Research Article Thermophysical Properties of Binary...

10
Research Article Thermophysical Properties of Binary Mixtures of Dimethylsulfoxide with 1-Phenylethanone and 1,4-Dimethylbenzene at Various Temperatures Harmandeep Singh Gill and V. K. Rattan Dr. SSB University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India Correspondence should be addressed to Harmandeep Singh Gill; harman [email protected] Received 18 September 2013; Revised 10 December 2013; Accepted 1 January 2014; Published 24 February 2014 Academic Editor: K. A. Antonopoulos Copyright © 2014 H. S. Gill and V. K. Rattan. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. is research article reports the experimental results of the density, viscosity, refractive index, and speed of sound analysis of binary mixtures of dimethylsulfoxide (DMSO) + 1-phenylethanone (acetophenone) and + 1,4-dimethylbenzene (para-xylene) over the whole composition range at 313.15, 318.15, 323.15, and 328.15 K and at atmospheric pressure. e excess molar volumes ( ), viscosity deviations (Δ), excess Gibbs energy of activation ( ), deviations in isentropic compressibility ( ), deviations in speed of sound ( ), and deviations in the molar refraction (Δ) were calculated from the experimental data. e computed quantities were fitted to the Redlich-Kister equation to derive the coefficients and estimate the standard error values. e viscosities have also been correlated with two, and three-parameter models, that is, Heric correlation, McAllister model, and Grunberg-Nissan correlation, respectively. 1. Introduction is paper is a continuation of our ongoing research on the solution properties. Studies of the thermodynamic properties of binary mixtures play an important role in the fundamental understanding of different molecules and the interactions prevalent in them. In the present study, data on density, viscosity, refractive index, and speed of sound of binary mixtures of dimethylsulfoxide (DMSO) + 1-phenylethanone (acetophenone) and 1,4-Dimethylbenzene (-xylene) at 313.15, 318.15, 323.15, and 328.15 K has been measured exper- imentally. From these results, the excess molar volumes, viscosity deviations, deviations in molar refraction, devia- tions in speed of sound, and isentropic compressibility have been derived. Dimethylsulfoxide is a versatile nonaqueous dipolar aprotic solvent having wide range of applications like in veterinary medicine, dermatology, microbiology, exper- imental immunology, and enzyme catalyzed reactions. It can easily pass through membranes, a quality which has been verified by numerous researchers. It has the ability to penetrate through living tissues without damaging them. erefore an anesthetic or penicillin can be carried through the skin without using a needle which makes it paramount in medicinal field. Acetophenone is the simplest aromatic ketone organic compound. It can easily dissolve in water, but, since it is denser than water, it tends to sink. Its vapor is heavier than air and when inhaled in high concentrations it can be narcotic and also mild irritant to the eyes and skin. It is mostly used to create fragrances that smell like cherry, almond, strawberry, or other fruits. Acetophenone can also be found naturally occurring in fruits such as apple and banana. -xylene is an aromatic hydrocarbon based on benzene with two methyl substituents, opposite to each other. It is a colorless, flammable liquid and is insoluble in water. It is used as a thinner for paint and in paints and varnishes. e study of the thermodynamic properties of DMSO + 1- phenylethanone (acetophenone) and + 1,4-dimethylbenzene (-xylene) mixtures is of interest mainly in industrial fields where solvent mixtures could be used as selective solvents for numerous reactions. In principle, interactions between the molecules can be established from the study of the deviations from ideal behavior of physical properties Hindawi Publishing Corporation Journal of ermodynamics Volume 2014, Article ID 607052, 9 pages http://dx.doi.org/10.1155/2014/607052

Transcript of Research Article Thermophysical Properties of Binary...

Page 1: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2014/607052.pdfResearch Article Thermophysical Properties of Binary Mixtures of Dimethylsulfoxide

Research ArticleThermophysical Properties of BinaryMixtures of Dimethylsulfoxide with 1-Phenylethanone and14-Dimethylbenzene at Various Temperatures

Harmandeep Singh Gill and V K Rattan

Dr SSB University Institute of Chemical Engineering and Technology Panjab University Chandigarh 160014 India

Correspondence should be addressed to Harmandeep Singh Gill harman gilloutlookcom

Received 18 September 2013 Revised 10 December 2013 Accepted 1 January 2014 Published 24 February 2014

Academic Editor K A Antonopoulos

Copyright copy 2014 H S Gill and V K Rattan This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

This research article reports the experimental results of the density viscosity refractive index and speed of sound analysis of binarymixtures of dimethylsulfoxide (DMSO) + 1-phenylethanone (acetophenone) and + 14-dimethylbenzene (para-xylene) over thewhole composition range at 31315 31815 32315 and 32815 K and at atmospheric pressureThe excessmolar volumes (119881119864) viscositydeviations (Δ120578) excess Gibbs energy of activation (119866119864) deviations in isentropic compressibility (119870119864

119878) deviations in speed of sound

(119906119864) and deviations in the molar refraction (Δ119877) were calculated from the experimental data The computed quantities were fittedto the Redlich-Kister equation to derive the coefficients and estimate the standard error values The viscosities have also beencorrelated with two and three-parameter models that is Heric correlation McAllister model and Grunberg-Nissan correlationrespectively

1 Introduction

This paper is a continuation of our ongoing research on thesolution properties Studies of the thermodynamic propertiesof binary mixtures play an important role in the fundamentalunderstanding of different molecules and the interactionsprevalent in them In the present study data on densityviscosity refractive index and speed of sound of binarymixtures of dimethylsulfoxide (DMSO) + 1-phenylethanone(acetophenone) and 14-Dimethylbenzene (119901119886119903119886-xylene) at31315 31815 32315 and 32815 K has been measured exper-imentally From these results the excess molar volumesviscosity deviations deviations in molar refraction devia-tions in speed of sound and isentropic compressibility havebeen derived Dimethylsulfoxide is a versatile nonaqueousdipolar aprotic solvent having wide range of applications likein veterinary medicine dermatology microbiology exper-imental immunology and enzyme catalyzed reactions Itcan easily pass through membranes a quality which hasbeen verified by numerous researchers It has the abilityto penetrate through living tissues without damaging them

Therefore an anesthetic or penicillin can be carried throughthe skin without using a needle which makes it paramountin medicinal field Acetophenone is the simplest aromaticketone organic compound It can easily dissolve in water butsince it is denser than water it tends to sink Its vapor isheavier than air and when inhaled in high concentrations itcan be narcotic and also mild irritant to the eyes and skinIt is mostly used to create fragrances that smell like cherryalmond strawberry or other fruits Acetophenone can alsobe found naturally occurring in fruits such as apple andbanana 119875119886119903119886-xylene is an aromatic hydrocarbon based onbenzene with twomethyl substituents opposite to each otherIt is a colorless flammable liquid and is insoluble in waterIt is used as a thinner for paint and in paints and varnishesThe study of the thermodynamic properties of DMSO + 1-phenylethanone (acetophenone) and + 14-dimethylbenzene(119901119886119903119886-xylene) mixtures is of interest mainly in industrialfields where solvent mixtures could be used as selectivesolvents for numerous reactions In principle interactionsbetween the molecules can be established from the studyof the deviations from ideal behavior of physical properties

Hindawi Publishing CorporationJournal of ermodynamicsVolume 2014 Article ID 607052 9 pageshttpdxdoiorg1011552014607052

2 Journal of Thermodynamics

Table 1 Physical properties of the components at 29815 K

Component 120588 (gsdotcmminus3) 120578 (mPasdots) 119899119863

Exptl Lit Exptl Lit Exptl LitAcetophenone 10283 1026317 001681 00168117 15050 1500517

DMSO 10940 109537 19834 19910 14798 14775p-Xylene 85661 8566216 0609 061116 14933 1493316

such as molar volume and isentropic compressibility Thenegative or positive deviations from the ideal value dependon the type and the extent of the interactions between theunlike molecules as well as on the composition and thetemperature The variation of the isentropic compressibilityis analogous of that of the excess molar volume whereas thechange of the deviation in speed of sound tends to becomethe inverse [1] Physical and transport properties of liquidmixtures also affect most separation procedures such asliquid-liquid extraction gas absorption and distillation [2]Themixture DMSO-119901-xylene has been earlier reported twicein literature at different temperatures [1 3]

2 Experimental Section

21 Materials The chemicals used are of analytical reagentgrade Dimethylsulfoxide (DMSO) is from Riedel Germany1-phenylethanone (acetophenone) and 14-dimethylbenzene(119901119886119903119886-xylene) are from S-D Fine Chemicals Mumbai Thechemicals were purified using standard procedure [4] andwere stored overmolecular sievesThe purity of the chemicalswas verified by comparing density viscosity and refractiveindex with the known values reported in the literature asshown in Table 1 All the compositions were prepared byusing SARTORIUS balance The possible uncertainty in themole fraction is estimated to be less than plusmn1 times 10minus4

22 Viscosity Kinematic viscosities were measured by usinga calibrated modified Ubbelohde viscometer [5]The calibra-tion of viscometer was done at each temperature in order todetermine the constants 119860 and 119861 of the following equation

] =120578

120588= 119860119905 +

119861

119905 (1)

The viscometer was kept vertically in a transparent-walledwater bath with a thermal stability of plusmn005K for about30 minutes to attain thermal equilibrium Flow time wasmeasured with an electronic stop watch with precision ofplusmn001 s The corresponding uncertainty in the kinematicviscosity is plusmn0001 times 10minus6m2 sminus1 The efflux time was repeatedat least three times for each composition and the averageof these readings was taken The temperature of the bathwas maintained constant with the help of a circulatingtype cryostat (type MK70 MLW Germany) The dynamicviscosities were found out after the DSA analysis that isby dividing the above found kinematic viscosity by densityThe uncertainty in the values of dynamic viscosity is withinplusmn0003mPasdots

23 Density and Speed of Sound Density and speed ofsound were measured with the help of an ANTON PAARdensity meter (DSA 5000)The accuracy in the measurementof density and speed of sound is plusmn0000005 g cmminus3 andplusmn05msminus1 respectively The density meter was calibrated byusing triply distilled degassed water

24 Refractive Index Refractive indices were measured forsodiumD-line by ABBE-3L refractometer having Bausch andLomb lenses The temperature was maintained constant withthe help of water bath used for the viscosity measurementA minimum of three independent readings were taken foreach composition and the average value was considered inall the calculations Refractive index values are accurate up toplusmn00001 units

3 Experimental Results and Correlations

At least three independent readings of all the physicalpropertymeasurements of density (120588) viscosity (120578) refractiveindex (119899

119863) and speed of sound (119906) were taken for each

composition and the averages of these experimental valuesare presented in Tables 2 and 3 for both systems The experi-mentally determined values are used for the deviation calcu-lations

31 Excess Molar Volume Density values are used to evaluateexcess molar volume by the equation

119881119864=11990911198721+ 11990921198722

120588minus11990911198721

1205881

minus11990921198722

1205882

(2)

where 1205881 1205882are the densities of pure components and 120588 is the

density of the mixture11987211198722are the molar mass of the two

components and 1199091 1199092are the mole fraction of DMSO

Excess Gibbsrsquo free energy of activation has been alsocalculated using the viscosity and density of the mixture bythe equation

Δ119866119864= 119877119879[ln (120578119881) minus

2

sum

119894=1

119909119894ln (120578119894119881119894)] (3)

where 119877 is a universal gas constant 119879 is the temperature ofthemixture and 120578 and 120578

119894are the viscosities of themixture and

pure compound respectively119881119881119894refer to the molar volume

of the mixture and pure components respectively

32 Viscosity Calculations The deviation in viscosity isobtained by the following equation

Δ120578 = 120578 minus 12057811199091minus 12057821199092 (4)

