȂʹǤͺȌ Moreunlikelythanlikely Likely

Likely

Likely

ͷͲͲȋͶͺͲȂͷ͵ͲȌ

ͷ͵Ͳʹ ͺͲȂͳͳͺͲ ͻͲȂͳͶ͵Ͳ Ͳ57Ͳ42 Ͳ107Ͳ73 ͳǤȂͳǤͻȋͳǤʹȂʹǤͻȌ

Unlikely

Morelikelythannot

ͷ͵Ͳʹ ͳͳ͵ͲȂͳͷ͵Ͳ ͻͻͲȂͳͷͷͲ Ͳ55Ͳ25 Ͳ114Ͳ90 ͳǤͺȂʹǤͲȋͳǤʹȂ͵Ǥ͵Ȍ Aboutaslikelyasnot

ͷͷͲȋͷ͵ͲȂͷͺͲȌ

ͷͺͲʹ ͳͲͲȂͳͶͲ ͳʹͶͲȂʹʹͶͲ Ͳ47Ͳ19 Ͳ81Ͳ59 ʹǤͲȂʹǤʹȋͳǤͶȂ͵ǤȌMoreunlikelythanlikelyͳʹ

ͷͺͲʹ ͳͶʹͲȂͳͷͲ ͳͳͲȂʹͳͲͲ Ͳ167 Ͳ183Ͳ86 ʹǤͳȂʹǤ͵ȋͳǤͶȂ͵ǤȌ

ȋͷͺͲȂͷͲȌ RCP45

ͳʹͲȂͳͶͲ ͳͺͲȂʹͶͶͲ Ͳ3824 Ͳ134toͲ50 ʹǤ͵ȂʹǤȋͳǤͷȂͶǤʹȌ

ȋͷͲȂʹͲȌ ͳ͵ͳͲȂͳͷͲ ʹͷͲȂ͵͵ͶͲ Ͳ11to17 Ͳ54Ͳ21 ʹǤȂʹǤͻȋͳǤͺȂͶǤͷȌ Unlikely

Morelikelythannot

ȋʹͲȂͳͲͲͲȌ RCP60 ͳͷͲȂͳͻͶͲ ͵ʹͲȂͶͻͻͲ 1854 Ͳ772 ͵ǤͳȂ͵ǤȋʹǤͳȂͷǤͺȌUnlikely11

Moreunlikelythanlikely

εͳͲͲͲ RCP85 ͳͺͶͲȂʹ͵ͳͲ ͷ͵ͷͲȂͲͳͲ 5295 74178 ͶǤͳȂͶǤͺȋʹǤͺȂǤͺȌ Unlikely11 Unlikely Moreunlikelythanlikely

1Thetotalrangeforthe430ndash480ppmCO2eqscenarioscorrespondstotherangeofthe10ndash90thpercentileofthesubcategoryofthesescenariosshownin3table632Baselinescenarios(seeSPM3)arecategorizedinthegt1000and750ndash1000ppmCO2eqcategoriesThelattercategoryincludesalsomitigation4scenariosThebaselinescenariosinthelattercategoryreachatemperaturechangeof25ndash58degCabovepreindustrialin2100Togetherwiththebaseline5scenariosinthegt1000ppmCO2eqcategorythisleadstoanoverall2100temperaturerangeof25ndash78degC(median37ndash48degC)forbaselinescenariosacross6bothconcentrationcategories3ForcomparisonofthecumulativeCO2emissionsestimatesassessedherewiththosepresentedinWGIanamountof5157[445to585]GtC(1890[1630to2150]GtCO2)wasalreadyemittedby2011since1870[SectionWGI125]Notethatcumulativeemissionsarepresented8herefordifferentperiodsoftime(2011ndash2050and2011ndash2100)whilecumulativeemissionsinWGIarepresentedastotalcompatibleemissionsfortheRCPs9(2012ndash2100)orfortotalcompatibleemissionsforremainingbelowagiventemperaturetargetwithagivenlikelihood[WGITableSPM3WGISPME8]410Theglobal2010emissionsare31abovethe1990emissions(consistentwiththehistoricGHGemissionestimatespresentedinthisreport)CO2eq11emissionsincludethebasketofKyotogases(CO2CH4N2OaswellasFͲgases)5TheassessmentinWGIIIinvolvesalargenumberofscenariospublishedin12thescientificliteratureandisthusnotlimitedtotheRCPsToevaluatethegreenhousegasconcentrationandclimateimplicationsofthesescenariosthe13MAGICCmodelwasusedinaprobabilisticmode(seeAnnexII)ForacomparisonbetweenMAGICCmodelresultsandtheoutcomesofthemodelsusedin14WGIseeSectionWGI12412andWGI1248and6326ReasonsfordifferenceswithWGISPMTable2includethedifferenceinreferenceyear(1986ndash15

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

14of33

2005vs1850ndash1900here)differenceinreportingyear(2081ndash2100vs2100here)setͲupofsimulation(CMIP5concentrationdrivenversusMAGICC1emissionͲdrivenhere)andthewidersetofscenarios(RCPsversusthefullsetofscenariosintheWGIIIAR5scenariodatabasehere)6Temperaturechange2isreportedfortheyear2100whichisnotdirectlycomparabletotheequilibriumwarmingreportedinAR4(Table35Chapter3WGIII)Forthe21003temperatureestimatesthetransientclimateresponse(TCR)isthemostrelevantsystempropertyTheassumed90thpercentileuncertaintyrangeofthe4TCRforMAGICCis12ndash26degC(median18degC)Thiscomparestothe90thpercentilerangeofTCRbetween12ndash24degCforCMIP5(WGI97)andanassessed5likelyrangeof1ndash25degCfrommultiplelinesofevidencereportedintheIPCCAR5WGIreport(Box122inchapter125)7Temperaturechangein2100is6providedforamedianestimateoftheMAGICCcalculationswhichillustratesdifferencesbetweentheemissionspathwaysofthescenariosineach7categoryTherangeoftemperaturechangeintheparenthesesincludesinadditionalsothecarboncycleandclimatesystemuncertaintiesasrepresented8bytheMAGICCmodel(see6326forfurtherdetails)Thetemperaturedatacomparedtothe1850ndash1900referenceyearwascalculatedbytakingall9projectedwarmingrelativeto1986ndash2005andadding061degCfor1986ndash2005comparedto1850ndash1900basedonHadCRUT4(seeWGITableSPM2)8The10assessmentinthistableisbasedontheprobabilitiescalculatedforthefullensembleofscenariosinWGIIIusingMAGICCandtheassessmentinWGIofthe11uncertaintyofthetemperatureprojectionsnotcoveredbyclimatemodelsThestatementsarethereforeconsistentwiththestatementsinWGIwhichare12basedontheCMIP5runsoftheRCPsandtheassesseduncertaintiesHencethelikelihoodstatementsreflectdifferentlinesofevidencefrombothWGs13ThisWGImethodwasalsoappliedforscenarioswithintermediateconcentrationlevelswherenoCMIP5runsareavailableThelikelihoodstatementsare14indicativeonly(63)andfollowbroadlythetermsusedbytheWGISPMfortemperatureprojectionslikely66ndash100morelikelythannotgt50ndash100about15aslikelyasnot33ndash66andunlikely0ndash33Inadditionthetermmoreunlikelythanlikely0Ͳlt50isused9TheCO2equivalentconcentrationincludesthe16forcingofallGHGsincludinghalogenatedgasesandtroposphericozoneaerosolsandalbedochange(calculatedonthebasisofthetotalforcingfroma17simplecarboncycleclimatemodelMAGICC)10Thevastmajorityofscenariosinthiscategoryovershootthecategoryboundaryof480ppmCO2eq18concentrations11ForscenariosinthiscategorynoCMIP5run(WGIAR5Chapter12Table123)aswellasnoMAGICCrealization(63)staysbelowthe19respectivetemperaturelevelStillanlsquounlikelyrsquoassignmentisgiventoreflectuncertaintiesthatmightnotbereflectedbythecurrentclimatemodels1220Scenariosinthe580ndash650ppmCO2eqcategoryincludebothovershootscenariosandscenariosthatdonotexceedtheconcentrationlevelatthehighendof21thecategory(likeRCP45)Thelattertypeofscenariosingeneralhaveanassessedprobabilityofmoreunlikelythanlikelytoexceedthe2degCtemperature22levelwhiletheformeraremostlyassessedtohaveanunlikelyprobabilityofexceedingthislevel[Subjecttofinalqualitycheckandcopyedit]23

24

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 10: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

9of33

in210012ForcomparisontheCO2eqconcentrationin2011isestimatedtobe430ppm(uncertainty1range340ndash520ppm)13[63BoxTS6WGIAR5FigureSPM5WGI85WGI123] 2

12Forthepurposeofthisassessmentroughly300baselinescenariosand900mitigationscenarioswerecollectedthroughanopencallfromintegratedmodellingteamsaroundtheworldThesescenariosarecomplementarytotheRepresentativeConcentrationPathways(RCPsseeWGIIIAR5Glossary)TheRCPsareidentifiedbytheirapproximatetotalradiativeforcinginyear2100relativeto175026Wattspersquaremeter(WmͲ2)forRCP2645WmͲ2forRCP4560WmͲ2forRCP60and85WmͲ2forRCP85Thescenarioscollectedforthisassessmentspanaslightlybroaderrangeofconcentrationsintheyear2100thanthefourRCPs13Thisisbasedontheassessmentoftotalanthropogenicradiativeforcingfor2011relativeto1750inWGIie23WmͲ2uncertaintyrange11to33WmͲ2[WGIAR5FigureSPM5WGI85WGI123]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

10of33

SPM4 Mitigationpathwaysandmeasuresinthecontextofsustainable1development2

SPM41 LongͲtermmitigationpathways3

Therearemultiplescenarioswitharangeoftechnologicalandbehavioraloptionswithdifferent4characteristicsandimplicationsforsustainabledevelopmentthatareconsistentwithdifferent5levelsofmitigationForthisassessmentabout900mitigationscenarioshavebeencollectedina6databasebasedonpublishedintegratedmodels14Thisrangespansatmosphericconcentration7levelsin2100from430ppmCO2eqtoabove720ppmCO2eqwhichiscomparabletothe21008forcinglevelsbetweenRCP26andRCP60Scenariosoutsidethisrangewerealsoassessed9includingsomescenarioswithconcentrationsin2100below430ppmCO2eq(foradiscussionof10thesescenariosseebelow)Themitigationscenariosinvolveawiderangeoftechnological11socioeconomicandinstitutionaltrajectoriesbutuncertaintiesandmodellimitationsexistand12developmentsoutsidethisrangearepossible(FigureSPM4toppanel)[616263TS31Box13TS6]14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

14ThelongͲtermscenariosassessedinWGIIIweregeneratedprimarilybylargeͲscaleintegratedmodelsthatprojectmanykeycharacteristicsofmitigationpathwaystomidͲcenturyandbeyondThesemodelslinkmanyimportanthumansystems(egenergyagricultureandlanduseeconomy)withphysicalprocessesassociatedwithclimatechange(egthecarboncycle)ThemodelsapproximatecostͲeffectivesolutionsthatminimizetheaggregateeconomiccostsofachievingmitigationoutcomesunlesstheyarespecificallyconstrainedtobehaveotherwiseTheyaresimplifiedstylizedrepresentationsofhighlyͲcomplexrealͲworldprocessesandthescenariostheyproducearebasedonuncertainprojectionsaboutkeyeventsanddriversoveroftencenturyͲlongtimescalesSimplificationsanddifferencesinassumptionsarethereasonwhyoutputgeneratedfromdifferentmodelsorversionsofthesamemodelcandifferandprojectionsfromallmodelscandifferconsiderablyfromtherealitythatunfolds[BoxTS762]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

11of33

1Figure SPM4 Pathways of global GHG emissions (GtCO2eqyr) in baseline and mitigation scenarios 2for different long-term concentration levels (upper panel) and associated upscaling requirements of 3low-carbon energy ( of primary energy) for 2030 2050 and 2100 compared to 2010 levels in 4mitigation scenarios (lower panel) The upper and lower panels exclude scenarios with limited 5technology availability and the lower panel in addition excludes scenarios that assume exogenous 6carbon price trajectories [Figure 67 Figure 716] [Subject to final quality check and copy edit] 7

Mitigationscenariosinwhichitislikelythatthetemperaturechangecausedbyanthropogenic8GHGemissionscanbekepttolessthan2degCrelativetopreͲindustriallevelsarecharacterizedby9atmosphericconcentrationsin2100ofabout450ppmCO2eq(highconfidence)Mitigation10scenariosreachingconcentrationlevelsofabout500ppmCO2eqby2100aremorelikelythannotto11limittemperaturechangetolessthan2degCrelativetopreͲindustriallevelsunlesstheytemporarily12lsquoovershootrsquoconcentrationlevelsofroughly530ppmCO2eqbefore2100inwhichcasetheyare13aboutaslikelyasnottoachievethatgoal15Scenariosthatreach530to650ppmCO2eq14concentrationsby2100aremoreunlikelythanlikelytokeeptemperaturechangebelow2degCrelative15topreͲindustriallevelsScenariosthatreachabout650ppmCO2eqby2100areunlikelytolimit16temperaturechangetobelow2degCrelativetopreͲindustriallevelsMitigationscenariosinwhich1715Mitigationscenariosincludingthosereaching2100concentrationsashighasorhigherthan550ppmCO2eqcantemporarilylsquoovershootrsquoatmosphericCO2eqconcentrationlevelsbeforedescendingtolowerlevelslaterSuchconcentrationovershootinvolveslessmitigationintheneartermwithmorerapidanddeeperemissionsreductionsinthelongrunOvershootincreasestheprobabilityofexceedinganygiventemperaturegoal[63TableSPM1]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

12of33

temperatureincreaseismorelikelythannottobelessthan15degCrelativetopreͲindustriallevelsby12100arecharacterizedbyconcentrationsin2100ofbelow430ppmCO2eqTemperaturepeaks2duringthecenturyandthendeclinesinthesescenariosProbabilitystatementsregardingother3levelsoftemperaturechangecanbemadewithreferencetoTableSPM1[63BoxTS6]4

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

13of33

Table SPM1 Key characteristics of the scenarios collected and assessed for WGIII AR5 For all parameters the 10th to 90th percentile of the scenarios is 1shown12 [Table 63] 2

CO2eqConcentrationsin2100(CO2eq)

Categorylabel(concentration

range)9

SubcategoriesRelativepositionoftheRCPs5

CumulativeCO2emission3(GtCO2)

ChangeinCO2eqemissionscomparedto

2010in()4Temperaturechange(relativeto1850ndash1900)56

2011ndash2050 2011ndash2100 2050 2100 2100Temperaturechange(degC)7

Likelihoodofstayingbelowtemperatureleveloverthe21stcentury8

15degC 20degC 30degC 40degC

δͶ͵Ͳ Onlyalimitednumberofindividualmodelstudieshaveexploredlevelsbelow430ppmCO2eqͶͷͲ

ȋͶ͵ͲȂͶͺͲȌ 110 RCP26 ͷͷͲȂͳ͵ͲͲ ͵ͲȂͳͳͺͲ Ͳ72toͲ41 Ͳ118Ͳ78 ͳǤͷȂͳǤȋͳǤͲȂʹǤͺȌ Moreunlikelythanlikely Likely

Likely

Likely

ͷͲͲȋͶͺͲȂͷ͵ͲȌ

ͷ͵Ͳʹ ͺͲȂͳͳͺͲ ͻͲȂͳͶ͵Ͳ Ͳ57Ͳ42 Ͳ107Ͳ73 ͳǤȂͳǤͻȋͳǤʹȂʹǤͻȌ

Unlikely

Morelikelythannot

ͷ͵Ͳʹ ͳͳ͵ͲȂͳͷ͵Ͳ ͻͻͲȂͳͷͷͲ Ͳ55Ͳ25 Ͳ114Ͳ90 ͳǤͺȂʹǤͲȋͳǤʹȂ͵Ǥ͵Ȍ Aboutaslikelyasnot

ͷͷͲȋͷ͵ͲȂͷͺͲȌ

ͷͺͲʹ ͳͲͲȂͳͶͲ ͳʹͶͲȂʹʹͶͲ Ͳ47Ͳ19 Ͳ81Ͳ59 ʹǤͲȂʹǤʹȋͳǤͶȂ͵ǤȌMoreunlikelythanlikelyͳʹ

ͷͺͲʹ ͳͶʹͲȂͳͷͲ ͳͳͲȂʹͳͲͲ Ͳ167 Ͳ183Ͳ86 ʹǤͳȂʹǤ͵ȋͳǤͶȂ͵ǤȌ

ȋͷͺͲȂͷͲȌ RCP45

ͳʹͲȂͳͶͲ ͳͺͲȂʹͶͶͲ Ͳ3824 Ͳ134toͲ50 ʹǤ͵ȂʹǤȋͳǤͷȂͶǤʹȌ

ȋͷͲȂʹͲȌ ͳ͵ͳͲȂͳͷͲ ʹͷͲȂ͵͵ͶͲ Ͳ11to17 Ͳ54Ͳ21 ʹǤȂʹǤͻȋͳǤͺȂͶǤͷȌ Unlikely

Morelikelythannot

ȋʹͲȂͳͲͲͲȌ RCP60 ͳͷͲȂͳͻͶͲ ͵ʹͲȂͶͻͻͲ 1854 Ͳ772 ͵ǤͳȂ͵ǤȋʹǤͳȂͷǤͺȌUnlikely11

Moreunlikelythanlikely

εͳͲͲͲ RCP85 ͳͺͶͲȂʹ͵ͳͲ ͷ͵ͷͲȂͲͳͲ 5295 74178 ͶǤͳȂͶǤͺȋʹǤͺȂǤͺȌ Unlikely11 Unlikely Moreunlikelythanlikely

