Residual Stresses and the Bauschinger Effect

80
Brigham Young University BYU ScholarsArchive All eses and Dissertations 1965-6 Residual Stresses and the Bauschinger Effect Raymond M. Huebner Brigham Young University - Provo Follow this and additional works at: hps://scholarsarchive.byu.edu/etd Part of the Mechanical Engineering Commons is esis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All eses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. BYU ScholarsArchive Citation Huebner, Raymond M., "Residual Stresses and the Bauschinger Effect" (1965). All eses and Dissertations. 7122. hps://scholarsarchive.byu.edu/etd/7122

Transcript of Residual Stresses and the Bauschinger Effect

Brigham Young UniversityBYU ScholarsArchive

All Theses and Dissertations

1965-6

Residual Stresses and the Bauschinger EffectRaymond M. HuebnerBrigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by anauthorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected].

BYU ScholarsArchive CitationHuebner, Raymond M., "Residual Stresses and the Bauschinger Effect" (1965). All Theses and Dissertations. 7122.https://scholarsarchive.byu.edu/etd/7122

RESIDUAL STRESSES AND THE

BAUSCHINGER EFFECT

A Thesis

Subm itted to th e M echanical E ng ineering Department

Brigham Young U n iv e rs ity

Provo, Utah

In P a r t i a l F u lf i l lm e n t

Of th e Requirem ents fo r th e Degree o f

M aster o f Science

t>y

Raymond M. Huebner

June, 1965

This t h e s i s , by Raymond M. Huebner, i s accep ted in i t s p re sen t

form by th e Department o f M echanical E ng ineering o f Brigham Young

U n iv e rs ity as s a t i s f y in g th e th e s i s requ irem en ts f o r th e degree o f

M aster o f S c ience .

Date

Typed by fcfery S. Thornton

ACKNOWLEDGEMENT

The a u th o r w ishes to exp ress h is a p p re c ia tio n to the members o f h is

a d v iso ry committee and t o th e Department o f M echanical E ng ineering a t

Brigham Young U n iv e rs ity . P a r t i c u la r a p p re c ia tio n i s extended to D r.

John M. Simonsen and C harles M. P e rc iv a l fo r t h e i r h e lp and guidance.

This th e s i s i s d ed ica te d to th e a u th o r 's p a re n ts , Mr. and Mrs.

Raymond H. Huebner fo r t h e i r con tinued encouragement th roughou t h is

e d u ca tio n .

TABLE OF CONTENTS

iv

C hapter Page

I . INTRODUCTION ............................................................................................. 1

I I . LITERATURE SURVEY.....................................................................................5

I I I . METHOD OF APPROACH.....................................................................................9

Equipment Used Procedure Data R eduction

IV. DISCUSSION OF THE MEASUREMENTS AND RESULTS............................. 3*+

E f fe c t o f E ccen tr ic ity -C a lc u la tio n o f th e Axis o f Average S tra in I n te r p r e ta t io n o f th e MeasurementsI n te r p r e ta t io n o f th e R esu lts

V. CONCLUSIONS AND RECOMMENDATIONS.............................. k j

BIBLIOGRAPHY............................................................................................................U8

APPENDIX 50

CHAPTER I

INTRODUCTION

W ithin th e l a s t te n years th e re has been much i n t e r e s t in th e

f i e l d o f e l a s to - p l a s t i c b ehav io r o f en g in ee rin g m a te r ia ls . Hie re c e n t

p o p u la r i ty o f th e lo w -co st l ig h t-w e ig h t p l a s t i c a l l y designed s t r u c ­

tu re s h as added a g re a t d e a l o f im petus to t h i s i n t e r e s t . This th e s i s

d e a ls w ith one o f th e a sp e c ts o f e l a s to - p l a s t i c b eh av io r, namely, th e

d i s t r ib u t io n o f th e r e s id u a l s t r e s s e s in a sim ple member which has been

p l a s t i c a l l y deformed in te n s io n a n d /o r compression,. In p a r t i c u l a r , an

a ttem p t has been made to r e l a t e th e se r e s id u a l s t r e s s e s to th e w e ll-

known b u t l i t t l e understood B auschinger e f f e c t .

The B auschinger e f f e c t i s a lo s s o f y ie ld s tre n g th in one d i r e c ­

t io n which r e s u l t s from a member's be ing p re v io u s ly y ie ld e d in th e

o p p o site d i r e c t io n . For example, when a member i s p l a s t i c a l l y s t r e s s e d

in te n s io n , th e B auschinger e f f e c t causes th e y ie ld p o in t in com pression

to occur a t an a p p re c ia b ly low er s t r e s s th an would be exp ec ted . This

i s shown in F ig u re 1 by th e low er com pressive y ie ld s t r e s s which occurs

a t p o in t D. The occurence o f t e n s i l e y ie ld a ls o causes a n o th e r phenom­

enon, c a l le d work h a rd en in g , which causes th e n ex t y ie ld p o in t to occur

a t a s t r e s s h ig h e r th an th e f i r s t one. A lo g ic a l ex p lan a tio n f o r t h i s

beh av io r would be th a t r e s id u a l s t r e s s e s a re formed in th e member in

such a way as to a id th e t e n s i l e y ie ld s tre n g th in one sense and to

h in d e r th e com pressive y ie ld s tre n g th in th e o th e r .

1

2

I t i s p o ss ib le th a t work harden ing may s tre n g th e n th e m a te r ia l

to th e p o in t where th e com pressive y ie ld p o in t o f th e s t r a in e d m a te r ia l

occurs a t a h ig h e r s t r e s s th an th e com pressive y ie ld p o in t o f th e o r ig ­

in a l u n s tra in e d m a te r ia l . In F ig u re 1, th e l in e GH i s shown lo n g er than

OE.T jV -l

The Bauschinger e f f e c t s t i l l e x is t s because th e r a t i o ^ - equals BCthe r a t i o ——- .CD

---------- Sm all s t r a in---------- Large s t r a in

F ig . 1 . --M echanical H y s te re s is

When a b a r i s a x ia l ly loaded in a t e n s i l e t e s t in g m achine, the

h ig h e s t s t r e s s e s a re known to occur in th e outerm ost f i b e r s . I t i s

3

q u ite n a tu ra l t o assume th a t th e se f ib e r s a re th e f i r s t to y ie ld and

un load . When th e e x te rn a l lo ad on th e b a r i s re la x e d , th e se le s s e r - lo a d e d

o u ts id e f ib e r s w i l l th en be pushed in to com pression by th e c o n tra c tio n o f

th e o th e r f i b e r s . Of co u rse , th e com pressive s t r e s s e s o f th e o u ts id e

f ib e r s would be balanced by t e n s i le s t r e s s e s in th e o th e r f i b e r s . A

rough sk e tch o f t h i s expected r e s id u a l s t r e s s d i s t r ib u t io n i s shown in

F ig u re 2 .

Tension

F ig . 2 . --E xpected r e s id u a l s t r e s s d i s t r ib u t io n in a p l a s t i c a l l y deformed t e n s i l e specim en.

An a ttem p t was made in t h i s s tu d y to show th a t t h i s s i tu a t io n

does occur and th a t i t i s th e cause o f th e B auschinger e f f e c t . This was

accom plished by m easuring and p lo t t in g th e r e s id u a l s t r e s s p a t te rn s

found in b a rs o f s t e e l which had been p re v io u s ly p l a s t i c a l l y deform ed.

The method o f beam d is s e c t io n was s e le c te d f o r th e measurement o f th e se

s t r e s s e s .

k

The in f lu e n c e o f r e s id u a l s t r e s s e s upon th e m echanical p ro p e r t ie s

o f en g in ee rin g m a te r ia ls has been re c e iv in g a c c e le r a te d a t t e n t io n w ith in

th e p a s t two decades. Knowledge in t h i s f i e l d has been r e s t r i c t e d by

th e g e n e ra l d i f f i c u l t y in m easuring th e se r e s id u a l s t r e s s e s . To d a te

th e on ly common methods in use a re ( l ) th e d is s e c t io n method, where a

member i s cu t a p a r t and th e r e s id u a l s t r e s s e s a re c a lc u la te d from th e

r e s u l t in g geom etric changes in th e p a re n t member, and (2) th e X -ray

d i f f r a c t io n method.

The X -ray d i f f r a c t io n method i s a p p a re n tly th e one most commonly

u sed . I t ' s p o p u la r ity i s p robab ly due to th e speed and ease w ith which

measurements can be made. The techn ique r e l a t e s th e d i f f r a c t io n o f an

X -ray beam to th e d i s to r te d l a t t i c e s t ru c tu re in m eta ls caused by r e s i ­

d u a l s t r e s s e s . Experience has shown th i s m iso r ie n ta tio n to be g re a te s t

a long th e a x is o f maximum sh e a r . As would be expected , on ly th e s t r e s s e s

on th e su rfa ce o f th e specimen a re m easured.

This n o n -d e s tru c tiv e method has obvious a d v an tag es . I f the

s t r e s s e s on th e c ro ss s e c tio n o r o th e r in te r n a l lo c a t io n s a re d e s ire d ,

th e specimen must be c a r e f u l ly sawed and p o lish e d .

In th e beam d is s e c t io n method of r e s id u a l s t r e s s measurement, th e

a x ia l s t r e s s e s a t any p o in t in th e specimen may be m easured. This i s

accom plished by c u t t in g s le n d e r beams out o f th e b a r and by m easuring

th e change in d e f le c t io n and hence c u rv a tu re a s la y e rs to g e th e r w ith

t h e i r co n ta in ed s t r e s s e s a re removed. This removal i s done by g rin d in g

w ith ex trem ely l i g h t c u ts . The S .A .E . p u b lic a tio n TR-1^7 ( l ) g ives d e ­

t a i l s and an e v a lu a tio n o f th e se and o th e r m ethods. The techn ique used

a t th e G eneral Motors L ab o ra to rie s fo r th e d is s e c t io n method (2) has been

in c lu d ed in Appendix A. This was done fo r th e convenience o f th e re a d e r

s in ce t h i s document i s n o t r e a d i ly a v a i la b le .

CHAPTER I I

LITERATURE SURVEY

A l i t e r a t u r e search was made to determ ine what work had a lre a d y

been perform ed in th e f i e l d o f r e s id u a l s t r e s s e s . In p a r t i c u la r , i n ­

fo rm ation l in k in g r e s id u a l s t r e s s e s to th e B auschinger e f f e c t was sough t.

Many papers were found which d e a l t w ith th e s u b je c t o f r e s id u a l

s t r e s s e s . In a lik e w ise manner, th e B auschinger e f f e c t was found to be

a popu lar to p i c .

S . L. Smith and W. A. Wood (3 ) have re p o rte d f in d in g p l a s t i c a l l y

induced r e s id u a l su rfa ce s t r e s s e s which were o r ie n te d in such a manner

to oppose the fo rm erly a p p lie d lo a d . These su rfa ce s t r e s s e s were found

to be balanced by op p o site s t r e s s e s n e a r th e c e n te r . T h e ir measurement

o f th e se su rfa ce s t r e s s e s was done by X -ray d i f f r a c t io n m ethods. E tch ­

in g a c ro ss th e c ro ss s e c tio n showed th e expected l a t e r a l d isp lacem ents

in th e c r y s ta l l a t t i c e .

Much o f th e ex p erim en ta tion in t h i s f i e l d has been done w ith

to r s io n o f tu b u la r samples o f aluminum, b ra s s , copper, i r o n , le a d and

n ic k e l . A permanent deform ation c a l le d B auschinger s t r a i n has been ob­

served in some m e ta ls . Some a ttem p ts have been made to c o r r e la te t h i s

s t r a in w ith r e s id u a l s t r e s s e s . R. L. Wooley (h) has r e la te d th e Bausch­

in g e r e f f e c t to s l i p a s o th e r au th o rs have a ls o done. This same a r t i c l e

a ls o d isc u sse s methods o f p re d ic t in g th e amount o f th e B auschinger

s t r a i n . Wooley d e fin e s th e B auschinger s t r a in as th e d if fe re n c e in

s t r a in in com pression between th e ( p l a s t i c a l l y in te n s io n ) deformed and

5

6

undeformed specim ens. Naghdi, Essenburg and Koff (5 ) have t r i e d combin­

a t io n s o f to r s io n and te n s io n , and th e r e s u l t i s a " y ie ld s u r fa c e ” on the

s t r e s s - s t r a i n diagram . In t h i s c a se , a B auschinger e f f e c t from to r s io n

b u t n o t te n s io n was observed .

The g ra d u a lly in c re a s in g y ie ld p o in ts in te n s io n r e s u l t in g from

su ccess iv e cy c le s o f p la s t i c deform ation o r work h a rd en in g , a s i t i s

commonly c a l le d , has in s p ire d many th e o r ie s o f y ie ld s t r e n g th . C ry s ta l­

l in e a c t io n has re c e iv e d much a t t e n t io n . A. H. C o t t r e l l (6) has

th e o r iz e d a d i s t r ib u t io n o f th e s t r e s s e s among g ra in b o u n d arie s . The

evidence o f low s tre n g th s o f s o f t c r y s ta ls has le d to th e conclusion

th a t c e r ta in sources of s l i p e x i s t in th e se m a te r ia l s . These sources

may have th e a b i l i t y to re le a s e d is lo c a tio n s in to th e surround ings under

sm all a p p lie d s t r e s s e s .

There a re two p o s s i b i l i t i e s f o r th e se so u rc es . They may be d i s ­

lo c a t io n s a lre a d y in th e c r y s ta ls o r , a l t e r n a t e ly , th e y may be c r y s ta l

boundaries o r im p erfec tio n s o f o th e r k inds from which d is lo c a t io n s can

be c re a te d under sm all s t r e s s e s . C o t t r e l l has a ttem p ted to ex p la in

both work h arden ing and th e B auschinger e f f e c t by th e o r iz in g th a t th ese

m obile d is lo c a t io n s became p i le d up o r trap p ed a t some b a r r i e r , i . e . ,

a g ra in boundary.