Journal of Thermodynamics 3

Table 2 Refractive indices 119899119863 density 120588 speed of sound 119906 and viscosity 120578 for DMSO(1) + acetophenone(2) system at different tem-

peratures

1199091

119899119863

120588 (gsdotcmminus3) 119906 (msdotsminus1) 120578 (mPasdots)DMSO(1) + acetophenone(2)

31315 K000000 15142 10106 142181 12920017422 15090 10173 142453 13093031320 15046 10238 142625 13150043453 15001 10300 142715 13180054292 14955 10361 142799 13609063921 14915 10430 142888 14000072696 14877 10502 143033 14295080600 14841 10578 143257 14515087681 14806 10651 143455 14721094521 14771 10730 143677 14959100000 14742 10802 143885 15169

31815 K000000 15102 10072 140351 11161017422 15055 10144 140642 11362031320 15011 10208 140841 11459043453 14967 10271 140952 11633054292 14921 10332 141057 12100063921 14880 10400 141159 12550072696 14843 10476 141317 12873080600 14807 10549 141538 13150087681 14772 10623 141755 13400094521 14735 10700 141997 13707100000 14703 10768 142230 13968

32315 K000000 15061 09987 138535 10645017422 15019 10064 138833 10659031320 14978 10134 139060 10735043453 14933 10199 139191 10870054292 14887 10261 139310 11275063921 14847 10332 139432 11675072696 14810 10408 139605 11969080600 14775 10486 139830 12205087681 14739 10560 140055 12425094521 1470 10636 140310 12675100000 14665 10702 140568 12972

32815 K000000 15030 09856 136734 09873017422 14991 09944 137047 09815031320 14950 10024 137293 09875043453 14904 10095 137435 10010054292 14859 10168 137575 10405063921 14817 10245 137715 10770072696 14780 10331 137900 11065080600 14744 10417 138130 11305087681 14707 10498 138350 11505094521 14668 10583 138610 11755100000 14630 10655 138912 12086

4 Journal of Thermodynamics

Table 3 Refractive indices 119899119863 density 120588 speed of sound 119906 and viscosity 120578 for DMSO(1) + p-xylene(2) system at different temperatures

1199091

119899119863

120588 (gsdotcmminus3) 119906 (msdotsminus1) 120578 (mPasdots)DMSO(1) + p-xylene(2)

31315 K000000 14850 08445 124796 05175015820 14843 08720 126482 05979030056 14839 08999 128164 06777042694 14828 09293 129789 07389052448 14813 09577 131014 08106062739 14790 09923 132523 08875072506 14778 10233 134679 09889080799 14765 10477 137338 10997087462 14747 10557 139579 12275094123 14727 10723 141820 13757100000 14717 10802 143915 15116

31815 K000000 14831 08395 122799 04923015820 14823 08665 124638 05675030056 14816 08942 126394 06422042694 14803 09233 128167 06971052448 14789 09517 129539 07555062739 14767 09870 131077 08179072506 14754 10183 133190 09090080799 14737 10417 135839 10220087462 14719 10497 138068 11401094123 14701 10668 140405 12705100000 14690 10768 142309 13822

32315 K000000 14812 08348 120794 04603015820 14802 08610 122695 05401030056 14794 08882 124522 06030042694 14777 09167 126354 06550052448 14761 09443 127798 07107062739 14744 09804 129279 07697072506 14727 10110 131476 08557080799 14710 10333 134033 09776087462 14690 10410 136323 10895094123 14675 10590 138597 11999100000 14665 10702 140414 12972

32815 K000000 14793 08298 118815 04385015820 14781 08553 120859 05150030056 14771 08823 122753 05707042694 14754 09106 124759 06092052448 14736 09377 126223 06579062739 14715 09733 127899 07175072506 14699 10045 130023 07917080799 14683 10261 132512 09158087462 14663 10341 134821 10109094123 14652 10530 137098 11152100000 14640 10655 138857 11974

Journal of Thermodynamics 5

where 120578 is the viscosity of mixture and 1205781 1205782refer to the

viscosities of pure componentsMcAllister [6] model

ln ] = 1199093

1ln ]1+ 1199093

2ln ]2+ 31199092

11199092ln 12057812+ 311990911199092

2ln 12057821

minus ln [1199091+ 1199092

1198722

1198721

] + 31199092

11199092ln [2 +11987221198721

3]

+ 311990911199092

2ln[

1 + (211987221198721)

3] + 1199093

2ln [1198722

1198721

]

(5)

Herric [6] correlation

ln ] = 1199091ln ]1+ 1199092ln ]2+ 11990911199092[12057212+ 12(1199091minus 1199092)]

minus ln119872mix + 1199091 ln1198721 + 1199092 ln1198722(6)

and Grunberg-Nissan [7] equation

ln (120578) = 1199091ln (1205781) + 1199092ln (1205782) + 1198891211990911199092 (7)

have been fitted to viscosity data and it was found that bothhave the same standard errors at each temperature

33 Isentropic Compressibility The experimental results forthe speed of sound of binary mixtures are listed in Tables 2and 3 The isentropic compressibility was evaluated by using119870119878= 119906minus2120588minus1 and the deviation in isentropic compressibility

is calculated using the following equation

119870119864

119878= 119870119878minus 119870

id119878 (8)

where 119870id119878stands for isentropic compressibility for an ideal

mixture calculated using Benson-Kiyohara model [8 9]

119870id119878=

2

sum

119894=1

Φ119894[119870119878119894+

119879119881119894(1205722

119894)

119862119901119894

]

minus

119879(sum2

119894=1119909119894119881119894) (sum2

119894=1Φ119894119886119894)2

sum2

119894=1119909119894119862119901119894

(9)

where 119886119894and 119862

119901are the thermal expansion coefficient and

molar heat capacity of the 119894th components respectivelyThe deviation in speed of sound is given by

Δ119906 = 119906 minus 11990911199061minus 11990921199062 (10)

34 Molar Refraction Refractive indices have been used forthe calculation of molar refraction (119877

119898) that is obtained by

using Lorentz-Lorenz equation [8]Deviation in molar refraction (Δ119877) is calculated by the

following equation

119877 = 119877119898minussumΦ

119894119877119894

Φ119894=

119909119894

sum119909119895119881119895

(11)

00

05

00 01 02 03 04 05 06 07 08 09 10

minus05

minus10

minus15

minus20

minus25

minus30

minus35

x1

VE(cm3middotm

olminus1)

Figure 1 Experimental and calculated excess molar volume for(i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-Xylene(2)at 31315 K Q 31815 K ◼ 32315 K 998771 32815 K e symbols rep-resent the experimental values dotted lines represent DMSO-acetophenone mixture and solid lines represent DMSO-119901-Xylenemixture both optimised by Redlich-Kister parameters

where 119899119863refers to the refractive index119877

119898is molar refraction

of the mixture 119877119894is molar refraction of the 119894th component

and Φ is ideal state volume fractionAll the deviations (119881119864 Δ119877 Δ120578 Δ119906 and 119870

119864

119878) have been

fitted to Redlich-Kister polynomial regression of the type

Δ119884 = 11990911199092

119898

sum

119894=1

119860119894(1 minus 2119909

1)119894minus1 (12)

to derive the constant119860119894using themethod of the least square

Standard deviation for each case is calculated by

120590 = [

sum (Δ119884exptl minus Δ119884calcd)2

119898 minus 119899]

05

(13)

where 119898 is the number of data points and 119899 is the numberof coefficients Derived parameters of the Redlich-Kisterequation (12) and standard deviations (13) are presented inTables 4 and 5

4 Discussions

The excess molar volume from 31315 to 32815 K versusthe mole fraction of both mixtures with respect to DMSOis shown in Figure 1 The molar volume of the mixturesand the viscosity data have been used for the calculationof Gibbsrsquo free energy presented in Figure 5 The 119881119864 valuesdecrease with increasing temperatures for the systems butare positive in case of DMSO-acetophenone mixture andnegative for DMSO-119901-xylene mixture Treszczanowicz et al

6 Journal of Thermodynamics

Table 4 Derived parameters of Redlich-Kister equation (12) and standard deviation (13) for various functions of the binary mixtures atdifferent temperatures (DMSO-acetophenone)

119879119870 1198600

1198601

1198602

1198603

120590

119881119864 (cm3

sdotmolminus1)31315 12005 0741 minus01784 minus06838 00137731815 10176 07493 minus05481 minus07711 00137932315 07709 08700 minus07689 minus12620 00152732815 06714 09374 minus09528 minus13257 001381

Δ120578 (mPasdots)31315 minus02371 02135 02487 minus04972 00046131815 minus02575 02259 01846 minus04935 00032332315 minus02722 02375 00974 minus04693 00030932815 minus02887 02407 00508 minus04755 000290

119870119864

119904(TPaminus1)

31315 48515 154271 minus13121 minus125359 01107631815 35099 157048 minus18315 minus12902 00923632315 20047 211502 minus47008 minus348976 04467232815 00146 151308 minus20538 minus118737 017247

Δ119877

31315 006817 0039577 minus006186 minus009945 000627131815 0102475 0056959 minus000441 minus006411 000307385232315 0147987 0106458 0080891 minus010664 000597632815 0175329 0134545 0138756 minus014317 0008927

Δ119866119864 (Jsdotmolminus1)

31315 minus663882 5163512 4920794 minus9818602 90099831815 minus141309 625565 410846 minus1119199 73825532315 minus234912 7001368 2306251 minus11433850 73360232815 minus321946 7801317 1323463 minus125691 721134

[10] and Roux and Desnoyers [11] suggested that 119881119864 is theresultant contribution from several opposing effects Theseeffects can be primarily divided into three types namelychemical physical and structural A physical contributionthat is specific interactions between the real species presentin the mixture contribute in negative terms to 119881

119864 Thechemical or specific intermolecular interactions result ina volume decrease and these include charge transfer typeforces and other complex forming interactions This effectalso contributes in negative values to 119881

119864 The structuralcontributions are mostly negative and can arise from severaleffects especially from changes of free volume and interstitialaccommodation In other words structural contributionsarising from geometrical fitting of one component into theother due to the differences in the free volume and molarvolume between components lead to a negative contributionto 119881119864 The viscosity and deviations are presented in Table 2and plotted in Figure 2 respectively for both systems Theviscosity deviations decreasewith the increase in temperaturefor both systems The negative Δ120578 values are generallyobserved for systems where dispersion or weak dipole-dipoleforces are primarily responsible for interaction between the

component molecules The viscosity data is also fitted tothe two and the three-parameter models that is Herriccorrelation the McAllister model and Grunberg-Nissancorrelation and the evaluated parameters are presented inTables 6 and 7 The deviations in molar refraction for bothsystems are shown in Figure 3 The Δ119877 values are positivefor acetophenone system for the whole composition rangewhich goes on increasing as the temperature of the solutionincreasesThe Δ119877 values are negative for 119901119886119903119886-xylene systemfor the whole composition range which goes on decreasingas the temperature of the solution increases In general thenegative values of Δ119877 suggest that we have weak interactionsbetween the componentmolecules in themixtureThe resultsof excess isentropic compressibility (119870119864

119878) are also plotted in

Figure 4The deviations for DMSO-acetophenone system areinitially negative and then become positive when mole frac-tion is around 05 whereas for DMSO-119901-xylene system theyare negative over the entire composition range Deviation inGibbs free energy forDMSO-acetophenone system follows anarbitrary path going from negative to positive and vice versatwice while for DMSO-119901119886119903119886-xylene system the deviationsare negative and increase with increasing temperature

Journal of Thermodynamics 7

Table 5 Derived parameters of Redlich-Kister equation (12) and standard deviation (13) for various functions of the binary mixtures atdifferent temperatures (DMSO-119901-xylene)