1Thetotalrangeforthe430ndash480ppmCO2eqscenarioscorrespondstotherangeofthe10ndash90thpercentileofthesubcategoryofthesescenariosshownin3table632Baselinescenarios(seeSPM3)arecategorizedinthegt1000and750ndash1000ppmCO2eqcategoriesThelattercategoryincludesalsomitigation4scenariosThebaselinescenariosinthelattercategoryreachatemperaturechangeof25ndash58degCabovepreindustrialin2100Togetherwiththebaseline5scenariosinthegt1000ppmCO2eqcategorythisleadstoanoverall2100temperaturerangeof25ndash78degC(median37ndash48degC)forbaselinescenariosacross6bothconcentrationcategories3ForcomparisonofthecumulativeCO2emissionsestimatesassessedherewiththosepresentedinWGIanamountof5157[445to585]GtC(1890[1630to2150]GtCO2)wasalreadyemittedby2011since1870[SectionWGI125]Notethatcumulativeemissionsarepresented8herefordifferentperiodsoftime(2011ndash2050and2011ndash2100)whilecumulativeemissionsinWGIarepresentedastotalcompatibleemissionsfortheRCPs9(2012ndash2100)orfortotalcompatibleemissionsforremainingbelowagiventemperaturetargetwithagivenlikelihood[WGITableSPM3WGISPME8]410Theglobal2010emissionsare31abovethe1990emissions(consistentwiththehistoricGHGemissionestimatespresentedinthisreport)CO2eq11emissionsincludethebasketofKyotogases(CO2CH4N2OaswellasFͲgases)5TheassessmentinWGIIIinvolvesalargenumberofscenariospublishedin12thescientificliteratureandisthusnotlimitedtotheRCPsToevaluatethegreenhousegasconcentrationandclimateimplicationsofthesescenariosthe13MAGICCmodelwasusedinaprobabilisticmode(seeAnnexII)ForacomparisonbetweenMAGICCmodelresultsandtheoutcomesofthemodelsusedin14WGIseeSectionWGI12412andWGI1248and6326ReasonsfordifferenceswithWGISPMTable2includethedifferenceinreferenceyear(1986ndash15

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

14of33

2005vs1850ndash1900here)differenceinreportingyear(2081ndash2100vs2100here)setͲupofsimulation(CMIP5concentrationdrivenversusMAGICC1emissionͲdrivenhere)andthewidersetofscenarios(RCPsversusthefullsetofscenariosintheWGIIIAR5scenariodatabasehere)6Temperaturechange2isreportedfortheyear2100whichisnotdirectlycomparabletotheequilibriumwarmingreportedinAR4(Table35Chapter3WGIII)Forthe21003temperatureestimatesthetransientclimateresponse(TCR)isthemostrelevantsystempropertyTheassumed90thpercentileuncertaintyrangeofthe4TCRforMAGICCis12ndash26degC(median18degC)Thiscomparestothe90thpercentilerangeofTCRbetween12ndash24degCforCMIP5(WGI97)andanassessed5likelyrangeof1ndash25degCfrommultiplelinesofevidencereportedintheIPCCAR5WGIreport(Box122inchapter125)7Temperaturechangein2100is6providedforamedianestimateoftheMAGICCcalculationswhichillustratesdifferencesbetweentheemissionspathwaysofthescenariosineach7categoryTherangeoftemperaturechangeintheparenthesesincludesinadditionalsothecarboncycleandclimatesystemuncertaintiesasrepresented8bytheMAGICCmodel(see6326forfurtherdetails)Thetemperaturedatacomparedtothe1850ndash1900referenceyearwascalculatedbytakingall9projectedwarmingrelativeto1986ndash2005andadding061degCfor1986ndash2005comparedto1850ndash1900basedonHadCRUT4(seeWGITableSPM2)8The10assessmentinthistableisbasedontheprobabilitiescalculatedforthefullensembleofscenariosinWGIIIusingMAGICCandtheassessmentinWGIofthe11uncertaintyofthetemperatureprojectionsnotcoveredbyclimatemodelsThestatementsarethereforeconsistentwiththestatementsinWGIwhichare12basedontheCMIP5runsoftheRCPsandtheassesseduncertaintiesHencethelikelihoodstatementsreflectdifferentlinesofevidencefrombothWGs13ThisWGImethodwasalsoappliedforscenarioswithintermediateconcentrationlevelswherenoCMIP5runsareavailableThelikelihoodstatementsare14indicativeonly(63)andfollowbroadlythetermsusedbytheWGISPMfortemperatureprojectionslikely66ndash100morelikelythannotgt50ndash100about15aslikelyasnot33ndash66andunlikely0ndash33Inadditionthetermmoreunlikelythanlikely0Ͳlt50isused9TheCO2equivalentconcentrationincludesthe16forcingofallGHGsincludinghalogenatedgasesandtroposphericozoneaerosolsandalbedochange(calculatedonthebasisofthetotalforcingfroma17simplecarboncycleclimatemodelMAGICC)10Thevastmajorityofscenariosinthiscategoryovershootthecategoryboundaryof480ppmCO2eq18concentrations11ForscenariosinthiscategorynoCMIP5run(WGIAR5Chapter12Table123)aswellasnoMAGICCrealization(63)staysbelowthe19respectivetemperaturelevelStillanlsquounlikelyrsquoassignmentisgiventoreflectuncertaintiesthatmightnotbereflectedbythecurrentclimatemodels1220Scenariosinthe580ndash650ppmCO2eqcategoryincludebothovershootscenariosandscenariosthatdonotexceedtheconcentrationlevelatthehighendof21thecategory(likeRCP45)Thelattertypeofscenariosingeneralhaveanassessedprobabilityofmoreunlikelythanlikelytoexceedthe2degCtemperature22levelwhiletheformeraremostlyassessedtohaveanunlikelyprobabilityofexceedingthislevel[Subjecttofinalqualitycheckandcopyedit]23

24

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 11: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

10of33

SPM4 Mitigationpathwaysandmeasuresinthecontextofsustainable1development2

SPM41 LongͲtermmitigationpathways3

Therearemultiplescenarioswitharangeoftechnologicalandbehavioraloptionswithdifferent4characteristicsandimplicationsforsustainabledevelopmentthatareconsistentwithdifferent5levelsofmitigationForthisassessmentabout900mitigationscenarioshavebeencollectedina6databasebasedonpublishedintegratedmodels14Thisrangespansatmosphericconcentration7levelsin2100from430ppmCO2eqtoabove720ppmCO2eqwhichiscomparabletothe21008forcinglevelsbetweenRCP26andRCP60Scenariosoutsidethisrangewerealsoassessed9includingsomescenarioswithconcentrationsin2100below430ppmCO2eq(foradiscussionof10thesescenariosseebelow)Themitigationscenariosinvolveawiderangeoftechnological11socioeconomicandinstitutionaltrajectoriesbutuncertaintiesandmodellimitationsexistand12developmentsoutsidethisrangearepossible(FigureSPM4toppanel)[616263TS31Box13TS6]14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

14ThelongͲtermscenariosassessedinWGIIIweregeneratedprimarilybylargeͲscaleintegratedmodelsthatprojectmanykeycharacteristicsofmitigationpathwaystomidͲcenturyandbeyondThesemodelslinkmanyimportanthumansystems(egenergyagricultureandlanduseeconomy)withphysicalprocessesassociatedwithclimatechange(egthecarboncycle)ThemodelsapproximatecostͲeffectivesolutionsthatminimizetheaggregateeconomiccostsofachievingmitigationoutcomesunlesstheyarespecificallyconstrainedtobehaveotherwiseTheyaresimplifiedstylizedrepresentationsofhighlyͲcomplexrealͲworldprocessesandthescenariostheyproducearebasedonuncertainprojectionsaboutkeyeventsanddriversoveroftencenturyͲlongtimescalesSimplificationsanddifferencesinassumptionsarethereasonwhyoutputgeneratedfromdifferentmodelsorversionsofthesamemodelcandifferandprojectionsfromallmodelscandifferconsiderablyfromtherealitythatunfolds[BoxTS762]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

11of33

1Figure SPM4 Pathways of global GHG emissions (GtCO2eqyr) in baseline and mitigation scenarios 2for different long-term concentration levels (upper panel) and associated upscaling requirements of 3low-carbon energy ( of primary energy) for 2030 2050 and 2100 compared to 2010 levels in 4mitigation scenarios (lower panel) The upper and lower panels exclude scenarios with limited 5technology availability and the lower panel in addition excludes scenarios that assume exogenous 6carbon price trajectories [Figure 67 Figure 716] [Subject to final quality check and copy edit] 7

Mitigationscenariosinwhichitislikelythatthetemperaturechangecausedbyanthropogenic8GHGemissionscanbekepttolessthan2degCrelativetopreͲindustriallevelsarecharacterizedby9atmosphericconcentrationsin2100ofabout450ppmCO2eq(highconfidence)Mitigation10scenariosreachingconcentrationlevelsofabout500ppmCO2eqby2100aremorelikelythannotto11limittemperaturechangetolessthan2degCrelativetopreͲindustriallevelsunlesstheytemporarily12lsquoovershootrsquoconcentrationlevelsofroughly530ppmCO2eqbefore2100inwhichcasetheyare13aboutaslikelyasnottoachievethatgoal15Scenariosthatreach530to650ppmCO2eq14concentrationsby2100aremoreunlikelythanlikelytokeeptemperaturechangebelow2degCrelative15topreͲindustriallevelsScenariosthatreachabout650ppmCO2eqby2100areunlikelytolimit16temperaturechangetobelow2degCrelativetopreͲindustriallevelsMitigationscenariosinwhich1715Mitigationscenariosincludingthosereaching2100concentrationsashighasorhigherthan550ppmCO2eqcantemporarilylsquoovershootrsquoatmosphericCO2eqconcentrationlevelsbeforedescendingtolowerlevelslaterSuchconcentrationovershootinvolveslessmitigationintheneartermwithmorerapidanddeeperemissionsreductionsinthelongrunOvershootincreasestheprobabilityofexceedinganygiventemperaturegoal[63TableSPM1]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

12of33

temperatureincreaseismorelikelythannottobelessthan15degCrelativetopreͲindustriallevelsby12100arecharacterizedbyconcentrationsin2100ofbelow430ppmCO2eqTemperaturepeaks2duringthecenturyandthendeclinesinthesescenariosProbabilitystatementsregardingother3levelsoftemperaturechangecanbemadewithreferencetoTableSPM1[63BoxTS6]4

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

13of33

Table SPM1 Key characteristics of the scenarios collected and assessed for WGIII AR5 For all parameters the 10th to 90th percentile of the scenarios is 1shown12 [Table 63] 2

CO2eqConcentrationsin2100(CO2eq)

Categorylabel(concentration

range)9

SubcategoriesRelativepositionoftheRCPs5

CumulativeCO2emission3(GtCO2)

ChangeinCO2eqemissionscomparedto

2010in()4Temperaturechange(relativeto1850ndash1900)56

2011ndash2050 2011ndash2100 2050 2100 2100Temperaturechange(degC)7

Likelihoodofstayingbelowtemperatureleveloverthe21stcentury8

15degC 20degC 30degC 40degC

δͶ͵Ͳ Onlyalimitednumberofindividualmodelstudieshaveexploredlevelsbelow430ppmCO2eqͶͷͲ

ȋͶ͵ͲȂͶͺͲȌ 110 RCP26 ͷͷͲȂͳ͵ͲͲ ͵ͲȂͳͳͺͲ Ͳ72toͲ41 Ͳ118Ͳ78 ͳǤͷȂͳǤȋͳǤͲȂʹǤͺȌ Moreunlikelythanlikely Likely

Likely

Likely

ͷͲͲȋͶͺͲȂͷ͵ͲȌ

ͷ͵Ͳʹ ͺͲȂͳͳͺͲ ͻͲȂͳͶ͵Ͳ Ͳ57Ͳ42 Ͳ107Ͳ73 ͳǤȂͳǤͻȋͳǤʹȂʹǤͻȌ

Unlikely

Morelikelythannot

ͷ͵Ͳʹ ͳͳ͵ͲȂͳͷ͵Ͳ ͻͻͲȂͳͷͷͲ Ͳ55Ͳ25 Ͳ114Ͳ90 ͳǤͺȂʹǤͲȋͳǤʹȂ͵Ǥ͵Ȍ Aboutaslikelyasnot

ͷͷͲȋͷ͵ͲȂͷͺͲȌ

ͷͺͲʹ ͳͲͲȂͳͶͲ ͳʹͶͲȂʹʹͶͲ Ͳ47Ͳ19 Ͳ81Ͳ59 ʹǤͲȂʹǤʹȋͳǤͶȂ͵ǤȌMoreunlikelythanlikelyͳʹ

ͷͺͲʹ ͳͶʹͲȂͳͷͲ ͳͳͲȂʹͳͲͲ Ͳ167 Ͳ183Ͳ86 ʹǤͳȂʹǤ͵ȋͳǤͶȂ͵ǤȌ

ȋͷͺͲȂͷͲȌ RCP45

ͳʹͲȂͳͶͲ ͳͺͲȂʹͶͶͲ Ͳ3824 Ͳ134toͲ50 ʹǤ͵ȂʹǤȋͳǤͷȂͶǤʹȌ

ȋͷͲȂʹͲȌ ͳ͵ͳͲȂͳͷͲ ʹͷͲȂ͵͵ͶͲ Ͳ11to17 Ͳ54Ͳ21 ʹǤȂʹǤͻȋͳǤͺȂͶǤͷȌ Unlikely

Morelikelythannot

ȋʹͲȂͳͲͲͲȌ RCP60 ͳͷͲȂͳͻͶͲ ͵ʹͲȂͶͻͻͲ 1854 Ͳ772 ͵ǤͳȂ͵ǤȋʹǤͳȂͷǤͺȌUnlikely11

Moreunlikelythanlikely

εͳͲͲͲ RCP85 ͳͺͶͲȂʹ͵ͳͲ ͷ͵ͷͲȂͲͳͲ 5295 74178 ͶǤͳȂͶǤͺȋʹǤͺȂǤͺȌ Unlikely11 Unlikely Moreunlikelythanlikely

1Thetotalrangeforthe430ndash480ppmCO2eqscenarioscorrespondstotherangeofthe10ndash90thpercentileofthesubcategoryofthesescenariosshownin3table632Baselinescenarios(seeSPM3)arecategorizedinthegt1000and750ndash1000ppmCO2eqcategoriesThelattercategoryincludesalsomitigation4scenariosThebaselinescenariosinthelattercategoryreachatemperaturechangeof25ndash58degCabovepreindustrialin2100Togetherwiththebaseline5scenariosinthegt1000ppmCO2eqcategorythisleadstoanoverall2100temperaturerangeof25ndash78degC(median37ndash48degC)forbaselinescenariosacross6bothconcentrationcategories3ForcomparisonofthecumulativeCO2emissionsestimatesassessedherewiththosepresentedinWGIanamountof5157[445to585]GtC(1890[1630to2150]GtCO2)wasalreadyemittedby2011since1870[SectionWGI125]Notethatcumulativeemissionsarepresented8herefordifferentperiodsoftime(2011ndash2050and2011ndash2100)whilecumulativeemissionsinWGIarepresentedastotalcompatibleemissionsfortheRCPs9(2012ndash2100)orfortotalcompatibleemissionsforremainingbelowagiventemperaturetargetwithagivenlikelihood[WGITableSPM3WGISPME8]410Theglobal2010emissionsare31abovethe1990emissions(consistentwiththehistoricGHGemissionestimatespresentedinthisreport)CO2eq11emissionsincludethebasketofKyotogases(CO2CH4N2OaswellasFͲgases)5TheassessmentinWGIIIinvolvesalargenumberofscenariospublishedin12thescientificliteratureandisthusnotlimitedtotheRCPsToevaluatethegreenhousegasconcentrationandclimateimplicationsofthesescenariosthe13MAGICCmodelwasusedinaprobabilisticmode(seeAnnexII)ForacomparisonbetweenMAGICCmodelresultsandtheoutcomesofthemodelsusedin14WGIseeSectionWGI12412andWGI1248and6326ReasonsfordifferenceswithWGISPMTable2includethedifferenceinreferenceyear(1986ndash15

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

14of33

2005vs1850ndash1900here)differenceinreportingyear(2081ndash2100vs2100here)setͲupofsimulation(CMIP5concentrationdrivenversusMAGICC1emissionͲdrivenhere)andthewidersetofscenarios(RCPsversusthefullsetofscenariosintheWGIIIAR5scenariodatabasehere)6Temperaturechange2isreportedfortheyear2100whichisnotdirectlycomparabletotheequilibriumwarmingreportedinAR4(Table35Chapter3WGIII)Forthe21003temperatureestimatesthetransientclimateresponse(TCR)isthemostrelevantsystempropertyTheassumed90thpercentileuncertaintyrangeofthe4TCRforMAGICCis12ndash26degC(median18degC)Thiscomparestothe90thpercentilerangeofTCRbetween12ndash24degCforCMIP5(WGI97)andanassessed5likelyrangeof1ndash25degCfrommultiplelinesofevidencereportedintheIPCCAR5WGIreport(Box122inchapter125)7Temperaturechangein2100is6providedforamedianestimateoftheMAGICCcalculationswhichillustratesdifferencesbetweentheemissionspathwaysofthescenariosineach7categoryTherangeoftemperaturechangeintheparenthesesincludesinadditionalsothecarboncycleandclimatesystemuncertaintiesasrepresented8bytheMAGICCmodel(see6326forfurtherdetails)Thetemperaturedatacomparedtothe1850ndash1900referenceyearwascalculatedbytakingall9projectedwarmingrelativeto1986ndash2005andadding061degCfor1986ndash2005comparedto1850ndash1900basedonHadCRUT4(seeWGITableSPM2)8The10assessmentinthistableisbasedontheprobabilitiescalculatedforthefullensembleofscenariosinWGIIIusingMAGICCandtheassessmentinWGIofthe11uncertaintyofthetemperatureprojectionsnotcoveredbyclimatemodelsThestatementsarethereforeconsistentwiththestatementsinWGIwhichare12basedontheCMIP5runsoftheRCPsandtheassesseduncertaintiesHencethelikelihoodstatementsreflectdifferentlinesofevidencefrombothWGs13ThisWGImethodwasalsoappliedforscenarioswithintermediateconcentrationlevelswherenoCMIP5runsareavailableThelikelihoodstatementsare14indicativeonly(63)andfollowbroadlythetermsusedbytheWGISPMfortemperatureprojectionslikely66ndash100morelikelythannotgt50ndash100about15aslikelyasnot33ndash66andunlikely0ndash33Inadditionthetermmoreunlikelythanlikely0Ͳlt50isused9TheCO2equivalentconcentrationincludesthe16forcingofallGHGsincludinghalogenatedgasesandtroposphericozoneaerosolsandalbedochange(calculatedonthebasisofthetotalforcingfroma17simplecarboncycleclimatemodelMAGICC)10Thevastmajorityofscenariosinthiscategoryovershootthecategoryboundaryof480ppmCO2eq18concentrations11ForscenariosinthiscategorynoCMIP5run(WGIAR5Chapter12Table123)aswellasnoMAGICCrealization(63)staysbelowthe19respectivetemperaturelevelStillanlsquounlikelyrsquoassignmentisgiventoreflectuncertaintiesthatmightnotbereflectedbythecurrentclimatemodels1220Scenariosinthe580ndash650ppmCO2eqcategoryincludebothovershootscenariosandscenariosthatdonotexceedtheconcentrationlevelatthehighendof21thecategory(likeRCP45)Thelattertypeofscenariosingeneralhaveanassessedprobabilityofmoreunlikelythanlikelytoexceedthe2degCtemperature22levelwhiletheformeraremostlyassessedtohaveanunlikelyprobabilityofexceedingthislevel[Subjecttofinalqualitycheckandcopyedit]23