The mechanisms o f p la s t i c flow and f r a c tu re seem to have rece iv ed

most o f th e a t te n t io n in t h i s f i e l d . An a p p re c ia b le amount o f t h i s work

has been ex p erim en ta tio n w ith s in g le c r y s t a l s . One o f th e th e o r ie s o f

p la s t i c flow given by C o t t r e l l i s t h a t th e ap p aren t y ie ld s t r e s s shown

by a t e n s i l e specimen i s low er than th e a c tu a l y ie ld s t r e s s o f th e m ate r­

i a l . The y ie ld in g seems to be i n i t i a t e d a t seme lo c a t io n o f h igh s t r e s s

c o n c e n tra tio n and th en sp reads through th e m a te r ia l by th e a c t io n o f h igh

7

s t r e s s around th e y ie ld e d p o r t io n . For a s in g le iro n c r y s ta l , th e r a t i o

o f th e th e o r e t ic a l y ie ld s t r e s s to th e ap p aren t y ie ld s t r e s s v a r ie s from

two to t h r e e . Evidence th a t y ie ld in g spreads in t h i s way i s g iven by

observed su rfa ce m arkings, i . e . , Luders bands. These bands a re v is ib le

l in e s ap p earin g on th e su rfa ce o f a y ie ld e d member. The p r e f e r e n t ia l

growth o f th e se bands a long l in e s 1+5° to th e p r in c ip a l s t r e s s e s has been

used as evidence th a t o v e rs tra in e d m a te r ia l does n o t support sh ea r s t r e s s e s .

Work w ith c i r c u la r o r re c ta n g u la r b a rs in te n s io n has been con­

cerned w ith th e o ry o f f r a c tu r e , neck ing , change in u ltim a te s t r e s s and

e lo n g a tio n c h a r a c t e r i s t i c s . Jfeny a tte m p ts , bo th th e o r e t ic a l and em pir­

i c a l , have been made to p re d ic t th e magnitude o f r e s id u a l s t r e s s e s . G.

H. Handleman and W. H. Warner (7 ) have worked out d i f f e r e n t i a l equations

fo r p la s t i c work, s t r a i n , e t c . By assum ing a ra d iu s o f c u rv a tu re , P. W.

Bridgeman (8) has dev ised a form ula f o r f in d in g th e average s t r e s s

a c ro ss th e ro o t o f th e necked-down p o r tio n o f a t e n s i l e specim en. The

f a m il ia r cup and cone f r a c tu re o f a t e n s i l e specimen has been a t t r ib u te d

to a s t r e s s d i s t r ib u t io n a c ro ss th e neck . A gain, a sh ea r f a i lu r e in the

o v e rs tra in e d o u te r f ib e r s i s in d ic a te d .

Smith and Wood (3) re p o rte d X -ray d i f f r a c t io n measurements which

support th e expected s t r e s s d i s t r ib u t io n in p l a s t i c a l l y s t r a in e d round

te n s i l e specim ens. However, th e r e s id u a l s t r e s s e s th e y found a re n o t

b e lie v e d to be th e o v e ra l l la y e red s t r e s s e s caused by y ie ld in g in th e

o u te r f i b e r s . F . R. Shanley (9) re p o r ts an a p p re c ia b le d ecrease in u n i­

form e lo n g a tio n r e s u l t in g from th e s l i p r e ta rd in g p ro cesses when a ttem p ts

a re made to in c re a se th e u ltim a te s t r e n g th .

The work o f Bridgeman a ls o in c lu d ed t e n s i l e t e s t s under h igh

h y d ro s ta t ic p re s su re , th e purpose o f which was to a llo w r a d ia l s t r e s s to

8

be a c t iv e on th e o u ts id e o f th e specimen as w e ll a s w ith in . Thus f a r , no

r e la t io n s h ip has been found to p re d ic t th e a x ia l s t r e s s a c ro ss th e

c ro ss s e c tio n o f th e p l a s t i c a l l y deformed specim en.

S ev e ra l w orkers, e s p e c ia l ly those who used a com bination o f t o r ­

s io n and te n s io n , re p o r t agreem ent w ith o r a t l e a s t support o f th e Von

Mises y ie ld s tre n g th th e o ry . John Nunes (10) and some o f th e o th e rs use

B ridgem an's form ulas to determ ine a t ru e s t r e s s - s t r a i n curve f o r th e

necked down p o r tio n o f a t e n s i l e specimen and claim accu racy w ith in a

few p e rc e n t.

P rager ( l l ) has dev ised id e a l iz e d m echanical modesl to d e sc rib e

th e lo a d - s t r a in c h a r a c te r i s t i c s o f such m a te r ia ls as p e r f e c t ly p l a s t i c ,

e l a s t i c , work h a rd en in g , e t c . S t r e s s - s t r a in curves based on Bridgem an's

form ulas a re a ls o g iv en . One R ussian a u th o r , A. M. V asilev (1 2 ), c laim s >

t h a t one o f h is papers p re d ic ts th e B auschinger e f f e c t from X -ray d i f ­

f r a c t io n d a ta . No o th e r re fe re n c e s o f t h i s type were found.

CHAPTER I I I

METHOD OF APPROACH

Equipment Used

Hie equipment used fo r th e s tu d y c o n s is te d o f s t e e l specim ens,

t e s t in g machines capable o f e x e r tin g t e n s i l e and com pressive fo r c e s ,

e l e c t r i c s t r a in gages and th e a s s o c ia te d in s tru m e n ts , a b a l l j o i n t

ap p ara tu s to p rov ide a p u re ly a x ia l fo rce fo r com pression, a cu rv a tu re

m easuring a p p a ra tu s , and a su rfa ce g r in d e r .

The m ajor requ irem en ts f o r th e desig n o f th e specimens a re l i s t e d

as fo llo w s:

1 . The le n g th and th e w idth o f beams should be no g re a te r than

n e ce ssa ry in o rd e r to p rev en t ex cessiv e g rin d in g tim e .

2 . The geom etry o f the beams must perm it a s u f f i c i e n t ly t i g h t

g r ip by th e m agnetic chuck.

3 . The s iz e and type o f th e specimens must be com patib le w ith

th e t e s t in g machines a v a i la b le .

U. Hie c ro ss s e c tio n o f th e specimens should p rovide a smooth

s t r e s s flow .

5 . Hie f in is h e d specimens must be f r e e from re s id u a l s t r e s s .

The s tan d a rd round t e n s i l e specimen w ith th read ed ends was used

fo r th e s t a r t i n g p o in t o f th e d e s ig n . The beam was c u t no lo n g e r than

th e narrow se c tio n o f th e specim en. Hie beam could have been lo n g e r as

i t was d u rin g th e p re lim in a ry ru n s , b u t i t was f e l t t h a t th e m a te r ia l

in the th read ed ends, being devoid o f s t r e s s , would c o n tr ib u te n o th in g

9

10

to the measured d a ta . Hie om ission o f t h i s unneeded le n g th r e s u l te d in

a s u b s ta n t ia l re d u c tio n in m achining and g rin d in g tim e .

F igu re 3 shows th e o r ig in a l beam which was c u t from a s tan d a rd

round specim en. The m a te r ia l from th e th read ed ends was used in th i s

c a se . I t was found th a t th e rounded edge could cause some d i f f i c u l t y

when th e beam i s h e ld in th e m agnetic chuck. A lso , i t was found to be

q u ite in co n v en ien t to c u t f l a t s on th e ends o f th e beam e x a c tly even

w ith th e to p o f th e rounded edge .

S ec tio n A-A

F ig . 3 - —A Beam Cut from a S tandard Round Specimen.

I t may a ls o be seen th a t th e rounded edge would in tro d u ce a con­

s id e ra b le amount o f e r r o r i f Cut No. 2 were u sed . As a remedy f o r both

o f th e se problem s, i t was decided to use a f la t te n e d specimen which

would perm it th e c u t t in g ou t o f a beam o f re c ta n g u la r c ro ss s e c t io n .

A beam w idth o f 0 .1 in . was a r b i t r a r i l y chosen to s a t i s f y requ irem ent

No. 1 . The f l a t s on th e specimen were made 0 .3 in . wide to p rov ide a

b u f fe r a re a f o r s t r e s s s t a b i l i z a t i o n on bo th s id e s o f th e beam. The

f i n a l c o n fig u ra tio n o f th e specimens i s shown in F ig u re h .

FIG. 4 . FINAL CONFIGURATION OF SPECIMEN.

12

The t e s t in g machine used f o r th e t e n s i l e phase o f th e s tu d y was

the R ieh le 120,000 l b . T es tin g Machine which i s lo c a te d in th e C iv il

E ng ineering L abora to ry a t Brigham Young U n iv e rs ity - The m ajor advan­

tag es o f t h i s machine were smooth c o n tro l o f th e load and a s e lf -c o n ta in e d

lo a d - s t r a in p lo t t in g system .

For th e com pression phase o f the s tu d y , th e machine used was a

Baldwin-Tate-Em ery T estin g Machine, Type PTE 93, w ith 30,000 lb . capa­

c i t y . This machine i s a ls o lo c a te d in th e C iv i l E ng ineering L abora to ry

a t Brigham Young U n iv e rs ity . The s t r a in measurements in t h i s case were

made w ith e l e c t r i c a l s t r a in gages.

Three ty pes o f s t r a in gages have been t r i e d ; th e y were sim ple

paper backed gages, d u a l-w ire paper backed gages (both o f th e SR-U

v a r ie ty ) and epoxy backed g a g es . A ll th re e o f th e se ty p es may be tem­

p e ra tu re compensated fo r th e common m e ta ls . The sim ple paper-backed

gages were p re fe r re d because o f th e ease o f t h e i r i n s t a l l a t i o n and t h e i r

low p r ic e .

The cements used fo r th e se gages were Duco fo r th e paper gages

and Budd B-12 Epoxy Cement o r Eastman 910 Cement f o r th e epoxy g a g es .

The l e a s t success was experienced w ith th e Eastman 910 Cement; however,

t h i s could be due to in s u f f ic ie n t cu rin g tim e a n d /o r th e o ld age o f th e

cement on hand. The ex trem ely f a s t harden ing tim e o f th e Eastman 910

Cement i s a d e f in i t e advantage and th e p o s s i b i l i t i e s should be i n v e s t i ­

g a ted f u r th e r .

The o u tp u t o f th e s t r a in gages used was measured by an i n s t r u ­

ment which c o n s is te d o f a com bination o f a b r id g e , a t r a n s i s t o r am p li­

f i e r , and a m e te r. This in s tru m e n t, m anufactured by E l l i s A sso c ia te s ,

L td . , was d e sig n a ted BAM-1.

13

A p iece o f a p p a ra tu s u t i l i z i n g two b a l l j o in t s was d ev ised fo r

th e purpose o f p ro v id in g a n e a r ly a x ia l fo rc e f o r th e com pression phase.

A drawing showing th e c o n s tru c tio n o f i t i s g iven in F igure 5° A s a f e ty

cage made o f ^ i n . th ic k p ipe surrounds th e b a l l j o i n t a p p a ra tu s . No

i n s t a b i l i t y has y e t been encountered even though setae o f th e com pression

specimens have buck led .

A photograph o f th e cu rv a tu re m easuring ap p ara tu s i s shown in

F igu re 6 . I t c o n s is te d o f two k n ife edges to support th e beam and a

p o in ted m icrom eter to measure th e d e f le c t io n o f th e beam a t th e m idpo in t.

An ohmmeter was connected between th e m icrom eter and th e k n ife edges to

in d ic a te c o n tac t o f th e m icrom eter w ith th e beam.

'Hie g r in d e r used was a DoAll Model D-10 S urface G rin d e r. This

machine had a pow erful e lec tro -m ag n e tic chuck which was found to be

n ecessa ry to c o n tro l th e warping o f th e beams du rin g th e l a s t 0 .1 in . o f

m a te r ia l rem oval. A v is e chuck was com pletely inadequate f o r t h i s p u r­

pose . This la rg e g r in d e r a ls o had th e marked advantage o f f a s t ta b le

speeds (approx im ate ly 20 i n . / s e c . m ax.) and a 12 in . d iam eter g rin d in g

w heel which re q u ire d d re s s in g le s s f r e q u e n tly th an would be th e case w ith

a sm a lle r d iam eter w heel.

BALL JOINT SPECIMEN HOLDER FOR COMPRESSION

FIG. 5. DRAWING OF COMPRESSION APPARATUS.

F ig . 6 . —C urvature M easuring A pparatusHvn

Procedure

1.6

I t was b e lie v e d th a t any s t e e l would g ive th e d e s ire d r e s id u a l

s t r e s s e s a f t e r f i r s t b e in g p l a s t i c a l l y y ie ld e d . However, s in ce th e

Bauschinger e f f e c t was o f prime im portance, a t l e a s t th re e d i f f e r e n t

ty p es o f s t e e l were t r i e d in a search fo r t h i s phenomenon. A v e ry low-

carbon m ild s t e e l , a s t e e l w ith a mid range carbon c o n te n t, and an

e a s i ly o b ta in ed a l lo y s t e e l were in v e s t ig a te d . These th re e s t e e l s were

d e sig n a ted 1018, 1CA-5 and l l¥ j- . On the b a s is o f showing a r e s id u a l

s t r e s s p a t te rn and e x h ib it in g the B auschinger e f f e c t , each o f th e se th re e

s te e l s seemed to be e q u a lly s u i te d . The 10l8 s t e e l was a r b i t r a r i l y

chosen. A p a r t i a l s t r e s s s t r a i n diagram fo r annealed 1018 s t e e l i s

g iven in F igure 7.

Both e l e c t r i c s t r a in gages and th e d i f f e r e n t i a l tran sfo rm er ex­

ten s io m ete r were used; th e re fo re , i t was n e ce ssa ry to compare th e o u tpu t

o f each w ith a known s ta n d a rd . Hie d i f f e r e n t ia l - t r a n s f o r m e r s t r a in

m easuring system was c a l ib ra te d w ith an e l e c t r i c r e s is ta n c e w ire s t r a in

gage which in tu rn was c a l ib ra te d w ith a m echanical d ia l-g a g e e x te n s io ­

m e te r. A more d i r e c t method was p re fe r re d , b u t m echanical d i f f i c u l t y

was encoun tered . When h igh ranges o f s t r a i n were measured w ith the

e l e c t r i c s t r a in gages, th e re was some d i f f i c u l t y encountered in o b ta in ­

in g a s u f f i c i e n t ly h igh c a l ib r a t io n p o in t on th e m eter s c a le . The ga in

c o n tro l on th e b rid g e would n o t go low enough to perm it th e d e s ire d

c a l ib r a t io n p o in t . This was e a s i ly rem edied by adding a 10,000 ohm

p o ten tio m e te r in s e r ie s w ith th e common w ire which le d to both th e

a c t iv e and th e com pensating g a g es . No adverse e f f e c t on th e m easure­

ments r e s u l te d .

The la b o ra to ry techn iques used fo r th e i n s t a l l a t i o n o f th e s t r a in

gages have been in c lu d ed fo r convenience.