119879119870 1198600

1198601

1198602

1198603

120590

119881119864 (cm3

sdotmolminus1)31315 minus85850 minus151234 minus6084 128652 01568731815 minus82010 minus159715 minus54345 156022 01702432315 minus77110 minus16483 minus47908 177396 01933732815 minus71898 minus163123 minus40863 180512 020482

Δ120578 (mPasdots)31315 minus09028 minus07268 minus02127 025 00055331815 minus08069 minus07852 minus01061 05942 00047532315 minus07589 minus07364 0093 06582 00061932815 minus07126 minus06943 02137 06476 00067

119870119864

119904(TPaminus1)

31315 minus1190039 minus644234 minus749361 minus362431 10383531815 minus1372976 minus763846 minus705856 minus215844 09774532315 minus1480003 minus818649 minus677606 minus176011 08483232815 minus1665237 minus921709 minus616439 minus29525 087227

Δ119877

31315 minus325811 4787247 minus177213 minus39986 022622231815 minus320078 4955419 minus149922 minus45735 023904932315 minus314001 5033874 minus126969 minus489488 024533732815 minus30793 5147192 minus101287 minus528097 0254675

Δ119866119864 (Jsdotmolminus1)

31315 minus10222560 minus175398 minus140348 1173282 15875531815 minus10138590 minus21904 883584 2252137 143056332315 minus10116820 minus220058 7691765 2310619 222004132815 minus11138360 minus224967 1294863 2307221 241139

Table 6 Interaction parameters for the McAllister model (5) Herric correlation (6) and Grunberg-Nissan correlation (7) for viscosity atdifferent temperatures (DMSO-acetophenone)

McAllister model119879119870 120578

1212057821

120590(120578)mPasdots31315 13242 13473 00001631815 1350624 1334886 00002532315 1377883 1314174 00003832815 1348994 1240874 000042

Herric correlation119879119870 120572

1212

120590(120578)mPasdots31315 minus002338 minus001368 00001631815 minus0026 minus001677 00002532315 minus002874 minus001993 00003832815 minus003047 minus002084 000042

Grunberg-Nissan correlation119879119870 119889

12120590(120578)mPasdots

31315 minus00956181 015641431815 minus01201454 009516132315 minus01618181 012439232815 minus01988545 02077

8 Journal of Thermodynamics

Table 7 Interaction parameters for the McAllister model (5) Herric correlation (6) and Grunberg-Nissan correlation (7) for viscosity atdifferent temperatures (DMSO-119901-xylene)

McAllister model119879119870 120578

1212057821

120590(120578)mPasdots31315 104511700 088014850 00030431815 103668800 087514410 00031032315 102613100 087012170 00032532815 101597400 086517980 000327

Herric correlation119879119870 12057212 12 120590(120578)mPasdots31315 004364338 013563440 00030431815 003664824 013067020 00031032315 003026920 012422880 00032532815 002245963 011706220 000327

Grunberg-Nissan correlation119879119870 119889

12120590(120578)mPasdots

31315 minus0408281 00159131815 minus0377472 002516132315 minus0320472 00123932815 minus0312945 002016

00000 01 02 03 04 05 06 07 08 09 10

x1

minus005

minus010

minus015

minus020

minus025

minus030

Δ120578(m

Pamiddots)

Figure 2 Experimental and calculated deviations in viscosityfor (i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-xylene(2) at 31315 KQ 31815 K ◼ 32315 K998771 32815 Ke symbolsrepresent the experimental values dotted lines represent DMSO-acetophenone mixture and solid lines represent DMSO-119901-xylenemixture both optimised by Redlich-Kister parameters

Symbols Used

1198601 1198602 1198603 1198604 Parameters of Redlich-Kister equation

11986012 11986021 Interaction coefficients of McAllister

model12057212 12 Coefficients of Herricrsquos correlation

] Kinematic viscosity (m2sminus1)120588 Density (g cmminus3)

005

00 01 02 03 04 05 06 07 08 09 10

minus015

minus035

minus055

minus075

minus095

minus115

x1

ΔR

Figure 3 Experimental and calculated deviations in molar refrac-tion for (i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 998771 32815 K e andsymbols represent the experimental values dotted lines representDMSO-acetophenone mixture and solid lines represent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

120590 Standard deviation120572 Thermal expansion coefficient (Kminus1)120578 Dynamic viscosity (mPasdots)Δ119866119864 Excess Gibbs free energy (Jmolminus1)

119881119864 Excess molar volume (m3molminus1)

Δ119870119864

119878 Excess isentropic compressibility(TPaminus1)

Journal of Thermodynamics 9ΔKs(TPa

minus1)

000 01 02 03 04 05 06 07 08 09 10

minus10

minus20

minus30

minus40

minus50

x1

Figure 4 Experimental and calculated deviations in isentropiccompressibility for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values dottedlines represent DMSO-Acetophenone mixture and solid lines rep-resent DMSO-119901-xylene mixture both optimised by Redlich-Kisterparameters

0

50

00 01 02 03 04 05 06 07 08 09 10minus50

minus100

minus150

minus200

minus250

minus300

minus350

minus400

x1

ΔGE(Jmiddotm

olminus1)

Figure 5 Experimental and calculated deviations in Gibbs freeenergy of activation for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values solidlines represent DMSO-Acetophenone mixture and dotted linesrepresent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

119877 Universal gas constant(8314 Jmolminus1Kminus1)

119879 Absolute temperature (K)11988912 Grunberg-nissan parameter

Φ119894 Volume fraction (dimensionless)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] M M Palaiologou G K Arianas and N G Tsierkezos ldquoTher-modynamic investigation of dimethyl sulfoxide binarymixturesat 29315 and 31315 Krdquo Journal of Solution Chemistry vol 35 no11 pp 1551ndash1565 2006

[2] K Zhang J Yang X Yu J Zhang and X Wei ldquoDensities andviscosities for binary mixtures of poly(ethylene glycol) 400 +dimethyl sulfoxide and poly(ethylene glycol) 600 + water atdifferent temperaturesrdquo Journal of Chemical and EngineeringData vol 56 no 7 pp 3083ndash3088 2011

[3] A Ali A K Nain D Chand and R Ahmad ldquoViscosities andrefractive indices of binary mixtures of dimethylsulphoxidewith some aromatic hydrocarbons at different temperaturesan experimental and theoretical studyrdquo Journal of the ChineseChemical Society vol 53 no 3 pp 531ndash543 2006

[4] J A Riddick W B Bunger and T K Sakano Organic SolventsPhysical Properties and Methods of Purifications vol 2 ofTechniques of Chemistry John Wiley amp Sons New York NYUSA 1986

[5] V K Rattan S Kapoor and K Tochigi ldquoViscosities anddensities of binary mixtures of toluene with acetic acid andpropionic acid at (29315 30315 31315 and 32315) Krdquo Journalof Chemical and Engineering Data vol 47 no 5 pp 1182ndash11842002

[6] R A McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[7] L Grunberg and A H Nissan ldquoThe energies of vaporisationviscosity and cohesion and the structure of liquidsrdquo Transac-tions of the Faraday Society vol 45 pp 125ndash137 1949

[8] G C Benson and O Kiyohara ldquoEvaluation of excess isentropiccompressibilities and isochoric heat capacitiesrdquo The Journal ofChemical Thermodynamics vol 11 no 11 pp 1061ndash1064 1979

[9] GDouheretM I Davis I J Fjellanger andHHoslashiland ldquoUltra-sonic speeds and volumetric properties of binary mixtures ofwater with poly(ethylene glycol)s at 29815 Krdquo Journal of theChemical Society - Faraday Transactions vol 93 no 10 pp1943ndash1949 1997

[10] A J Treszczanowicz O Kiyohara and G C Benson ldquoExcessvolumes for n-alkanols +n-alkanes IV Binary mixtures ofdecan-1-ol +n-pentane +n-hexane +n-octane +n-decane and+n-hexadecanerdquoThe Journal of ChemicalThermodynamics vol13 no 3 pp 253ndash260 1981

[11] A H Roux and J E Desnoyers ldquoAssociation models for alco-hol-water mixturesrdquo Journal of Proceedings of the Indian Acad-emy of Sciences Chemical Sciences vol 98 no 5-6 pp 435ndash451

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 2: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2014/607052.pdfResearch Article Thermophysical Properties of Binary Mixtures of Dimethylsulfoxide

2 Journal of Thermodynamics

Table 1 Physical properties of the components at 29815 K

Component 120588 (gsdotcmminus3) 120578 (mPasdots) 119899119863

Exptl Lit Exptl Lit Exptl LitAcetophenone 10283 1026317 001681 00168117 15050 1500517

DMSO 10940 109537 19834 19910 14798 14775p-Xylene 85661 8566216 0609 061116 14933 1493316

such as molar volume and isentropic compressibility Thenegative or positive deviations from the ideal value dependon the type and the extent of the interactions between theunlike molecules as well as on the composition and thetemperature The variation of the isentropic compressibilityis analogous of that of the excess molar volume whereas thechange of the deviation in speed of sound tends to becomethe inverse [1] Physical and transport properties of liquidmixtures also affect most separation procedures such asliquid-liquid extraction gas absorption and distillation [2]Themixture DMSO-119901-xylene has been earlier reported twicein literature at different temperatures [1 3]

2 Experimental Section

21 Materials The chemicals used are of analytical reagentgrade Dimethylsulfoxide (DMSO) is from Riedel Germany1-phenylethanone (acetophenone) and 14-dimethylbenzene(119901119886119903119886-xylene) are from S-D Fine Chemicals Mumbai Thechemicals were purified using standard procedure [4] andwere stored overmolecular sievesThe purity of the chemicalswas verified by comparing density viscosity and refractiveindex with the known values reported in the literature asshown in Table 1 All the compositions were prepared byusing SARTORIUS balance The possible uncertainty in themole fraction is estimated to be less than plusmn1 times 10minus4

22 Viscosity Kinematic viscosities were measured by usinga calibrated modified Ubbelohde viscometer [5]The calibra-tion of viscometer was done at each temperature in order todetermine the constants 119860 and 119861 of the following equation

] =120578

120588= 119860119905 +

119861

119905 (1)

The viscometer was kept vertically in a transparent-walledwater bath with a thermal stability of plusmn005K for about30 minutes to attain thermal equilibrium Flow time wasmeasured with an electronic stop watch with precision ofplusmn001 s The corresponding uncertainty in the kinematicviscosity is plusmn0001 times 10minus6m2 sminus1 The efflux time was repeatedat least three times for each composition and the averageof these readings was taken The temperature of the bathwas maintained constant with the help of a circulatingtype cryostat (type MK70 MLW Germany) The dynamicviscosities were found out after the DSA analysis that isby dividing the above found kinematic viscosity by densityThe uncertainty in the values of dynamic viscosity is withinplusmn0003mPasdots

23 Density and Speed of Sound Density and speed ofsound were measured with the help of an ANTON PAARdensity meter (DSA 5000)The accuracy in the measurementof density and speed of sound is plusmn0000005 g cmminus3 andplusmn05msminus1 respectively The density meter was calibrated byusing triply distilled degassed water

24 Refractive Index Refractive indices were measured forsodiumD-line by ABBE-3L refractometer having Bausch andLomb lenses The temperature was maintained constant withthe help of water bath used for the viscosity measurementA minimum of three independent readings were taken foreach composition and the average value was considered inall the calculations Refractive index values are accurate up toplusmn00001 units

3 Experimental Results and Correlations

At least three independent readings of all the physicalpropertymeasurements of density (120588) viscosity (120578) refractiveindex (119899

119863) and speed of sound (119906) were taken for each

composition and the averages of these experimental valuesare presented in Tables 2 and 3 for both systems The experi-mentally determined values are used for the deviation calcu-lations