24

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 12: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

11of33

1Figure SPM4 Pathways of global GHG emissions (GtCO2eqyr) in baseline and mitigation scenarios 2for different long-term concentration levels (upper panel) and associated upscaling requirements of 3low-carbon energy ( of primary energy) for 2030 2050 and 2100 compared to 2010 levels in 4mitigation scenarios (lower panel) The upper and lower panels exclude scenarios with limited 5technology availability and the lower panel in addition excludes scenarios that assume exogenous 6carbon price trajectories [Figure 67 Figure 716] [Subject to final quality check and copy edit] 7

Mitigationscenariosinwhichitislikelythatthetemperaturechangecausedbyanthropogenic8GHGemissionscanbekepttolessthan2degCrelativetopreͲindustriallevelsarecharacterizedby9atmosphericconcentrationsin2100ofabout450ppmCO2eq(highconfidence)Mitigation10scenariosreachingconcentrationlevelsofabout500ppmCO2eqby2100aremorelikelythannotto11limittemperaturechangetolessthan2degCrelativetopreͲindustriallevelsunlesstheytemporarily12lsquoovershootrsquoconcentrationlevelsofroughly530ppmCO2eqbefore2100inwhichcasetheyare13aboutaslikelyasnottoachievethatgoal15Scenariosthatreach530to650ppmCO2eq14concentrationsby2100aremoreunlikelythanlikelytokeeptemperaturechangebelow2degCrelative15topreͲindustriallevelsScenariosthatreachabout650ppmCO2eqby2100areunlikelytolimit16temperaturechangetobelow2degCrelativetopreͲindustriallevelsMitigationscenariosinwhich1715Mitigationscenariosincludingthosereaching2100concentrationsashighasorhigherthan550ppmCO2eqcantemporarilylsquoovershootrsquoatmosphericCO2eqconcentrationlevelsbeforedescendingtolowerlevelslaterSuchconcentrationovershootinvolveslessmitigationintheneartermwithmorerapidanddeeperemissionsreductionsinthelongrunOvershootincreasestheprobabilityofexceedinganygiventemperaturegoal[63TableSPM1]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

12of33

temperatureincreaseismorelikelythannottobelessthan15degCrelativetopreͲindustriallevelsby12100arecharacterizedbyconcentrationsin2100ofbelow430ppmCO2eqTemperaturepeaks2duringthecenturyandthendeclinesinthesescenariosProbabilitystatementsregardingother3levelsoftemperaturechangecanbemadewithreferencetoTableSPM1[63BoxTS6]4

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

13of33

Table SPM1 Key characteristics of the scenarios collected and assessed for WGIII AR5 For all parameters the 10th to 90th percentile of the scenarios is 1shown12 [Table 63] 2

CO2eqConcentrationsin2100(CO2eq)

Categorylabel(concentration

range)9

SubcategoriesRelativepositionoftheRCPs5

CumulativeCO2emission3(GtCO2)

ChangeinCO2eqemissionscomparedto

2010in()4Temperaturechange(relativeto1850ndash1900)56

2011ndash2050 2011ndash2100 2050 2100 2100Temperaturechange(degC)7

Likelihoodofstayingbelowtemperatureleveloverthe21stcentury8

15degC 20degC 30degC 40degC

δͶ͵Ͳ Onlyalimitednumberofindividualmodelstudieshaveexploredlevelsbelow430ppmCO2eqͶͷͲ

ȋͶ͵ͲȂͶͺͲȌ 110 RCP26 ͷͷͲȂͳ͵ͲͲ ͵ͲȂͳͳͺͲ Ͳ72toͲ41 Ͳ118Ͳ78 ͳǤͷȂͳǤȋͳǤͲȂʹǤͺȌ Moreunlikelythanlikely Likely

Likely

Likely

ͷͲͲȋͶͺͲȂͷ͵ͲȌ

ͷ͵Ͳʹ ͺͲȂͳͳͺͲ ͻͲȂͳͶ͵Ͳ Ͳ57Ͳ42 Ͳ107Ͳ73 ͳǤȂͳǤͻȋͳǤʹȂʹǤͻȌ

Unlikely

Morelikelythannot

ͷ͵Ͳʹ ͳͳ͵ͲȂͳͷ͵Ͳ ͻͻͲȂͳͷͷͲ Ͳ55Ͳ25 Ͳ114Ͳ90 ͳǤͺȂʹǤͲȋͳǤʹȂ͵Ǥ͵Ȍ Aboutaslikelyasnot

ͷͷͲȋͷ͵ͲȂͷͺͲȌ

ͷͺͲʹ ͳͲͲȂͳͶͲ ͳʹͶͲȂʹʹͶͲ Ͳ47Ͳ19 Ͳ81Ͳ59 ʹǤͲȂʹǤʹȋͳǤͶȂ͵ǤȌMoreunlikelythanlikelyͳʹ

ͷͺͲʹ ͳͶʹͲȂͳͷͲ ͳͳͲȂʹͳͲͲ Ͳ167 Ͳ183Ͳ86 ʹǤͳȂʹǤ͵ȋͳǤͶȂ͵ǤȌ

ȋͷͺͲȂͷͲȌ RCP45

ͳʹͲȂͳͶͲ ͳͺͲȂʹͶͶͲ Ͳ3824 Ͳ134toͲ50 ʹǤ͵ȂʹǤȋͳǤͷȂͶǤʹȌ

ȋͷͲȂʹͲȌ ͳ͵ͳͲȂͳͷͲ ʹͷͲȂ͵͵ͶͲ Ͳ11to17 Ͳ54Ͳ21 ʹǤȂʹǤͻȋͳǤͺȂͶǤͷȌ Unlikely

Morelikelythannot

ȋʹͲȂͳͲͲͲȌ RCP60 ͳͷͲȂͳͻͶͲ ͵ʹͲȂͶͻͻͲ 1854 Ͳ772 ͵ǤͳȂ͵ǤȋʹǤͳȂͷǤͺȌUnlikely11

Moreunlikelythanlikely

εͳͲͲͲ RCP85 ͳͺͶͲȂʹ͵ͳͲ ͷ͵ͷͲȂͲͳͲ 5295 74178 ͶǤͳȂͶǤͺȋʹǤͺȂǤͺȌ Unlikely11 Unlikely Moreunlikelythanlikely

1Thetotalrangeforthe430ndash480ppmCO2eqscenarioscorrespondstotherangeofthe10ndash90thpercentileofthesubcategoryofthesescenariosshownin3table632Baselinescenarios(seeSPM3)arecategorizedinthegt1000and750ndash1000ppmCO2eqcategoriesThelattercategoryincludesalsomitigation4scenariosThebaselinescenariosinthelattercategoryreachatemperaturechangeof25ndash58degCabovepreindustrialin2100Togetherwiththebaseline5scenariosinthegt1000ppmCO2eqcategorythisleadstoanoverall2100temperaturerangeof25ndash78degC(median37ndash48degC)forbaselinescenariosacross6bothconcentrationcategories3ForcomparisonofthecumulativeCO2emissionsestimatesassessedherewiththosepresentedinWGIanamountof5157[445to585]GtC(1890[1630to2150]GtCO2)wasalreadyemittedby2011since1870[SectionWGI125]Notethatcumulativeemissionsarepresented8herefordifferentperiodsoftime(2011ndash2050and2011ndash2100)whilecumulativeemissionsinWGIarepresentedastotalcompatibleemissionsfortheRCPs9(2012ndash2100)orfortotalcompatibleemissionsforremainingbelowagiventemperaturetargetwithagivenlikelihood[WGITableSPM3WGISPME8]410Theglobal2010emissionsare31abovethe1990emissions(consistentwiththehistoricGHGemissionestimatespresentedinthisreport)CO2eq11emissionsincludethebasketofKyotogases(CO2CH4N2OaswellasFͲgases)5TheassessmentinWGIIIinvolvesalargenumberofscenariospublishedin12thescientificliteratureandisthusnotlimitedtotheRCPsToevaluatethegreenhousegasconcentrationandclimateimplicationsofthesescenariosthe13MAGICCmodelwasusedinaprobabilisticmode(seeAnnexII)ForacomparisonbetweenMAGICCmodelresultsandtheoutcomesofthemodelsusedin14WGIseeSectionWGI12412andWGI1248and6326ReasonsfordifferenceswithWGISPMTable2includethedifferenceinreferenceyear(1986ndash15

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

14of33

2005vs1850ndash1900here)differenceinreportingyear(2081ndash2100vs2100here)setͲupofsimulation(CMIP5concentrationdrivenversusMAGICC1emissionͲdrivenhere)andthewidersetofscenarios(RCPsversusthefullsetofscenariosintheWGIIIAR5scenariodatabasehere)6Temperaturechange2isreportedfortheyear2100whichisnotdirectlycomparabletotheequilibriumwarmingreportedinAR4(Table35Chapter3WGIII)Forthe21003temperatureestimatesthetransientclimateresponse(TCR)isthemostrelevantsystempropertyTheassumed90thpercentileuncertaintyrangeofthe4TCRforMAGICCis12ndash26degC(median18degC)Thiscomparestothe90thpercentilerangeofTCRbetween12ndash24degCforCMIP5(WGI97)andanassessed5likelyrangeof1ndash25degCfrommultiplelinesofevidencereportedintheIPCCAR5WGIreport(Box122inchapter125)7Temperaturechangein2100is6providedforamedianestimateoftheMAGICCcalculationswhichillustratesdifferencesbetweentheemissionspathwaysofthescenariosineach7categoryTherangeoftemperaturechangeintheparenthesesincludesinadditionalsothecarboncycleandclimatesystemuncertaintiesasrepresented8bytheMAGICCmodel(see6326forfurtherdetails)Thetemperaturedatacomparedtothe1850ndash1900referenceyearwascalculatedbytakingall9projectedwarmingrelativeto1986ndash2005andadding061degCfor1986ndash2005comparedto1850ndash1900basedonHadCRUT4(seeWGITableSPM2)8The10assessmentinthistableisbasedontheprobabilitiescalculatedforthefullensembleofscenariosinWGIIIusingMAGICCandtheassessmentinWGIofthe11uncertaintyofthetemperatureprojectionsnotcoveredbyclimatemodelsThestatementsarethereforeconsistentwiththestatementsinWGIwhichare12basedontheCMIP5runsoftheRCPsandtheassesseduncertaintiesHencethelikelihoodstatementsreflectdifferentlinesofevidencefrombothWGs13ThisWGImethodwasalsoappliedforscenarioswithintermediateconcentrationlevelswherenoCMIP5runsareavailableThelikelihoodstatementsare14indicativeonly(63)andfollowbroadlythetermsusedbytheWGISPMfortemperatureprojectionslikely66ndash100morelikelythannotgt50ndash100about15aslikelyasnot33ndash66andunlikely0ndash33Inadditionthetermmoreunlikelythanlikely0Ͳlt50isused9TheCO2equivalentconcentrationincludesthe16forcingofallGHGsincludinghalogenatedgasesandtroposphericozoneaerosolsandalbedochange(calculatedonthebasisofthetotalforcingfroma17simplecarboncycleclimatemodelMAGICC)10Thevastmajorityofscenariosinthiscategoryovershootthecategoryboundaryof480ppmCO2eq18concentrations11ForscenariosinthiscategorynoCMIP5run(WGIAR5Chapter12Table123)aswellasnoMAGICCrealization(63)staysbelowthe19respectivetemperaturelevelStillanlsquounlikelyrsquoassignmentisgiventoreflectuncertaintiesthatmightnotbereflectedbythecurrentclimatemodels1220Scenariosinthe580ndash650ppmCO2eqcategoryincludebothovershootscenariosandscenariosthatdonotexceedtheconcentrationlevelatthehighendof21thecategory(likeRCP45)Thelattertypeofscenariosingeneralhaveanassessedprobabilityofmoreunlikelythanlikelytoexceedthe2degCtemperature22levelwhiletheformeraremostlyassessedtohaveanunlikelyprobabilityofexceedingthislevel[Subjecttofinalqualitycheckandcopyedit]23

24

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 13: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

12of33

temperatureincreaseismorelikelythannottobelessthan15degCrelativetopreͲindustriallevelsby12100arecharacterizedbyconcentrationsin2100ofbelow430ppmCO2eqTemperaturepeaks2duringthecenturyandthendeclinesinthesescenariosProbabilitystatementsregardingother3levelsoftemperaturechangecanbemadewithreferencetoTableSPM1[63BoxTS6]4

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

13of33

Table SPM1 Key characteristics of the scenarios collected and assessed for WGIII AR5 For all parameters the 10th to 90th percentile of the scenarios is 1shown12 [Table 63] 2

CO2eqConcentrationsin2100(CO2eq)

Categorylabel(concentration

range)9

SubcategoriesRelativepositionoftheRCPs5

CumulativeCO2emission3(GtCO2)

ChangeinCO2eqemissionscomparedto

2010in()4Temperaturechange(relativeto1850ndash1900)56

2011ndash2050 2011ndash2100 2050 2100 2100Temperaturechange(degC)7

Likelihoodofstayingbelowtemperatureleveloverthe21stcentury8

15degC 20degC 30degC 40degC

δͶ͵Ͳ Onlyalimitednumberofindividualmodelstudieshaveexploredlevelsbelow430ppmCO2eqͶͷͲ

ȋͶ͵ͲȂͶͺͲȌ 110 RCP26 ͷͷͲȂͳ͵ͲͲ ͵ͲȂͳͳͺͲ Ͳ72toͲ41 Ͳ118Ͳ78 ͳǤͷȂͳǤȋͳǤͲȂʹǤͺȌ Moreunlikelythanlikely Likely

Likely

Likely

ͷͲͲȋͶͺͲȂͷ͵ͲȌ

ͷ͵Ͳʹ ͺͲȂͳͳͺͲ ͻͲȂͳͶ͵Ͳ Ͳ57Ͳ42 Ͳ107Ͳ73 ͳǤȂͳǤͻȋͳǤʹȂʹǤͻȌ

Unlikely

Morelikelythannot

ͷ͵Ͳʹ ͳͳ͵ͲȂͳͷ͵Ͳ ͻͻͲȂͳͷͷͲ Ͳ55Ͳ25 Ͳ114Ͳ90 ͳǤͺȂʹǤͲȋͳǤʹȂ͵Ǥ͵Ȍ Aboutaslikelyasnot

ͷͷͲȋͷ͵ͲȂͷͺͲȌ

ͷͺͲʹ ͳͲͲȂͳͶͲ ͳʹͶͲȂʹʹͶͲ Ͳ47Ͳ19 Ͳ81Ͳ59 ʹǤͲȂʹǤʹȋͳǤͶȂ͵ǤȌMoreunlikelythanlikelyͳʹ

ͷͺͲʹ ͳͶʹͲȂͳͷͲ ͳͳͲȂʹͳͲͲ Ͳ167 Ͳ183Ͳ86 ʹǤͳȂʹǤ͵ȋͳǤͶȂ͵ǤȌ

ȋͷͺͲȂͷͲȌ RCP45

ͳʹͲȂͳͶͲ ͳͺͲȂʹͶͶͲ Ͳ3824 Ͳ134toͲ50 ʹǤ͵ȂʹǤȋͳǤͷȂͶǤʹȌ

ȋͷͲȂʹͲȌ ͳ͵ͳͲȂͳͷͲ ʹͷͲȂ͵͵ͶͲ Ͳ11to17 Ͳ54Ͳ21 ʹǤȂʹǤͻȋͳǤͺȂͶǤͷȌ Unlikely

Morelikelythannot

ȋʹͲȂͳͲͲͲȌ RCP60 ͳͷͲȂͳͻͶͲ ͵ʹͲȂͶͻͻͲ 1854 Ͳ772 ͵ǤͳȂ͵ǤȋʹǤͳȂͷǤͺȌUnlikely11

Moreunlikelythanlikely

εͳͲͲͲ RCP85 ͳͺͶͲȂʹ͵ͳͲ ͷ͵ͷͲȂͲͳͲ 5295 74178 ͶǤͳȂͶǤͺȋʹǤͺȂǤͺȌ Unlikely11 Unlikely Moreunlikelythanlikely