IT

The c o n s is te n t ly su c c e ss fu l method f o r i n s t a l l i n g th e s t r a in

gages i s o u tlin e d as fo llo w s: F i r s t th e specimen i s c a r e f u l ly p o lish ed

to remove a l l oxide and to o l m arks. I t i s th en c leaned by swabbing

w ith a m ixture o f 1 p a r t (by volume) xylene and 2 p a r ts m e th y l-e th y l-

key tone. This c lean in g s te p could j u s t as w e ll have been done by

swabbing f i r s t w ith to lu o l and then ace to n e . Roughening th e su rface

o f the specimen w ith 180 to 220 g r i t emery c lo th i s a ls o recommended.

When paper gages a re i n s t a l l e d , a l i b e r a l co a t o f Duco cement

i s a p p lie d to each s id e o f th e gage. The a i r bubbles and excess cement

a re c a r e f u l ly worked away from th e gage by firm f in g e r p re s su re . A

p iece o f foam ru b b e r, p ro te c te d by a s t r i p o f waxed pap er, i s used to

a p p ly p re ssu re to th e gage du rin g th e i n i t i a l s tag e o f th e d ry in g . Hie

p iece o f foam rubber should overlap th e gage by a t l e a s t l / 8 in . on a l l

s id e s . Tape, a w eight o r a clamp may be used to ho ld th e sponge rubber

in p la c e . The p re ssu re should be 1-2 p s i . S ince Duco i s a so lv e n t-

escape cement, no covering should be l e f t over th e gage fo r more than

20 m in u te s .

When epoxy gages a re i n s t a l l e d , th e cem enting procedure i s

s l i g h t l y more in v o lv ed . A fte r th e su rfa ce o f th e specimen i s roughened

and, o f co u rse , c leaned a g a in , a l i g h t co a t o f Budd M etal C ond itioner

No. 1 i s a p p lie d to th e specim en. This s o lu tio n i s a p p a re n tly a m ild

o x id iz in g ag en t s im ila r to gun b lu e in g . The s te p j u s t m entioned a p p lie s

only to fe rro u s m e ta ls .

The back s id e o f th e epoxy gages should be c a r e f u l ly roughened

w ith an ex trem ely f in e emery pap er, i . e . , 500 g r i t p ap er. Care must be

taken to avo id sanding through to th e m eta l f i lm . When Budd B-12 Cement

i s u sed , th e foam rubber p re ssu re pads should be l e f t in p lace du rin g

18

the e n t i r e 12 hour cu rin g p e r io d . When Eastman 910 Cement i s u sed , an

a c c e le r a to r may he coated on th e gage, and th e cement w i l l then cure

a lm ost im m ediately.

During th e e a r ly p a r t o f t h i s p e rio d o f re s e a rc h , e l e c t r i c i a n ’s

p la s t i c tap e was t i g h t l y wrapped around th e gage a f t e r th e cement had

cu red . This was an a ttem p t to p ro te c t th e gage bo th from m oistu re and

m echanical damage. A comparison o f th e accu racy o f tap ed and untaped

gages showed th i s p ra c t ic e o f ta p in g to he q u ite d e tr im e n ta l .

One o f the g r e a te s t su sp ec ts o f experim en tal e r r o r in work of

t h i s k ind i s bending caused by the load -p roducing a p p a ra tu s . This bend­

in g would n o t only a f f e c t th e r e s id u a l s t r e s s m easurem ents, b u t would

a ls o in f lu e n c e th e column a c tio n o f th e specimen d u rin g com pression, thus

causing prem ature b u ck lin g . Means were d ev ised to reduce th e e f f e c t s

o f t h i s bending from app rox im ate ly 15 to 3 per c e n t.

The s p h e r ic a l jo in t s in th e t e n s i l e f ix tu r e s o f th e t e s t in g

machine were f i r s t c lean ed , lapped and lu b r ic a te d . This d id n o t reduce

th e bending in te n s io n to an accep tab le v a lu e , so th e a x is o f average

d e f le c t io n fo r te n s io n was found. With th e lo c a t io n o f t h i s a x is known,

the beams to be used f o r d is s e c t io n were c u t from t h i s most fav o rab le

p o s i t io n . C hapter IV g ives an ex p lan a tio n o f t h i s c a lc u la t io n . The

term , a x is o f average d e f le c t io n , i s used because th e e x p re ss io n , n e u tr a l

a x is , does n o t r i g i d ly ap p ly to a s t r e s s f i e l d composed o f te n s io n and

ben d in g .

The bending du rin g th e se t e s t s was e v a lu a ted by making s t r a in

measurements a t U lo c a t io n s sym m etrically chosen around th e p e rip h e ry

o f a c i r c u la r t e s t specim en. A photograph o f a ty p ic a l round specimen

w ith fo u r s t r a in gages a tta c h e d i s shown in F igu re 8 . For convenience.

19

th e fo u r compass d ir e c t io n s were chosen as th e lo c a t io n s fo r s t r a in

measurement. In accu racy caused by th e in d iv id u a l e r ro r s o f th e gages

and e c c e n t r ic i ty o f th e specimen was minimized by r o ta t in g th e specimen

in i t s h o ld e rs 90° a f t e r each run u n t i l each compass d i r e c t io n had been

occupied by each o f th e fo u r gages.

A sm all amount o f bending (approx im ate ly 8$) was found to e x is t

in th e specimen du rin g com pression t e s t s , so ag a in th e a x is o f average

d e f le c t io n was c a lc u la te d . Ihe com plete system used f o r com pression i s

shown in F igu re 9-

20

FIG. 7. PARTIAL STRESS STRAIN DIAGRAM FOR ANNEALED 1016 STEEL.

NOTE * THE TEST WAS TERMINATED BEFORE THE NECKING POINT WAS REACHED.

21

F ig . 8 . —Round Specimen w ith Four S tr a in Gages A ttach ed .

ioF ig . 9»—System Used f o r Compression

Freedom from re s id u a l s t r e s s in th e specimens was a ssu re d by-

hav ing them annea led in an i n e r t atm osphere a t a commercial h e a t t r e a t ­

in g f a c i l i t y .

I t was co n sidered d e s ir a b le t o s t r a i n th e specimens to ap p ro x i­

m ate ly f iv e d i f f e r e n t p o in ts on th e s t r e s s - s t r a i n d iagram . The p o in ts

were a r b i t r a r i l y chosen. The p o in t used f o r th e c o n tro ls was a p p ro x i­

m a te ly halfw ay up th e e l a s t i c p o r tio n o f th e t e n s i l e s id e o f th e d ia ­

gram. Two more p o in ts were chosen in th e work h arden ing reg io n o f th e

t e n s i l e s id e . The p o in t o f u ltim a te s tre n g th was n o t used because i t

was b e lie v e d th a t th e most pronounced extrem es in th e r e s id u a l s t r e s s

p a t te rn s would occur a t seme p o in t e a r ly in th e work harden ing reg io n

where a l l f ib e r s had n o t y ie ld e d th e same amount.

A ll o f th e com pression specimens were f i r s t p u lle d to p o in t No.

3 , th e maximum te n s i l e s t r a in used , and th en compressed to one o f th e

two com pression p o in ts u sed . Most o f th e specimens cou ld be compressed

beyond th e 5 ,000 p i n / i n p o in t even though a few o f them d id b u c k le .

I f more specimens had been a v a i la b le , a n o th e r p o in t a t a h ig h e r com­

p re s s iv e s t r a i n would have been u sed . A lso , a p o in t o f pure compres­

s iv e s t r a in (w ithou t p r io r t e n s i l e s t r a i n ) would have been used f o r

purposes o f com parison.

The p o in ts o f s t r a i n which were used a re l i s t e d a s fo llo w s:

P o in t No. S tr a in Used p, i n . / i n .

123k5

Tension, TOO C ontro ls T ension, 19,300 T ension , 25,200T ension, 25,200; Compression, 3 ,000 T ension, 25,200; Compression, 5 ,000

This in fo rm atio n i s p re sen ted g ra p h ic a l ly in F igure 10.

502k

FIG. 10. DIAGRAM OF STRAIN VALUES USED.

25

A fte r th e specimens were s t r a in e d in th e t e s t in g m achines, th e y

were mounted in th e m ill in g m achine. S len d er re c ta n g u la r beams were

th en c a r e f u l ly c u t ou t o f th e specimens by u s in g a m il l in g c u t te r and

a p a r t in g saw. The lo c a t io n o f th e se beams i s shown in F igu re 11.

Beam

The dep th o f th e m il l in g c u ts was l im ite d to 0.015 in . to minimize

m achining s t r e s s e s . The s id e s o f th e beams were then l i g h t l y ground

to p rov ide a uniform th ic k n e ss and to ag a in reduce th e e f f e c t s o f the

m il l in g s t r e s s e s . The dep ths o f th e g rin d in g c u ts d id n o t exceed 0.0005

in .

The beams c a r r ie d th e same id e n t i f i c a t io n numbers a s th e p a re n t

specim ens. These numbers were l i g h t l y sc r ib e d on th e s id e s o f th e beams

n e a r th e ends. The ends a ls o c a r r ie d group* m arkings, i . e . , end b e v e l,

c h is e l p o in t , d iag o n a l s c ra tc h e s , e t c . With t h i s system o f p o s i t iv e

i d e n t i f i c a t io n , i t was p o s s ib le to g rin d a l l o f th e beams a t th e same

tim e . The d a ta from each beam was reco rded s e p a ra te ly . F in a l ly , when

the g rin d in g and d e f le c t io n m easuring were f in is h e d , a common th ic k n e ss

was chosen as a s t a r t in g p o in t and th e d e f le c t io n s fo r a l l o f th e beams

in th e group were averaged a t each succeeding th ic k n e s s .

group c o n s is te d o f th ose specimens s t r a in e d to th e same p o in t on th e s t r e s s - s t r a i n cu rv e .

26

The procedure o u tlin e d by th e G eneral Motors Research L ab o ra to r­

ie s (2) was s t r i c t l y fo llow ed w hile th e beams were be ing ground. Any

g rin d in g cu ts eq u al to o r g re a te r than 0.0005 i n . may be expected to in ­

tro d u ce r e s id u a l s t r e s s e s . M. I . H etenyi (13) g ives seme in te r e s t in g

v a lu es f o r r e s id u a l s t r e s s e s caused by g r in d in g . A copy o f th e p ro ­

cedure f o r beam d is s e c t io n can be found in th e appendix o f t h i s t h e s i s .

A ll tw enty specimens were ground a t once; approx im ate ly te n

hours were re q u ire d fo r each o f th e fo u r te e n d e f le c t io n measurements ta k en .

The s ig n convention fo r th e c u rv a tu re was the same one used by

Henry S. Todd ( l 4 ) . When th e edge being ground away was p laced n ex t to

th e gage, a convex-downward cu rv a tu re was regarded a s p o s i t iv e . The i n ­

board edge o f th e beam i s u s u a lly ground away f i r s t . The g rin d in g of

t h i s edge f i r s t has been d esig n a ted "Cut No. 1 ." O ccasio n a lly , i t i s

d e s ir a b le to change to Cut No. 2 and g r in d th e outboard edge. This i s

n e c e ssa ry when th e cu rv a tu re o f th e beams causes d i f f i c u l t y in h o ld in g

th e beams on a m agnetic chuck. Only Cut No. 1 was used in t h i s s tu d y .

The d e f le c t io n s were m easured on bo th s id e s o f each beam and th e average

o f th e two measurements was used fo r cu rv a tu re and s t r e s s c a lc u la t io n .

A sample d a ta sh e e t i s g iven in F igu re 12.

The m athem atical r e la t io n s h ip s between th e removed s t r e s s e s and

th e c u rv a tu re changes in th e beams i s given in Appendix A. Hand c a lc u ­

l a t io n o f th e se s t r e s s e s i s an ex trem ely tim e-consum ing p ro c e ss . Henry

S. Todd (lU ) has p repared a program f o r th e c a lc u la t io n o f th e r e s id u a l

s t r e s s e s on a d i g i t a l cam putor. A s l i g h t l y m odified v e rs io n o f t h i s p ro ­

gram was used in t h i s s tu d y . A copy o f t h i s m odified program i s given

in Appendix E.

27

Date:

Spec. No.:

Beam S ize :

I n i t i a l T h ickness:

Cut No.:

August 19, 1961+

52

0 .2 x 0 .1 x 3-3 in .

O.213I* in .

l

Thickness Inboard Outboard Mean

in . M icrometerReading

A( la r g e r +)

M icrometerReading

A( la rg e r - )

A

0.1938 0.5000 0.0000 0 .1*996 0.0000 0.0000

O.1838 0.5002 0.0002 0 .1*998 -0 .0002 0.0000

O.1676 0.5000 0.0000 0.5000 -o.oooi* -0.0002

0.1500 0.1*998 -0.0002 0.5000 -o.oooi* - 0.0003

0.1332 0.1*996 -o.oooi* 0 .1*998 -0 .0002 - 0.0003

0.1176 0 .1*992 -0 .0008 0 .1*998 -0 .0002 - 0.0005

0.101U 0 .1*990 -0 .0010 0.5000 -o.oooi* - 0.0007

0.0852 0.14-988 -0.0012 0.5002 -0.0006 -0.0009

O.0696 0 .1*981* -0.0016 0.5001* -0.0008 -0.0012

0.0U86 0,1*970 -0 .0030 0.5016 -0 .0020 -0.0025

0.0380 0.1*956 -0.001*1* 0.5030 - 0 . 0031* - 0.0039

0.0036 0.1*91*8 -0.0052 0 . 501+0 -0.001*1* -o.ooi*8

0.0282 O.I+92I* -0.0076 0.5062 -0.0066 - 0.0071

A ll measurements a re in in c h e s .

F ig . 1 2 .—Sample D e fle c tio n Data S h ee t.

Data Reduction

28

Because o f th e n a tu re o f th e d a ta measured in t h i s work, th e re

e x is t s a need f o r one o r more s te p s o f d a ta sm oothing. As th e procedure

now s ta n d s , a d e f in i te smoothing ta k es p lace th re e tim es be fo re th e

s t r e s s e s a re c a lc u la te d .

When th e d e f le c t io n o f th e beams was m easured, read in g s were taken

on both th e to p and th e bottom o f th e beam. The average o f th e two values

i s re co rd ed . There i s a p ro v is io n in th e computer program to use d e f le c ­

t io n measurements from bo th s id e s s e p a ra te ly , b u t i t was found to be

exped ien t to average the two va lu es and in p u t th e d a ta on ly once to th e

com puter. The sample d a ta s h e e t. F ig u re 12, shows th a t a co n sid e rab le

amount o f smoothing took p lace in t h i s s te p .