31 Excess Molar Volume Density values are used to evaluateexcess molar volume by the equation

119881119864=11990911198721+ 11990921198722

120588minus11990911198721

1205881

minus11990921198722

1205882

(2)

where 1205881 1205882are the densities of pure components and 120588 is the

density of the mixture11987211198722are the molar mass of the two

components and 1199091 1199092are the mole fraction of DMSO

Excess Gibbsrsquo free energy of activation has been alsocalculated using the viscosity and density of the mixture bythe equation

Δ119866119864= 119877119879[ln (120578119881) minus

2

sum

119894=1

119909119894ln (120578119894119881119894)] (3)

where 119877 is a universal gas constant 119879 is the temperature ofthemixture and 120578 and 120578

119894are the viscosities of themixture and

pure compound respectively119881119881119894refer to the molar volume

of the mixture and pure components respectively

32 Viscosity Calculations The deviation in viscosity isobtained by the following equation

Δ120578 = 120578 minus 12057811199091minus 12057821199092 (4)

Journal of Thermodynamics 3

Table 2 Refractive indices 119899119863 density 120588 speed of sound 119906 and viscosity 120578 for DMSO(1) + acetophenone(2) system at different tem-

peratures

1199091

119899119863

120588 (gsdotcmminus3) 119906 (msdotsminus1) 120578 (mPasdots)DMSO(1) + acetophenone(2)

31315 K000000 15142 10106 142181 12920017422 15090 10173 142453 13093031320 15046 10238 142625 13150043453 15001 10300 142715 13180054292 14955 10361 142799 13609063921 14915 10430 142888 14000072696 14877 10502 143033 14295080600 14841 10578 143257 14515087681 14806 10651 143455 14721094521 14771 10730 143677 14959100000 14742 10802 143885 15169

31815 K000000 15102 10072 140351 11161017422 15055 10144 140642 11362031320 15011 10208 140841 11459043453 14967 10271 140952 11633054292 14921 10332 141057 12100063921 14880 10400 141159 12550072696 14843 10476 141317 12873080600 14807 10549 141538 13150087681 14772 10623 141755 13400094521 14735 10700 141997 13707100000 14703 10768 142230 13968

32315 K000000 15061 09987 138535 10645017422 15019 10064 138833 10659031320 14978 10134 139060 10735043453 14933 10199 139191 10870054292 14887 10261 139310 11275063921 14847 10332 139432 11675072696 14810 10408 139605 11969080600 14775 10486 139830 12205087681 14739 10560 140055 12425094521 1470 10636 140310 12675100000 14665 10702 140568 12972

32815 K000000 15030 09856 136734 09873017422 14991 09944 137047 09815031320 14950 10024 137293 09875043453 14904 10095 137435 10010054292 14859 10168 137575 10405063921 14817 10245 137715 10770072696 14780 10331 137900 11065080600 14744 10417 138130 11305087681 14707 10498 138350 11505094521 14668 10583 138610 11755100000 14630 10655 138912 12086

4 Journal of Thermodynamics

Table 3 Refractive indices 119899119863 density 120588 speed of sound 119906 and viscosity 120578 for DMSO(1) + p-xylene(2) system at different temperatures

1199091

119899119863

120588 (gsdotcmminus3) 119906 (msdotsminus1) 120578 (mPasdots)DMSO(1) + p-xylene(2)

31315 K000000 14850 08445 124796 05175015820 14843 08720 126482 05979030056 14839 08999 128164 06777042694 14828 09293 129789 07389052448 14813 09577 131014 08106062739 14790 09923 132523 08875072506 14778 10233 134679 09889080799 14765 10477 137338 10997087462 14747 10557 139579 12275094123 14727 10723 141820 13757100000 14717 10802 143915 15116

31815 K000000 14831 08395 122799 04923015820 14823 08665 124638 05675030056 14816 08942 126394 06422042694 14803 09233 128167 06971052448 14789 09517 129539 07555062739 14767 09870 131077 08179072506 14754 10183 133190 09090080799 14737 10417 135839 10220087462 14719 10497 138068 11401094123 14701 10668 140405 12705100000 14690 10768 142309 13822

32315 K000000 14812 08348 120794 04603015820 14802 08610 122695 05401030056 14794 08882 124522 06030042694 14777 09167 126354 06550052448 14761 09443 127798 07107062739 14744 09804 129279 07697072506 14727 10110 131476 08557080799 14710 10333 134033 09776087462 14690 10410 136323 10895094123 14675 10590 138597 11999100000 14665 10702 140414 12972

32815 K000000 14793 08298 118815 04385015820 14781 08553 120859 05150030056 14771 08823 122753 05707042694 14754 09106 124759 06092052448 14736 09377 126223 06579062739 14715 09733 127899 07175072506 14699 10045 130023 07917080799 14683 10261 132512 09158087462 14663 10341 134821 10109094123 14652 10530 137098 11152100000 14640 10655 138857 11974

Journal of Thermodynamics 5

where 120578 is the viscosity of mixture and 1205781 1205782refer to the

viscosities of pure componentsMcAllister [6] model

ln ] = 1199093

1ln ]1+ 1199093

2ln ]2+ 31199092

11199092ln 12057812+ 311990911199092

2ln 12057821

minus ln [1199091+ 1199092

1198722

1198721

] + 31199092

11199092ln [2 +11987221198721

3]

+ 311990911199092

2ln[

1 + (211987221198721)

3] + 1199093

2ln [1198722

1198721

]

(5)

Herric [6] correlation

ln ] = 1199091ln ]1+ 1199092ln ]2+ 11990911199092[12057212+ 12(1199091minus 1199092)]

minus ln119872mix + 1199091 ln1198721 + 1199092 ln1198722(6)

and Grunberg-Nissan [7] equation

ln (120578) = 1199091ln (1205781) + 1199092ln (1205782) + 1198891211990911199092 (7)

have been fitted to viscosity data and it was found that bothhave the same standard errors at each temperature

33 Isentropic Compressibility The experimental results forthe speed of sound of binary mixtures are listed in Tables 2and 3 The isentropic compressibility was evaluated by using119870119878= 119906minus2120588minus1 and the deviation in isentropic compressibility

is calculated using the following equation

119870119864

119878= 119870119878minus 119870

id119878 (8)

where 119870id119878stands for isentropic compressibility for an ideal

mixture calculated using Benson-Kiyohara model [8 9]

119870id119878=

2

sum

119894=1

Φ119894[119870119878119894+

119879119881119894(1205722

119894)

119862119901119894

]

minus

119879(sum2

119894=1119909119894119881119894) (sum2

119894=1Φ119894119886119894)2

sum2

119894=1119909119894119862119901119894

(9)

where 119886119894and 119862

119901are the thermal expansion coefficient and

molar heat capacity of the 119894th components respectivelyThe deviation in speed of sound is given by

Δ119906 = 119906 minus 11990911199061minus 11990921199062 (10)

34 Molar Refraction Refractive indices have been used forthe calculation of molar refraction (119877

119898) that is obtained by

using Lorentz-Lorenz equation [8]Deviation in molar refraction (Δ119877) is calculated by the

following equation

119877 = 119877119898minussumΦ

119894119877119894

Φ119894=

119909119894

sum119909119895119881119895

(11)

00

05

00 01 02 03 04 05 06 07 08 09 10

minus05

minus10

minus15

minus20

minus25

minus30

minus35

x1

VE(cm3middotm

olminus1)

Figure 1 Experimental and calculated excess molar volume for(i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-Xylene(2)at 31315 K Q 31815 K ◼ 32315 K 998771 32815 K e symbols rep-resent the experimental values dotted lines represent DMSO-acetophenone mixture and solid lines represent DMSO-119901-Xylenemixture both optimised by Redlich-Kister parameters

where 119899119863refers to the refractive index119877

119898is molar refraction

of the mixture 119877119894is molar refraction of the 119894th component

and Φ is ideal state volume fractionAll the deviations (119881119864 Δ119877 Δ120578 Δ119906 and 119870

119864

119878) have been

fitted to Redlich-Kister polynomial regression of the type

Δ119884 = 11990911199092

119898

sum

119894=1

119860119894(1 minus 2119909

1)119894minus1 (12)

to derive the constant119860119894using themethod of the least square

Standard deviation for each case is calculated by

120590 = [

sum (Δ119884exptl minus Δ119884calcd)2

119898 minus 119899]

05

(13)

where 119898 is the number of data points and 119899 is the numberof coefficients Derived parameters of the Redlich-Kisterequation (12) and standard deviations (13) are presented inTables 4 and 5

4 Discussions

The excess molar volume from 31315 to 32815 K versusthe mole fraction of both mixtures with respect to DMSOis shown in Figure 1 The molar volume of the mixturesand the viscosity data have been used for the calculationof Gibbsrsquo free energy presented in Figure 5 The 119881119864 valuesdecrease with increasing temperatures for the systems butare positive in case of DMSO-acetophenone mixture andnegative for DMSO-119901-xylene mixture Treszczanowicz et al

6 Journal of Thermodynamics

Table 4 Derived parameters of Redlich-Kister equation (12) and standard deviation (13) for various functions of the binary mixtures atdifferent temperatures (DMSO-acetophenone)

119879119870 1198600

1198601

1198602

1198603

120590

119881119864 (cm3

sdotmolminus1)31315 12005 0741 minus01784 minus06838 00137731815 10176 07493 minus05481 minus07711 00137932315 07709 08700 minus07689 minus12620 00152732815 06714 09374 minus09528 minus13257 001381

Δ120578 (mPasdots)31315 minus02371 02135 02487 minus04972 00046131815 minus02575 02259 01846 minus04935 00032332315 minus02722 02375 00974 minus04693 00030932815 minus02887 02407 00508 minus04755 000290

119870119864

119904(TPaminus1)

31315 48515 154271 minus13121 minus125359 01107631815 35099 157048 minus18315 minus12902 00923632315 20047 211502 minus47008 minus348976 04467232815 00146 151308 minus20538 minus118737 017247

Δ119877

31315 006817 0039577 minus006186 minus009945 000627131815 0102475 0056959 minus000441 minus006411 000307385232315 0147987 0106458 0080891 minus010664 000597632815 0175329 0134545 0138756 minus014317 0008927

Δ119866119864 (Jsdotmolminus1)

31315 minus663882 5163512 4920794 minus9818602 90099831815 minus141309 625565 410846 minus1119199 73825532315 minus234912 7001368 2306251 minus11433850 73360232815 minus321946 7801317 1323463 minus125691 721134

[10] and Roux and Desnoyers [11] suggested that 119881119864 is theresultant contribution from several opposing effects Theseeffects can be primarily divided into three types namelychemical physical and structural A physical contributionthat is specific interactions between the real species presentin the mixture contribute in negative terms to 119881

119864 Thechemical or specific intermolecular interactions result ina volume decrease and these include charge transfer typeforces and other complex forming interactions This effectalso contributes in negative values to 119881

119864 The structuralcontributions are mostly negative and can arise from severaleffects especially from changes of free volume and interstitialaccommodation In other words structural contributionsarising from geometrical fitting of one component into theother due to the differences in the free volume and molarvolume between components lead to a negative contributionto 119881119864 The viscosity and deviations are presented in Table 2and plotted in Figure 2 respectively for both systems Theviscosity deviations decreasewith the increase in temperaturefor both systems The negative Δ120578 values are generallyobserved for systems where dispersion or weak dipole-dipoleforces are primarily responsible for interaction between the

component molecules The viscosity data is also fitted tothe two and the three-parameter models that is Herriccorrelation the McAllister model and Grunberg-Nissancorrelation and the evaluated parameters are presented inTables 6 and 7 The deviations in molar refraction for bothsystems are shown in Figure 3 The Δ119877 values are positivefor acetophenone system for the whole composition rangewhich goes on increasing as the temperature of the solutionincreasesThe Δ119877 values are negative for 119901119886119903119886-xylene systemfor the whole composition range which goes on decreasingas the temperature of the solution increases In general thenegative values of Δ119877 suggest that we have weak interactionsbetween the componentmolecules in themixtureThe resultsof excess isentropic compressibility (119870119864