1Thetotalrangeforthe430ndash480ppmCO2eqscenarioscorrespondstotherangeofthe10ndash90thpercentileofthesubcategoryofthesescenariosshownin3table632Baselinescenarios(seeSPM3)arecategorizedinthegt1000and750ndash1000ppmCO2eqcategoriesThelattercategoryincludesalsomitigation4scenariosThebaselinescenariosinthelattercategoryreachatemperaturechangeof25ndash58degCabovepreindustrialin2100Togetherwiththebaseline5scenariosinthegt1000ppmCO2eqcategorythisleadstoanoverall2100temperaturerangeof25ndash78degC(median37ndash48degC)forbaselinescenariosacross6bothconcentrationcategories3ForcomparisonofthecumulativeCO2emissionsestimatesassessedherewiththosepresentedinWGIanamountof5157[445to585]GtC(1890[1630to2150]GtCO2)wasalreadyemittedby2011since1870[SectionWGI125]Notethatcumulativeemissionsarepresented8herefordifferentperiodsoftime(2011ndash2050and2011ndash2100)whilecumulativeemissionsinWGIarepresentedastotalcompatibleemissionsfortheRCPs9(2012ndash2100)orfortotalcompatibleemissionsforremainingbelowagiventemperaturetargetwithagivenlikelihood[WGITableSPM3WGISPME8]410Theglobal2010emissionsare31abovethe1990emissions(consistentwiththehistoricGHGemissionestimatespresentedinthisreport)CO2eq11emissionsincludethebasketofKyotogases(CO2CH4N2OaswellasFͲgases)5TheassessmentinWGIIIinvolvesalargenumberofscenariospublishedin12thescientificliteratureandisthusnotlimitedtotheRCPsToevaluatethegreenhousegasconcentrationandclimateimplicationsofthesescenariosthe13MAGICCmodelwasusedinaprobabilisticmode(seeAnnexII)ForacomparisonbetweenMAGICCmodelresultsandtheoutcomesofthemodelsusedin14WGIseeSectionWGI12412andWGI1248and6326ReasonsfordifferenceswithWGISPMTable2includethedifferenceinreferenceyear(1986ndash15

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

14of33

2005vs1850ndash1900here)differenceinreportingyear(2081ndash2100vs2100here)setͲupofsimulation(CMIP5concentrationdrivenversusMAGICC1emissionͲdrivenhere)andthewidersetofscenarios(RCPsversusthefullsetofscenariosintheWGIIIAR5scenariodatabasehere)6Temperaturechange2isreportedfortheyear2100whichisnotdirectlycomparabletotheequilibriumwarmingreportedinAR4(Table35Chapter3WGIII)Forthe21003temperatureestimatesthetransientclimateresponse(TCR)isthemostrelevantsystempropertyTheassumed90thpercentileuncertaintyrangeofthe4TCRforMAGICCis12ndash26degC(median18degC)Thiscomparestothe90thpercentilerangeofTCRbetween12ndash24degCforCMIP5(WGI97)andanassessed5likelyrangeof1ndash25degCfrommultiplelinesofevidencereportedintheIPCCAR5WGIreport(Box122inchapter125)7Temperaturechangein2100is6providedforamedianestimateoftheMAGICCcalculationswhichillustratesdifferencesbetweentheemissionspathwaysofthescenariosineach7categoryTherangeoftemperaturechangeintheparenthesesincludesinadditionalsothecarboncycleandclimatesystemuncertaintiesasrepresented8bytheMAGICCmodel(see6326forfurtherdetails)Thetemperaturedatacomparedtothe1850ndash1900referenceyearwascalculatedbytakingall9projectedwarmingrelativeto1986ndash2005andadding061degCfor1986ndash2005comparedto1850ndash1900basedonHadCRUT4(seeWGITableSPM2)8The10assessmentinthistableisbasedontheprobabilitiescalculatedforthefullensembleofscenariosinWGIIIusingMAGICCandtheassessmentinWGIofthe11uncertaintyofthetemperatureprojectionsnotcoveredbyclimatemodelsThestatementsarethereforeconsistentwiththestatementsinWGIwhichare12basedontheCMIP5runsoftheRCPsandtheassesseduncertaintiesHencethelikelihoodstatementsreflectdifferentlinesofevidencefrombothWGs13ThisWGImethodwasalsoappliedforscenarioswithintermediateconcentrationlevelswherenoCMIP5runsareavailableThelikelihoodstatementsare14indicativeonly(63)andfollowbroadlythetermsusedbytheWGISPMfortemperatureprojectionslikely66ndash100morelikelythannotgt50ndash100about15aslikelyasnot33ndash66andunlikely0ndash33Inadditionthetermmoreunlikelythanlikely0Ͳlt50isused9TheCO2equivalentconcentrationincludesthe16forcingofallGHGsincludinghalogenatedgasesandtroposphericozoneaerosolsandalbedochange(calculatedonthebasisofthetotalforcingfroma17simplecarboncycleclimatemodelMAGICC)10Thevastmajorityofscenariosinthiscategoryovershootthecategoryboundaryof480ppmCO2eq18concentrations11ForscenariosinthiscategorynoCMIP5run(WGIAR5Chapter12Table123)aswellasnoMAGICCrealization(63)staysbelowthe19respectivetemperaturelevelStillanlsquounlikelyrsquoassignmentisgiventoreflectuncertaintiesthatmightnotbereflectedbythecurrentclimatemodels1220Scenariosinthe580ndash650ppmCO2eqcategoryincludebothovershootscenariosandscenariosthatdonotexceedtheconcentrationlevelatthehighendof21thecategory(likeRCP45)Thelattertypeofscenariosingeneralhaveanassessedprobabilityofmoreunlikelythanlikelytoexceedthe2degCtemperature22levelwhiletheformeraremostlyassessedtohaveanunlikelyprobabilityofexceedingthislevel[Subjecttofinalqualitycheckandcopyedit]23

24

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 14: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

13of33

Table SPM1 Key characteristics of the scenarios collected and assessed for WGIII AR5 For all parameters the 10th to 90th percentile of the scenarios is 1shown12 [Table 63] 2

CO2eqConcentrationsin2100(CO2eq)

Categorylabel(concentration

range)9

SubcategoriesRelativepositionoftheRCPs5

CumulativeCO2emission3(GtCO2)

ChangeinCO2eqemissionscomparedto

2010in()4Temperaturechange(relativeto1850ndash1900)56

2011ndash2050 2011ndash2100 2050 2100 2100Temperaturechange(degC)7

Likelihoodofstayingbelowtemperatureleveloverthe21stcentury8

15degC 20degC 30degC 40degC

δͶ͵Ͳ Onlyalimitednumberofindividualmodelstudieshaveexploredlevelsbelow430ppmCO2eqͶͷͲ

ȋͶ͵ͲȂͶͺͲȌ 110 RCP26 ͷͷͲȂͳ͵ͲͲ ͵ͲȂͳͳͺͲ Ͳ72toͲ41 Ͳ118Ͳ78 ͳǤͷȂͳǤȋͳǤͲȂʹǤͺȌ Moreunlikelythanlikely Likely

Likely

Likely

ͷͲͲȋͶͺͲȂͷ͵ͲȌ

ͷ͵Ͳʹ ͺͲȂͳͳͺͲ ͻͲȂͳͶ͵Ͳ Ͳ57Ͳ42 Ͳ107Ͳ73 ͳǤȂͳǤͻȋͳǤʹȂʹǤͻȌ

Unlikely

Morelikelythannot

ͷ͵Ͳʹ ͳͳ͵ͲȂͳͷ͵Ͳ ͻͻͲȂͳͷͷͲ Ͳ55Ͳ25 Ͳ114Ͳ90 ͳǤͺȂʹǤͲȋͳǤʹȂ͵Ǥ͵Ȍ Aboutaslikelyasnot

ͷͷͲȋͷ͵ͲȂͷͺͲȌ

ͷͺͲʹ ͳͲͲȂͳͶͲ ͳʹͶͲȂʹʹͶͲ Ͳ47Ͳ19 Ͳ81Ͳ59 ʹǤͲȂʹǤʹȋͳǤͶȂ͵ǤȌMoreunlikelythanlikelyͳʹ

ͷͺͲʹ ͳͶʹͲȂͳͷͲ ͳͳͲȂʹͳͲͲ Ͳ167 Ͳ183Ͳ86 ʹǤͳȂʹǤ͵ȋͳǤͶȂ͵ǤȌ

ȋͷͺͲȂͷͲȌ RCP45

ͳʹͲȂͳͶͲ ͳͺͲȂʹͶͶͲ Ͳ3824 Ͳ134toͲ50 ʹǤ͵ȂʹǤȋͳǤͷȂͶǤʹȌ

ȋͷͲȂʹͲȌ ͳ͵ͳͲȂͳͷͲ ʹͷͲȂ͵͵ͶͲ Ͳ11to17 Ͳ54Ͳ21 ʹǤȂʹǤͻȋͳǤͺȂͶǤͷȌ Unlikely

Morelikelythannot

ȋʹͲȂͳͲͲͲȌ RCP60 ͳͷͲȂͳͻͶͲ ͵ʹͲȂͶͻͻͲ 1854 Ͳ772 ͵ǤͳȂ͵ǤȋʹǤͳȂͷǤͺȌUnlikely11

Moreunlikelythanlikely

εͳͲͲͲ RCP85 ͳͺͶͲȂʹ͵ͳͲ ͷ͵ͷͲȂͲͳͲ 5295 74178 ͶǤͳȂͶǤͺȋʹǤͺȂǤͺȌ Unlikely11 Unlikely Moreunlikelythanlikely

1Thetotalrangeforthe430ndash480ppmCO2eqscenarioscorrespondstotherangeofthe10ndash90thpercentileofthesubcategoryofthesescenariosshownin3table632Baselinescenarios(seeSPM3)arecategorizedinthegt1000and750ndash1000ppmCO2eqcategoriesThelattercategoryincludesalsomitigation4scenariosThebaselinescenariosinthelattercategoryreachatemperaturechangeof25ndash58degCabovepreindustrialin2100Togetherwiththebaseline5scenariosinthegt1000ppmCO2eqcategorythisleadstoanoverall2100temperaturerangeof25ndash78degC(median37ndash48degC)forbaselinescenariosacross6bothconcentrationcategories3ForcomparisonofthecumulativeCO2emissionsestimatesassessedherewiththosepresentedinWGIanamountof5157[445to585]GtC(1890[1630to2150]GtCO2)wasalreadyemittedby2011since1870[SectionWGI125]Notethatcumulativeemissionsarepresented8herefordifferentperiodsoftime(2011ndash2050and2011ndash2100)whilecumulativeemissionsinWGIarepresentedastotalcompatibleemissionsfortheRCPs9(2012ndash2100)orfortotalcompatibleemissionsforremainingbelowagiventemperaturetargetwithagivenlikelihood[WGITableSPM3WGISPME8]410Theglobal2010emissionsare31abovethe1990emissions(consistentwiththehistoricGHGemissionestimatespresentedinthisreport)CO2eq11emissionsincludethebasketofKyotogases(CO2CH4N2OaswellasFͲgases)5TheassessmentinWGIIIinvolvesalargenumberofscenariospublishedin12thescientificliteratureandisthusnotlimitedtotheRCPsToevaluatethegreenhousegasconcentrationandclimateimplicationsofthesescenariosthe13MAGICCmodelwasusedinaprobabilisticmode(seeAnnexII)ForacomparisonbetweenMAGICCmodelresultsandtheoutcomesofthemodelsusedin14WGIseeSectionWGI12412andWGI1248and6326ReasonsfordifferenceswithWGISPMTable2includethedifferenceinreferenceyear(1986ndash15

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

14of33

2005vs1850ndash1900here)differenceinreportingyear(2081ndash2100vs2100here)setͲupofsimulation(CMIP5concentrationdrivenversusMAGICC1emissionͲdrivenhere)andthewidersetofscenarios(RCPsversusthefullsetofscenariosintheWGIIIAR5scenariodatabasehere)6Temperaturechange2isreportedfortheyear2100whichisnotdirectlycomparabletotheequilibriumwarmingreportedinAR4(Table35Chapter3WGIII)Forthe21003temperatureestimatesthetransientclimateresponse(TCR)isthemostrelevantsystempropertyTheassumed90thpercentileuncertaintyrangeofthe4TCRforMAGICCis12ndash26degC(median18degC)Thiscomparestothe90thpercentilerangeofTCRbetween12ndash24degCforCMIP5(WGI97)andanassessed5likelyrangeof1ndash25degCfrommultiplelinesofevidencereportedintheIPCCAR5WGIreport(Box122inchapter125)7Temperaturechangein2100is6providedforamedianestimateoftheMAGICCcalculationswhichillustratesdifferencesbetweentheemissionspathwaysofthescenariosineach7categoryTherangeoftemperaturechangeintheparenthesesincludesinadditionalsothecarboncycleandclimatesystemuncertaintiesasrepresented8bytheMAGICCmodel(see6326forfurtherdetails)Thetemperaturedatacomparedtothe1850ndash1900referenceyearwascalculatedbytakingall9projectedwarmingrelativeto1986ndash2005andadding061degCfor1986ndash2005comparedto1850ndash1900basedonHadCRUT4(seeWGITableSPM2)8The10assessmentinthistableisbasedontheprobabilitiescalculatedforthefullensembleofscenariosinWGIIIusingMAGICCandtheassessmentinWGIofthe11uncertaintyofthetemperatureprojectionsnotcoveredbyclimatemodelsThestatementsarethereforeconsistentwiththestatementsinWGIwhichare12basedontheCMIP5runsoftheRCPsandtheassesseduncertaintiesHencethelikelihoodstatementsreflectdifferentlinesofevidencefrombothWGs13ThisWGImethodwasalsoappliedforscenarioswithintermediateconcentrationlevelswherenoCMIP5runsareavailableThelikelihoodstatementsare14indicativeonly(63)andfollowbroadlythetermsusedbytheWGISPMfortemperatureprojectionslikely66ndash100morelikelythannotgt50ndash100about15aslikelyasnot33ndash66andunlikely0ndash33Inadditionthetermmoreunlikelythanlikely0Ͳlt50isused9TheCO2equivalentconcentrationincludesthe16forcingofallGHGsincludinghalogenatedgasesandtroposphericozoneaerosolsandalbedochange(calculatedonthebasisofthetotalforcingfroma17simplecarboncycleclimatemodelMAGICC)10Thevastmajorityofscenariosinthiscategoryovershootthecategoryboundaryof480ppmCO2eq18concentrations11ForscenariosinthiscategorynoCMIP5run(WGIAR5Chapter12Table123)aswellasnoMAGICCrealization(63)staysbelowthe19respectivetemperaturelevelStillanlsquounlikelyrsquoassignmentisgiventoreflectuncertaintiesthatmightnotbereflectedbythecurrentclimatemodels1220Scenariosinthe580ndash650ppmCO2eqcategoryincludebothovershootscenariosandscenariosthatdonotexceedtheconcentrationlevelatthehighendof21thecategory(likeRCP45)Thelattertypeofscenariosingeneralhaveanassessedprobabilityofmoreunlikelythanlikelytoexceedthe2degCtemperature22levelwhiletheformeraremostlyassessedtohaveanunlikelyprobabilityofexceedingthislevel[Subjecttofinalqualitycheckandcopyedit]23

24

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 15: Résumé pour les décideurs

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

14of33

2005vs1850ndash1900here)differenceinreportingyear(2081ndash2100vs2100here)setͲupofsimulation(CMIP5concentrationdrivenversusMAGICC1emissionͲdrivenhere)andthewidersetofscenarios(RCPsversusthefullsetofscenariosintheWGIIIAR5scenariodatabasehere)6Temperaturechange2isreportedfortheyear2100whichisnotdirectlycomparabletotheequilibriumwarmingreportedinAR4(Table35Chapter3WGIII)Forthe21003temperatureestimatesthetransientclimateresponse(TCR)isthemostrelevantsystempropertyTheassumed90thpercentileuncertaintyrangeofthe4TCRforMAGICCis12ndash26degC(median18degC)Thiscomparestothe90thpercentilerangeofTCRbetween12ndash24degCforCMIP5(WGI97)andanassessed5likelyrangeof1ndash25degCfrommultiplelinesofevidencereportedintheIPCCAR5WGIreport(Box122inchapter125)7Temperaturechangein2100is6providedforamedianestimateoftheMAGICCcalculationswhichillustratesdifferencesbetweentheemissionspathwaysofthescenariosineach7categoryTherangeoftemperaturechangeintheparenthesesincludesinadditionalsothecarboncycleandclimatesystemuncertaintiesasrepresented8bytheMAGICCmodel(see6326forfurtherdetails)Thetemperaturedatacomparedtothe1850ndash1900referenceyearwascalculatedbytakingall9projectedwarmingrelativeto1986ndash2005andadding061degCfor1986ndash2005comparedto1850ndash1900basedonHadCRUT4(seeWGITableSPM2)8The10assessmentinthistableisbasedontheprobabilitiescalculatedforthefullensembleofscenariosinWGIIIusingMAGICCandtheassessmentinWGIofthe11uncertaintyofthetemperatureprojectionsnotcoveredbyclimatemodelsThestatementsarethereforeconsistentwiththestatementsinWGIwhichare12basedontheCMIP5runsoftheRCPsandtheassesseduncertaintiesHencethelikelihoodstatementsreflectdifferentlinesofevidencefrombothWGs13ThisWGImethodwasalsoappliedforscenarioswithintermediateconcentrationlevelswherenoCMIP5runsareavailableThelikelihoodstatementsare14indicativeonly(63)andfollowbroadlythetermsusedbytheWGISPMfortemperatureprojectionslikely66ndash100morelikelythannotgt50ndash100about15aslikelyasnot33ndash66andunlikely0ndash33Inadditionthetermmoreunlikelythanlikely0Ͳlt50isused9TheCO2equivalentconcentrationincludesthe16forcingofallGHGsincludinghalogenatedgasesandtroposphericozoneaerosolsandalbedochange(calculatedonthebasisofthetotalforcingfroma17simplecarboncycleclimatemodelMAGICC)10Thevastmajorityofscenariosinthiscategoryovershootthecategoryboundaryof480ppmCO2eq18concentrations11ForscenariosinthiscategorynoCMIP5run(WGIAR5Chapter12Table123)aswellasnoMAGICCrealization(63)staysbelowthe19respectivetemperaturelevelStillanlsquounlikelyrsquoassignmentisgiventoreflectuncertaintiesthatmightnotbereflectedbythecurrentclimatemodels1220Scenariosinthe580ndash650ppmCO2eqcategoryincludebothovershootscenariosandscenariosthatdonotexceedtheconcentrationlevelatthehighendof21thecategory(likeRCP45)Thelattertypeofscenariosingeneralhaveanassessedprobabilityofmoreunlikelythanlikelytoexceedthe2degCtemperature22levelwhiletheformeraremostlyassessedtohaveanunlikelyprobabilityofexceedingthislevel[Subjecttofinalqualitycheckandcopyedit]23