When a beam r e s t s on th e c u rv a tu re m easuring gage, th e w eight o f

th e overhanging ends causes a s l ig h t e r r o r in th e c u rv a tu re . This may be

c o rre c te d by th e in p u t o f a c o n sta n t to th e s t r e s s c a lc u la t io n program.

The use o f t h i s c o n sta n t i s ex p la in ed in Appendix F . However, t h i s e r ro r

becomes s e l f - c o r r e c t in g when th e cu rv a tu re i s measured on bo th s id e s of

th e beam. A lso , th e e r r o r caused by a s l ig h t b u rr on one s id e o f the

beam i s reduced to o n e -h a lf by t h i s method.

The second smoothing o f th e d a ta was accom plished by th e av erag in g

to g e th e r o f th e d e f le c t io n s o f th e 2 to 6 specimens in each group.

O bviously, i t was d e s ire a b le to have a s many specimens in a group

a s p o s s ib le . When th e d a ta from each of th e beams in a group i s averaged

to g e th e r , i t i s hoped th a t many of th e in d iv id u a l d if f e re n c e s would d i s ­

ap p ea r. Inc luded would be sm all amounts o f e c c e n t r ic i ty , unusual machin­

ing s t r e s s e s , e t c .

29

The t h i r d smoothing o f th e d a ta ta k es p lace when th e computer

program a p p lie s a curve f i t t i n g procedure to th e in p u t d a ta . The r e l a ­

t i v e l y com plicated s t r e s s com putation , th e n , ta k es p lace on in p u t d a ta

which i s known to be smooth. This saves machine tim e and improves the

accu racy o f th e o u tp u t. A lso , w ith t h i s method, i t i s much e a s ie r fo r

th e program u se r to check th e accu racy o f th e curve f i t . The cu rv a­

tu re : o f th e beam as measured may be q u ic k ly c a lc u la te d from th e r e l a ­

t io n s h ip :

C 2A

1 + A(1)

A i s th e d e f le c t io n o f th e c e n te r o f th e beam measured in in c h es ,

and C i s th e cu rv a tu re in in c h es”1 .

o r C « 2A fo r A ^ 0.0075 in . (2)

When th e computed s t r e s s e s were f i r s t re c e iv e d from th e computa­

t io n s e c t io n , th e q u es tio n im m ediately a ro se concern ing which o f th e

eq uation o rd ers gave the b e s t curve f i t . The obvious s o lu t io n would be

to p lo t th e cu rv a tu re c a lc u la te d from o r ig in a l d a ta on th e same p iece o f

paper w ith some o f th e curves produced by th e curve f i t r o u t in e . The

curve w ith th e c lo s e s t resem blence to th e o r ig in a l d a ta would be chosen.

The program a ls o p r in t s th e s tan d a rd d e v ia t io n o f th e d a ta , which i s an

index o f th e curve f i t e r r o r .

I t was l a t e r n o tic e d th a t th e p lo t o f beam cu rv a tu re v s . d is ta n c e

produced a curve which was n o t r e a d i ly approxim ated by th e l e a s t squares

curve f i t p ro ced u re . That i s to say th a t th e curve was n o t e a s i ly re p re -

2 3sen ted by th e polynom ial C = A + Bx + Cx + Dx + . . . Because o f t h i s ,

th e s tan d a rd d e v ia t io n , cr, d id n o t n e c e s s a r i ly in d ic a te th e q u a l i ty o f

f i t between th e measured and th e computed c u rv a tu re . O bviously , th e

30

h ig h e r o rd ers o f f i t t i n g cu rv a tu re s came c lo s e r to th e measured p o in ts ,

b u t th e d ip s in th e f i t t e d curves seemed to in tro d u ce undue e r r o r . At

th e p o in t o f g r e a te s t th ic k n e s s , th e f i t t e d curve in v a r ia b ly assumed a

s lope q u ite d i f f e r e n t from th e n e a r ly zero s lope o f th e measured d a ta .

The r e s u l t was th e f a ls e in d ic a t io n o f h ig h - s t r e s s le v e ls in the s p e c i­

men. An example o f some measured c u rv a tu re s and th e f i t t e d curve i s

shown in F igu re 13. The above polynom ial was th e one employed by th e

curve f i t t i n g ro u tin e o f th e s t r e s s c a lc u la t io n program used . I f more

tim e had been a v a i la b le , th e program would have been re w r it te n w ith a

d i f f e r e n t techn ique fo r curve f i t t i n g .

CURV

ATUR

E ,

IN.

31

— SECOND ORDER— FOURTH ORDER

FIG. 13. MEASURED AND F IT T E D CURVATURE FOR TH E P O IN T NO. 3 B E A M S.

32

S ev era l rem edies fo r t h i s s i tu a t io n were co n sid e red . The most

prom ising seemed to he a method where second o r r e r eq u a tio n s were f i t t e d

to sm all groups o f th e measured c u rv a tu re s . The tech n iq u e used fo r the

c o n tro ls was as fo llow s:

1 . The f i r s t f iv e p o in ts were f i t t e d w ith a q u a d ra tic eq u a tio n ,

2 . The f i r s t th re e p o in ts were skipped and th e nex t f iv e p o in ts

were f i t t e d .

3- This process was con tinued u n t i l th e e n t i r e curve had been

com pleted.

U. The cu rv a tu re v a lues a t th e overlapp ing p o in ts were then

av erag ed .

5 . The r e s u l t in g com posite curve was then used as in p u t fo r the

s t r e s s c a lc u la t in g ro u t in e .

When th e r e s u l t s o f t h i s method were compared to those o f the

method used in F igure 13, i t was found th a t th e e r ro rs due to curve f i t t i n g

had decreased to approx im ate ly 5^ o f t h e i r form er v a lu e s .

V a ria tio n s o f th e method ju s t d esc rib ed were t r i e d fo r each of

the f iv e groups o f beams. S tre s s curves were p lo t te d in each in s tan ce

to re v e a l th e t r e n d s . S ince th e d a ta from th e v a rio u s groups was found

to respond to d i f f e r e n t te ch n iq u es , t h i s method was continued u n til , s u f ­

f i c i e n t l y smooth s t r e s s curves were o b ta in ed . F igure lU shows a com pari­

son o f th e two systems used to o b ta in s t r e s s d a ta fo r th e c o n t r o ls .

33

DISTANCE IN IN.

----- CONVENTIONAL CURVE FIT- - - - - - C URVE F I T T E D WITH G R O U P S O F P O I N T S (TREND). . . . . . . . 4 P T S . U S E D AT A TIM E j I PT. O VERLAPPED

. = 5 USED } 2 OVERLAPPED. AND 4 U SE D } 2 O V E R L A P P E DFIG. 14 . R E S ID U A L ' S T R E S S . V S . DISTANCE FOR THE C O N T R O L S.

CHAFFER IV

DISCUSSION OF THE MEASUREMENTS AND RESULTS

E ffe c t o f E c c e n tr ic i ty

The magnitude o f th e bending caused by th e load -p roducing ap p ara ­

tu s may be b e t t e r a p p re c ia te d by co n sid e rin g th e fo llo w in g c a lc u la t io n

o f s t r e s s as a fu n c tio n o f e c c e n t r ic i ty and lo a d .

L et: S

A

P

M

c

I

e

th e maximum t o t a l s t r e s s

c ro ss s e c t io n a l a re a o f th e specimen

a p p lie d load

moment caused by e c c e n t r ic i ty

maximum d is ta n c e from th e n e u tr a l a x is

moment o f i n e r t i a

e c c e n t r ic i ty

P . Me to 6h Pe . 5 .S = A + T “ T 2 " + — TT 2 ( 3 )

( ! + - - ) * K(1 + l 6 e)

bending s t r e s s _ l 6e t o t a l s t r e s s ~ 1 + l 6e (h)

A graph o f t h i s ex p ress io n i s shown in F ig u re 15.

3^

35

F ig . 1 5 .—Bending v s . E c c e n tr ic i ty .

C a lcu la tio n o f th e Axis o f Average D e fle c tio n

I f a p la n a r c ro ss s e c tio n o f th e specimen i s assumed to rem ain a

p lane du rin g e l a s t i c defo rm ation , th e a x is o f average d e f le c t io n o f th e

te n d in g f i e l d may he e a s i ly found w ith a n a ly t ic geom etry. The s te p s a re

o u tlin e d as fo llo w s:

1 . Let th e X-Y p lane he th e u n s tra in e d c ro ss s e c tio n o f th e

specim en.

2 . Let th e Z co o rd in a te he in th e d i r e c t io n o f th e measured

s t r a in a t a g iven p o in t .

3 . Solve fo r th e l in e o f in te r s e c t io n between th e in c l in e d plane

o f s t r a in and th e X-Y p la n e . This l in e i s th e a x is o f

average d e f le c t io n .

36

U. O btain th e eq u a tio n and hence th e d i r e c t io n o f th e a x is o f

average d e f le c t io n .

As an example, p a r t o f th e a v e ra g e -d e f le c t io n a x is c a lc u la t io n

fo r th e R ieh le T e s te r w i l l he g iv en .

Using th e sc a le :

1/ V on th e specimen equals u n ity

10 p, in / i n o f s t r a in equals u n ity

and av erag in g th e b values: o f s t r a i n f o r each compass d i r e c t io n ,

fo llo w in g co o rd in a tes a re o b ta in e d .

D ire c tio n X Y z *

N 0 1 -3 .6 3

E 1 0 - 0.63

S 0 -1 2 .87

W -1 0 1 .37

I f th e u su a l eq uation f o r a p lane i s used , th e fo llow ing system

i s produced:

D = 0 (5)Ax + By + Cz

1 . OA +B -3.630

0119

2 . A +0B -0.63C

0II9

3 . OA -B +2.87C +D = 0

b . -A +0B +1.37C

0119

I f th e se equations a re so lved sim u ltan eo u sly in groups o f 3 > and

i f th e r e s u l t s a re averaged .

vThe v a lu es fo r Z re p re se n t d if f e re n c e s from th e mean.v /

Since

37

A = 1 .00 C

B = 3 .25 C

D = 0 .0

Ax + By + Cz + D = 0 fo r one plane

and

Y = ± B

Or, in t h i s c a se .

Cz

• X.

= 0 fo r th e o th e r . (6 )

(7)

y = - 0 . 308X.

The a x is o f average d e f le c t io n w i l l he as shown in F igure l6 .

N

F ig . l 6 . —The Axis o f Average D e fle c tio n in Tension

fo r th e R ieh le T e s te r

In a s im ila r manner th e lo c i o f th e axes o f average d e f le c t io n

were c a lc u la te d fo r th e Baldwin T e s te r in te n s io n and th e h a l l j o i n t com­

p re ss io n ap p ara tu s when mounted in th e Baldwin T e s te r . They a re shown in

F igure 17.

This p a r t i c u la r machine had one v a rn ish ed jaw which was lo c a te d in the low er p o s i t io n .

38

Com pression^ Tension

F ig . 1 7 .—Axes o f Average D e fle c tio n fo r th e

Small Baldwin T es tin g Machine.

,f >l<:The sc r ib e d l in e on th e com pression ap p ara tu s was on th e E ast s id e .

The w e ll- lu b r ic a te d b e a rin g b a l l s in th e com pression ap p ara tu s

should have p reven ted th e tra n sm iss io n o f any bending moment in to th e

com pression specim en. This would have been th e case i f th e b a l l s u r ­

faces were f r i c t i o n l e s s and i f th e c e n te rs o f th e b a l l s la y e x a c tly on

th e a x is o f th e specim en. A pparen tly , some e c c e n t r ic i ty d id e x i s t , and

a sm all amount o f bending was p re s e n t . For t h i s re a so n , th e a x is o f

average d e f le c t io n was c a lc u la te d f o r the b a l l j o i n t a p p a ra tu s .

I n te r p r e ta t io n o f th e Measurements

Some d i f f i c u l t y was encountered w ith th e s t r a in gages a t th e b e ­

g inn ing o f t h i s p ro je c t ; in c o n s is te n t r e s u l t s from one gage in s t a l l a t i o n

to th e n ex t f r u s t r a te d a l l a ttem p ts to make p re c ise m easurem ents. The

beh av io r o f u n fa m ilia r s t r e s s s t r a i n curves made p re c is e s t r a in in g o f

th e s t e e l specimens q u ite d i f f i c u l t .

39

A d e f in i te n o n - l in e a r i ty i s u s u a lly observed in th e f i r s t 150

m icro -inches p e r inch o f s t r a i n . A pparen tly , t h i s in accu racy i s caused

by th e f i n i t e th ic k n e ss o f th e cement la y e r under th e gage. Whenever a

h igh degree o f accu racy i s d e s ire d , an i n i t i a l read in g a t the 150 (j,

i n . / i n . le v e l may be made and t h i s amount i s th en s u b tra c te d from a l l

subsequent re a d in g s . C o rrec tio n i s u s u a lly made by s h i f t in g th e s t r e s s

s t r a in curve to cause i t to pass through th e o r ig in .

When th e y ie ld p o in ts* were being c a r e f u l ly m easured, some r a th e r

unusual beh av io r o f th e s t r e s s s t r a i n diagram was n o tic e d . When th e

t e s t in g machine was stopped a t th e t e n s i l e y ie ld p o in t , th e specimen

im m ediately unloaded to a p o in t approx im ate ly -j- o f th e way down th e

l in e a r p o rtio n o f th e s t r e s s - s t r a i n diagram . When th e machine was ag a in

tu rn ed on, th e specimen suddenly began to c reep u n c o n tro lla b ly a t a

n e a r ly co n s ta n t lo a d . T his y ie ld in g was q u ite re m in isc en t o f th e b e ­

h a v io r o f h o t g la ss or some o th e r supercoo led l iq u id . A rough sketch

o f t h i s b ehav io r i s shown in F igure 1 8 .

F ig . 1 8 .—The s t r e s s - s t r a i n diagram in th e

v i c in i t y o f th e y ie ld p o in t .

*The term " y ie ld p o in t" used in t h i s s tu d y was a r b i t r a r i l y d e fin ed as th e p ro p o r tio n a l l i m i t .