119878) are also plotted in

Figure 4The deviations for DMSO-acetophenone system areinitially negative and then become positive when mole frac-tion is around 05 whereas for DMSO-119901-xylene system theyare negative over the entire composition range Deviation inGibbs free energy forDMSO-acetophenone system follows anarbitrary path going from negative to positive and vice versatwice while for DMSO-119901119886119903119886-xylene system the deviationsare negative and increase with increasing temperature

Journal of Thermodynamics 7

Table 5 Derived parameters of Redlich-Kister equation (12) and standard deviation (13) for various functions of the binary mixtures atdifferent temperatures (DMSO-119901-xylene)

119879119870 1198600

1198601

1198602

1198603

120590

119881119864 (cm3

sdotmolminus1)31315 minus85850 minus151234 minus6084 128652 01568731815 minus82010 minus159715 minus54345 156022 01702432315 minus77110 minus16483 minus47908 177396 01933732815 minus71898 minus163123 minus40863 180512 020482

Δ120578 (mPasdots)31315 minus09028 minus07268 minus02127 025 00055331815 minus08069 minus07852 minus01061 05942 00047532315 minus07589 minus07364 0093 06582 00061932815 minus07126 minus06943 02137 06476 00067

119870119864

119904(TPaminus1)

31315 minus1190039 minus644234 minus749361 minus362431 10383531815 minus1372976 minus763846 minus705856 minus215844 09774532315 minus1480003 minus818649 minus677606 minus176011 08483232815 minus1665237 minus921709 minus616439 minus29525 087227

Δ119877

31315 minus325811 4787247 minus177213 minus39986 022622231815 minus320078 4955419 minus149922 minus45735 023904932315 minus314001 5033874 minus126969 minus489488 024533732815 minus30793 5147192 minus101287 minus528097 0254675

Δ119866119864 (Jsdotmolminus1)

31315 minus10222560 minus175398 minus140348 1173282 15875531815 minus10138590 minus21904 883584 2252137 143056332315 minus10116820 minus220058 7691765 2310619 222004132815 minus11138360 minus224967 1294863 2307221 241139

Table 6 Interaction parameters for the McAllister model (5) Herric correlation (6) and Grunberg-Nissan correlation (7) for viscosity atdifferent temperatures (DMSO-acetophenone)

McAllister model119879119870 120578

1212057821

120590(120578)mPasdots31315 13242 13473 00001631815 1350624 1334886 00002532315 1377883 1314174 00003832815 1348994 1240874 000042

Herric correlation119879119870 120572

1212

120590(120578)mPasdots31315 minus002338 minus001368 00001631815 minus0026 minus001677 00002532315 minus002874 minus001993 00003832815 minus003047 minus002084 000042

Grunberg-Nissan correlation119879119870 119889

12120590(120578)mPasdots

31315 minus00956181 015641431815 minus01201454 009516132315 minus01618181 012439232815 minus01988545 02077

8 Journal of Thermodynamics

Table 7 Interaction parameters for the McAllister model (5) Herric correlation (6) and Grunberg-Nissan correlation (7) for viscosity atdifferent temperatures (DMSO-119901-xylene)

McAllister model119879119870 120578

1212057821

120590(120578)mPasdots31315 104511700 088014850 00030431815 103668800 087514410 00031032315 102613100 087012170 00032532815 101597400 086517980 000327

Herric correlation119879119870 12057212 12 120590(120578)mPasdots31315 004364338 013563440 00030431815 003664824 013067020 00031032315 003026920 012422880 00032532815 002245963 011706220 000327

Grunberg-Nissan correlation119879119870 119889

12120590(120578)mPasdots

31315 minus0408281 00159131815 minus0377472 002516132315 minus0320472 00123932815 minus0312945 002016

00000 01 02 03 04 05 06 07 08 09 10

x1

minus005

minus010

minus015

minus020

minus025

minus030

Δ120578(m

Pamiddots)

Figure 2 Experimental and calculated deviations in viscosityfor (i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-xylene(2) at 31315 KQ 31815 K ◼ 32315 K998771 32815 Ke symbolsrepresent the experimental values dotted lines represent DMSO-acetophenone mixture and solid lines represent DMSO-119901-xylenemixture both optimised by Redlich-Kister parameters

Symbols Used

1198601 1198602 1198603 1198604 Parameters of Redlich-Kister equation

11986012 11986021 Interaction coefficients of McAllister

model12057212 12 Coefficients of Herricrsquos correlation

] Kinematic viscosity (m2sminus1)120588 Density (g cmminus3)

005

00 01 02 03 04 05 06 07 08 09 10

minus015

minus035

minus055

minus075

minus095

minus115

x1

ΔR

Figure 3 Experimental and calculated deviations in molar refrac-tion for (i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 998771 32815 K e andsymbols represent the experimental values dotted lines representDMSO-acetophenone mixture and solid lines represent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

120590 Standard deviation120572 Thermal expansion coefficient (Kminus1)120578 Dynamic viscosity (mPasdots)Δ119866119864 Excess Gibbs free energy (Jmolminus1)

119881119864 Excess molar volume (m3molminus1)

Δ119870119864

119878 Excess isentropic compressibility(TPaminus1)

Journal of Thermodynamics 9ΔKs(TPa

minus1)

000 01 02 03 04 05 06 07 08 09 10

minus10

minus20

minus30

minus40

minus50

x1

Figure 4 Experimental and calculated deviations in isentropiccompressibility for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values dottedlines represent DMSO-Acetophenone mixture and solid lines rep-resent DMSO-119901-xylene mixture both optimised by Redlich-Kisterparameters

0

50

00 01 02 03 04 05 06 07 08 09 10minus50

minus100

minus150

minus200

minus250

minus300

minus350

minus400

x1

ΔGE(Jmiddotm

olminus1)

Figure 5 Experimental and calculated deviations in Gibbs freeenergy of activation for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values solidlines represent DMSO-Acetophenone mixture and dotted linesrepresent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

119877 Universal gas constant(8314 Jmolminus1Kminus1)

119879 Absolute temperature (K)11988912 Grunberg-nissan parameter

Φ119894 Volume fraction (dimensionless)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] M M Palaiologou G K Arianas and N G Tsierkezos ldquoTher-modynamic investigation of dimethyl sulfoxide binarymixturesat 29315 and 31315 Krdquo Journal of Solution Chemistry vol 35 no11 pp 1551ndash1565 2006

[2] K Zhang J Yang X Yu J Zhang and X Wei ldquoDensities andviscosities for binary mixtures of poly(ethylene glycol) 400 +dimethyl sulfoxide and poly(ethylene glycol) 600 + water atdifferent temperaturesrdquo Journal of Chemical and EngineeringData vol 56 no 7 pp 3083ndash3088 2011

[3] A Ali A K Nain D Chand and R Ahmad ldquoViscosities andrefractive indices of binary mixtures of dimethylsulphoxidewith some aromatic hydrocarbons at different temperaturesan experimental and theoretical studyrdquo Journal of the ChineseChemical Society vol 53 no 3 pp 531ndash543 2006

[4] J A Riddick W B Bunger and T K Sakano Organic SolventsPhysical Properties and Methods of Purifications vol 2 ofTechniques of Chemistry John Wiley amp Sons New York NYUSA 1986

[5] V K Rattan S Kapoor and K Tochigi ldquoViscosities anddensities of binary mixtures of toluene with acetic acid andpropionic acid at (29315 30315 31315 and 32315) Krdquo Journalof Chemical and Engineering Data vol 47 no 5 pp 1182ndash11842002

[6] R A McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[7] L Grunberg and A H Nissan ldquoThe energies of vaporisationviscosity and cohesion and the structure of liquidsrdquo Transac-tions of the Faraday Society vol 45 pp 125ndash137 1949

[8] G C Benson and O Kiyohara ldquoEvaluation of excess isentropiccompressibilities and isochoric heat capacitiesrdquo The Journal ofChemical Thermodynamics vol 11 no 11 pp 1061ndash1064 1979

[9] GDouheretM I Davis I J Fjellanger andHHoslashiland ldquoUltra-sonic speeds and volumetric properties of binary mixtures ofwater with poly(ethylene glycol)s at 29815 Krdquo Journal of theChemical Society - Faraday Transactions vol 93 no 10 pp1943ndash1949 1997

[10] A J Treszczanowicz O Kiyohara and G C Benson ldquoExcessvolumes for n-alkanols +n-alkanes IV Binary mixtures ofdecan-1-ol +n-pentane +n-hexane +n-octane +n-decane and+n-hexadecanerdquoThe Journal of ChemicalThermodynamics vol13 no 3 pp 253ndash260 1981

[11] A H Roux and J E Desnoyers ldquoAssociation models for alco-hol-water mixturesrdquo Journal of Proceedings of the Indian Acad-emy of Sciences Chemical Sciences vol 98 no 5-6 pp 435ndash451

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 3: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2014/607052.pdfResearch Article Thermophysical Properties of Binary Mixtures of Dimethylsulfoxide

Journal of Thermodynamics 3

Table 2 Refractive indices 119899119863 density 120588 speed of sound 119906 and viscosity 120578 for DMSO(1) + acetophenone(2) system at different tem-

peratures

1199091

119899119863

120588 (gsdotcmminus3) 119906 (msdotsminus1) 120578 (mPasdots)DMSO(1) + acetophenone(2)

31315 K000000 15142 10106 142181 12920017422 15090 10173 142453 13093031320 15046 10238 142625 13150043453 15001 10300 142715 13180054292 14955 10361 142799 13609063921 14915 10430 142888 14000072696 14877 10502 143033 14295080600 14841 10578 143257 14515087681 14806 10651 143455 14721094521 14771 10730 143677 14959100000 14742 10802 143885 15169

31815 K000000 15102 10072 140351 11161017422 15055 10144 140642 11362031320 15011 10208 140841 11459043453 14967 10271 140952 11633054292 14921 10332 141057 12100063921 14880 10400 141159 12550072696 14843 10476 141317 12873080600 14807 10549 141538 13150087681 14772 10623 141755 13400094521 14735 10700 141997 13707100000 14703 10768 142230 13968

32315 K000000 15061 09987 138535 10645017422 15019 10064 138833 10659031320 14978 10134 139060 10735043453 14933 10199 139191 10870054292 14887 10261 139310 11275063921 14847 10332 139432 11675072696 14810 10408 139605 11969080600 14775 10486 139830 12205087681 14739 10560 140055 12425094521 1470 10636 140310 12675100000 14665 10702 140568 12972

32815 K000000 15030 09856 136734 09873017422 14991 09944 137047 09815031320 14950 10024 137293 09875043453 14904 10095 137435 10010054292 14859 10168 137575 10405063921 14817 10245 137715 10770072696 14780 10331 137900 11065080600 14744 10417 138130 11305087681 14707 10498 138350 11505094521 14668 10583 138610 11755100000 14630 10655 138912 12086

4 Journal of Thermodynamics

Table 3 Refractive indices 119899119863 density 120588 speed of sound 119906 and viscosity 120578 for DMSO(1) + p-xylene(2) system at different temperatures

1199091

119899119863

120588 (gsdotcmminus3) 119906 (msdotsminus1) 120578 (mPasdots)DMSO(1) + p-xylene(2)

31315 K000000 14850 08445 124796 05175015820 14843 08720 126482 05979030056 14839 08999 128164 06777042694 14828 09293 129789 07389052448 14813 09577 131014 08106062739 14790 09923 132523 08875072506 14778 10233 134679 09889080799 14765 10477 137338 10997087462 14747 10557 139579 12275094123 14727 10723 141820 13757100000 14717 10802 143915 15116