24

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 16: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

14of33

2005vs1850ndash1900here)differenceinreportingyear(2081ndash2100vs2100here)setͲupofsimulation(CMIP5concentrationdrivenversusMAGICC1emissionͲdrivenhere)andthewidersetofscenarios(RCPsversusthefullsetofscenariosintheWGIIIAR5scenariodatabasehere)6Temperaturechange2isreportedfortheyear2100whichisnotdirectlycomparabletotheequilibriumwarmingreportedinAR4(Table35Chapter3WGIII)Forthe21003temperatureestimatesthetransientclimateresponse(TCR)isthemostrelevantsystempropertyTheassumed90thpercentileuncertaintyrangeofthe4TCRforMAGICCis12ndash26degC(median18degC)Thiscomparestothe90thpercentilerangeofTCRbetween12ndash24degCforCMIP5(WGI97)andanassessed5likelyrangeof1ndash25degCfrommultiplelinesofevidencereportedintheIPCCAR5WGIreport(Box122inchapter125)7Temperaturechangein2100is6providedforamedianestimateoftheMAGICCcalculationswhichillustratesdifferencesbetweentheemissionspathwaysofthescenariosineach7categoryTherangeoftemperaturechangeintheparenthesesincludesinadditionalsothecarboncycleandclimatesystemuncertaintiesasrepresented8bytheMAGICCmodel(see6326forfurtherdetails)Thetemperaturedatacomparedtothe1850ndash1900referenceyearwascalculatedbytakingall9projectedwarmingrelativeto1986ndash2005andadding061degCfor1986ndash2005comparedto1850ndash1900basedonHadCRUT4(seeWGITableSPM2)8The10assessmentinthistableisbasedontheprobabilitiescalculatedforthefullensembleofscenariosinWGIIIusingMAGICCandtheassessmentinWGIofthe11uncertaintyofthetemperatureprojectionsnotcoveredbyclimatemodelsThestatementsarethereforeconsistentwiththestatementsinWGIwhichare12basedontheCMIP5runsoftheRCPsandtheassesseduncertaintiesHencethelikelihoodstatementsreflectdifferentlinesofevidencefrombothWGs13ThisWGImethodwasalsoappliedforscenarioswithintermediateconcentrationlevelswherenoCMIP5runsareavailableThelikelihoodstatementsare14indicativeonly(63)andfollowbroadlythetermsusedbytheWGISPMfortemperatureprojectionslikely66ndash100morelikelythannotgt50ndash100about15aslikelyasnot33ndash66andunlikely0ndash33Inadditionthetermmoreunlikelythanlikely0Ͳlt50isused9TheCO2equivalentconcentrationincludesthe16forcingofallGHGsincludinghalogenatedgasesandtroposphericozoneaerosolsandalbedochange(calculatedonthebasisofthetotalforcingfroma17simplecarboncycleclimatemodelMAGICC)10Thevastmajorityofscenariosinthiscategoryovershootthecategoryboundaryof480ppmCO2eq18concentrations11ForscenariosinthiscategorynoCMIP5run(WGIAR5Chapter12Table123)aswellasnoMAGICCrealization(63)staysbelowthe19respectivetemperaturelevelStillanlsquounlikelyrsquoassignmentisgiventoreflectuncertaintiesthatmightnotbereflectedbythecurrentclimatemodels1220Scenariosinthe580ndash650ppmCO2eqcategoryincludebothovershootscenariosandscenariosthatdonotexceedtheconcentrationlevelatthehighendof21thecategory(likeRCP45)Thelattertypeofscenariosingeneralhaveanassessedprobabilityofmoreunlikelythanlikelytoexceedthe2degCtemperature22levelwhiletheformeraremostlyassessedtohaveanunlikelyprobabilityofexceedingthislevel[Subjecttofinalqualitycheckandcopyedit]23

24

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 17: Résumé pour les décideurs

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 18: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

15of33

Scenariosreachingatmosphericconcentrationlevelsofabout450ppmCO2eqby2100(consistent1withalikelychancetokeeptemperaturechangebelow2degCrelativetopreͲindustriallevels)2includesubstantialcutsinanthropogenicGHGemissionsbymidͲcenturythroughlargeͲscale3changesinenergysystemsandpotentiallylanduse(highconfidence)Scenariosreachingthese4concentrationsby2100arecharacterizedbylowerglobalGHGemissionsin2050thanin2010405to70lowerglobally16andemissionslevelsnearzeroGtCO2eqorbelowin2100Inscenarios6reaching500ppmCO2eqby21002050emissionslevelsare25to55lowerthanin2010globally7Inscenariosreaching550ppmCO2eqemissionsin2050arefrom5above2010levelsto458below2010levelsglobally(TableSPM1)Atthegloballevelscenariosreaching450ppmCO2eqare9alsocharacterizedbymorerapidimprovementsofenergyefficiencyatriplingtonearlya10quadruplingoftheshareofzeroͲandlowͲcarbonenergysupplyfromrenewablesnuclearenergy11andfossilenergywithcarbondioxidecaptureandstorage(CCS)orbioenergywithCCS(BECCS)by12theyear2050(FigureSPM4lowerpanel)Thesescenariosdescribeawiderangeofchangesinland13usereflectingdifferentassumptionsaboutthescaleofbioenergyproductionafforestationand14reduceddeforestationAlloftheseemissionsenergyandlandͲusechangesvaryacrossregions1715ScenariosreachinghigherconcentrationsincludesimilarchangesbutonaslowertimescaleOnthe16otherhandscenariosreachinglowerconcentrationsrequirethesechangesonafastertimescale17[63711]18

Mitigationscenariosreachingabout450ppmCO2eqin2100typicallyinvolvetemporaryovershoot19ofatmosphericconcentrationsasdomanyscenariosreachingabout500ppmto550ppmCO2eq20in2100Dependingontheleveloftheovershootovershootscenariostypicallyrelyonthe21availabilityandwidespreaddeploymentofBECCSandafforestationinthesecondhalfofthe22centuryTheavailabilityandscaleoftheseandotherCarbonDioxideRemoval(CDR)technologies23andmethodsareuncertainandCDRtechnologiesandmethodsaretovaryingdegreesassociated24withchallengesandrisks(seeSectionSPM42)(highconfidence)18CDRisalsoprevalentinmany25scenarioswithoutovershoottocompensateforresidualemissionsfromsectorswheremitigationis26moreexpensiveThereisonlylimitedevidenceonthepotentialforlargeͲscaledeploymentofBECCS27largeͲscaleafforestationandotherCDRtechnologiesandmethods[2663691Figure67711281113]29

EstimatedglobalGHGemissionslevelsin2020basedontheCancuacutenPledgesarenotconsistent30withcostͲeffectivelongͲtermmitigationtrajectoriesthatareatleastaslikelyasnottolimit31temperaturechangeto2degCrelativetopreͲindustriallevels(2100concentrationsofabout450and32about500ppmCO2eq)buttheydonotprecludetheoptiontomeetthatgoal(highconfidence)33Meetingthisgoalwouldrequirefurthersubstantialreductionsbeyond2020TheCancuacutenPledgesare34broadlyconsistentwithcostͲeffectivescenariosthatarelikelytokeeptemperaturechangebelow353degCrelativetopreindustriallevels[641313FigureTS11FigureTS13]3616ThisrangediffersfromtherangeprovidedforasimilarconcentrationcategoryinAR4(50to85lowerthan2000forCO2only)ReasonsforthisdifferenceincludethatthisreporthasassessedasubstantiallylargernumberofscenariosthaninAR4andlooksatallGHGsInadditionalargeproportionofthenewscenariosincludenetnegativeemissionstechnologies(seebelow)Otherfactorsincludetheuseof2100concentrationlevelsinsteadofstabilizationlevelsandtheshiftinreferenceyearfrom2000to2010Scenarioswithhigheremissionsin2050arecharacterizedbyagreaterrelianceonCarbonDioxideRemoval(CDR)technologiesbeyondmidͲcentury17Atthenationallevelchangeisconsideredmosteffectivewhenitreflectscountryandlocalvisionsandapproachestoachievingsustainabledevelopmentaccordingtonationalcircumstancesandpriorities[641184WGIIAR5SPM]18AccordingtoWGICDRmethodshavebiogeochemicalandtechnologicallimitationstotheirpotentialontheglobalscaleThereisinsufficientknowledgetoquantifyhowmuchCO2emissionscouldbepartiallyoffsetbyCDRonacenturytimescaleCDRmethodscarrysideͲeffectsandlongͲtermconsequencesonaglobalscale[WGIAR5SPME8]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 19: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

16of33

Delayingmitigationeffortsbeyondthoseinplacetodaythrough2030isestimatedtosubstantially1increasethedifficultyofthetransitiontolowlongerͲtermemissionslevelsandnarrowtherange2ofoptionsconsistentwithmaintainingtemperaturechangebelow2degCrelativetopreͲindustrial3levels(highconfidence)CostͲeffectivemitigationscenariosthatmakeitatleastaslikelyasnotthat4temperaturechangewillremainbelow2degCrelativetopreͲindustriallevels(2100concentrations5betweenabout450and500ppmCO2eq)aretypicallycharacterizedbyannualGHGemissionsin62030ofroughlybetween30GtCO2eqand50GtCO2eq(FigureSPM5leftpanel)Scenarioswith7annualGHGemissionsabove55GtCO2eqin2030arecharacterizedbysubstantiallyhigherratesof8emissionsreductionsfrom2030to2050(FigureSPM5middlepanel)muchmorerapidscaleͲupof9lowͲcarbonenergyoverthisperiod(FigureSPM5rightpanel)alargerrelianceonCDRtechnologies10inthelongterm(FigureSPM4toppanel)andhighertransitionalandlongtermeconomicimpacts11(TableSPM2)Duetotheseincreasedmitigationchallengesmanymodelswithannual2030GHG12emissionshigherthan55GtCO2eqcouldnotproducescenariosreachingatmosphericconcentration13levelsthatmakeitaslikelyasnotthattemperaturechangewillremainbelow2degCrelativetopreͲ14industriallevels[64711FigureTS11FigureTS13]15

16

Figure SPM5 The implications of different 2030 GHG emissions levels for the rate of CO2 emissions 17reductions and low-carbon energy upscaling from 2030 to 2050 in mitigation scenarios reaching about 18450 to 500 (430ndash530) ppm CO2eq concentrations by 2100 The scenarios are grouped according to 19different emissions levels by 2030 (coloured in different shades of green) The left panel shows the 20pathways of GHG emissions (GtCO2eqyr) leading to these 2030 levels The black bar shows the 21estimated uncertainty range of GHG emissions implied by the Cancuacuten Pledges The middle panel 22denotes the average annual CO2 emissions reduction rates for the period 2030ndash2050 It compares the 23median and interquartile range across scenarios from recent intermodel comparisons with explicit 242030 interim goals to the range of scenarios in the Scenario Database for WGIII AR5 Annual rates of 25historical emissions change (sustained over a period of 20 years) are shown in grey The arrows in 26the right panel show the magnitude of zero and low-carbon energy supply up-scaling from 2030 to 272050 subject to different 2030 GHG emissions levels Zero- and low-carbon energy supply includes 28renewables nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or 29

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 20: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

17of33

bioenergy with CCS (BECCS) Note Only scenarios that apply the full unconstrained mitigation 1technology portfolio of the underlying models (default technology assumption) are shown Scenarios 2with large net negative global emissions (gt20 GtCO2eqyr) scenarios with exogenous carbon price 3assumptions and scenarios with 2010 emissions significantly outside the historical range are 4excluded [Figure 632 716] [Subject to final quality check and copy edit] 5

Estimatesoftheaggregateeconomiccostsofmitigationvarywidelyandarehighlysensitiveto6modeldesignandassumptionsaswellasthespecificationofscenariosincludingthe7characterizationoftechnologiesandthetimingofmitigation(highconfidence)Scenariosinwhich8allcountriesoftheworldbeginmitigationimmediatelythereisasingleglobalcarbonpriceandall9keytechnologiesareavailablehavebeenusedasacostͲeffectivebenchmarkforestimating10macroeconomicmitigationcosts(TableSPM2greensegments)Undertheseassumptions11mitigationscenariosthatreachatmosphericconcentrationsofabout450ppmCO2eqby2100entail12lossesinglobalconsumptionmdashnotincludingbenefitsofreducedclimatechangeaswellascoͲ13benefitsandadversesideͲeffectsofmitigation19mdashof1to4(median17)in20302to614(median34)in2050and3to11(median48)in2100relativetoconsumptioninbaseline15scenariosthatgrowsanywherefrom300tomorethan900overthecenturyThesenumbers16correspondtoanannualizedreductionofconsumptiongrowthby004to014(median006)17percentagepointsoverthecenturyrelativetoannualizedconsumptiongrowthinthebaselinethatis18between16and3peryearEstimatesatthehighendofthesecostrangesarefrommodelsthat19arerelativelyinflexibletoachievethedeepemissionsreductionsrequiredinthelongruntomeet20thesegoalsandorincludeassumptionsaboutmarketimperfectionsthatwouldraisecostsUnder21theabsenceorlimitedavailabilityoftechnologiesmitigationcostscanincreasesubstantially22dependingonthetechnologyconsidered(TableSPM2orangesegment)Delayingadditional23mitigationfurtherincreasesmitigationcostsinthemediumtolongterm(TableSPM2blue24segment)Manymodelscouldnotachieveatmosphericconcentrationlevelsofabout450ppm25CO2eqby2100ifadditionalmitigationisconsiderablydelayedorunderlimitedavailabilityofkey26technologiessuchasbioenergyCCSandtheircombination(BECCS)[63]27

28

29

30

31

32

33

34

35

36

37

38

39

4019ThetotaleconomiceffectsatdifferenttemperaturelevelswouldincludemitigationcostscoͲbenefitsofmitigationadversesideͲeffectsofmitigationadaptationcostsandclimatedamagesMitigationcostandclimatedamageestimatesatanygiventemperaturelevelcannotbecomparedtoevaluatethecostsandbenefitsofmitigationRathertheconsiderationofeconomiccostsandbenefitsofmitigationshouldincludethereductionofclimatedamagesrelativetothecaseofunabatedclimatechange

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 21: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

18of33

Table SPM2 Global mitigation costs in cost-effective scenarios and estimated cost increases due to assumed limited availability of specific technologies and 1delayed additional mitigation Cost estimates shown in this table do not consider the benefits of reduced climate change as well as co-benefits and adverse 2side-effects of mitigation The green columns show consumption losses in the years 2030 2050 and 2100 (green) and annualized consumption growth 3reductions (light green) over the century in cost-effective scenarios relative to a baseline development without climate policy1 The orange columns show the 4percentage increase in discounted costs2 over the century relative to cost-effective scenarios in scenarios in which technology is constrained relative to 5default technology assumptions3 The blue columns show the increase in mitigation costs over the periods 2030ndash2050 and 2050ndash2100 relative to scenarios 6with immediate mitigation due to delayed additional mitigation through 2020 or 20304 These scenarios with delayed additional mitigation are grouped by 7emission levels of less or more than 55 GtCO2eq in 2030 and two concentration ranges in 2100 (430ndash530 ppm CO2eq and 530ndash650 CO2eq) In all figures 8the median of the scenario set is shown without parentheses the range between the 16th and 84th percentile of the scenario set is shown in the parentheses 9and the number of scenarios in the set is shown in square brackets5 [Figures TS12 TS13 621 624 625 Annex II10] 10

ConsumptionlossesincostͲeffectiveimplementationscenarios

Increaseintotaldiscountedmitigationcostsinscenarioswithlimitedavailabilityof

technologies

[increaseintotaldiscountedmitigationcost(2015ndash2100)relativetodefault

technologyassumptions]

IncreaseinmidͲ andlongtermmitigationcostsduedelayedadditionalmitigationup

to2030

[increaseinmitigationcostrelativetoimmediatemitigation]

[reductioninconsumption

relativetobaseline]

[percentagepointreductioninannualizedconsumptiongrowthrate]

2100Concentration(ppmCO2eq)

2030 2050 2100 2010Ͳ2100 NoCCS Nuclearphaseout

LimitedSolarWind

LimitedBioͲ

energy

ч55GtCO2eq gt55GtCO2eq2030ndash2050

2050ndash2100

2030ndash2050

2050ndash2100

450(430ndash480) 17(10ndash37)

[N14]

34(21ndash62) 48(29ndash114) 006(004ndash014) 138(29ndash297)

[N4]

7(4ndash18)

[N8]

6(2ndash29)

[N8]

64(44ndash78)

[N8] 28(14ndash50)

[N34]

15(5ndash59) 44(2ndash78)

[N29]

37(16ndash82)

500(480ndash530) 17(06ndash21)

[N32]

27(15ndash42) 47(24ndash106) 006(003ndash013)

550(530ndash580) 06(02ndash13)

[N46]

17(12ndash33) 38(12ndash73) 004(001ndash009) 39(18ndash78)

[N11]

13(2ndash23)

[N10]

8(5ndash15)

[N10]

18(4ndash66)

[N12] 3(Ͳ5ndash16)

[N14]

4(Ͳ4ndash11)

15(3ndash32)

[N10]

16(5ndash24)

580ndash650 03(0ndash09)

[N16]

13(05ndash20) 23(12ndash44) 003(001ndash005)