^0

The most lo g ic a l ex p lan a tio n fo r th e f i r s t phenomenon stems from

a c o n s id e ra tio n o f th e t e s t in g machine i t s e l f . As would he expected ,

th e machine i s h u i l t q u ite rug g ed ly , and th e sp rin g co n s ta n ts th ro u g h ­

out i t s s t ru c tu re a re h ig h . When th e specimen y ie ld s s l i g h t ly , th e

change in d e f le c t io n would cause an a p p re c ia b le change in load due to

th e h igh o v e ra l l sp rin g c o n s ta n t o f th e t e s t e r i t s e l f . A sp rin g c o n sta n t7

capable o f causing such an e f f e c t would have to be in th e o rd e r o f 10

l b s . / i n . This f ig u re i s q u ite r e a l i s t i c f o r a t e s t in g machine o f th i s

s i z e . This e f f e c t o f un load ing down th e e l a s t i c curve p robab ly has n o t

been n o tic e d b e fo re because du ring t e n s i l e t e s t s , i t i s u s u a lly unnec­

e s s a ry to s to p th e machine w hile read in g s a re ta k en .

A c a r e fu l check o f o th e r s t r e s s - s t r a i n diagram s has shown th a t

th e o th e r phenomenon, th e u n c o n tro lla b le c reep im m ediately a f t e r y ie ld ,

i s q u ite common and was s a l i e n t because o f th e h igh s e n s i t i v i t y o f the

measurements being ta k en .

In te r p r e ta t io n o f th e R esu lts

Since th e law o f s t a t i c e q u ilib riu m must be s a t i s f i e d , every

r e s id u a l s t r e s s must be ba lanced by a s t r e s s o r group o f s t r e s s e s o f n e t

op p o site s ig n . A c tu a lly , i t i s th e fo rce s which must be b a lan ced , so

th e s t r e s s e s must be in te g ra te d over t h e i r a re a s o f in flu en c e b efo re

th e y may be p ro p e rly co n sid e red . F ig u re ih shows a preponderance o f

t e n s i l e s t r e s s (e s p e c ia l ly a t th e outboard edge) which i s p h y s ic a lly

im p o ssib le . The o n ly lo g ic a l e x p lan a tio n f o r t h i s phenomenon i s th a t

l i g h t t e n s i l e s t r e s s e s were s te a d i ly in tro d u ced through th e g rin d in g

p ro c e ss . O therw ise, th e p o s i t iv e a re a under th e curve would n e a r ly

equal th e n eg a tiv e a r e a .

h i

The s t r e s s curves fo r p o in t No. 3 , F igure 19B, show te n s i l e

s t r e s s e s a t th e c e n te r o f th e specimen and com pression n ear th e o u ts id e

as would be expected i f th e o u te r f ib e r s y ie ld e d f i r s t . I f t h i s s t r e s s

p a t te rn con tin u es to e x i s t and i f th e B auschinger e f f e c t con tinues to

e x i s t f o r specimens s t r a in e d to h ig h e r le v e ls o f te n s io n , th e evidence

may be co n sidered to be v e ry s tro n g th a t th e r e s id u a l s t r e s s e s a re th e

cause o f th e B auschinger e f f e c t . No conclusion can be drawn in t h i s case

because th e s t r a in s used were r e l a t i v e ly sm all compared w ith th e s t r a in

a t th e p o in t o f u ltim a te s t r e n g th . I f f u r th e r ex p erim en ta tio n a t p o in ts

o f much h ig h e r s t r a i n shows a d isappearance o f th e s t r e s s p a t te rn in

F ig u re 19B and a c o n tin u a tio n o f th e B auschinger e f f e c t , t h i s ex p lan a tio n

w i l l have been proven in v a l id .

F ig u re 19 a ls o shows a g re a te r p o s i t iv e a re a under th e cu rv e . A

sm a lle r a re a a t th e ou tboard s id e would be expected in a c i r c u la r s p e c i­

men, b u t s in ce th e se specimens were f l a t t e n e d , equal a re a s would be ex­

p e c te d . A gain, th e g re a te r p o s i t iv e a re a seems to in d ic a te th e in tro d u c ­

t io n o f t e n s i l e s t r e s s by g rin d in g .

F igu re 20B shows d e f in i te com pressive s t r e s s e s on th e in s id e and

t e n s i l e s t r e s s e s on th e o u ts id e o f th e com pression specim ens. This in ­

d ic a te s t h a t th e outerm ost f ib e r s were th e f i r s t to y ie ld due to th e

h ig h e r com pressive s t r e s s e s . As th e load was re le a s e d , th e p a r t i a l l y

unloaded o u te r f ib e r s were fo rced in to te n s io n by th e s t r a in r e la x a tio n

in th e r e s t o f th e specim en. These t e n s i l e s t r e s s e s a re balanced by the

com pressive s t r e s s n e a r th e c e n te r .

F igu re 2QA, th e p lo t fo r th e specimens o f p o in t No. k , shows the

same type o f s t r e s s p a t te r n , b u t n o t so v iv id ly . A lso , a su g g estio n o f

th e p o in t No. 3 p a t te rn i s a p p a re n t. I t may be concluded th a t a t t h i s

k2

p o in t th e t r a n s i t i o n ta k es p lace where th e t e n s i l e p a t te rn s d isap p ea r

and g ive way to th e com pressive p a t te r n s . A gain, as in a l l o f th e s t r e s s

p a t te r n s , th e b ia s o f th e t e n s i l e g rin d in g s t r e s s e s i s p re s e n t .

F ig u res 19A through 2GB must be accep ted w ith some re s e rv a tio n

because in each case th e s c a t t e r o f th e p rim ary curves was approx im ate ly

tw ice as severe as i t was in F igu re lU , Trends were in d ic a te d b u t no t

a s d e f in i t e ly as th e y were in th e case o f F igure lU .

STRE

SS

IN

RS.I.

X |

Q__

__

STRE

SS

IN

P.S.I.

^3

x 4 USED I OVERLAPPED

B. POINT NO. 3

FIG. J 9 . RESIDUAL S T R E S S P A T T E R N FOR T E N SIL E SPE C IM E N S

STRE

SS

IN

PSI

kb

* ' A 5. USED 2 OVERLAPPEDA. POINT NO. 4 ° _ 4 U SE D 2 OVERLAPPED

4 U SE D_ I OVERLAPPED0

B. POINT NO. 5FIG. 2 0 . RESIDUA!_ _ S T R E S S PA T T E R N F O R ‘..COMPRESSION SPE C IM E N S.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The in fo rm atio n gained from th e specimens s t r a in e d on ly in te n s io n

was n o t c o n c lu s iv e , b u t th e p o in t No. 3 d a ta showed a s t r e s s p a t te rn which

seemed to su p p o rt th e "Bauschinger e f f e c t from re s id u a l s t r e s s " th e o ry .

These specimens which were p u lle d to th e h ig h e s t t e n s i l e s t r a i n showed

th a t y ie ld in g does occur f i r s t in th e o u te r f ib e r s and th a t th e se p a r ­

t i a l l y unloaded f ib e r s a re pushed in to com pression a s th e e x te rn a l lo ad

i s removed.

The same type o f phenomenon occurred in th e com pressive specim ens.

The h ig h e r - s tr e s s e d o u te r f ib e r s y ie ld e d f i r s t and th en were fo rced in to

te n s io n a s th e com pressive e x te rn a l lo ad was re le a s e d . A gain, th e e f f e c t

was more pronounced in th e more h ig h ly s t r a in e d specim ens. In bo th i n ­

s ta n c e s , i t does seem th a t th e B auschinger e f f e c t i s caused by re s id u a l

s t r e s s . Repeated p la s t i c s t r a in in g o f s t e e l in one d ir e c t io n would cause

r e s id u a l s t r e s s e s which would ten d to r a is e th e y ie ld p o in t , b u t t h i s i s

an in s u f f i c i e n t cause f o r work h a rd en in g .

This work must be con tinued w ith p o in ts o f much h ig h e r s t r a in b e ­

fo re a firm conclusion may be drawn concerning th e v a l id i t y o f th e th e o ry

th a t th e B auschinger e f f e c t i s caused by r e s id u a l s t r e s s e s .

45

Re c ommendati ons

h6

Since d i f f i c u l t y was encountered w ith th e Buda B-12 cement immed­

i a t e l y a f t e r y ie ld , i t i s recommended th a t th e u t i l i t y o f some o f th e h igh

e lo n g a tio n cements he in v e s t ig a te d . The Budd Co. produces a h igh e lo n g a­

t io n cement k i t d e s ig n a ted GA-1. Inc luded in t h i s k i t i s a p l a s t i c i s e r

which should s ig n i f i c a n t ly improve th e b ehav io r o f th e cement a t h igh

s t r a i n s . I t i s suggested th a t th e h igh e lo n g a tio n cement he t r i e d w ith

th e s tan d a rd epoxy gages a s w e ll as th e h igh e lo n g a tio n (p o s t y ie ld )

ty p e s . Perhaps t h i s method o f i n s t a l l a t i o n w i l l extend th e u se fu ln e ss o f

th e s tan d a rd g a g es .

When a paper gage i s cemented w ith Duco, th e gage and cement w i l l

u s u a lly s ta y i n ta c t a t e lo n g a tio n s as h ig h as 25,000 y, i n . / i n ^ I t would

he d e s ire a h le to check th e l i n e a r i t y o f th e se h ig h ly - s tr a in e d gages a g a in s t

some new ones. I f l i n e a r i t y s t i l l e x i s t s , i t may he p o ss ib le to use th e se

gages ag a in fo r th e com pression phase o f th e t e s t , th u s e lim in a tin g th e

need fo r i n s t a l l a t i o n o f new g a g es»

The in s t ru c t io n s f o r s t r e s s g rin d in g p r in te d by th e G eneral Motors

Corp. recommend u s in g a Norton type 32A^6-H8VBE g rin d in g wheel f o r t h i s

purpose . The Norton c a ta lo g may n o t l i s t a wheel o f t h i s type la rg e

enough to he used on th e a v a i la b le g r in d e r . However, an e q u iv a len t wheel

can e a s i ly he found. L arger d iam eter g rin d in g wheels a re recommended b e ­

cause o f th e le s s freq u e n t wheel d re s s in g n e ce ssa ry . O ther advantages

a re l i s t e d in C hapter I I I .

A ll th re e o f th e ty pes o f s t e e l t e s t e d showed th e B auschinger

e f f e c t . Any one o f them, th e 1018, 10^5 o r 11V* i s recommended fo r t h i s

type o f re s e a rc h .

^ T h is s t r a in i s w e ll w ith in th e work harden ing reg io n o f th e 1018s t e e l u sed .

b7

While th e lo ad in g o f th e specimens i s ta k in g p la c e , th e s t r e s s -

s t r a in diagram should he p lo t te d a s th e d a ta i s m easured. This procedure

w i l l enab le th e o p e ra to r to more c lo s e ly fo llow th e p ro g ress o f th e

t e s t . As th e d a ta i s b e ing m easured, th e t e s t in g machine should be op er­

a te d q u ite slow ly , bu t w ith o u t s to p p in g . When th e machine i s s topped ,

th e specimen ten d s to unload s l i g h t l y and in c o n s is ta n c ie s r e s u l t in th e

s t r e s s and s t r a i n d a ta .

D uring th e c u t t in g o f th e beams from th e specim ens, c a re fu l

m achining w ith l i g h t c u ts cannot be over-em phasized. In t h i s s tu d y , the

s id e s o f th e beams were ground in an a ttem p t to remove th e s t r e s s e s

caused by m achining.

When th e specimens a re s t r a in e d to th e v a rio u s p o in ts on th e

s t r e s s - s t r a i n diagram , i t would be advantageous to t r y pure com pression

on a few o f them fo r com parison p u rp o se s .

A curve f i t t i n g tech n iq u e u t i l i z i n g a method o th e r th an th a t o f

th e l e a s t squares should be t r i e d as an a ttem p t to smooth th e s t r e s s

p a t te rn s which a re g iven as o u tpu t by th e program . A nother p o s s ib i l i t y

would be to modify th e program so th a t th e curve f i t t i n g may be done

g ra p h ic a l ly by th e u se r so th a t th e f i t t e d curve may be m anually in p u t to

the computer

BIBLIOGRAPHY

1 . M artin , D. E. "E valuation o f Methods f o r Measurement o f R esidua lS t r e s s ," S o c ie ty o f Automotive Engineers TR-ll+7, September 1957.

2 . G u re rra , Carmin, "R esidual S tre s s G rin d in g ." L abora to ry Procedure,Used by th e ME-1 Department o f th e Research L ab o ra to rie s D iv i­s io n o f G eneral Motors C o rp o ra tio n . (V e rifa x e d .)

3 . Sm ith, S . L. and Wood, W. A. " In te rn a l S tre s s Caused by P la s t icFlow in M ild S te e l ," P roceedings o f th e Royal S o c ie ty o f London, l82:UoU-UlU, l p l T

*+. Wooley, R. L. "Bauschinger E f fe c t in Some Face-C entered and Body- C entered Cubic M eta ls ." P h ilo so p h ic a l Magazine, 1+1+:597-6 l8 ,Ju n e , 1953*

5* Naghdi, P. M., E ssenburg , F . , and K off, W. "An E xperim ental Study o f I n i t i a l and Subsequent Y ie ld S urfaces in P l a s t i c i t y , "Jo u rn a l o f A pplied M echanics, 25:201-209, June, 1958*

6 . C o t t r e l l , A. H. D is lo c a tio n s and P la s t ic Flow in C ry s ta ls (OxfordU n iv e rs ity P re s s , London, 1956).

7 . Handelman, G. H. and W arner, W. H. "Loading Paths and th e In c re ­m ental S tr a in Law," Jo u rn a l o f M athematics and P h y sics ,33:157-161+, 195^.

8 . Bridgeman, P. W. "The S tre s s D is tr ib u t io n a t th e Neck o f a TensionSpecim en," T ran sac tio n s o f th e American S o c ie ty f o r M eta ls ,3 2 :5 5 3 -5 7 U ,1 ^ i¥ :

9 . S hanley , F . R. "T en sile I n s t a b i l i t y (Necking) o f D u c tile M a te r ia ls ,"Aerospace E n g in eerin g , 20:30-31> December, 1961 .

10 . Nunes, John . "F lo w -S tre ss -S tra in R e la tio n sh ip in Tension T estso f S te e l ," M a te ria ls R esearch and S tan d a rd s , 3 No. 9 :719-722, Septem ber, 1963 .

11. P rag e r, W. "The Theory o f P l a s t i c i t y - A Study o f R ecent A chieve­m ents," Proceedings o f th e I n s t i t u t i o n o f M echanical E n g in eers ,169: I n - 57 , 1955.

12. V a sile v , A. M. "M icro s tre sses C reated in M etals During P la s t icD eform ation I I , " S o v ie t Physics o f S o lid S ta te , 1 , No. 11: 1586-1595, i 960 .