31815 K000000 14831 08395 122799 04923015820 14823 08665 124638 05675030056 14816 08942 126394 06422042694 14803 09233 128167 06971052448 14789 09517 129539 07555062739 14767 09870 131077 08179072506 14754 10183 133190 09090080799 14737 10417 135839 10220087462 14719 10497 138068 11401094123 14701 10668 140405 12705100000 14690 10768 142309 13822

32315 K000000 14812 08348 120794 04603015820 14802 08610 122695 05401030056 14794 08882 124522 06030042694 14777 09167 126354 06550052448 14761 09443 127798 07107062739 14744 09804 129279 07697072506 14727 10110 131476 08557080799 14710 10333 134033 09776087462 14690 10410 136323 10895094123 14675 10590 138597 11999100000 14665 10702 140414 12972

32815 K000000 14793 08298 118815 04385015820 14781 08553 120859 05150030056 14771 08823 122753 05707042694 14754 09106 124759 06092052448 14736 09377 126223 06579062739 14715 09733 127899 07175072506 14699 10045 130023 07917080799 14683 10261 132512 09158087462 14663 10341 134821 10109094123 14652 10530 137098 11152100000 14640 10655 138857 11974

Journal of Thermodynamics 5

where 120578 is the viscosity of mixture and 1205781 1205782refer to the

viscosities of pure componentsMcAllister [6] model

ln ] = 1199093

1ln ]1+ 1199093

2ln ]2+ 31199092

11199092ln 12057812+ 311990911199092

2ln 12057821

minus ln [1199091+ 1199092

1198722

1198721

] + 31199092

11199092ln [2 +11987221198721

3]

+ 311990911199092

2ln[

1 + (211987221198721)

3] + 1199093

2ln [1198722

1198721

]

(5)

Herric [6] correlation

ln ] = 1199091ln ]1+ 1199092ln ]2+ 11990911199092[12057212+ 12(1199091minus 1199092)]

minus ln119872mix + 1199091 ln1198721 + 1199092 ln1198722(6)

and Grunberg-Nissan [7] equation

ln (120578) = 1199091ln (1205781) + 1199092ln (1205782) + 1198891211990911199092 (7)

have been fitted to viscosity data and it was found that bothhave the same standard errors at each temperature

33 Isentropic Compressibility The experimental results forthe speed of sound of binary mixtures are listed in Tables 2and 3 The isentropic compressibility was evaluated by using119870119878= 119906minus2120588minus1 and the deviation in isentropic compressibility

is calculated using the following equation

119870119864

119878= 119870119878minus 119870

id119878 (8)

where 119870id119878stands for isentropic compressibility for an ideal

mixture calculated using Benson-Kiyohara model [8 9]

119870id119878=

2

sum

119894=1

Φ119894[119870119878119894+

119879119881119894(1205722

119894)

119862119901119894

]

minus

119879(sum2

119894=1119909119894119881119894) (sum2

119894=1Φ119894119886119894)2

sum2

119894=1119909119894119862119901119894

(9)

where 119886119894and 119862

119901are the thermal expansion coefficient and

molar heat capacity of the 119894th components respectivelyThe deviation in speed of sound is given by

Δ119906 = 119906 minus 11990911199061minus 11990921199062 (10)

34 Molar Refraction Refractive indices have been used forthe calculation of molar refraction (119877

119898) that is obtained by

using Lorentz-Lorenz equation [8]Deviation in molar refraction (Δ119877) is calculated by the

following equation

119877 = 119877119898minussumΦ

119894119877119894

Φ119894=

119909119894

sum119909119895119881119895

(11)

00

05

00 01 02 03 04 05 06 07 08 09 10

minus05

minus10

minus15

minus20

minus25

minus30

minus35

x1

VE(cm3middotm

olminus1)

Figure 1 Experimental and calculated excess molar volume for(i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-Xylene(2)at 31315 K Q 31815 K ◼ 32315 K 998771 32815 K e symbols rep-resent the experimental values dotted lines represent DMSO-acetophenone mixture and solid lines represent DMSO-119901-Xylenemixture both optimised by Redlich-Kister parameters

where 119899119863refers to the refractive index119877

119898is molar refraction

of the mixture 119877119894is molar refraction of the 119894th component

and Φ is ideal state volume fractionAll the deviations (119881119864 Δ119877 Δ120578 Δ119906 and 119870

119864

119878) have been

fitted to Redlich-Kister polynomial regression of the type

Δ119884 = 11990911199092

119898

sum

119894=1

119860119894(1 minus 2119909

1)119894minus1 (12)

to derive the constant119860119894using themethod of the least square

Standard deviation for each case is calculated by

120590 = [

sum (Δ119884exptl minus Δ119884calcd)2

119898 minus 119899]

05

(13)

where 119898 is the number of data points and 119899 is the numberof coefficients Derived parameters of the Redlich-Kisterequation (12) and standard deviations (13) are presented inTables 4 and 5

4 Discussions

The excess molar volume from 31315 to 32815 K versusthe mole fraction of both mixtures with respect to DMSOis shown in Figure 1 The molar volume of the mixturesand the viscosity data have been used for the calculationof Gibbsrsquo free energy presented in Figure 5 The 119881119864 valuesdecrease with increasing temperatures for the systems butare positive in case of DMSO-acetophenone mixture andnegative for DMSO-119901-xylene mixture Treszczanowicz et al

6 Journal of Thermodynamics

Table 4 Derived parameters of Redlich-Kister equation (12) and standard deviation (13) for various functions of the binary mixtures atdifferent temperatures (DMSO-acetophenone)

119879119870 1198600

1198601

1198602

1198603

120590

119881119864 (cm3

sdotmolminus1)31315 12005 0741 minus01784 minus06838 00137731815 10176 07493 minus05481 minus07711 00137932315 07709 08700 minus07689 minus12620 00152732815 06714 09374 minus09528 minus13257 001381

Δ120578 (mPasdots)31315 minus02371 02135 02487 minus04972 00046131815 minus02575 02259 01846 minus04935 00032332315 minus02722 02375 00974 minus04693 00030932815 minus02887 02407 00508 minus04755 000290

119870119864

119904(TPaminus1)

31315 48515 154271 minus13121 minus125359 01107631815 35099 157048 minus18315 minus12902 00923632315 20047 211502 minus47008 minus348976 04467232815 00146 151308 minus20538 minus118737 017247

Δ119877

31315 006817 0039577 minus006186 minus009945 000627131815 0102475 0056959 minus000441 minus006411 000307385232315 0147987 0106458 0080891 minus010664 000597632815 0175329 0134545 0138756 minus014317 0008927

Δ119866119864 (Jsdotmolminus1)

31315 minus663882 5163512 4920794 minus9818602 90099831815 minus141309 625565 410846 minus1119199 73825532315 minus234912 7001368 2306251 minus11433850 73360232815 minus321946 7801317 1323463 minus125691 721134

[10] and Roux and Desnoyers [11] suggested that 119881119864 is theresultant contribution from several opposing effects Theseeffects can be primarily divided into three types namelychemical physical and structural A physical contributionthat is specific interactions between the real species presentin the mixture contribute in negative terms to 119881

119864 Thechemical or specific intermolecular interactions result ina volume decrease and these include charge transfer typeforces and other complex forming interactions This effectalso contributes in negative values to 119881

119864 The structuralcontributions are mostly negative and can arise from severaleffects especially from changes of free volume and interstitialaccommodation In other words structural contributionsarising from geometrical fitting of one component into theother due to the differences in the free volume and molarvolume between components lead to a negative contributionto 119881119864 The viscosity and deviations are presented in Table 2and plotted in Figure 2 respectively for both systems Theviscosity deviations decreasewith the increase in temperaturefor both systems The negative Δ120578 values are generallyobserved for systems where dispersion or weak dipole-dipoleforces are primarily responsible for interaction between the

component molecules The viscosity data is also fitted tothe two and the three-parameter models that is Herriccorrelation the McAllister model and Grunberg-Nissancorrelation and the evaluated parameters are presented inTables 6 and 7 The deviations in molar refraction for bothsystems are shown in Figure 3 The Δ119877 values are positivefor acetophenone system for the whole composition rangewhich goes on increasing as the temperature of the solutionincreasesThe Δ119877 values are negative for 119901119886119903119886-xylene systemfor the whole composition range which goes on decreasingas the temperature of the solution increases In general thenegative values of Δ119877 suggest that we have weak interactionsbetween the componentmolecules in themixtureThe resultsof excess isentropic compressibility (119870119864

119878) are also plotted in

Figure 4The deviations for DMSO-acetophenone system areinitially negative and then become positive when mole frac-tion is around 05 whereas for DMSO-119901-xylene system theyare negative over the entire composition range Deviation inGibbs free energy forDMSO-acetophenone system follows anarbitrary path going from negative to positive and vice versatwice while for DMSO-119901119886119903119886-xylene system the deviationsare negative and increase with increasing temperature

Journal of Thermodynamics 7

Table 5 Derived parameters of Redlich-Kister equation (12) and standard deviation (13) for various functions of the binary mixtures atdifferent temperatures (DMSO-119901-xylene)

119879119870 1198600

1198601

1198602

1198603

120590

119881119864 (cm3

sdotmolminus1)31315 minus85850 minus151234 minus6084 128652 01568731815 minus82010 minus159715 minus54345 156022 01702432315 minus77110 minus16483 minus47908 177396 01933732815 minus71898 minus163123 minus40863 180512 020482

Δ120578 (mPasdots)31315 minus09028 minus07268 minus02127 025 00055331815 minus08069 minus07852 minus01061 05942 00047532315 minus07589 minus07364 0093 06582 00061932815 minus07126 minus06943 02137 06476 00067

119870119864

119904(TPaminus1)

31315 minus1190039 minus644234 minus749361 minus362431 10383531815 minus1372976 minus763846 minus705856 minus215844 09774532315 minus1480003 minus818649 minus677606 minus176011 08483232815 minus1665237 minus921709 minus616439 minus29525 087227

Δ119877

31315 minus325811 4787247 minus177213 minus39986 022622231815 minus320078 4955419 minus149922 minus45735 023904932315 minus314001 5033874 minus126969 minus489488 024533732815 minus30793 5147192 minus101287 minus528097 0254675

Δ119866119864 (Jsdotmolminus1)

31315 minus10222560 minus175398 minus140348 1173282 15875531815 minus10138590 minus21904 883584 2252137 143056332315 minus10116820 minus220058 7691765 2310619 222004132815 minus11138360 minus224967 1294863 2307221 241139

Table 6 Interaction parameters for the McAllister model (5) Herric correlation (6) and Grunberg-Nissan correlation (7) for viscosity atdifferent temperatures (DMSO-acetophenone)

McAllister model119879119870 120578

1212057821

120590(120578)mPasdots31315 13242 13473 00001631815 1350624 1334886 00002532315 1377883 1314174 00003832815 1348994 1240874 000042

Herric correlation119879119870 120572

1212

120590(120578)mPasdots31315 minus002338 minus001368 00001631815 minus0026 minus001677 00002532315 minus002874 minus001993 00003832815 minus003047 minus002084 000042

Grunberg-Nissan correlation119879119870 119889

12120590(120578)mPasdots

31315 minus00956181 015641431815 minus01201454 009516132315 minus01618181 012439232815 minus01988545 02077

8 Journal of Thermodynamics

Table 7 Interaction parameters for the McAllister model (5) Herric correlation (6) and Grunberg-Nissan correlation (7) for viscosity atdifferent temperatures (DMSO-119901-xylene)

McAllister model119879119870 120578

1212057821

120590(120578)mPasdots31315 104511700 088014850 00030431815 103668800 087514410 00031032315 102613100 087012170 00032532815 101597400 086517980 000327