Notes 1 Cost-effective scenarios assume immediate mitigation in all countries and a single global carbon price and impose no additional limitations on technology relative to 11the modelsrsquo default technology assumptions 2 Percentage increase of net present value of consumption losses in percent of baseline consumption (for scenarios from general 12equilibrium models) and abatement costs in percent of baseline GDP (for scenarios from partial equilibrium models) for the period 2015ndash2100 discounted at 5 per year 3 No 13CCS CCS is not included in these scenarios Nuclear phase out No addition of nuclear power plants beyond those under construction and operation of existing plants until 14the end of their lifetime Limited SolarWind a maximum of 20 global electricity generation from solar and wind power in any year of these scenarios Limited Bioenergy a 15maximum of 100 EJyr modern bioenergy supply globally (modern bioenergy used for heat power combinations and industry was around 18 EJyr in 2008 [11135]) 164 Percentage increase of total undiscounted mitigation costs for the periods 2030ndash2050 and 2050ndash2100 5 The range is determined by the central scenarios encompassing the 1716th and 84th percentile of the scenario set Only scenarios with a time horizon until 2100 are included Some models that are included in the cost ranges for concentration 18levels above 530 ppm CO2eq in 2100 could not produce associated scenarios for concentration levels below 530 ppm CO2eq in 2100 with assumptions about limited 19availability of technologies or delayed additional mitigation [Subject to final quality check and copy edit] 20

EMBARGOED

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 22: Résumé pour les décideurs

Embargoed Not to be published before 1100 Berlin time (0900 GMT) Sunday 13 Aprila20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 23: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

19of33

Onlyalimitednumberofstudieshaveexploredscenariosthataremorelikelythannottobring1temperaturechangebacktobelow15degCby2100relativetopreͲindustriallevelsthesescenarios2bringatmosphericconcentrationstobelow430ppmCO2eqby2100(highconfidence)Assessing3thisgoaliscurrentlydifficultbecausenomultiͲmodelstudieshaveexploredthesescenariosThe4limitednumberofpublishedstudiesconsistentwiththisgoalproducesscenariosthatare5characterizedby(1)immediatemitigationaction(2)therapidupscalingofthefullportfolioof6mitigationtechnologiesand(3)developmentalongalowͲenergydemandtrajectory20[63711]7

Mitigationscenariosreachingabout450or500ppmCO2eqby2100showreducedcostsfor8achievingairqualityandenergysecurityobjectiveswithsignificantcoͲbenefitsforhumanhealth9ecosystemimpactsandsufficiencyofresourcesandresilienceoftheenergysystemthese10scenariosdidnotquantifyothercoͲbenefitsoradversesideͲeffects(mediumconfidence)These11mitigationscenariosshowimprovementsintermsofthesufficiencyofresourcestomeetnational12energydemandaswellastheresilienceofenergysupplyresultinginenergysystemsthatareless13vulnerabletopricevolatilityandsupplydisruptionsThebenefitsfromreducedimpactstohealth14andecosystemsassociatedwithmajorcutsinairpollutantemissions(FigureSPM6)areparticularly15highwherecurrentlylegislatedandplannedairpollutioncontrolsareweakThereisawiderangeof16coͲbenefitsandadversesideͲeffectsforadditionalobjectivesotherthanairqualityandenergy17securityOverallthepotentialforcoͲbenefitsforenergyendͲusemeasuresoutweighthepotential18foradversesideͲeffectswhereastheevidencesuggeststhismaynotbethecaseforallenergy19supplyandAFOLUmeasures[WGIII48576366679879710811711136128Figure20TS14Table67TablesTS3ndashTS7WGII119]21

22Figure SPM6 Air pollutant emission levels for black carbon (BC) and sulfur dioxide (SO2) in 2050 23relative to 2005 (0=2005 levels) Baseline scenarios without additional efforts to reduce GHG 24emissions beyond those in place today are compared to scenarios with stringent mitigation policies 25which are consistent with reaching atmospheric CO2eq concentration levels between 430 and 530 26ppm CO2eq by 2100 [Figure 633] [Subject to final quality check and copy edit] 27

20InthesescenariosthecumulativeCO2emissionsrangebetween655ndash815GtCO2fortheperiod2011ndash2050andbetween90ndash350GtCO2fortheperiod2011ndash2100GlobalCO2eqemissionsin2050arebetween70ndash95below2010emissionsandtheyarebetween110ndash120below2010emissionsin2100

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 24: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

20of33

ThereisawiderangeofpossibleadversesideͲeffectsaswellascoͲbenefitsandspilloversfrom1climatepolicythathavenotbeenwellͲquantified(highconfidence)WhetherornotsideͲeffects2materializeandtowhatextentsideͲeffectsmaterializewillbecaseͲandsiteͲspecificastheywill3dependonlocalcircumstancesandthescalescopeandpaceofimplementationImportant4examplesincludebiodiversityconservationwateravailabilityfoodsecurityincomedistribution5efficiencyofthetaxationsystemlaboursupplyandemploymenturbansprawlandthe6sustainabilityofthegrowthofdevelopingcountries[BoxTS11]7

MitigationeffortsandassociatedcostsvarybetweencountriesinmitigationscenariosThe8distributionofcostsacrosscountriescandifferfromthedistributionoftheactionsthemselves9(highconfidence)IngloballycostͲeffectivescenariosthemajorityofmitigationeffortstakesplacein10countrieswiththehighestfutureemissionsinbaselinescenariosSomestudiesexploringparticular11effortͲsharingframeworksundertheassumptionofaglobalcarbonmarkethaveestimated12substantialglobalfinancialflowsassociatedwithmitigationforscenariosleadingto210013atmosphericconcentrationsofabout450to550ppmCO2eq[Box3546636Table64Figure1469Figure627Figure628Figure62913424]15

Mitigationpolicycoulddevaluefossilfuelassetsandreducerevenuesforfossilfuelexportersbut16differencesbetweenregionsandfuelsexist(highconfidence)Mostmitigationscenariosare17associatedwithreducedrevenuesfromcoalandoiltradeformajorexporters(highconfidence)The18effectofmitigationonnaturalgasexportrevenuesismoreuncertainwithsomestudiesshowing19possiblebenefitsforexportrevenuesinthemediumtermuntilabout2050(mediumconfidence)20TheavailabilityofCCSwouldreducetheadverseeffectofmitigationonthevalueoffossilfuelassets21(mediumconfidence)[636661442]22

SPM42 SectoralandcrossͲsectoralmitigationpathwaysandmeasures23

SPM421 CrossͲsectoralmitigationpathwaysandmeasures24

InbaselinescenariosGHGemissionsareprojectedtogrowinallsectorsexceptfornetCO225emissionsintheAFOLUsector21(robustevidencemediumagreement)Energysupplysector26emissionsareexpectedtocontinuetobethemajorsourceofGHGemissionsultimatelyaccounting27forthesignificantincreasesinindirectemissionsfromelectricityuseinthebuildingsandindustry28sectorsInbaselinescenarioswhilenonͲCO2GHGagriculturalemissionsareprojectedtoincrease29netCO2emissionsfromtheAFOLUsectordeclineovertimewithsomemodelsprojectinganetsink30towardstheendofthecentury(FigureSPM7)22[631468FigureTS15]31

InfrastructuredevelopmentsandlongͲlivedproductsthatlocksocietiesintoGHGͲintensive32emissionspathwaysmaybedifficultorverycostlytochangereinforcingtheimportanceofearly33actionforambitiousmitigation(robustevidencehighagreement)ThislockͲinriskiscompounded34bythelifetimeoftheinfrastructurebythedifferenceinemissionsassociatedwithalternativesand35themagnitudeoftheinvestmentcostAsaresultlockͲinrelatedtoinfrastructureandspatial36planningisthemostdifficulttoreduceHowevermaterialsproductsandinfrastructurewithlong37lifetimesandlowlifecycleemissionscanfacilitateatransitiontolowͲemissionpathwayswhilealso38reducingemissionsthroughlowerlevelsofmaterialuse[563636494104123124]39

Therearestronginterdependenciesinmitigationscenariosbetweenthepaceofintroducing40mitigationmeasuresinenergysupplyandenergyendͲuseanddevelopmentsintheAFOLUsector4121NetAFOLUCO2emissionsincludeemissionsandremovalsofCO2fromtheAFOLUsectorincludinglandunderforestryandinsomeassessmentsCO2sinksinagriculturalsoils22AmajorityoftheEarthSystemModelsassessedinWGIAR5projectacontinuedlandcarbonuptakeunderallRCPsthroughto2100butsomemodelssimulatealandcarbonlossduetothecombinedeffectofclimatechangeandlandͲusechange[WGIAR5SPME7WGI64]

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 25: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

21of33

(highconfidence)Thedistributionofthemitigationeffortacrosssectorsisstronglyinfluencedby1theavailabilityandperformanceofBECCSandlargescaleafforestation(FigureSPM7)Thisis2particularlythecaseinscenariosreachingCO2eqconcentrationsofabout450ppmby2100WellͲ3designedsystemicandcrossͲsectoralmitigationstrategiesaremorecostͲeffectiveincutting4emissionsthanafocusonindividualtechnologiesandsectorsAttheenergysystemlevelthese5includereductionsintheGHGemissionintensityoftheenergysupplysectoraswitchtolowcarbon6energycarriers(includinglowͲcarbonelectricity)andreductionsinenergydemandintheendͲuse7sectorswithoutcompromisingdevelopment(FigureSPM8)[6356468711TableTS2]8

Mitigationscenariosreachingaround450ppmCO2eqconcentrationsby2100showlargeͲscale9globalchangesintheenergysupplysector(robustevidencehighagreement)Intheseselected10scenariosglobalCO2emissionsfromtheenergysupplysectorareprojectedtodeclineoverthenext11decadesandarecharacterizedbyreductionsof90ormorebelow2010levelsbetween2040and122070Emissionsinmanyofthesescenariosareprojectedtodeclinetobelowzerothereafter[634136871711]14

15

Figure SPM7 Direct emissions of CO2 by sector and total non-CO2 GHGs (Kyoto gases) across 16sectors in baseline (left panel) and mitigation scenarios that reach around 450 (430ndash480) ppm CO2eq 17with CCS (middle panel) and without CCS (right panel) The numbers at the bottom of the graphs 18refer to the number of scenarios included in the range which differs across sectors and time due to 19different sectoral resolution and time horizon of models Note that many models cannot reach 450 20ppm CO2eq concentration by 2100 in the absence of CCS resulting in a low number of scenarios for 21the right panel [Figures 634 and 635] [Subject to final quality check and copy edit] 22

Efficiencyenhancementsandbehaviouralchangesinordertoreduceenergydemandcompared23tobaselinescenarioswithoutcompromisingdevelopmentareakeymitigationstrategyin24scenariosreachingatmosphericCO2eqconcentrationsofabout450or500ppmby2100(robust25evidencehighagreement)NearͲtermreductionsinenergydemandareanimportantelementof26costͲeffectivemitigationstrategiesprovidemoreflexibilityforreducingcarbonintensityinthe27energysupplysectorhedgeagainstrelatedsupplyͲsiderisksavoidlockͲintocarbonͲintensive28infrastructuresandareassociatedwithimportantcoͲbenefitsBothintegratedandsectoralstudies29providesimilarestimatesforenergydemandreductionsinthetransportbuildingsandindustry30sectorsfor2030and2050(FigureSPM8)[634666871189981010]31

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 26: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

22of33

1Figure SPM8 Final energy demand reduction relative to baseline (upper row) and low-carbon energy 2carrier shares in final energy (lower row) in the transport buildings and industry sectors by 2030 and 32050 in scenarios from two different CO2eq concentration categories compared to sectoral studies 4assessed in Chapters 8-10 The demand reductions shown by these scenarios do not compromise 5development Low-carbon energy carriers include electricity hydrogen and liquid biofuels in transport 6electricity in buildings and electricity heat hydrogen and bioenergy in industry The numbers at the 7bottom of the graphs refer to the number of scenarios included in the ranges which differ across 8sectors and time due to different sectoral resolution and time horizon of models [Figures 637 and 9638] [Subject to final quality check and copy edit] 10

Behaviourlifestyleandculturehaveaconsiderableinfluenceonenergyuseandassociated11emissionswithhighmitigationpotentialinsomesectorsinparticularwhencomplementing12

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 27: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

23of33

technologicalandstructuralchange23(mediumevidencemediumagreement)Emissionscanbe1substantiallyloweredthroughchangesinconsumptionpatterns(egmobilitydemandandmode2energyuseinhouseholdschoiceoflongerͲlastingproducts)anddietarychangeandreductionin3foodwastesAnumberofoptionsincludingmonetaryandnonͲmonetaryincentivesaswellas4informationmeasuresmayfacilitatebehaviouralchanges[6879835899293910Box5102104114124126127153155TableTS2]6

SPM422 Energysupply7

InthebaselinescenariosassessedinAR5directCO2emissionsfromtheenergysupplysectorare8projectedtoalmostdoubleoreventripleby2050comparedtothelevelof144GtCO2yearin92010unlessenergyintensityimprovementscanbesignificantlyacceleratedbeyondthehistorical10development(mediumevidencemediumagreement)Inthelastdecadethemaincontributorsto11emissiongrowthwereagrowingenergydemandandanincreaseoftheshareofcoalintheglobal12fuelmixTheavailabilityoffossilfuelsalonewillnotbesufficienttolimitCO2eqconcentrationto13levelssuchas450ppm550ppmor650ppm[6347273Figures615SPM2SPM7]14

Decarbonizing(iereducingthecarbonintensityof)electricitygenerationisakeycomponentof15costͲeffectivemitigationstrategiesinachievinglowͲstabilizationlevels(430ndash530ppmCO2eq)in16mostintegratedmodellingscenariosdecarbonizationhappensmorerapidlyinelectricity17generationthanintheindustrybuildingsandtransportsectors(mediumevidencehigh18agreement)(FigureSPM7)InthemajorityoflowͲstabilizationscenariostheshareoflowͲcarbon19electricitysupply(comprisingrenewableenergy(RE)nuclearandCCS)increasesfromthecurrent20shareofapproximately30tomorethan80by2050andfossilfuelpowergenerationwithout21CCSisphasedoutalmostentirelyby2100[68711Figures714SPM7TS18]22

SinceAR4manyREtechnologieshavedemonstratedsubstantialperformanceimprovementsand23costreductionsandagrowingnumberofREtechnologieshaveachievedalevelofmaturityto24enabledeploymentatsignificantscale(robustevidencehighagreement)Regardingelectricity25generationaloneREaccountedforjustoverhalfofthenewelectricityͲgeneratingcapacityadded26globallyin2012ledbygrowthinwindhydroandsolarpowerHowevermanyREtechnologiesstill27needdirectandorindirectsupportiftheirmarketsharesaretobesignificantlyincreasedRE28technologypolicieshavebeensuccessfulindrivingrecentgrowthofREChallengesforintegrating29REintoenergysystemsandtheassociatedcostsvarybyREtechnologyregionalcircumstancesand30thecharacteristicsoftheexistingbackgroundenergysystem(mediumevidencemedium31agreement)[753761782712Table71]32

NuclearenergyisamaturelowͲGHGemissionsourceofbaseloadpowerbutitsshareofglobal33electricitygenerationhasbeendeclining(since1993)Nuclearenergycouldmakeanincreasing34contributiontolowͲcarbonenergysupplybutavarietyofbarriersandrisksexist(robustevidence35highagreement)Thoseincludeoperationalrisksandtheassociatedconcernsuraniumminingrisks36financialandregulatoryrisksunresolvedwastemanagementissuesnuclearweaponproliferation37concernsandadversepublicopinion(robustevidencehighagreement)Newfuelcyclesandreactor38technologiesaddressingsomeoftheseissuesarebeinginvestigatedandprogressinresearchand39developmenthasbeenmadeconcerningsafetyandwastedisposal[7547879712Figure40TS19]41

GHGemissionsfromenergysupplycanbereducedsignificantlybyreplacingcurrentworldaverage42coalͲfiredpowerplantswithmodernhighlyefficientnaturalgascombinedͲcyclepowerplantsor43combinedheatandpowerplantsprovidedthatnaturalgasisavailableandthefugitiveemissions44associatedwithextractionandsupplyarelowormitigated(robustevidencehighagreement)In4523Structuralchangesrefertosystemstransformationswherebysomecomponentsareeitherreplacedorpotentiallysubstitutedbyothercomponents(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 28: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

24of33

mitigationscenariosreachingabout450ppmCO2eqconcentrationsby2100naturalgaspower1generationwithoutCCSactsasabridgetechnologywithdeploymentincreasingbeforepeakingand2fallingtobelowcurrentlevelsby2050anddecliningfurtherinthesecondhalfofthecentury(robust3evidencehighagreement)[7517879711712]4

Carbondioxidecaptureandstorage(CCS)technologiescouldreducethelifecycleGHGemissionsof5fossilfuelpowerplants(mediumevidencemediumagreement)Whileallcomponentsofintegrated6CCSsystemsexistandareinusetodaybythefossilfuelextractionandrefiningindustryCCShasnot7yetbeenappliedatscaletoalargeoperationalcommercialfossilfuelpowerplantCCSpower8plantscouldbeseeninthemarketifthisisincentivizedbyregulationandoriftheybecome9competitivewiththeirunabatedcounterpartsiftheadditionalinvestmentandoperationalcosts10causedinpartbyefficiencyreductionsarecompensatedbysufficientlyhighcarbonprices(ordirect11financialsupport)ForthelargeͲscalefuturedeploymentofCCSwellͲdefinedregulationsconcerning12shortͲandlongͲtermresponsibilitiesforstorageareneededaswellaseconomicincentivesBarriers13tolargeͲscaledeploymentofCCStechnologiesincludeconcernsabouttheoperationalsafetyand14longͲtermintegrityofCO2storageaswellastransportrisksThereishoweveragrowingbodyof15literatureonhowtoensuretheintegrityofCO2wellsonthepotentialconsequencesofapressure16buildͲupwithinageologicformationcausedbyCO2storage(suchasinducedseismicity)andonthe17potentialhumanhealthandenvironmentalimpactsfromCO2thatmigratesoutoftheprimary18injectionzone(limitedevidencemediumagreement)[75578797117121113]19

CombiningbioenergywithCCS(BECCS)offerstheprospectofenergysupplywithlargeͲscalenet20negativeemissionswhichplaysanimportantroleinmanylowͲstabilizationscenarioswhileit21entailschallengesandrisks(limitedevidencemediumagreement)Thesechallengesandrisks22includethoseassociatedwiththeupstreamlargeͲscaleprovisionofthebiomassthatisusedinthe23CCSfacilityaswellasthoseassociatedwiththeCCStechnologyitself[755791113]24

