Research scope Material Membrane - SINTEF · Research scope 1. Preparation of highly CO 2 permeable...

54

Transcript of Research scope Material Membrane - SINTEF · Research scope 1. Preparation of highly CO 2 permeable...

1

Research scope 1. Preparation of highly CO2 permeable TFC membrane 2. Membrane based bench-scale CO2 separation system development

Raw Material Development Membrane Modulation Process Design

Material Membrane

Modulation Process Design

Integrated Membrane Based CO2 Separation System for Post Combustion Fossil Fuel Power Plant

2

2011 2013 2014 2015 2016 2017 2017.6 2018 2019 2020

Raw Material (GO) &

GO Membrane Development

Publication in Science

GO/Polymer Composite Material Development

Modulation

Bench-Scale CO2 Separation Test TFC Membrane Development

Roll-to-Roll Coating Based Membrane Preparation

Spiral-Wound Membrane Module Development

3

Gas Separation Systems Developed by MTR

CO2/N2 Separation Performance of PolarisTM Membrane

MTR

Membrane Fabrication Devices (Width: 70 cm)

CO2/N2 Separation Performance of PolyactiveTM Membrane

GKSS-HZG

• References: 335 Final Technical Report - MTR, (2009), 24-25 Journal of Membrane Science, 359, (2010), 126-139 Journal of Membrane Science, 489, (2016), 237-247 Chemical Ingenieur Technik, 85, (2013), 1210-1220

4

Membrane Preparation

5

Resistance A

Resistance B

Resistance of Composite membrane

RA RB

-1

A BC

A B

l lJ

P P

P : Permeability , J : Permeance 3

2

cm

cm s cmHg

3

2

cm cm

cm s cmHg

Permeance of Composite membrane

Reference: J.M.S Henis, et al., J. Membr. Sci., 1981, 8,233-246

A

C TABc ABRRRRRR

C A BR RR

B

6

1D Diffusional Model

References: He, Gaohong, et al., Journal of membrane science 118.1 (1996): 1-7. Karode, S. K., and S. S. Kulkarni, Journal of membrane science 127.2 (1997): 131-140.

A C

D

B

1

2

3

4 5

1’ c 1’’

2 3

2D Diffusional Model (Wheatstone Bridge Model, WS-C)

11

1

LR

P A 2

2

2 2(1 )

LR

PA

24

1 2)

fLR

PA 20

5

20 2

3(1 )

4 2'/

fLpR

rTA RTM

1

2 4 5

1

1 1tR R

R R R

' '' ' '' ' ''

1312 1123 2311

' '' ' ''

1213 1123

( )( ) ( ) ( )

( )( )( )

ct

c

RRRRRRRRRRRRRR

RRRRRRRRR

' 11 2

1(1 )

LR

a P

'' 11 2

1

LR

a P 1

2 2

2

LR

a P 2

3 2

3(1 )

LR

a P

1 11 11

1 log21exp(/)

2 2cR

aPLPLP

7

8

2

0

2

01.6

A

q K

0

0

2Br

KPore size: Porosity:

K: Permeability Coefficient

: Average Feed and Permeate Pressure

q: Tortuosity

ε: Volume fraction of solid (Porosity)

r: Pore size

: Gas viscosity

: Diffusion velocity

p

,M Av

References: U. Beuscher and C. H. Gooding, J. Membr. Sci., 132 (1997) 213-227 S. Nakao, J. Membr. Sci., 96 (1994) 131-165 M. Matyka, A. Khalili, and Z. Koza, Phys. Rev. E, 78 (2008) 026306

Nomenclature

50 100 150 200 250 3000

100000

200000

300000

400000

500000

Perm

ean

ce

(G

PU

)

Average Pressure (cmHg)

CH4

N2

CO2

Commercial UF PAN Membrane Analysis by DGM

CO2 N2 CH4 Average

r (nm) 3.13 1.46 3.47 2.69 ± 1.08

ε/q2 (%) 5.09 11.98 5.58 7.55 ± 3.84

9

Gutter Layer

Selective Layer

Substrate

Calculation Condition • Selective layer(GO/Polymer): CO2 permeability : 450 Barrer, CO2/N2 : 67 • Gutter layer(Teflon): CO2 permeability : 3900 Barrer, CO2/N2 : 5, Thickness: 100 nm • Substrate permeance: ~130,000 GPU

10

100 200 300 400 5000

1000

2000

3000

4000

5000

6000

7000

8000

50,000 GPU30,000 GPU10,000 GPU

CO

2 P

erm

ean

ce (

GP

U)

Selective Layer Thickness (nm)

5,000 GPU

Calculation Condition • Selective layer properties: CO2 450 barrer, CO2/N2 67

100 200 300 400 50020

25

30

35

40

45

50

55

60

65

7050,000 GPU

30,000 GPU

10,000 GPU

CO

2/N

2 S

ele

cti

vit

y (

-)

Selective Layer Thickness (nm)

5,000 GPU

At least 30,000 GPU of gutter layer is required for 4000 GPU of CO2 permeable membrane