Herric correlation119879119870 12057212 12 120590(120578)mPasdots31315 004364338 013563440 00030431815 003664824 013067020 00031032315 003026920 012422880 00032532815 002245963 011706220 000327

Grunberg-Nissan correlation119879119870 119889

12120590(120578)mPasdots

31315 minus0408281 00159131815 minus0377472 002516132315 minus0320472 00123932815 minus0312945 002016

00000 01 02 03 04 05 06 07 08 09 10

x1

minus005

minus010

minus015

minus020

minus025

minus030

Δ120578(m

Pamiddots)

Figure 2 Experimental and calculated deviations in viscosityfor (i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-xylene(2) at 31315 KQ 31815 K ◼ 32315 K998771 32815 Ke symbolsrepresent the experimental values dotted lines represent DMSO-acetophenone mixture and solid lines represent DMSO-119901-xylenemixture both optimised by Redlich-Kister parameters

Symbols Used

1198601 1198602 1198603 1198604 Parameters of Redlich-Kister equation

11986012 11986021 Interaction coefficients of McAllister

model12057212 12 Coefficients of Herricrsquos correlation

] Kinematic viscosity (m2sminus1)120588 Density (g cmminus3)

005

00 01 02 03 04 05 06 07 08 09 10

minus015

minus035

minus055

minus075

minus095

minus115

x1

ΔR

Figure 3 Experimental and calculated deviations in molar refrac-tion for (i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 998771 32815 K e andsymbols represent the experimental values dotted lines representDMSO-acetophenone mixture and solid lines represent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

120590 Standard deviation120572 Thermal expansion coefficient (Kminus1)120578 Dynamic viscosity (mPasdots)Δ119866119864 Excess Gibbs free energy (Jmolminus1)

119881119864 Excess molar volume (m3molminus1)

Δ119870119864

119878 Excess isentropic compressibility(TPaminus1)

Journal of Thermodynamics 9ΔKs(TPa

minus1)

000 01 02 03 04 05 06 07 08 09 10

minus10

minus20

minus30

minus40

minus50

x1

Figure 4 Experimental and calculated deviations in isentropiccompressibility for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values dottedlines represent DMSO-Acetophenone mixture and solid lines rep-resent DMSO-119901-xylene mixture both optimised by Redlich-Kisterparameters

0

50

00 01 02 03 04 05 06 07 08 09 10minus50

minus100

minus150

minus200

minus250

minus300

minus350

minus400

x1

ΔGE(Jmiddotm

olminus1)

Figure 5 Experimental and calculated deviations in Gibbs freeenergy of activation for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values solidlines represent DMSO-Acetophenone mixture and dotted linesrepresent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

119877 Universal gas constant(8314 Jmolminus1Kminus1)

119879 Absolute temperature (K)11988912 Grunberg-nissan parameter

Φ119894 Volume fraction (dimensionless)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] M M Palaiologou G K Arianas and N G Tsierkezos ldquoTher-modynamic investigation of dimethyl sulfoxide binarymixturesat 29315 and 31315 Krdquo Journal of Solution Chemistry vol 35 no11 pp 1551ndash1565 2006

[2] K Zhang J Yang X Yu J Zhang and X Wei ldquoDensities andviscosities for binary mixtures of poly(ethylene glycol) 400 +dimethyl sulfoxide and poly(ethylene glycol) 600 + water atdifferent temperaturesrdquo Journal of Chemical and EngineeringData vol 56 no 7 pp 3083ndash3088 2011

[3] A Ali A K Nain D Chand and R Ahmad ldquoViscosities andrefractive indices of binary mixtures of dimethylsulphoxidewith some aromatic hydrocarbons at different temperaturesan experimental and theoretical studyrdquo Journal of the ChineseChemical Society vol 53 no 3 pp 531ndash543 2006

[4] J A Riddick W B Bunger and T K Sakano Organic SolventsPhysical Properties and Methods of Purifications vol 2 ofTechniques of Chemistry John Wiley amp Sons New York NYUSA 1986

[5] V K Rattan S Kapoor and K Tochigi ldquoViscosities anddensities of binary mixtures of toluene with acetic acid andpropionic acid at (29315 30315 31315 and 32315) Krdquo Journalof Chemical and Engineering Data vol 47 no 5 pp 1182ndash11842002

[6] R A McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[7] L Grunberg and A H Nissan ldquoThe energies of vaporisationviscosity and cohesion and the structure of liquidsrdquo Transac-tions of the Faraday Society vol 45 pp 125ndash137 1949

[8] G C Benson and O Kiyohara ldquoEvaluation of excess isentropiccompressibilities and isochoric heat capacitiesrdquo The Journal ofChemical Thermodynamics vol 11 no 11 pp 1061ndash1064 1979

[9] GDouheretM I Davis I J Fjellanger andHHoslashiland ldquoUltra-sonic speeds and volumetric properties of binary mixtures ofwater with poly(ethylene glycol)s at 29815 Krdquo Journal of theChemical Society - Faraday Transactions vol 93 no 10 pp1943ndash1949 1997

[10] A J Treszczanowicz O Kiyohara and G C Benson ldquoExcessvolumes for n-alkanols +n-alkanes IV Binary mixtures ofdecan-1-ol +n-pentane +n-hexane +n-octane +n-decane and+n-hexadecanerdquoThe Journal of ChemicalThermodynamics vol13 no 3 pp 253ndash260 1981

[11] A H Roux and J E Desnoyers ldquoAssociation models for alco-hol-water mixturesrdquo Journal of Proceedings of the Indian Acad-emy of Sciences Chemical Sciences vol 98 no 5-6 pp 435ndash451

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 4: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2014/607052.pdfResearch Article Thermophysical Properties of Binary Mixtures of Dimethylsulfoxide

4 Journal of Thermodynamics

Table 3 Refractive indices 119899119863 density 120588 speed of sound 119906 and viscosity 120578 for DMSO(1) + p-xylene(2) system at different temperatures

1199091

119899119863

120588 (gsdotcmminus3) 119906 (msdotsminus1) 120578 (mPasdots)DMSO(1) + p-xylene(2)

31315 K000000 14850 08445 124796 05175015820 14843 08720 126482 05979030056 14839 08999 128164 06777042694 14828 09293 129789 07389052448 14813 09577 131014 08106062739 14790 09923 132523 08875072506 14778 10233 134679 09889080799 14765 10477 137338 10997087462 14747 10557 139579 12275094123 14727 10723 141820 13757100000 14717 10802 143915 15116

31815 K000000 14831 08395 122799 04923015820 14823 08665 124638 05675030056 14816 08942 126394 06422042694 14803 09233 128167 06971052448 14789 09517 129539 07555062739 14767 09870 131077 08179072506 14754 10183 133190 09090080799 14737 10417 135839 10220087462 14719 10497 138068 11401094123 14701 10668 140405 12705100000 14690 10768 142309 13822

32315 K000000 14812 08348 120794 04603015820 14802 08610 122695 05401030056 14794 08882 124522 06030042694 14777 09167 126354 06550052448 14761 09443 127798 07107062739 14744 09804 129279 07697072506 14727 10110 131476 08557080799 14710 10333 134033 09776087462 14690 10410 136323 10895094123 14675 10590 138597 11999100000 14665 10702 140414 12972

32815 K000000 14793 08298 118815 04385015820 14781 08553 120859 05150030056 14771 08823 122753 05707042694 14754 09106 124759 06092052448 14736 09377 126223 06579062739 14715 09733 127899 07175072506 14699 10045 130023 07917080799 14683 10261 132512 09158087462 14663 10341 134821 10109094123 14652 10530 137098 11152100000 14640 10655 138857 11974

Journal of Thermodynamics 5

where 120578 is the viscosity of mixture and 1205781 1205782refer to the

viscosities of pure componentsMcAllister [6] model

ln ] = 1199093

1ln ]1+ 1199093

2ln ]2+ 31199092

11199092ln 12057812+ 311990911199092

2ln 12057821

minus ln [1199091+ 1199092

1198722

1198721

] + 31199092

11199092ln [2 +11987221198721

3]

+ 311990911199092

2ln[

1 + (211987221198721)

3] + 1199093

2ln [1198722

1198721

]

(5)

Herric [6] correlation

ln ] = 1199091ln ]1+ 1199092ln ]2+ 11990911199092[12057212+ 12(1199091minus 1199092)]

minus ln119872mix + 1199091 ln1198721 + 1199092 ln1198722(6)

and Grunberg-Nissan [7] equation

ln (120578) = 1199091ln (1205781) + 1199092ln (1205782) + 1198891211990911199092 (7)

have been fitted to viscosity data and it was found that bothhave the same standard errors at each temperature

33 Isentropic Compressibility The experimental results forthe speed of sound of binary mixtures are listed in Tables 2and 3 The isentropic compressibility was evaluated by using119870119878= 119906minus2120588minus1 and the deviation in isentropic compressibility

is calculated using the following equation

119870119864

119878= 119870119878minus 119870

id119878 (8)

where 119870id119878stands for isentropic compressibility for an ideal

mixture calculated using Benson-Kiyohara model [8 9]

119870id119878=

2

sum

119894=1

Φ119894[119870119878119894+

119879119881119894(1205722

119894)

119862119901119894

]

minus

119879(sum2

119894=1119909119894119881119894) (sum2

119894=1Φ119894119886119894)2

sum2

119894=1119909119894119862119901119894

(9)

where 119886119894and 119862

119901are the thermal expansion coefficient and

molar heat capacity of the 119894th components respectivelyThe deviation in speed of sound is given by

Δ119906 = 119906 minus 11990911199061minus 11990921199062 (10)

34 Molar Refraction Refractive indices have been used forthe calculation of molar refraction (119877

119898) that is obtained by

using Lorentz-Lorenz equation [8]Deviation in molar refraction (Δ119877) is calculated by the

following equation

119877 = 119877119898minussumΦ

119894119877119894

Φ119894=

119909119894

sum119909119895119881119895

(11)

00

05

00 01 02 03 04 05 06 07 08 09 10

minus05

minus10

minus15

minus20

minus25

minus30

minus35

x1

VE(cm3middotm

olminus1)

Figure 1 Experimental and calculated excess molar volume for(i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-Xylene(2)at 31315 K Q 31815 K ◼ 32315 K 998771 32815 K e symbols rep-resent the experimental values dotted lines represent DMSO-acetophenone mixture and solid lines represent DMSO-119901-Xylenemixture both optimised by Redlich-Kister parameters

where 119899119863refers to the refractive index119877

119898is molar refraction

of the mixture 119877119894is molar refraction of the 119894th component

and Φ is ideal state volume fractionAll the deviations (119881119864 Δ119877 Δ120578 Δ119906 and 119870

119864

119878) have been

fitted to Redlich-Kister polynomial regression of the type

Δ119884 = 11990911199092

119898

sum

119894=1

119860119894(1 minus 2119909

1)119894minus1 (12)

to derive the constant119860119894using themethod of the least square

Standard deviation for each case is calculated by

120590 = [

sum (Δ119884exptl minus Δ119884calcd)2

119898 minus 119899]

05

(13)

where 119898 is the number of data points and 119899 is the numberof coefficients Derived parameters of the Redlich-Kisterequation (12) and standard deviations (13) are presented inTables 4 and 5

4 Discussions

The excess molar volume from 31315 to 32815 K versusthe mole fraction of both mixtures with respect to DMSOis shown in Figure 1 The molar volume of the mixturesand the viscosity data have been used for the calculationof Gibbsrsquo free energy presented in Figure 5 The 119881119864 valuesdecrease with increasing temperatures for the systems butare positive in case of DMSO-acetophenone mixture andnegative for DMSO-119901-xylene mixture Treszczanowicz et al