SPM423 EnergyendͲusesectors25

Transport26

Thetransportsectoraccountedfor27offinalenergyuseand67GtCO2directemissionsin201027withbaselineCO2emissionsprojectedtoapproximatelydoubleby2050(mediumevidence28mediumagreement)ThisgrowthinCO2emissionsfromincreasingglobalpassengerandfreight29activitycouldpartlyoffsetfuturemitigationmeasuresthatincludefuelcarbonandenergyintensity30improvementsinfrastructuredevelopmentbehaviouralchangeandcomprehensivepolicy31implementation(highconfidence)OverallreductionsintotaltransportCO2emissionsof15ndash4032comparedtobaselinegrowthcouldbeachievedin2050(mediumevidencemediumagreement)33[FigureTS1568818289810]34

Technicalandbehaviouralmitigationmeasuresforalltransportmodesplusnewinfrastructure35andurbanredevelopmentinvestmentscouldreducefinalenergydemandin2050byaround4036belowthebaselinewiththemitigationpotentialassessedtobehigherthanreportedintheAR437(robustevidencemediumagreement)Projectedenergyefficiencyandvehicleperformance38improvementsrangefrom30ndash50in2030relativeto2010dependingontransportmodeand39vehicletype(mediumevidencemediumagreement)IntegratedurbanplanningtransitͲoriented40developmentmorecompacturbanformthatsupportscyclingandwalkingcanallleadtomodal41shiftsascaninthelongertermurbanredevelopmentandinvestmentsinnewinfrastructuresuch42ashighͲspeedrailsystemsthatreduceshortͲhaulairtraveldemand(mediumevidencemedium43agreement)Suchmitigationmeasuresarechallenginghaveuncertainoutcomesandcouldreduce44transportGHGemissionsby20ndash50in2050comparedtobaseline(limitedevidencelow45agreement)[8283848586878889124125FigureSPM8toppanel]46

Strategiestoreducethecarbonintensitiesoffuelandtherateofreducingcarbonintensityare47constrainedbychallengesassociatedwithenergystorageandtherelativelylowenergydensityof48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 29: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

25of33

lowͲcarbontransportfuels(mediumconfidence)Integratedandsectoralstudiesbroadlyagreethat1opportunitiesforswitchingtolowͲcarbonfuelsexistintheneartermandwillgrowovertime2MethaneͲbasedfuelsarealreadyincreasingtheirshareforroadvehiclesandwaterbornecraft3ElectricityproducedfromlowͲcarbonsourceshasnearͲtermpotentialforelectricrailandshortͲto4mediumͲtermpotentialaselectricbuseslightdutyand2Ͳwheelroadvehiclesaredeployed5HydrogenfuelsfromlowͲcarbonsourcesconstitutelongertermoptionsCommerciallyavailable6liquidandgaseousbiofuelsalreadyprovidecoͲbenefitstogetherwithmitigationoptionsthatcanbe7increasedbytechnologyadvancesReducingtransportemissionsofparticulatematter(including8blackcarbon)troposphericozoneandaerosolprecursors(includingNOx)canhavehumanhealth9andmitigationcoͲbenefitsintheshortterm(mediumevidencemediumagreement)[8283111310FigureTS20rightpanel]11

ThecostͲeffectivenessofdifferentcarbonreductionmeasuresinthetransportsectorvaries12significantlywithvehicletypeandtransportmode(highconfidence)Thelevelizedcostsof13conservedcarboncanbeverylowornegativeformanyshortͲtermbehaviouralmeasuresand14efficiencyimprovementsforlightͲandheavyͲdutyroadvehiclesandwaterbornecraftIn2030for15someelectricvehiclesaircraftandpossiblyhighͲspeedraillevelizedcostscouldbemorethan16USD100tCO2avoided(limitedevidencemediumagreement)[868889FiguresTS21TS22]17

Regionaldifferencesinfluencethechoiceoftransportmitigationoptions(highconfidence)18InstitutionallegalfinancialandculturalbarriersconstrainlowͲcarbontechnologyuptakeand19behaviouralchangeEstablishedinfrastructuremaylimittheoptionsformodalshiftandleadtoa20greaterrelianceonadvancedvehicletechnologiesaslowingofgrowthinlightdutyvehicledemand21isalreadyevidentinsomeOECDcountriesForalleconomiesespeciallythosewithhighratesof22urbangrowthinvestmentinpublictransportsystemsandlowͲcarboninfrastructurecanavoidlockͲ23intocarbonͲintensivemodesPrioritizinginfrastructureforpedestriansandintegratingnonͲ24motorizedandtransitservicescancreateeconomicandsocialcoͲbenefitsinallregions(medium25evidencemediumagreement)[848889143Table83]26

MitigationstrategieswhenassociatedwithnonͲclimatepoliciesatallgovernmentlevelscanhelp27decoupletransportGHGemissionsfromeconomicgrowthinallregions(mediumconfidence)28Thesestrategiescanhelpreducetraveldemandincentivisefreightbusinessestoreducethecarbon29intensityoftheirlogisticalsystemsandinducemodalshiftsaswellasprovidecoͲbenefitsincluding30improvedaccessandmobilitybetterhealthandsafetygreaterenergysecurityandcostandtime31savings(mediumevidencehighagreement)[87810]32

Buildings33

In2010thebuildingsector24accountedforaround32finalenergyuseand88GtCO2emissions34includingdirectandindirectemissionswithenergydemandprojectedtoapproximatelydouble35andCO2emissionstoincreaseby50ndash150bymidͲcenturyinbaselinescenarios(mediumevidence36mediumagreement)Thisenergydemandgrowthresultsfromimprovementsinwealthlifestyle37changeaccesstomodernenergyservicesandadequatehousingandurbanisationThereare38significantlockͲinrisksassociatedwiththelonglifespansofbuildingsandrelatedinfrastructureand39theseareespeciallyimportantinregionswithhighconstructionrates(robustevidencehigh40agreement)[94FigureTS15]41

RecentadvancesintechnologiesknowͲhowandpoliciesprovideopportunitiestostabilizeor42reduceglobalbuildingssectorenergyusebymidͲcentury(robustevidencehighagreement)For43newbuildingstheadoptionofverylowenergybuildingcodesisimportantandhasprogressed44substantiallysinceAR4Retrofitsformakeypartofthemitigationstrategyincountrieswith4524Thebuildingsectorcoverstheresidentialcommercialpublicandservicessectorsemissionsfromconstructionareaccountedforintheindustrysector

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 30: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

26of33

establishedbuildingstocksandreductionsofheatingcoolingenergyuseby50ndash90inindividual1buildingshavebeenachievedRecentlargeimprovementsinperformanceandcostsmakeverylow2energyconstructionandretrofitseconomicallyattractivesometimesevenatnetnegativecosts3[93]4

Lifestylecultureandbehavioursignificantlyinfluenceenergyconsumptioninbuildings(limited5evidencehighagreement)AthreeͲtofiveͲfolddifferenceinenergyusehasbeenshownfor6provisionofsimilarbuildingͲrelatedenergyservicelevelsinbuildingsFordevelopedcountries7scenariosindicatethatlifestyleandbehaviouralchangescouldreduceenergydemandbyupto208intheshorttermandbyupto50ofpresentlevelsbymidͲcenturyIndevelopingcountries9integratingelementsoftraditionallifestylesintobuildingpracticesandarchitecturecouldfacilitate10theprovisionofhighlevelsofenergyserviceswithmuchlowerenergyinputsthanbaseline[93]11

MostmitigationoptionsforbuildingshaveconsiderableanddiversecoͲbenefitsinadditionto12energycostsavings(robustevidencehighagreement)Theseincludeimprovementsinenergy13securityhealth(suchasfromcleanerwoodͲburningcookstoves)environmentaloutcomes14workplaceproductivityfuelpovertyreductionsandnetemploymentgainsStudieswhichhave15monetizedcoͲbenefitsoftenfindthattheseexceedenergycostsavingsandpossiblyclimatebenefits16(mediumevidencemediumagreement)[9697363]17

Strongbarrierssuchassplitincentives(egtenantsandbuilders)fragmentedmarketsand18inadequateaccesstoinformationandfinancinghinderthemarketͲbaseduptakeofcostͲeffective19opportunitiesBarrierscanbeovercomebypolicyinterventionsaddressingallstagesofthebuilding20andappliancelifecycles(robustevidencehighagreement)[9891016Box310]21

Thedevelopmentofportfoliosofenergyefficiencypoliciesandtheirimplementationhas22advancedconsiderablysinceAR4Buildingcodesandappliancestandardsifwelldesignedand23implementedhavebeenamongthemostenvironmentallyandcostͲeffectiveinstrumentsfor24emissionreductions(robustevidencehighagreement)Insomedevelopedcountriestheyhave25contributedtoastabilizationoforreductionintotalenergydemandforbuildingsSubstantially26strengtheningthesecodesadoptingtheminfurtherjurisdictionsandextendingthemtomore27buildingandappliancetypeswillbeakeyfactorinreachingambitiousclimategoals[9102653]28

Industry29

In2010theindustrysectoraccountedforaround28offinalenergyuseand13GtCO2emissions30includingdirectandindirectemissionsaswellasprocessemissionswithemissionsprojectedto31increaseby50ndash150by2050inthebaselinescenariosassessedinAR5unlessenergyefficiency32improvementsareacceleratedsignificantly(mediumevidencemediumagreement)Emissionsfrom33industryaccountedforjustover30ofglobalGHGemissionsin2010andarecurrentlygreaterthan34emissionsfromeitherthebuildingsortransportendͲusesectors[SPM3FigureSPM7103]35

Theenergyintensityoftheindustrysectorcouldbedirectlyreducedbyabout25comparedto36thecurrentlevelthroughthewideͲscaleupgradingreplacementanddeploymentofbestavailable37technologiesparticularlyincountrieswherethesearenotinuseandinnonͲenergyintensive38industries(highagreementrobustevidence)Additionalenergyintensityreductionsofabout2039maypotentiallyberealizedthroughinnovation(limitedevidencemediumagreement)Barriersto40implementingenergyefficiencyrelatelargelytoinitialinvestmentcostsandlackofinformation41Informationprogrammesareaprevalentapproachforpromotingenergyefficiencyfollowedby42economicinstrumentsregulatoryapproachesandvoluntaryactions[1071091011]43

ImprovementsinGHGemissionefficiencyandintheefficiencyofmaterialuserecyclingandreͲ44useofmaterialsandproductsandoverallreductionsinproductdemand(egthroughamore45intensiveuseofproducts)andservicedemandcouldinadditiontoenergyefficiencyhelpreduce46GHGemissionsbelowthebaselinelevelintheindustrysector(mediumevidencehighagreement)47ManyemissionͲreducingoptionsarecostͲeffectiveprofitableandassociatedwithmultiplecoͲ48

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 31: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

27of33

benefits(betterenvironmentalcompliancehealthbenefitsetc)InthelongͲtermashifttolowͲ1carbonelectricitynewindustrialprocessesradicalproductinnovations(egalternativesto2cement)orCCS(egtomitigateprocessemissions)couldcontributetosignificantGHGemission3reductionsLackofpolicyandexperiencesinmaterialandproductserviceefficiencyarethemajor4barriers[1041071081011]5

CO2emissionsdominateGHGemissionsfromindustrybuttherearealsosubstantialmitigation6opportunitiesfornonͲCO2gases(robustevidencehighagreement)CH4N2Oandfluorinatedgases7fromindustryaccountedforemissionsof09GtCO2eqin2010Keymitigationopportunitiesinclude8egthereductionofhydrofluorocarbonemissionsbyprocessoptimizationandrefrigerantrecovery9recyclingandsubstitutionalthoughtherearebarriers[Tables102107]10

Systemicapproachesandcollaborativeactivitiesacrosscompaniesandsectorscanreduceenergy11andmaterialconsumptionandthusGHGemissions(robustevidencehighagreement)The12applicationofcrossͲcuttingtechnologies(egefficientmotors)andmeasures(egreducingairor13steamleaks)inbothlargeenergyintensiveindustriesandsmallandmediumenterprisescan14improveprocessperformanceandplantefficiencycostͲeffectivelyCooperationacrosscompanies15(eginindustrialparks)andsectorscouldincludethesharingofinfrastructureinformationand16wasteheatutilization[104105]17

ImportantoptionsformitigationinwastemanagementarewastereductionfollowedbyreͲuse18recyclingandenergyrecovery(robustevidencehighagreement)Wasteandwastewateraccounted19for15GtCO2eqin2010Astheshareofrecycledorreusedmaterialisstilllow(eggloballyaround2020ofmunicipalsolidwasteisrecycled)wastetreatmenttechnologiesandrecoveringenergyto21reducedemandforfossilfuelscanresultinsignificantdirectemissionreductionsfromwaste22disposal[1041014]23

SPM424 AgricultureForestryandOtherLandUse(AFOLU)24

TheAFOLUsectoraccountsforaboutaquarter(~10ndash12GtCO2eqyr)ofnetanthropogenicGHG25emissionsmainlyfromdeforestationagriculturalemissionsfromsoilandnutrientmanagement26andlivestock(mediumevidencehighagreement)Mostrecentestimatesindicateadeclinein27AFOLUCO2fluxeslargelyduetodecreasingdeforestationratesandincreasedafforestation28HowevertheuncertaintyinhistoricalnetAFOLUemissionsislargerthanforothersectorsand29additionaluncertaintiesinprojectedbaselinenetAFOLUemissionsexistNonethelessinthefuture30netannualbaselineCO2emissionsfromAFOLUareprojectedtodeclinewithnetemissions31potentiallylessthanhalfthe2010levelby2050andthepossibilityoftheAFOLUsectorsbecominga32netCO2sinkbeforetheendofcentury(mediumevidencehighagreement)[6314112Figures3365SPM7]34

AFOLUplaysacentralroleforfoodsecurityandsustainabledevelopmentThemostcostͲeffective35mitigationoptionsinforestryareafforestationsustainableforestmanagementandreducing36deforestationwithlargedifferencesintheirrelativeimportanceacrossregionsInagriculturethe37mostcostͲeffectivemitigationoptionsarecroplandmanagementgrazinglandmanagementand38restorationoforganicsoils(mediumevidencehighagreement)Theeconomicmitigationpotential39ofsupplyͲsidemeasuresisestimatedtobe72to11GtCO2eqyear25in2030formitigationefforts40consistentwithcarbonprices26upto100USDtCO2eqaboutathirdofwhichcanbeachievedata41lt20USDtCO2eq(mediumevidencemediumagreement)Therearepotentialbarriersto42implementationofavailablemitigationoptions[117118]DemandͲsidemeasuressuchaschanges43indietandreductionsoflossesinthefoodsupplychainhaveasignificantbutuncertainpotential4425Fullrangeofallstudies049ndash11GtCO2eqyear26Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigationcarbonpriceisoftenusedasaproxytorepresentthelevelofeffortinmitigationpolicies(seeWGIIIAR5Glossary)

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 32: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

28of33

toreduceGHGemissionsfromfoodproduction(mediumevidencemediumagreement)Estimates1varyfromroughly076ndash86GtCO2eqyrby2050(limitedevidencemediumagreement)[1141162Figure1114]3

Policiesgoverningagriculturalpracticesandforestconservationandmanagementaremore4effectivewheninvolvingbothmitigationandadaptationSomemitigationoptionsintheAFOLU5sector(suchassoilandforestcarbonstocks)maybevulnerabletoclimatechange(medium6evidencehighagreement)Whenimplementedsustainablyactivitiestoreduceemissionsfrom7deforestationandforestdegradation(REDD+27isanexampledesignedtobesustainable)arecostͲ8effectivepolicyoptionsformitigatingclimatechangewithpotentialeconomicsocialandother9environmentalandadaptationcoͲbenefits(egconservationofbiodiversityandwaterresources10andreducingsoilerosion)(limitedevidencemediumagreement)[11321110]11

Bioenergycanplayacriticalroleformitigationbutthereareissuestoconsidersuchasthe12sustainabilityofpracticesandtheefficiencyofbioenergysystems(robustevidencemedium13agreement)[1144Box1151113611137]BarrierstolargeͲscaledeploymentofbioenergy14includeconcernsaboutGHGemissionsfromlandfoodsecuritywaterresourcesbiodiversity15conservationandlivelihoodsThescientificdebateabouttheoverallclimateimpactrelatedtolandͲ16usecompetitioneffectsofspecificbioenergypathwaysremainsunresolved(robustevidencehigh17agreement)[11441113]Bioenergytechnologiesarediverseandspanawiderangeofoptionsand18technologypathwaysEvidencesuggeststhatoptionswithlowlifecycleemissions(egsugarcane19Miscanthusfastgrowingtreespeciesandsustainableuseofbiomassresidues)somealready20availablecanreduceGHGemissionsoutcomesaresiteͲspecificandrelyonefficientintegrated21lsquobiomassͲtoͲbioenergysystemsrsquoandsustainablelandͲusemanagementandgovernanceInsome22regionsspecificbioenergyoptionssuchasimprovedcookstovesandsmallͲscalebiogasand23biopowerproductioncouldreduceGHGemissionsandimprovelivelihoodsandhealthinthe24contextofsustainabledevelopment(mediumevidencemediumagreement)[1113]25

SPM425 HumanSettlementsInfrastructureandSpatialPlanning26

Urbanizationisaglobaltrendandisassociatedwithincreasesinincomeandhigherurbanincomes27arecorrelatedwithhigherconsumptionofenergyandGHGemissions(mediumevidencehigh28agreement)Asof2011morethan52oftheglobalpopulationlivesinurbanareasIn2006urban29areasaccountedfor67ndash76ofenergyuseand71ndash76ofenergyͲrelatedCO2emissionsBy205030theurbanpopulationisexpectedtoincreaseto56ndash71billionor64ndash69ofworldpopulationCities31innonͲAnnexIcountriesgenerallyhavehigherlevelsofenergyusecomparedtothenational32averagewhereascitiesinAnnexIcountriesgenerallyhavelowerenergyusepercapitathan33nationalaverages(mediumevidencemediumagreement)[122123]34