Gutter Layer Permeance

Calculation Condition • Sylgard184 - CO2 permeability : 3800 Barrer, CO2/N2 : 9.5 • AF2400 - CO2 permeability : 3900 Barrer, CO2/N2 : 5 • PAN membrane permeance: ~130,000 GPU

PDMS(Sylgard184) Teflon(AF2400)

• References: Pinnau, I.; Toy, L. G., J. Membr. Sci., 1996, 109, 125 J.M.S Henis, et al., J. Membr. Sci., 1981, 8,233-246

12

Solvent-Wettable Intermediate Layer

Before

Intermediate Layer

Coating

After

Intermediate Layer

Coating

0

10

20

30

40

50

60

70

80

Co

nta

ct

An

gle

(o)

Gutter Layer (Sylgard 184)

(Low Wettability)

Selective Layer

13

(CO2 2550 GPU, CO2/N2 16)

Gutter Layer (Sylgard 184)

Intermediate Layer

14

(CO2 830 GPU, CO2/N2 33)

Gutter Layer +

Intermediate Layer

Selective Layer

0 W 50 W 100 W 200 W20

30

40

50

60

70

80

90

100

110

Co

nta

ct

An

gle

(o)

15

Gutter Layer (AF2400)

Selective Layer

16

Selective Layer

Substrate

Pore Filling Agent

Protecting Layer

(Defect chaulking)

Surface Defects

1. Pore filling 2. Selective layer coating

3. Remove pore filling agent 4. Protecting layer coating

17

Step 3. Before protecting layer coating Step 4. After protecting layer coating

Selective Layer Protecting Layer

Selective Layer

(CO2 800 GPU, CO2/N2 55)

18

Modulation &

Membrane Process Design

19

How to design gas separation membrane module to utilize maximum membrane capacity?

• All feed gases must pass through entire membrane surface. • Inside dead spaces be minimized. • Feed gases maintain their initial pressure until they reach the outlet side. • Permeate path do not have pressure inside. • Resistance to harsh conditions • Easy to assemble • Technically feasible

20

Membrane

Negatively Carved

Feed Flow Path

Permeate Flow Path

21

10 EA

Membrane Module Specifications (ver. 7)

• Dimension: 450 x 390 x 160 mm (for 10 frames) • Membrane size: 340 x 220 mm (active area: 300 x 180 mm = 540 cm2) • Membrane capacity: Not determined (tested with 21 membranes) • Total membrane surface: 11,340 cm2 (for 10 frames) • Feed flow capacity: 10 Nm3/hr (without pressure drop) • Feed, retentate, permeate connection: 1-inch sus fitting

Configuration

22

(10 frames – 11,340 cm2)

2 4 6 8 10 12 14 16 18 20 2210

20

30

40

50

60

70

80

90

100P

feed: 2 bar

Feed flowrate: 9 Nm3/hr

Feed ratio: 14/86 (CO2/Balance)

Co

ncen

trati

on

[vo

l%]

Pressure Ratio (Pfeed

/Pperm

) [θ]

CO2

Balance

2 4 6 8 10 12 14 16 18 20 2210

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 220.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 CO

2 purity

Stage-cut ()

Recovery

Pressure Ratio (Pfeed

/Pperm

) [θ]

CO

2 p

uri

ty [

%]

Pfeed

: 2 bar

Feed flowrate: 9 Nm3/hr

Feed ratio: 14/86 (CO2/Balance) S

tag

e-c

ut (

) / CO

2 reco

very

23

Feed

Permeate

Retentate

Schematic design of the skid for 50 Nm3/hr membrane separation test

Photo images of the installed membrane skid for bench-scale test in KIER

24

Airrane Module (Hollow Fiber)

NSEL Module (Plate-and-Frame)

25

Feed Concentration

Feed Flow Rate

Feed Pressure Retentate Concentration

Retentate Flow Rate

Permeate Concentration

Permeate Flow Rate

Permeate Pressure

• Feed: CO2 14.7%, O2 18%, 30 m3/h, 2 bar-absolute • Permeate: CO2 74%, O2 7.6%, 1.3 m3/hr, 0.01 bar (Purity: 74%, Recovery: 22%)

26

Transport properties of membrane can be estimated by resistant models.

The permeance of support layer is important as well as the material properties.

TFC membranes were prepared by two approaches. (Gutter layer and protecting layer)

The gutter layer’s surface properties were modified by intermediate layer.

The protecting layer was also served as chaulking layer.

Plate-and-frame module was developed and fabricated with our membranes.

5 modules were connected to complete bench-scale membrane CO2 separation system.

27

Thank you for Professor Park, and all NSEL group members.