1+8

k9

13• H e ten y i, M. I . ( e d .) Handbook o f E xperim ental S tre s s A n a ly sis ,(John W iley and Sons, I n c . , New York, 1950),~ p . 5 l 8 .

14. Todd, Henry S. "R esidual S tre s s D is tr ib u t io n Changes During DynamicU n id ire c tio n a l T e n s ile Loading." Unpublished M as te r 's T h es is , Brigham Young U n iv e rs ity , Provo, U tah, I 96U.

15 . L e tn e r, H arold R. "A p p lica tio n o f O p tic a l In te r fe re n c e to th eStudy o f R esidua l S urface S tr e s s e s ," P roceedings o f th e S o c ie ty f o r E xperim ental S tre s s A n a ly s is , 10 No. 2 :2 3 -3 ^ , 1953*

APPENDIX A

EQUATIONS FOR RESIDUAL STRESS

The a lg e b ra ic ex p ress io n s fo r r e s id u a l s t r e s s a s d e riv ed by-

H arold R. L etner (15) have been review ed by th e a u th o r . The ab rid g ed

form i s p re sen te d a s fo llo w s: Let F igu re 21 re p re se n t th e c ro ss s e c tio n

o f a beam which i s caused to assume a c e r ta in c u rv a tu re , C, by i t s

r e s id u a l s t r e s s e s .

F ig . 2 1 .--Schem atic R ep resen ta tio n o f R esid u a l S tre s s

D is tr ib u t io n in an U n restra in ed B ar.

When th e beam i s c o n s tra in e d to l i e f l a t by th e a p p l ic a t io n o f

e x te rn a l moments, th e s t r e s s a t Z th en becomes cr' (z ) as shown in F igure

22. I f , w hile the b a r i s h e ld s t r a ig h t , s t r e s s e d su rfa ce la y e rs a re

removed by g r in d in g , th e le n g th o f th e beam w i l l change, g iv in g r i s e to

a uniform change a (w) in th e a x ia l s t r e s s th roughout th e th ic k n e ss of

th e rem ain ing m a te r ia l (see F igure 2 2b ). Now, th e s t r e s s a t any le v e l

z i s eq u al to th e o r ig in a l s t r e s s <j' (z ) p lu s a new s t r e s s a (w) r e s u l t ­

in g from th e change in le n g th (see F igu re 2 2 c ).

50

51

I f th e r e s t r a in in g e x te rn a l to rq u es a re re le a s e d th e specimen w i l l

bend to i t s e q u ilib riu m cu rv a tu re C(w) and in so doing w i l l s e t up an

a x ia l s t r e s s which can be deduced from F igure 21 . The a x ia l s t r a i n a t

le v e l z in th e b a r i s :

[R(w) + ( | - z ) ] &9 - R(w)d0 /W ^R(w)d0 = R(w) ^2 ” Z

where R(w) i s th e ra d iu s o f c u rv a tu re .

The correspond ing s t r e s s i s ob ta in ed as fo llo w s:

u s in g th e b a s ic beam equation

1 _ M_" R ‘ E l

M = CEI

Me= T

(8 )

(9)

( 10 )

s u b s t i tu t in g th e ex p ress io n s f o r M and c , th e moment re le a s e

s t r e s s i s o b ta in ed .

CT = C (w )E (| - z ) . (1 1 )

By adding th e o r ig in a l s t r e s s , th e le n g th change s t r e s s and th e

moment r e le a s e s t r e s s , t h e t o t a l s t r e s s i s o b ta in ed .

a (z ,w ) = a ' ( z ) + d(w) + C(w) E ( | - z ) . (12)

A pplying th e co n d itio n s o f s t a t i c e q u ilib riu m y ie ld s th e fo llo w ­

in g ex p ress io n fo r th e r e s id u a l s t r e s s which e x is te d a t any le v e l , z , b e ­

fo re any la y e r s were removed:

52

3 ( 3 , w0 ) = ^ ^ + ^ [ c (z ) - c (wo )]

w - z E r wo+ - y - E C(wQ) - j J z C(a)dz ( 13 )

where C (wq ) I s th e e q u ilib riu m c u rv a tu re b e fo re any la y e r s were removed

and C(z) th e e q u ilib riu m c u rv a tu re when th e beam th ic k n e ss had been r e ­

duced to w = z .

53

a. Jo.

Z Z

<S (Z,W) = s \ z ) + g(W) + C(W)E ( j - - z )

FIG. 22 .(a ). STRESS DISTRIBUTION WHEN THE BAR IS HELD STRAIGHT.(b ) . STRESS CAUSED BY THE CHANGE IN LENGTH RESULTING

FROM THE REMOVAL OF THE SURFACE LAYERS.

(c ) . STRESS DISTRIBUTION AFTER THE REMOVAL OF THESURFACE LAYERS BUT BEFORE THE BAR IS ALLOWED TO BEND.

(<J). STRESS CAUSED BY THE BENDING OF THE BAR TO ITS EQUILIBRIUM CURVATURE.

(e ) . STRESS DISTRIBUTION IN THE UNRESTRAINED BAR AFTER THE REMOVAL OF THE SURFACE LAYERS.

5U

FIG. 2 3 . GEOMETRICAL QUANTITIES NECESSARY FOR THE CALCULATION OF AXIAL STRAIN IN A BAR BENT TO A UNIFO RM C U R VA TU R E .

APPENDIX B

RESIDUAL STRESS GRINDING

By Cannin G u rre ra , Shop T echnician At Request o f J . 0 . Almen (2)

Forward

In r e s id u a l s t r e s s g rin d in g o f th e O.D. and I .D . o f a r in g or f l a t s u r fa c e s , th e co n d itio n o f th e wheel and depth o f c u t w i l l determ ine w hether s t r e s s e s w i l l be im parted onto th e su rfa ce o r n o t by g r in d in g .For s a t i s f a c to r y r e s u l t s , th e wheel must be k ep t c lea n and sh arp , (emphasis on sh a rp ) , and th e depth o f c u t must be d r a s t i c a l l y reduced from co n v en tio n a l g rin d in g p ra c t ic e fo r th e l a s t few thousand ths inch o f s to ck to be removed.

The fo llo w in g d e sc rib e s th e procedure o f s t r e s s g rin d in g as p ra c tic e d by th e ME-1 Department o f th e R esearch L ab o ra to rie s D iv is io n o f G eneral Motors C orpo ra tion fo r r e s id u a l s t r e s s a n a ly s is .

Procedure

F la t su rfa c e s (su rfa c e g r in d e r) :

Let us say , fo r example, th a t a .030 inch la y e r has to be ground o f f to some p redeterm ined dim ension. F i r s t , d re s s th e w heel. Proceed to remove th e f i r s t .020 inch in th e somewhat co n v en tio n a l manner o f .001 to .0015 inch depth o f c u t , depending upon th e s iz e o f th e work specim en. But a t no tim e s h a l l th e su rfa ce become d is c o lo re d o r o v er­h ea ted to such an e x te n t a s to make i t unbearab le to to u ch .

The rem aining .010 inch la y e r should be removed a s fo llo w s:

D ress w heel; remove .005 inch la y e r w ith c u ts .0003 inch deep ." " " .003 " " " " .0002 " "

" " " .002 " " " " .0001 "

For rem oval o f la y e r s o f .010 inch th ic k o r l e s s , proceed as o u tlin e d above.

The above schedule i s based on experim en ta l work done on s t e e l specimens o f 50 Roc hardness w ith a su rfa ce a re a o f approx im ate ly 2 sq . i n . (3A " x 3")* A f te r making f iv e com plete passes over th e specimen

55

56

w ith c u ts o f .0001 inch deep (.0005 inch t o t a l th ic k n e ss o f la y e r r e ­moved), th e wheel re q u ire d re d re s s in g . For p ro p o r t io n a l ly la r g e r a r e a s , say 10 s q . i n . (5" x 2" ) , th e wheel would re q u ire d re s s in g a f t e r one com plete pass w ith a c u t o f .0001 inch deep .

I t must he borne in mind th a t ex trem ely l i g h t c u ts w i l l ten d to d u l l th e wheel sooner th an h e a v ie r c u t s , th e r e f o r e , th e o p e ra to r must be v e ry observ ing in d e te c t in g prem ature d u l l in g o f th e w heel, g e n e ra lly seen as a b r ig h t o r g la r in g su rfa ce f i n i s h .

The ta b le t r a v e l r a te shou ld be medium, a lthough a f a s t e r r a te i s p re fe r re d over a slow er t r a v e l . The slow er r a te w i l l quicken wheel d u l ln e s s .

Cross feed o f th e work i s g e n e ra l ly from .015 to .020 inch p e r p a s s . For specimens .010 to .020 inch th ic k , i t re q u ire d g re a te r c a u tio n .

C onsecutive c u ts (down feed o f th e w heel) a re made a f t e r each f u l l coverage o f th e wheel over th e work i s made. No sp ark in g ou t i s n e ce ssa ry excep t f o r th e v e ry f i n a l c u t , i f d e s ire d , fo r a smoother f i n i s h .

G rind ing Wheel:

To d re ss th e w heel, c u ts o f .001 inch deep w ith a sharp diamond a re found to be most s a t i s f a c to r y .

The diamond should be ra p id ly passed under th e wheel in o rd e r to produce a f r e e c u t t in g w heel. A fte r making th e l a s t pass w ith a .001 inch depth c u t , do n o t rep ass th e diamond under th e wheel b e fo re c le a r in g th e wheel from th e diamond; o therw ise th e diamond w i l l on ly d u l l th e shaii) edges o f th e a b ra s iv e g ra in s on th e face o f th e w heel.

The p o in t o f th e diamond should be on c e n te r l in e o f th e wheel and th e n ib t i l t e d in th e same d i r e c t io n a s th e r o ta t io n o f th e w heel.The t i l t o r d rag ang le should be 10° - 15° from th e v e r t i c a l .

The wheel i s o f th e medium s o f t ty p e , w ith a v i t r i f i e d bonded No. k6 s iz e g ra in , and o f medium s t r u c tu r e . I t i s m anufactured by th e Norton Company and i s la b e le d 32A^6 -H8vBE. Symbol 32A s tan d s f o r Alundum a b ra s iv e ; No. k6 g ra in s iz e (medium); H grade ( s o f t ) ; No. 8 s t ru c tu re (medium sp ac in g ); V bond ( v i t r i f i e d ) ; and BE f o r type o f bond.

The w idth o f th e wheel i s l / k inch in s te a d o f th e con v en tio n a l l /2 " w idth to reduce d ra g . The range o f wheel speed i s 3300-3500 rpm.A ll work i s ground d ry .

O.D. G rind ing :

The same r a te o f s to ck rem oval as o u tlin e d f o r su rfa ce g rin d in g i s recommended, whenever p o ss ib le to ap p ly , depending upon th e s iz e o f th e work, r i g i d i t y o f th e work, and m achine. G enera l p ra c t ic e i s to p r a c t i c a l ly spark out b e fo re ap p ly in g a d d i t io n a l in - fe e d o f th e wheel to th e work.

57

Not much though t o r concern i s given as to w hether to g rin d wet o r d ry , s in ce th e depth o f th e cu ts a re ve ry l i g h t .

On th e two u n iv e rs a l g rin d in g machines used fo r s t r e s s g r in d ­in g , one employs a l /2 " x 12" wheel a t 1700-1800 rpm and th e o th e r has a l /2 " x 10" wheel running a t 2600-2700 rpm.

Again on ly about 1 fk" w idth (by d re s s in g ) o f th e •wheel i s used fo r both m achines. The grade o f both wheels i s p r a c t i c a l ly th e same as fo r th e su rfa ce g r in d e r , 32AM$-l8VBE.

I .D . G rind ing :

E x ac tly th e same recommendations and s p e c if ic a t io n s as th o se fo r O.D. g r in d in g , except th a t th e wheel speeds used a re as recommended by th e m anufactu rer.

The depth o f c u ts w i l l v a ry w ith th e s iz e o f work, r i g i d i t y o f th e q u i l l , and m achine, e t c . , in v a r ia b ly le s s th an th ose s p e c if ie d fo r su rfa ce g rin d in g .

58

APPENDIX C

OUTLINE OF THE STRESS CALCULATION FRCGRAM

1 . Read in th e t i t l e , re g u la r p o in t d a ta .

2 . Compute th e c o rre c te d cu rv a tu re fo r r e g u la r d a ta .

3 . Read in th e in v e r te d d a ta .

b. Compute th e c o rre c te d c u rv a tu re fo r th e in v e r te d d a ta .

5 . Compute th e c u t t in g d is ta n c e .

6 . P r in t ou t th e c a lc u la te d d a ta .

7 . Read in th e modulus o f e l a s t i c i t y end in s t ru c t io n s fo r th e

p lo t te d cu rve .

8 . I n i t i a l i z e th e curve f i t t i n g eq u a tio n c o u n te r .

9 . Read in th e no . o f eq u a tio n o rders used and eq u a tio n o rd e rs .

10. Compute th e curve f i t t i n g m a tr ix .

11. In v e r t th e computed m a trix .

12. W rite out th e computed fu n c tio n s .

13. Compute th e d is ta n c e and f i t t e d c u rv a tu re e q u a tio n s .

lU . W rite out th e computed fu n c tio n s .

15. C alcu la te th e mean s t r e s s f o r th e second cu t s t r e s s com putation.

16. Compute th e o r ig in a l s t r e s s v e rsu s th e d is ta n c e below th e specimen

s u r f a c e .