Thenexttwodecadespresentawindowofopportunityformitigationinurbanareasasalarge35portionoftheworldrsquosurbanareaswillbedevelopedduringthisperiod(limitedevidencehigh36agreement)Accountingfortrendsindecliningpopulationdensitiesandcontinuedeconomicand37populationgrowthurbanlandcoverisprojectedtoexpandby56ndash310between2000and203038[122123124128]39

Mitigationoptionsinurbanareasvarybyurbanizationtrajectoriesandareexpectedtobemost40effectivewhenpolicyinstrumentsarebundled(robustevidencehighagreement)Infrastructure41andurbanformarestronglyinterlinkedandlockinpatternsoflandusetransportchoicehousing42andbehaviourEffectivemitigationstrategiesinvolvepackagesofmutuallyreinforcingpolicies43includingcoͲlocatinghighresidentialwithhighemploymentdensitiesachievinghighdiversityand44integrationoflandusesincreasingaccessibilityandinvestinginpublictransportandotherdemand45managementmeasures[84123124125126]46

27SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 33: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

29of33

Thelargestmitigationopportunitieswithrespecttohumansettlementsareinrapidlyurbanizing1areaswhereurbanformandinfrastructurearenotlockedinbutwherethereareoftenlimited2governancetechnicalfinancialandinstitutionalcapacities(robustevidencehighagreement)The3bulkofurbangrowthisexpectedinsmallͲtomediumͲsizecitiesindevelopingcountriesThe4feasibilityofspatialplanninginstrumentsforclimatechangemitigationishighlydependentona5cityrsquosfinancialandgovernancecapability[126127]6

Thousandsofcitiesareundertakingclimateactionplansbuttheiraggregateimpactonurban7emissionsisuncertain(robustevidencehighagreement)Therehasbeenlittlesystematic8assessmentontheirimplementationtheextenttowhichemissionreductiontargetsarebeing9achievedoremissionsreducedCurrentclimateactionplansfocuslargelyonenergyefficiency10FewerclimateactionplansconsiderlandͲuseplanningstrategiesandcrossͲsectoralmeasuresto11reducesprawlandpromotetransitͲorienteddevelopment28[126127129]12

SuccessfulimplementationofurbanͲscaleclimatechangemitigationstrategiescanprovidecoͲ13benefits(robustevidencehighagreement)Urbanareasthroughouttheworldcontinuetostruggle14withchallengesincludingensuringaccesstoenergylimitingairandwaterpollutionand15maintainingemploymentopportunitiesandcompetitivenessActiononurbanͲscalemitigationoften16dependsontheabilitytorelateclimatechangemitigationeffortstolocalcoͲbenefits(robust17evidencehighagreement)[125126127128]18

SPM5 Mitigationpoliciesandinstitutions19

SPM51 Sectoralandnationalpolicies20

SubstantialreductionsinemissionswouldrequirelargechangesininvestmentpatternsMitigation21scenariosinwhichpoliciesstabilizeatmosphericconcentrations(withoutovershoot)intherange22from430to530ppmCO2eqby2100leadtosubstantialshiftsinannualinvestmentflowsduringthe23period2010ndash2029comparedtobaselinescenarios(FigureSPM9)Overthenexttwodecades(201024to2029)annualinvestmentinconventionalfossilfueltechnologiesassociatedwiththeelectricity25supplysectorisprojectedtodeclinebyaboutUSD30(2ndash166)billion(medianͲ20comparedto262010)whileannualinvestmentinlowͲcarbonelectricitysupply(ierenewablesnuclearand27electricitygenerationwithCCS)isprojectedtorisebyaboutUSD147(31ndash360)billion(median28+100comparedto2010)(limitedevidencemediumagreement)Forcomparisonglobaltotal29annualinvestmentintheenergysystemispresentlyaboutUSD1200billionInadditionannual30incrementalenergyefficiencyinvestmentsintransportbuildingsandindustryisprojectedto31increasebyaboutUSD336(1ndash641)billion(limitedevidencemediumagreement)frequently32involvingmodernizationofexistingequipment[13111622]33

Thereisnowidelyagreeddefinitionofwhatconstitutesclimatefinancebutestimatesofthe34financialflowsassociatedwithclimatechangemitigationandadaptationareavailablePublished35assessmentsofallcurrentannualfinancialflowswhoseexpectedeffectistoreducenetGHG36emissionsandortoenhanceresiliencetoclimatechangeandclimatevariabilityshowUSD343to37385billionperyearglobally(mediumconfidence)[BoxTS14]MostofthisgoestomitigationOutof38thistotalpublicclimatefinancethatflowedtodevelopingcountriesisestimatedtobebetweenUSD3935to49billionyrin2011and2012(mediumconfidence)Estimatesofinternationalprivateclimate40financeflowingtodevelopingcountriesrangefromUSD10to72billionyrincludingforeigndirect41investmentasequityandloansintherangeofUSD10to37billionyrovertheperiodof2008ndash201142(mediumconfidence)[1622]43

44

28SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 34: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

30of33

1Figure SPM9 Change in annual investment flows from the average baseline level over the next two 2decades (2010 to 2029) for mitigation scenarios that stabilize concentrations within the range of 3approximately 430ndash530 ppm CO2eq by 2100 Investment changes are based on a limited number of 4model studies and model comparisons Total electricity generation (leftmost column) is the sum of 5renewables nuclear power plants with CCS and fossil power plants without CCS The vertical bars 6indicate the range between minimum and maximum estimate the horizontal bar indicates the median 7Proximity to this median value does not imply higher likelihood because of the different degree of 8aggregation of model results the low number of studies available and different assumptions in the 9different studies considered The numbers in the bottom row show the total number of studies in the 10literature used for the assessment This underscores that investment needs are still an evolving area 11of research that relatively few studies have examined [Figure 163] [Subject to final quality check and 12copy edit] 13

TherehasbeenaconsiderableincreaseinnationalandsubͲnationalmitigationplansand14strategiessinceAR4In201267ofglobalGHGemissionsweresubjecttonationallegislationor15strategiesversus45in2007Howevertherehasnotyetbeenasubstantialdeviationinglobal16emissionsfromthepasttrend[Figure13c]Theseplansandstrategiesareintheirearlystagesof17developmentandimplementationinmanycountriesmakingitdifficulttoassesstheiraggregate18impactonfutureglobalemissions(mediumevidencehighagreement)[14341435151152]19

SinceAR4therehasbeenanincreasedfocusonpoliciesdesignedtointegratemultipleobjectives20increasecoͲbenefitsandreduceadversesideͲeffects(highconfidence)Governmentsoften21explicitlyreferencecoͲbenefitsinclimateandsectoralplansandstrategiesThescientificliterature22hassoughttoassessthesizeofcoͲbenefits(seeSectionSPM41)andthegreaterpoliticalfeasibility23anddurabilityofpoliciesthathavelargecoͲbenefitsandsmalladversesideͲeffects[48576624132152]DespitethegrowingattentioninpolicymakingandthescientificliteraturesinceAR4the25analyticalandempiricalunderpinningsforunderstandingmanyoftheinteractiveeffectsareunderͲ26developed[1236342485766]27

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 35: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

31of33

SectorͲspecificpolicieshavebeenmorewidelyusedthaneconomyͲwidepolicies(medium1evidencehighagreement)AlthoughmosteconomictheorysuggeststhateconomyͲwidepoliciesfor2thesingularobjectiveofmitigationwouldbemorecostͲeffectivethansectorͲspecificpoliciessince3AR4agrowingnumberofstudieshasdemonstratedthatadministrativeandpoliticalbarriersmay4makeeconomyͲwidepolicieshardertodesignandimplementthansectorͲspecificpoliciesThelatter5maybebettersuitedtoaddressbarriersormarketfailuresspecifictocertainsectorsandmaybe6bundledinpackagesofcomplementarypolicies[63658109101010152155158159]7

Regulatoryapproachesandinformationmeasuresarewidelyusedandareoftenenvironmentally8effective(mediumevidencemediumagreement)Examplesofregulatoryapproachesincludeenergy9efficiencystandardsexamplesofinformationprogrammesincludelabellingprogrammesthatcan10helpconsumersmakebetterͲinformeddecisionsWhilesuchapproacheshaveoftenbeenfoundto11haveanetsocialbenefitthescientificliteratureisdividedontheextenttowhichsuchpoliciescan12beimplementedwithnegativeprivatecoststofirmsandindividuals[Box31015551556]There13isgeneralagreementthatreboundeffectsexistwherebyhigherefficiencycanleadtolowerenergy14pricesandgreaterconsumptionbutthereislowagreementintheliteratureonthemagnitude15[39557214421554]16

SinceAR4capandtradesystemsforGHGshavebeenestablishedinanumberofcountriesand17regionsTheirshortͲrunenvironmentaleffecthasbeenlimitedasaresultofloosecapsorcaps18thathavenotprovedtobeconstraining(limitedevidencemediumagreement)Thiswasrelatedto19factorssuchasthefinancialandeconomiccrisisthatreducedenergydemandnewenergysources20interactionswithotherpoliciesandregulatoryuncertaintyInprincipleacapandtradesystemcan21achievemitigationinacostͲeffectivewayitsimplementationdependsonnationalcircumstances22Thoughearlierprogrammesreliedalmostexclusivelyongrandfathering(freeallocationofpermits)23auctioningpermitsisincreasinglyappliedIfallowancesareauctionedrevenuescanbeusedto24addressotherinvestmentswithahighsocialreturnandorreducethetaxanddebtburden[1442251553]26

InsomecountriestaxͲbasedpoliciesspecificallyaimedatreducingGHGemissionsndashalongside27technologyandotherpoliciesndashhavehelpedtoweakenthelinkbetweenGHGemissionsandGDP28(highconfidence)Inalargegroupofcountriesfueltaxes(althoughnotnecessarilydesignedforthe29purposeofmitigation)haveeffectsthatareakintosectoralcarbontaxes[Table152]Thedemand30reductionintransportfuelassociatedwitha1priceincreaseis06to08inthelongrun31althoughtheshortͲrunresponseismuchsmaller[1552]Insomecountriesrevenuesareusedto32reduceothertaxesandortoprovidetransferstolowͲincomegroupsThisillustratesthegeneral33principlethatmitigationpoliciesthatraisegovernmentrevenuegenerallyhavelowersocialcosts34thanapproacheswhichdonotWhileithaspreviouslybeenassumedthatfueltaxesinthetransport35sectorareregressivetherehavebeenanumberofotherstudiessinceAR4thathaveshownthemto36beprogressiveparticularlyindevelopingcountries(mediumevidencemediumagreement)[3633714421552]38

ThereductionofsubsidiesforGHGͲrelatedactivitiesinvarioussectorscanachieveemission39reductionsdependingonthesocialandeconomiccontext(highconfidence)Whilesubsidiescan40affectemissionsinmanysectorsmostoftherecentliteraturehasfocusedonsubsidiesinfossil41fuelsSinceAR4asmallbutgrowingliteraturebasedoneconomyͲwidemodelshasprojectedthat42completeremovalofsubsidiestofossilfuelsinallcountriescouldresultinreductionsinglobal43aggregateemissionsbymidͲcentury(mediumevidencemediumagreement)[71213131432441552]Studiesvaryinmethodologythetypeanddefinitionofsubsidiesandthetimeframefor45phaseoutconsideredInparticularthestudiesassesstheimpactsofcompleteremovalofallfossil46fuelsubsidieswithoutseekingtoassesswhichsubsidiesarewastefulandinefficientkeepinginmind47nationalcircumstancesAlthoughpoliticaleconomybarriersaresubstantialsomecountrieshave48reformedtheirtaxandbudgetsystemstoreducefuelsubsidiesTohelpreducepossibleadverse49effectsonlowerincomegroupswhooftenspendalargefractionoftheirincomeonenergyservices50

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 36: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

32of33

manygovernmentshaveutilizedlumpͲsumcashtransfersorothermechanismstargetedonthe1poor[1552]2

Interactionsbetweenoramongmitigationpoliciesmaybesynergisticormayhavenoadditive3effectonreducingemissions(mediumevidencehighagreement)Forinstanceacarbontaxcan4haveanadditiveenvironmentaleffecttopoliciessuchassubsidiesforthesupplyofREBycontrast5ifacapandtradesystemhasabindingcap(sufficientlystringenttoaffectemissionͲrelated6decisions)thenotherpoliciessuchasREsubsidieshavenofurtherimpactonreducingemissions7withinthetimeperiodthatthecapapplies(althoughtheymayaffectcostsandpossiblytheviability8ofmorestringentfuturetargets)(mediumevidencehighagreement)Ineithercaseadditional9policiesmaybeneededtoaddressmarketfailuresrelatingtoinnovationandtechnologydiffusion10[157]11

Somemitigationpoliciesraisethepricesforsomeenergyservicesandcouldhampertheabilityof12societiestoexpandaccesstomodernenergyservicestounderservedpopulations(lowconfidence)13ThesepotentialadversesideͲeffectscanbeavoidedwiththeadoptionofcomplementarypolicies14(mediumconfidence)Mostnotablyabout13billionpeopleworldwidedonothaveaccessto15electricityandabout3billionaredependentontraditionalsolidfuelsforcookingandheatingwith16severeadverseeffectsonhealthecosystemsanddevelopmentProvidingaccesstomodernenergy17servicesisanimportantsustainabledevelopmentobjectiveThecostsofachievingnearlyuniversal18accesstoelectricityandcleanfuelsforcookingandheatingareprojectedtobebetweenUSD72to1995billionperyearuntil2030withminimaleffectsonGHGemissions(limitedevidencemedium20agreement)Atransitionawayfromtheuseoftraditionalbiomass29andthemoreefficient21combustionofsolidfuelsreduceairpollutantemissionssuchassulfurdioxide(SO2)nitrogenoxides22(NOx)carbonmonoxide(CO)andblackcarbonandthusyieldlargehealthbenefits(high23confidence)[436679939711136168]24

Technologypolicycomplementsothermitigationpolicies(highconfidence)Technologypolicy25includestechnologyͲpush(egpubliclyfundedRampD)anddemandͲpull(eggovernmental26procurementprogrammes)Suchpoliciesaddressmarketfailuresrelatedtoinnovationand27technologydiffusion[311156]Technologysupportpolicieshavepromotedsubstantialinnovation28anddiffusionofnewtechnologiesbutthecostͲeffectivenessofsuchpoliciesisoftendifficultto29assess[265712910]Neverthelessprogramevaluationdatacanprovideempiricalevidenceon30therelativeeffectivenessofdifferentpoliciesandcanassistwithpolicydesign[1565]31

Inmanycountriestheprivatesectorplayscentralrolesintheprocessesthatleadtoemissionsas32wellastomitigationWithinappropriateenablingenvironmentstheprivatesectoralongwith33thepublicsectorcanplayanimportantroleinfinancingmitigation(mediumevidencehigh34agreement)Theshareoftotalmitigationfinancefromtheprivatesectoracknowledgingdata35limitationsisestimatedtobeonaveragebetweentwoͲthirdsandthreeͲfourthsonthegloballevel36(2010ndash2012)(limitedevidencemediumagreement)Inmanycountriespublicfinanceinterventions37bygovernmentsandnationalandinternationaldevelopmentbanksencourageclimateinvestments38bytheprivatesector[1621]andprovidefinancewhereprivatesectorinvestmentislimitedThe39qualityofacountryrsquosenablingenvironmentincludestheeffectivenessofitsinstitutionsregulations40andguidelinesregardingtheprivatesectorsecurityofpropertyrightscredibilityofpoliciesand41otherfactorsthathaveasubstantialimpactonwhetherprivatefirmsinvestinnewtechnologiesand42infrastructures[163]Dedicatedpolicyinstrumentsforexamplecreditinsurancepowerpurchase43agreementsandfeedͲintariffsconcessionalfinanceorrebatesprovideanincentiveforinvestment44byloweringrisksforprivateactors[164]45

29SeeWGIIIAR5Glossary

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03

Page 37: Résumé pour les décideurs

FinalDraft SummaryforPolicymakers IPCCWGIIIAR5

33of33

SPM52 Internationalcooperation1

TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)isthemainmultilateral2forumfocusedonaddressingclimatechangewithnearlyuniversalparticipationOtherinstitutions3organizedatdifferentlevelsofgovernancehaveresultedindiversifyinginternationalclimatechange4cooperation[133113414135]5

Existingandproposedinternationalclimatechangecooperationarrangementsvaryintheirfocus6anddegreeofcentralizationandcoordinationTheyspanmultilateralagreementsharmonized7nationalpoliciesanddecentralizedbutcoordinatednationalpoliciesaswellasregionaland8regionallyͲcoordinatedpolicies[FigureTS3713413132144]9

TheKyotoProtocolofferslessonstowardsachievingtheultimateobjectiveoftheUNFCCC10particularlywithrespecttoparticipationimplementationflexibilitymechanismsand11environmentaleffectiveness(mediumevidencelowagreement)[5213721313111313121214371TableTS9]13

UNFCCCactivitiessince2007haveledtoanincreasingnumberofinstitutionsandother14arrangementsforinternationalclimatechangecooperation[1351113131316211]15

PolicylinkagesamongregionalnationalandsubͲnationalclimatepoliciesofferpotentialclimate16changemitigationandadaptationbenefits(mediumevidencemediumagreement)Linkagescanbe17establishedbetweennationalpoliciesvariousinstrumentsandthroughregionalcooperation18[1331135131353145]19

Variousregionalinitiativesbetweenthenationalandglobalscalesareeitherbeingdevelopedor20implementedbuttheirimpactonglobalmitigationhasbeenlimitedtodate(mediumconfidence)21Manyclimatepoliciescanbemoreeffectiveifimplementedacrossgeographicalregions[TableTS9221313144145]23

EMBARGOEDEm

barg

oed

Not

to b

e pu

blis

hed

befo

re 1

100

Ber

lin ti

me

(09

00 G

MT)

Sun

day

13 A

pril

a20d0b03