28

Backup Slides

29

91.9nm 135nm 221nm 375nm

6 wt.% 9 wt.% 12 wt.%

PDMS(Sylgard184) / PAN350

Teflon(AF2400) / PAN350 0.1 wt.% 0.3 wt.% 0.5 wt.%

69.45nm 320.1nm 431.6nm

31

0 1 2 3 4 5 6 7 8 9 10 11

6

8

10

12

14

16

18

20

22

24

26

28

30

CO

2/N

2 P

erm

se

lecti

vit

y (

-)

Dip coating times (-)

0 1 2 3 4 5 6 7 8 9 10 1110

1

102

103

104

Perm

ean

ce

(G

PU

)

Dip coating times (-)

CO2

N2

(Gas Permeance Measurement at 1 bar)

Coating Times

CO2 Permeance (GPU)

CO2/N2

Permselectivity

0 4980 8

1 5172 10

3 2554 16

5 1963 18

10 1282 25

Experimental Conditions

• PAN350/PDMS Membrane: CO2 4980 GPU, CO2/N2 8 • Intermediate Polymer Solvent: Ethanol • Intermediate Polymer Concentration: 0.5 wt.% • Dip coater withdrawing speed: 1000 μm/sec

32

0 50 100 150 200 250 3006

8

10

12

14

16

18

20

22

24

26

CO

2/N

2 S

ele

cti

vit

y (

-)

Intermediate Layer Thickness (nm)

0 50 100 150 200 250 300

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

CO

2 P

erm

ea

nc

e (

GP

U)

Intermediate Layer Thickness (nm)

Calculated by Resistance Model

Experimental Value

Bases of Calculation: • PAN350: ~130,000 GPU (CO2, N2) • PAN350/PDMS: CO2 4980 GPU, CO2/N2 8 • Intermediate polymer: CO2 250 Barrer, α(CO2/N2) 28

33

Bases of Calculation: • PAN350/PDMS: CO2 4980 GPU, CO2/N2 8 • PAN350/PDMS/Intermediate layer: CO2 2554 GPU, CO2/N2 16 • Selective layer: CO2 452 Barrer, α(CO2/N2) 67

34

Step 3. Before protecting layer coating Step 4. After protecting layer coating

35

General Factors Causing Damages 1. Ion Bombardment 2. UV 3. Heat

(300W, 3min, 30sccm, 75 mTorr) (200W, 3min, 30sccm, 30 mTorr) (200W, 3min, 30sccm, 150 mTorr)

36

CCP (50W, 1Torr, O2 30sccm)

ICP (100W, 75mTorr, O2 30sccm)

3min 5min 10min

3min 5min 10min

37

• 4-inch spiral wound membrane module (4 envelopes)

Membrane area (m2) 5

Envelop # 4

Feed spacer thickness (mil) 28

Permeate spacer thickness (mm) 0.25

Membrane thickness (µm) 180

Permeate collector diameter (mm) 17

Packing density (m2/m3) 800

Module diameter (in.) 4 6 8 12

Envelop # 4-6 6-10 15-30 30-40

Membrane area (m2) 3-6 6-12 20-40 30-60

Packing density

(m2/m3)

Plate-to-Flame Spiral Wound

100-400 300-1000

Spiral wound module design

38

Permeate

Feed

Retentate

Permeate Feed

39

Sealant

Membrane

Frame Spacer

270 mm

250 mm

220 mm

15mm

2 mm

8 mm

2 mm

280 mm

40

Ver. 1 Ver. 2 Ver. 3

Ver. 4 Ver. 5

41

0.0 0.2 0.4 0.6 0.8 1.020

30

40

50

60

70

80

90P

feed: 2 bar

Feed flowrate: 0.5 Nm3/hr

Feed ratio: 14/86 (CO2/Balance)

Co

nc

en

tra

tio

n [

vo

l%]

Permeate pressure (Pperm

) [bar]

CO2

Balance

0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

40

50

60

70

80

90

100

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 CO

2 purity

Stage-cut ()

Recovery

Permeate pressure (Pperm

) [bar]

CO

2 p

uri

ty [

%]

Pfeed

: 2 bar

Feed flowrate: 0.5 Nm3/hr

Feed ratio: 14/86 (CO2/Balance)

Sta

ge-c

ut (

) / CO

2 reco

very

(1 frame – 1,022 cm2)

42

43

44

(5 frames – 5,108 cm2)

5 6 7 8 9 10100

150

200

250

300

350

400

0

5

10

15

20

25

30

35

40

45

50 CO

2 permeance

CO2/N

2 selectivity

Feed flow [Nm3/h]

CO

2 p

erm

ea

nce

[G

PU

]

Pfeed

: 2 bar, Pperm

: 1 bar

Feed flowrate: 5~10 Nm3/hr

Feed ratio: 14/86 (CO2/Balance)

Mix

ed

ga

s s

ele

ctiv

ity (C

O2 /N

2 )

45

46

(3 frames – 4,248 cm2)

47

48

49

50

Air Injection Particle Removal & Air Dryer

Air Dryer 2 Air Dryer 3 (Desiccant dryer)

51

Control Panel

Gas Analyzer (I.R.)

52

Vacuum pump 2 (for 2 stage permeate)

Compressor 1 Buffer Tank 1

Vacuum pump 1 (for 1 stage permeate)

53

Airrane Module (Hollow Fiber)

NSEL Module (Plate-and-Frame)