17. W rite out th e computed fu n c tio n s .

APPENDIX D

A LISTING OF THE MODIFIED STRESS

CALCULATION PROGRAM

n n

r>

n n

n

n n

n

no

n

no

n n

o

C R E S I D U A L S T R E S S DATA A N A L Y S I S 0 0 1 0C 0 0 2 0

D I ME NS I ON T ( 3 0 ) * 0 ( 3 0 ) » G ( I O . I O ) . 0 0 3 0I C C R V E C 5 C ) . C C U R V E ( 5 0 ) • C L R V E K S O ) , C I S T ( 5 i > , S ( 5 0 ) . 0 1 ( 1 2 ) . 0 0 4 02 i H I C K ( 5 0 ) 0 0 5 0

C DI ME N S I ON T ( 3 0 ) . D ( 3 0 ) . X ( 3 0 ) . H ( 1 0 ) , G ( I O . I O ) , G I V < 2 0 . 2 0 > . A ( 2 0 ) . 0 0 6 01C U R V E ( 5 0 ) * C C U R V E i S C ) . C L R V E K S O ) , C I S T ( 5 C ) » S ( 5 0 ) » D I U 2 ) , C( 3 0 ) , 0 0 7 02 T H I C K ( 5 0 ) 0 0 8 0

CCMMCN/ SAMEVGI V ( 2 0 , 2 0 ) , H ( 2 0 ) » MP1 . N P , C ( 3 0 ) . X ( 3 0 ) . A ( 2 0 )

READ DATA I C E N I F I C A T I C N CARD AND D I S E C T I N CUT NUMBER

5 0 READ < 5 . 1 0 ( D M I ) . I - 1 . 1 2 )I C FORMAT ( 1 2 A6 >

READ ( 5 . 1 4 ) NCL T « CC 1 4 FORMAT ( 15 / ( E 1 5 . C ) )

READ I H I C KN E S S AND CURVATURE DI S T ANCE - OUT S I DE OF S P ECI MEN UP

READ ( 6 . 1 1 ) N RP » ( T ( l > , D ( I ) . I = 1 . N R P )I I FORMAT ( 15 / ( 1 2 F 6 . 0 ) )

COMPUTE CORRECTED CURVATURE

DC I 0 0 1 = 1 , N R PICC C < I > 2 . 0 * D ( I ) + CC / 1 ( 1 ) * « 2

READ N O . OF DATA PCI NT 5 TAKEN WITH S P ECI MEN I NVERTED

REAC < 5 . 1 2 ) M P 1 2 FORMA 1 ( 1 5 )

NP = NRP + N I P N R P 1 = NRP + 1

READ DATA P O I N T S TAKEN WI TH S PECI MEN I NVERTED

0 0 9 0 0 1 0 0 ouo 0 1 2 0 0 1 3 0 0 1 4 0 0 1 5 0 0160 0 1 7 0 0 1 8 0 0 1 9 0 0 2 0 0 0 2 1 0 0 2 2 0 0 2 3 0 0 2 4 0 0 2 5 0 0 2 6 0 0 2 7 0 0 2 8 0 0 2 9 0 0 3 0 0 0 3 1 0 0 3 2 0 0 3 3 0 0 3 4 0 0 3 5 0 OnO

no

n

no

n

no

n

no

n

no

n

nn

READ (5*13) C T ( I ) « D(I), I = NRP1, NP ) 036013 FOR MAT ( 12F6.0 ) 0370

C 0380COMPOTE CORRECTED CURVATURE 0390

04C0DO 110 I = NRP1i NP 0410

110 C (I ) = 2.0* D ( I ) - CC / T { I ) «* 2 04200430

COMPUTATION OF CUTTING CISTANCE 04400450

DO 120 I = 1, NP 0460120 X (I ) = TCI) - TCI) 0470

0480PRINT OUT CALCULATED DATA 0490

0500fcRITE(6*1) NCUT * CC 0502

1 FORMAT C/ 2 9 X 6HNCUT = 13* 5X 4HCC = E15.5 /) 0503fcR I TE (6*15)01 * ( I, TCI), XCI), DCI), CCI). 1=1,NP ) 0510

15 FORMAT!// 29X 12A6 /// 21X 1HI 18X 4HTCI) 16X 4HXCI) 16X 4HDCI) 0520116 X 4 H C ( I )//( 17 X 15. 5 X 4F20.8 )) 0530

0540READ IN MODULUS OF ELASTICITY, NO. OF PLOTING POINTS AND INTERVAL 0550

0560READ (5,16)N P P , XINT, E 0570

16 FORMAT! I5.2F15.0 ) 05800590

READ ORIGINAL SPECIMEN THICKNESS VALUE 06000610

READ ( 5 ,13)CRIGT 06200630

INITIALIZE CURVE FITTING ECUAT ION COUNTER 06400650

ICOUNT = 1 0660C 0670 o,C READ NO. OF EG. ORDERS USED AND EQUATION ORDER 0680 HC 0690

r, n

REAC ( 5 . 1 2 I N M 1 3 C READ ( E . 1 2 ) N

MPl = M + 1CC COMPUTATI ON CF CURVE F I T T I N G MATRIX

DO 1 3 2 J = 1 . MPl1 3 1 H { J ) = 0 . 0

DC 1 3 2 K = 1 . MP11 3 2 G ( J » K ) w o * c

DO 1 3 7 J = i » MPlDO 1 3 7 I = l . NPIF(J-l) 135. 133. 135

133 H{J) = H (J ) + C ( I )GO TO 1351

135 H (J ) = H (J ) + C (I ) * X(I) ** (J-l)1351 CONTINUE

DO 137 K = 1, MPl IF(J + K— 2) 136. 1353. 136

1353 G (J »K ) = G(J,K) + 1.GO TO 137

136 G(J,K> = G(J.K) + X(I) ** (J+K-2)137 CONTINUE

DC 140 J = 1 ,MPl A(J) = H(J)DC 140 K = I .MPl

1 4 C GIV(J.K) = G(J.K)

INVERT COMPUTED MATRIX

DO 150 J = 1. MP1WRITE (6,18)J , H (J ) , ( G(J,K),

18 F O R M A T (/1 OX 3HJ =. 12.( 11E 12.4) )15 C CONTINUE

CALL MAT INV

0 7 0 00 7 1 00 7 2 00 7 3 00 7 4 00 7 5 00 7 6 00 7 7 0 0 7 8 0 0 7 9 0 0 8 0 0 0 8 1 0 0 8 1 2 0 8 1 4 0 8 1 6 0 8 2 0 0 8 2 5 0 8 3 0 0 8 3 2 0 8 3 4 0 8 3 6 0 8 4 0 0 8 5 0 0 8 6 0 0 8 7 0 0 8 8 0 0 8 9 0 0 9 0 0 0 9 1 0 0 9 2 01 000

K = l , MP 1 ) 1 0 1 01 0201 0 3 0 CJ\ro0 9 3 00 9 4 0

no

n

o

Ccccc

3 5 CC

WR I TE OUT C C MPU TED FUNCTI ONS

COMPUTATI ON CF DI S T A N C E AND F I T T E D CURVATURE F UNCTI ONS

DO 3 5 0 1 = 1 , NPP C U R V E ! I ) = 0 . 0 D C U R V E ( I ) = 0 . 0 CUR VE 1 ( 1 ) = 0 . 0D I S T ( I ) = T H I C K ( I ) = DO 3 5 0 J = CUR V E ( I ) = D C U R V E ( I ) = C U R V E I ( I ) = CONTI NUE

FLCA T ( I ) CRI GT - 1 , MP1 C U R V E ( I )

DCURVE(

* X I NT D 1 S T ( I )

+ I )

CURVE I ( I )

A ( J ) * DI S T ( I ) * * { J - l )+ F L O A T ( J —1 ) * A ( J ) » D 1 S T ( I ) **+ A ( J ) * D 1 S T ( I ) ** J / F L OA T ( J )

( J - 2 )

WRITE OUT COMPUTED FUNCTI ONS

WRITE ( 6 , 2 0 ) 0 1 , N P P , M, Z , E , C R I G T , ( I , D I S T ( I ) , THII C K ( I ) , D C U R V E ( I ) , CUR V E ( I ) • C U R V E I ( I ) , 1 = 1 , N P P )

2 0 FORMAT( / / 1 0 X 1 2 A 6 , / / / 1 0 X 6 HNPP = , 1 4 , 10X 4HM = , 1 4 , 10X1 3HZ = E 1 5 . 6 . 1 0 X 3HE = E 1 2 . 5 , 10X 7HCRI GT = F 1 0 . 7 , / / 1 0 X 1HI2 1 1 X 7 H D I S T ( I ) 1 2 X 8 H T H I C K ( I ) 1 1 X 9HDCURVE ( I ) 1 2 X 8 H C U R V E ( I ) 1 1 X3 9 HCURVE 1 ( 1 ) / ( / 8 X 1 3 . 5 F 2 0 . 8 ) )

I F ( NCUT - 1 ) 9 9 8 . 4 0 0 , 4 5 09 9 8 WRITE ( 6 . 2 1 )

2 1 F OR MA T ! 1 0 X 4 3 HCAL L E D E X I T AT 9 9 8 DUE TO ERROR CONDI TI ON )CALL E XI T

CCALCULATI ON CF MEAN S T R E S S FOR 2ND CUT S T R E S S COMPUTATI ON

4 0 0 CF I N A L CF I N I DO 4 1 0 C F I N A L

= 0.0 = 0 . 0 J = 1 , MP1= C F I N A L + A ( J ) * X( NP) ** ( J - I )

0 9 5 0 0 9 6 0 1 1 8 0 1 1 9 0 I 200 1 2 1 0 1 2 2 0 1 2 3 0 1 2 4 0 1 2 5 0 1 2 6 0 1 2 7 0 1 2 8 0 1 2 9 0 1 3 0 0 1 3 1 0 1 3 2 0 1 3 3 0 1 3 4 0 I 3 5 0 1 3 6 0 1 3 7 0 1 3 8 0 1 3 9 0 1 4 0 0 1 4 1 0 1 4 2 0 1 4 3 0 1 4 4 0 1 4 5 0 1 4 6 0 1 4 7 0 1 4 8 0 1 4 8 2 1 4 8 4 1 4 8 6

CNLO

u u

4 1 0 CF I N I - C F I M + A ( J ) * X ( N P ) * * J / F L O A T ( J ) 1 4 8 8CHCLD = C F I N A L 1 4 9 0OTMI ST = —( T ( N P ) * CFI NAL + C F I M ) « E / 3 . 0 l 5 0 0QHOLD = OTMI ST l 5 1 QWRITE < 6 , 2 2 > D I . C F I N A L . CT V 1 S T . C F I M l 5 2 0

2 2 FORMAT! / / 2 9 X 1 2 A 6 , / / 2 9 X 8 HC F I N A L = , E 1 5 . 6 , 10X 8 HQTMI S T = , i 5 3 01 E 1 5 . 6 , 1 0 X 7 H C F I N I = . E 1 5 . 6 ) 1 5 4 0

CF I N A L — 0 • C 1 5 5 0OTMI ST = O. C l 5 6 06 0 TO 5 C 0 1 5 7 0

4 5 C I F ( I COLNT - 1 > 9 9 7 . 4 5 2 . 4 5 4 1 5 8 09 9 7 WR I TE ( 6 . 9 7 ) l 5 g 0

9 7 FORMAT( 10X 3 1 HCALLED E X I T AT 9 9 7 CUE TO ERROR ) 1 6 0 0CALL E X I T 1 6 1 0

4 5 2 READ ( 5 , 4 5 3 ) C F I N A L , OTMI ST 1 6 2 o4 5 3 F O R M A T ( 2 E 1 5 . 0 ) 1 6 3 04 5 4 I F ( C F I N A L ) 5 C 0 » 4 6 C » 5 0 0 1 6 4 04 6 0 CF I N A L = CHCLD 1 6 5 0

OTMI ST = QHCLD 1 6 6 0C 1 6 7 0C ORI GI N A L S T R E S S V S . DI S T ANCE BELOW S PECI MEN SURFACE COMPUTATI ON 1 6 8 0C 1 6 9 0

5 C 0 DO 5 5 0 1 = 1 . NPP 1 7 0 05 5 0 S ( I ) = ( ( T ( 1 ) — D I S T ( I ) ) * * 2 * D C U R V E ( I ) / 2 . 0 - 2 . 0 * ( T ( l > - D I S 1 7 1 0

1 T ( I ) ) * C U R V E ( I ) + CURVE 1 ( 1 ) ) * E / 3 . 0 - D I S T ( I ) * E* C F I N A L —QTMI S 1 7 2 02 T 1 7 3 0

C 1 7 4 0WRITE OUT COMPUTED F U NCT I ONS 1 7 5 0

1 7 6 0WRITE ( 6 . 2 3 ) D I , CHOLD, CHCLD. C F I N A L , OT MI S T , ( I , O I S T ( I ) , 1 7 7 0

1 T H I C K ( I ) , S ( I ) . 1 = 1 , NPP ) 1 7 8 02 3 F O R M A T ! / / 2 5 X 1 2 A 6 , / / 2 1 X 7HCHCLD = E 1 5 . 6 . 5X 7 HQH0LD = E 1 5 . 6 , 5X 1 7 9 0

1 8 HC F I N A L = E 1 5 . 6 . S X 6 H C T M I S T = E 1 5 . 6 . / / 12X I H I 1 0 X 7 H D I S T ( I ) 1 3 X 1 8 0 02 8 H T H I C K ( I ) 1 2 X 4 H S ( I ) / ( / 1 0 X 1 3 . 3 F 2 0 . 8 ) ) 1 8 1 0

I F ( NM - I CCUNT ) 5 6 0 , 5 0 . 6 0 0 1 8 2 05 6 0 WRITE ( 6 » 2 4 ) NM » I CCUNT 1 8 3 0

n n

2 4 FORMAT ( 1CX 4HNK = , 1 5 .1 5 5 0 . >

CALL EXI T

8H I COUNT = , 1 5 . 5X 2 1 H E R R 0 R CONDI TI ON AT 1 8 4 0 1 8 5 0 1 8 6 0 1 8 7 0 I 8 8 0 1 8 9 0

6 0 0 I CCLNT = I CCLNT + 1GO TC 1 3 0 END

$ I B F T C MATI NV L I S T C MATRIX S OLUTI ON CF L I N E A R EQUATI ONS

1 SUBROUTI NE MATI NVM A 0 0 2 0M A 0 0 4 0

2 COMMON/ S AME/ A( 2 0 . 2 0 ) . B ( 2 0 ) . N . K . Y ( 3 0 ) . X ( 3 0 ) . C ( 2 0 )3 M1=N4 M2 =N+15 D 0 6 1 = 1 . Ml6 A ( I , M 2 ) = B ( I )

DC 4 0 J = 1 . Ml4 0 1 k R I T E ( 6 . 4 1 ) ( A ( J , I ) . 1 = 1 , M 2 )4 1 FORMAT( 1 H + . 1 0 F 1 3 . 5 )

*R I TE ( 6 , 4 2 ) N . M 1 . M2 . K . M4 2 FORMAT ( 1 H + . 5 I 6 )5 2 DO 6 0 1 1 = 1 . Ml53 L 1=1+15 4 DO 6 0 J = L 1 . M25 5 SOL = A ( I , J ) / A ( I , I )5 6 I F ( S O L ) 5 8 . 6 0 , 5 85 8 DO 5 9 L = J , M 2

A t J , L ) = A ( J . L ) - A ( I , L ) * S C L5 9 W R I T E ( 6 . 4 3 ) I . J . A ( J . L ) • S O L • A ( I , L )4 3 FORMAT! 1 5 X . I 3 , I 3 . 3 F 1 5 . 3 )6C CONTI NUE

6 0 1 CONTI NUE6 1 DO 6 8 1 = 1 , Ml6 2 L 3 = M 2 —I6 3 S L M = C • 06 4 I F { 1 - 1 ) 6 8 , 6 8 , 6 5

6 5 L 2 = F l - I + 26 6 DO 6 7 L = L 2 * FI6 7 S U M = S U F 4 C ( L ) * A ( L 3 , L >

* R I T E ( 6 , 4 3 ) L 3 * L » SUF *C ( L ) » A ( L3 » L )6 8 C ( L 3 ) = ( A ( L 3 , F 2 ) - S U F ) / A ( L 3 . L 3 )

C CO ERROR ANC VALUE CCFP1 6 8 S U F = C . C

6 9 VkRI T E ( 6 , 7 0 ) (C ( I ) , 1 = 1 , M7 0 F C R F A T ( 5 X , 1 8 H C C E F . OF CURVE F I T / 5 X , 1 OE1 2 . 7 )7 1 CO 7 9 1 = 1 , K7 2 F E X = 0 . 07 3 DC 7 5 J = I » N7 4 L = N + 2 —J7 5 F E X = ( F E X + C ( L ) ) * X ( I )7 6 F E X = F E X + C ( 1 )7 7 ERR = Y ( I ) —FE X7 8 S UF= S UM+ ERR* ERR7 9 V n R I T E ( 6 . 1 3 0 ) X ( I ) , Y ( I ) . F E X . E R R

13C F O R F A T ( 6 X » 2 H X . 9 X , 1 0 H F E A S . C U R V . , 7 X , 1 OHCALC, CURV. , 4 X , 5 HERR0R 1 / 4 E 1 5 . 7 )

3 2 6 DE V = 13 2 7 D E V = ( S Q R T { S U F ) / D E V )3 2 8 V k R I T E ( 6 » 1 1 8 ) D E V1 1 8 F 0 R F A T ( 1 H + , 1 0 X , E 1 1 , 5 )

8 3 RETURN 8 1 END

SENTRY

85

APPENDIX E

SAMPLE INPUT SHEET AND EXPLANATION

SAMPLE OF I NP LT DATA 1

1 2 . 5 E — 71 3

. 1 5 1 . 0 0 0 5 . 1 3 4 . 0 0 0 0 . 1 3 1 - . 0 0 0 5 . 1 2 0

. 0 8 6 - . 0 0 3 0 . 0 7 6 - . 0 0 2 0 . 0 6 5 - . 0 0 6 0 . 0 5 4

. 0 3 0 - . 0 3 0 03

. 0 5 4 - . 0 1 0 . 0 4 4 - . 0 1 8 0 . 0 3 0 - . 0 3 12 4 C . 0 0 5 0 2 9 5 C 0 0 0 0 •

. 1 5 114

P OI NT N O . 1 CONTROLS SECOND SAMPLE1

o • o

13. 1 9 4 0 . 0 0 0 0 . 1 8 3 8 . 0 0 0 0 . 1 6 7 7 - . 0 0 0 1 . 1 4 9 9 -. 1 0 1 3 - . 0 0 0 7 . 0 8 5 2 - . 0 0 0 9 . 0 6 9 6 - . 0 0 1 4 . 0 4 8 6 - . 0 2 8 3 - . 0 0 5 9

C

3 4 C . 0 0 5. 1 9 4 0

1 3 234

2 9 5 0 0 0 0 0

NCUTCCNRP

. 0 0 0 0 . 1 0 9 . 0 0 0 0 . 0 9 8 - . 0 0 0 5 T . D 1 - 6

. 0 1 0 0 . 0 4 4 - . 0 1 7 5 . 0 3 5 - . 0 2 1 0 T . D 7 - 1 2T . D 1 3N I PD . T 1 4 - 1 6 NPP I NTE OR IGT NM = 1

M = 4

CUT = 1 CC = 0 NRP

. 0 0 0 2 . 1 3 3 0 - . 0 0 0 3 . 1 1 7 6 - . 0 0 0 5

. 0 0 2 2 . 0 3 8 0 - . 0 0 3 3 . 0 3 3 6 - . 0 0 3 8

N I P = 0 BLANCK NPP I NTE OR IGT NM=i NM=3 M=2 M = 3 M=4

8

APPENDIX F

DATA ORDER AND FORMAT DESCRIPTION

A d e s c r ip t io n o f th e symbols used in th e program as re c e iv e d

from Henry S. Todd ( l^ ) i s given as fo llo w s:

Data I d e n t i f i c a t io n Card See Symbol Table D ire c to ry

Specimen Cut Number P lace f ix e d p o in t number 1 o r two in column 5 (Format 15)

C o rrec tio n C o e ff ic ie n t I f you tak e measurements o f d e f le c ­t io n on bo th s id e s o f th e specimen du rin g th e g rin d in g procedure t h i s c o e f f ic ie n t i s unnecessary . Use zero i f t h i s i s th e c a se . I f n o t , 12 .5 tim es 10"? i s p robab ly a s good as any . (See sample d a ta . )

NRP E n te r h e re (Format 15) th e number o f d a ta p o in ts to be used in th e s e c ­t io n th a t fo llo w s . I f CC = 0 , I would su g g est th a t a l l your d a ta be p u t in t h i s s e c tio n s im ila r to specimen l 6 SP, c u t 1 on sample d a ta s h e e t .

Thickness and D e fle c tio n D istance Here i s where th e Thickness andd e f le c t io n d a ta go. Each card w i l l

NIP

handle 72 c h a ra c te rs in th e form of 12 s ix c h a ra c te r f i e l d s . P lace specimen th ic k n e ss f i r s t and th en i t s measured d e f le c t io n from th e cu rv a tu re guage.

I f you use a zero c o rre c t io n co ­e f f i c i e n t (CC = 0 ) , p lace a zero a ls o in column 5 h e re and p lace a b lank card a f t e r t h i s one.

Data Taken in in v e r te d p o s it io n

NPP INTE This ca rd co n ta in s th re e f i e ld s w ith th re e b i t s o f in fo rm a tio n .

69

NPP INTE

TO

F i r s t , (NPP) i s th e number o f r e s u l ta n t c a lc u la te d p o in ts to be p lo t te d . N ext, (INT) i s th e i n t e r ­v a l used between each c a lc u la te d s t r e s s and d e f le c t io n v a lu e . L a s t ly , (E) i s th e modulus o f e l a s t i c i t y .The card f i e ld s a re : 1 s t , a f iv e c h a ra c te r f ix e d p o in t f i e l d fo r NPP, and 2nd, two 15 c h a ra c te r f lo a t in g p o in t f i e ld s fo r INT and E. (ORIGT - NPP*INT should equal th ic k n e ss o f specimen a t tim e change from 1s t c u t to second i s made. )

ORIGT O rig in a l o r f i r s t value o f th ic k n e ss to be used in p lo t t in g th e r e s u l t s a t o u tp u t. (F 6 .0)

NM See Symbol D ire c to ry (Format 15)

M See Symbol D ire c to ry (Format 15) I f NM is la r g e r than one, th e program w i l l look fo r a d d i t io n a l curve f i t t i n g o rd e r cards a f t e r t h i s on e . The c a lc u la t io n s made on th e second c u t d a ta uses cu rv a tu re d a ta from th e f i r s t c u t . I t i s th e re fo re im­p o r ta n t th a t th e curve f i t t i n g o rder t h a t you f e e l i s b e s t be p laced l a s t i f more th an one i s to be u sed . There i s a p ro v is io n b u i l t in to th e program whereby second c u t inform a­t io n can be p rocessed in d ependen tly o f f i r s t c u t d a ta , b u t I h a v n 't found occasion to use i t y e t .

CFI QTM CFI s tan d s fo r CFINAL and QTM re p re ­se n ts Q sub t minus S sub t . I t i s w ith t h i s card th a t p ro v is io n fo r p ro cess in g 2nd c u t d a ta independ­e n t ly o f f i r s t c u t d a ta i s p rovided f o r . D iis card must appear a f t e r th e f i r s t curve f i t t i n g o rd e r (m) ca rd in each 2nd c u t d a ta s e t . I f m u ltip le curve f i t t i n g o rders a re u sed , th e r e s t fo llo w t h i s c a rd .In p ro cess in g in th e s tan d a rd manner where f i n a l cu rv a tu re va lues from th e f i r s t c u t a re used w ith th e se c ­ond, p lace f lo a t in g p o in t zeros in each o f th e se 15 c h a ra c te r f i e l d s .

G eneral Note 1: Sign Convention

For both f i r s t and second c u t , when th e s id e o f th e specimen where th e g rin d in g i s c u r r e n t ly ta k in g p lace i s p laced a g a in s t th e su rfa ce o f th e cu rv a tu re guage, a p o s i t iv e c u rv a tu re and d e f le c t io n d is ta n c e e x is t s i f th e c e n te r o f th e specimen i s lo w e st. (Same shape as p o s i t iv e moments). For th e f i r s t c u t th e n , th e o u ts id e o f th e specimen would be th e to p as th e specim en 's c u rv a tu re was b e in g measured A f te r th e d e f le c t io n d is ta n c e was measured in th e s tan d a rd manner as d e sc rib e d above, i t shou ld be tu rn e d over and read a g a in , t h i s value b e ing m u lt ip l ie d by -1 s in ce i t was in th e in v e r te d p o s i t io n d u ring measurem ent. By u sin g bo th o f th e se v a lu e s , a c o r re c t io n w i l l a u to ­m a tic a l ly tak e p lace in th e computer curve f i t fo r th e e f f e c t o f th e w eight o f th e ends o f th e specim en.

G eneral Note 2:

L ast va lue o f d e f le c t io n f o r f i r s t c u t = 1 s t fo r 2nd c u t . The f i r s t v a lues fo r d e f le c t io n d is ta n c e and specimen th ic k n e ss fo r th e 2nd s e r ie s o f c u ts i s th e l a s t v a lu es f o r th e 1 s t s e r ie s o f c u ts in to th e specim en.

SYMBOL TABLE DIRECTORY - RESIDUAL STRESS DATA ANALYSIS BY H. TODD

cc C o rrec tio n C onstant (Used to c o r re c t specimen cu rv a tu re due to w t. o f ends o f specim en)

T Thickness o f Specimen

D D istance c e n te r o f specimen i s below th e l in e connecting to p o f two inch c e n te rs on c u rv a tu re m easuring in s tru m e n t.

NIP Number o r d a ta p o in ts tak en w ith specimen in in v e r te d p o s i t io n .

NRP Number o f d a ta p o in ts taken w ith o u ts id e o f specimen up which i s re g u la r p o s i t io n .

DI Data I d e n t i f i c a t io n card (can c o n ta in 72 c h a ra c te rs o f any alpha-num eric in fo rm atio n )

NP T o ta l Number o f P o in ts (NP = NIP + NRP)

NRP1 NRP1 = NRP + 1

C C urvature o f Specimen

X D istance o f Cut

NCUT Cut Number (Has value o f e i th e r 1 o r 2 depending o f w hether d a ta i s from 1 s t o f 2nd c u t o f specim en).

NPP Number o f p o in ts to be used in p lo t t in g th e r e s u l t

XINT

E

CURV

THICK

M

NM

H

Z

DIST

DCURVE

CURVEI

CFINAL

ORIGT

72

I n te r v a l between p lo t t in g th ic k n e sse s

Modulus o f E la s t ic i ty -

Curve f i t t e d C urvature

Curve f i t t e d Specimen Thickness

Order o f Curve F i t t i n g Polynom ial

Number o f Curve F i t t i n g Polynom ials to be used

Summation Location (See F o r tra n Program)

A Measure o f th e accu racy o f th e curve f i t to th e o r ig in a l d a ta

Cut D istance used in p lo t t in g f i t t e d cu rv a tu re v s . X

dC/dX%CdX

CURVE (NPP)

O rig in a l Thickness o f Specimen

RESIDUAL STRESSES AND THE

BAUSCHINGER EFFECT

An A b stra c t o f a T hesis

Subm itted to th e M echanical E ng ineering Department

Brigham Young U n iv e rs ity

Provo, Utah

In P a r t i a l F u lf i l lm e n t

Of th e Requirem ents f o r th e Degree o f

M aster o f Science

■by

Raymond M. Huebner

Ju n e , 1965

ABSTRACT

The prim ary o b je c tiv e was to f in d th e r e s id u a l s t r e s s p a t te rn in

a p l a s t i c a l l y deformed b a r in an a ttem p t to r e l a t e t h i s s t r e s s p a t te rn

to th e B auschinger e f f e c t . S te e l specimens were p l a s t i c a l l y deformed in

te n s io n and com pression and then analyzed fo r r e s id u a l s t r e s s by the

beam d is s e c t io n method. P re lim in ary work was done to e s ta b l i s h r e s id u a l

s t r e s s g rin d in g tech n iques f o r fu tu re re s e a rc h .

The problem o f bending f i e ld s in th e t e n s i l e t e s t i n g machines was

c a r e f u l ly in v e s t ig a te d and c o r re c t iv e m easures were ta k e n . A p iece o f

ap p a ra tu s u t i l i z i n g tw in b a l l jo in t s was designed to minimize th e bending

d u rin g com pression and th e lo c i o f th e axes o f average d e f le c t io n were

c a lc u la te d f o r a l l o f th e s i tu a t io n s encoun tered .

A specimen c o n fig u ra tio n was designed which would ex p ed ite th e s t r e s s

g rin d in g procedure and f u l f i l l th e o th e r requ irem en ts o f th e s tu d y . Lab­

o ra to ry te ch n iq u es , i . e . , s t r a i n gage i n s t a l l a t i o n , s t r a i n m easurem ents,

and g rin d in g procedures were in v e s t ig a te d and d is c u s s e d . V a ria tio n s in

s t e e l type and machines used were t r i e d in a search f o r advantageous com­

b in a tio n s .

I t was found th a t y ie ld in g f i r s t occu rred in th e outerm ost f ib e r s

o f bo th th e t e n s i l e and com pressive specim ens. The s t r e s s p a t te rn s

found sup p o rt th e id ea t h a t th e B auschinger e f f e c t cou ld be caused by

r e s id u a l s t r e s s e s . No d e f in i t e co nclusions were reached because o f th e

l im ite d amount o f d a ta m easured and because o f s c a t t e r in th e c a lc u la te d

s t r e s s p a t t e r n s .

Improved methods fo r s tu d y in g t h i s problem a re recommended.

1

APPROVED