6 Journal of Thermodynamics

Table 4 Derived parameters of Redlich-Kister equation (12) and standard deviation (13) for various functions of the binary mixtures atdifferent temperatures (DMSO-acetophenone)

119879119870 1198600

1198601

1198602

1198603

120590

119881119864 (cm3

sdotmolminus1)31315 12005 0741 minus01784 minus06838 00137731815 10176 07493 minus05481 minus07711 00137932315 07709 08700 minus07689 minus12620 00152732815 06714 09374 minus09528 minus13257 001381

Δ120578 (mPasdots)31315 minus02371 02135 02487 minus04972 00046131815 minus02575 02259 01846 minus04935 00032332315 minus02722 02375 00974 minus04693 00030932815 minus02887 02407 00508 minus04755 000290

119870119864

119904(TPaminus1)

31315 48515 154271 minus13121 minus125359 01107631815 35099 157048 minus18315 minus12902 00923632315 20047 211502 minus47008 minus348976 04467232815 00146 151308 minus20538 minus118737 017247

Δ119877

31315 006817 0039577 minus006186 minus009945 000627131815 0102475 0056959 minus000441 minus006411 000307385232315 0147987 0106458 0080891 minus010664 000597632815 0175329 0134545 0138756 minus014317 0008927

Δ119866119864 (Jsdotmolminus1)

31315 minus663882 5163512 4920794 minus9818602 90099831815 minus141309 625565 410846 minus1119199 73825532315 minus234912 7001368 2306251 minus11433850 73360232815 minus321946 7801317 1323463 minus125691 721134

[10] and Roux and Desnoyers [11] suggested that 119881119864 is theresultant contribution from several opposing effects Theseeffects can be primarily divided into three types namelychemical physical and structural A physical contributionthat is specific interactions between the real species presentin the mixture contribute in negative terms to 119881

119864 Thechemical or specific intermolecular interactions result ina volume decrease and these include charge transfer typeforces and other complex forming interactions This effectalso contributes in negative values to 119881

119864 The structuralcontributions are mostly negative and can arise from severaleffects especially from changes of free volume and interstitialaccommodation In other words structural contributionsarising from geometrical fitting of one component into theother due to the differences in the free volume and molarvolume between components lead to a negative contributionto 119881119864 The viscosity and deviations are presented in Table 2and plotted in Figure 2 respectively for both systems Theviscosity deviations decreasewith the increase in temperaturefor both systems The negative Δ120578 values are generallyobserved for systems where dispersion or weak dipole-dipoleforces are primarily responsible for interaction between the

component molecules The viscosity data is also fitted tothe two and the three-parameter models that is Herriccorrelation the McAllister model and Grunberg-Nissancorrelation and the evaluated parameters are presented inTables 6 and 7 The deviations in molar refraction for bothsystems are shown in Figure 3 The Δ119877 values are positivefor acetophenone system for the whole composition rangewhich goes on increasing as the temperature of the solutionincreasesThe Δ119877 values are negative for 119901119886119903119886-xylene systemfor the whole composition range which goes on decreasingas the temperature of the solution increases In general thenegative values of Δ119877 suggest that we have weak interactionsbetween the componentmolecules in themixtureThe resultsof excess isentropic compressibility (119870119864

119878) are also plotted in

Figure 4The deviations for DMSO-acetophenone system areinitially negative and then become positive when mole frac-tion is around 05 whereas for DMSO-119901-xylene system theyare negative over the entire composition range Deviation inGibbs free energy forDMSO-acetophenone system follows anarbitrary path going from negative to positive and vice versatwice while for DMSO-119901119886119903119886-xylene system the deviationsare negative and increase with increasing temperature

Journal of Thermodynamics 7

Table 5 Derived parameters of Redlich-Kister equation (12) and standard deviation (13) for various functions of the binary mixtures atdifferent temperatures (DMSO-119901-xylene)

119879119870 1198600

1198601

1198602

1198603

120590

119881119864 (cm3

sdotmolminus1)31315 minus85850 minus151234 minus6084 128652 01568731815 minus82010 minus159715 minus54345 156022 01702432315 minus77110 minus16483 minus47908 177396 01933732815 minus71898 minus163123 minus40863 180512 020482

Δ120578 (mPasdots)31315 minus09028 minus07268 minus02127 025 00055331815 minus08069 minus07852 minus01061 05942 00047532315 minus07589 minus07364 0093 06582 00061932815 minus07126 minus06943 02137 06476 00067

119870119864

119904(TPaminus1)

31315 minus1190039 minus644234 minus749361 minus362431 10383531815 minus1372976 minus763846 minus705856 minus215844 09774532315 minus1480003 minus818649 minus677606 minus176011 08483232815 minus1665237 minus921709 minus616439 minus29525 087227

Δ119877

31315 minus325811 4787247 minus177213 minus39986 022622231815 minus320078 4955419 minus149922 minus45735 023904932315 minus314001 5033874 minus126969 minus489488 024533732815 minus30793 5147192 minus101287 minus528097 0254675

Δ119866119864 (Jsdotmolminus1)

31315 minus10222560 minus175398 minus140348 1173282 15875531815 minus10138590 minus21904 883584 2252137 143056332315 minus10116820 minus220058 7691765 2310619 222004132815 minus11138360 minus224967 1294863 2307221 241139

Table 6 Interaction parameters for the McAllister model (5) Herric correlation (6) and Grunberg-Nissan correlation (7) for viscosity atdifferent temperatures (DMSO-acetophenone)

McAllister model119879119870 120578

1212057821

120590(120578)mPasdots31315 13242 13473 00001631815 1350624 1334886 00002532315 1377883 1314174 00003832815 1348994 1240874 000042

Herric correlation119879119870 120572

1212

120590(120578)mPasdots31315 minus002338 minus001368 00001631815 minus0026 minus001677 00002532315 minus002874 minus001993 00003832815 minus003047 minus002084 000042

Grunberg-Nissan correlation119879119870 119889

12120590(120578)mPasdots

31315 minus00956181 015641431815 minus01201454 009516132315 minus01618181 012439232815 minus01988545 02077

8 Journal of Thermodynamics

Table 7 Interaction parameters for the McAllister model (5) Herric correlation (6) and Grunberg-Nissan correlation (7) for viscosity atdifferent temperatures (DMSO-119901-xylene)

McAllister model119879119870 120578

1212057821

120590(120578)mPasdots31315 104511700 088014850 00030431815 103668800 087514410 00031032315 102613100 087012170 00032532815 101597400 086517980 000327

Herric correlation119879119870 12057212 12 120590(120578)mPasdots31315 004364338 013563440 00030431815 003664824 013067020 00031032315 003026920 012422880 00032532815 002245963 011706220 000327

Grunberg-Nissan correlation119879119870 119889

12120590(120578)mPasdots

31315 minus0408281 00159131815 minus0377472 002516132315 minus0320472 00123932815 minus0312945 002016

00000 01 02 03 04 05 06 07 08 09 10

x1

minus005

minus010

minus015

minus020

minus025

minus030

Δ120578(m

Pamiddots)

Figure 2 Experimental and calculated deviations in viscosityfor (i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-xylene(2) at 31315 KQ 31815 K ◼ 32315 K998771 32815 Ke symbolsrepresent the experimental values dotted lines represent DMSO-acetophenone mixture and solid lines represent DMSO-119901-xylenemixture both optimised by Redlich-Kister parameters

Symbols Used

1198601 1198602 1198603 1198604 Parameters of Redlich-Kister equation

11986012 11986021 Interaction coefficients of McAllister

model12057212 12 Coefficients of Herricrsquos correlation

] Kinematic viscosity (m2sminus1)120588 Density (g cmminus3)

005

00 01 02 03 04 05 06 07 08 09 10

minus015

minus035

minus055

minus075

minus095

minus115

x1

ΔR

Figure 3 Experimental and calculated deviations in molar refrac-tion for (i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 998771 32815 K e andsymbols represent the experimental values dotted lines representDMSO-acetophenone mixture and solid lines represent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

120590 Standard deviation120572 Thermal expansion coefficient (Kminus1)120578 Dynamic viscosity (mPasdots)Δ119866119864 Excess Gibbs free energy (Jmolminus1)

119881119864 Excess molar volume (m3molminus1)

Δ119870119864

119878 Excess isentropic compressibility(TPaminus1)

Journal of Thermodynamics 9ΔKs(TPa

minus1)

000 01 02 03 04 05 06 07 08 09 10

minus10

minus20

minus30

minus40

minus50

x1

Figure 4 Experimental and calculated deviations in isentropiccompressibility for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values dottedlines represent DMSO-Acetophenone mixture and solid lines rep-resent DMSO-119901-xylene mixture both optimised by Redlich-Kisterparameters

0

50

00 01 02 03 04 05 06 07 08 09 10minus50

minus100

minus150

minus200

minus250

minus300

minus350

minus400

x1

ΔGE(Jmiddotm

olminus1)

Figure 5 Experimental and calculated deviations in Gibbs freeenergy of activation for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values solidlines represent DMSO-Acetophenone mixture and dotted linesrepresent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

119877 Universal gas constant(8314 Jmolminus1Kminus1)

119879 Absolute temperature (K)11988912 Grunberg-nissan parameter

Φ119894 Volume fraction (dimensionless)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] M M Palaiologou G K Arianas and N G Tsierkezos ldquoTher-modynamic investigation of dimethyl sulfoxide binarymixturesat 29315 and 31315 Krdquo Journal of Solution Chemistry vol 35 no11 pp 1551ndash1565 2006

[2] K Zhang J Yang X Yu J Zhang and X Wei ldquoDensities andviscosities for binary mixtures of poly(ethylene glycol) 400 +dimethyl sulfoxide and poly(ethylene glycol) 600 + water atdifferent temperaturesrdquo Journal of Chemical and EngineeringData vol 56 no 7 pp 3083ndash3088 2011

[3] A Ali A K Nain D Chand and R Ahmad ldquoViscosities andrefractive indices of binary mixtures of dimethylsulphoxidewith some aromatic hydrocarbons at different temperaturesan experimental and theoretical studyrdquo Journal of the ChineseChemical Society vol 53 no 3 pp 531ndash543 2006

[4] J A Riddick W B Bunger and T K Sakano Organic SolventsPhysical Properties and Methods of Purifications vol 2 ofTechniques of Chemistry John Wiley amp Sons New York NYUSA 1986

[5] V K Rattan S Kapoor and K Tochigi ldquoViscosities anddensities of binary mixtures of toluene with acetic acid andpropionic acid at (29315 30315 31315 and 32315) Krdquo Journalof Chemical and Engineering Data vol 47 no 5 pp 1182ndash11842002

[6] R A McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[7] L Grunberg and A H Nissan ldquoThe energies of vaporisationviscosity and cohesion and the structure of liquidsrdquo Transac-tions of the Faraday Society vol 45 pp 125ndash137 1949

[8] G C Benson and O Kiyohara ldquoEvaluation of excess isentropiccompressibilities and isochoric heat capacitiesrdquo The Journal ofChemical Thermodynamics vol 11 no 11 pp 1061ndash1064 1979

[9] GDouheretM I Davis I J Fjellanger andHHoslashiland ldquoUltra-sonic speeds and volumetric properties of binary mixtures ofwater with poly(ethylene glycol)s at 29815 Krdquo Journal of theChemical Society - Faraday Transactions vol 93 no 10 pp1943ndash1949 1997

[10] A J Treszczanowicz O Kiyohara and G C Benson ldquoExcessvolumes for n-alkanols +n-alkanes IV Binary mixtures ofdecan-1-ol +n-pentane +n-hexane +n-octane +n-decane and+n-hexadecanerdquoThe Journal of ChemicalThermodynamics vol13 no 3 pp 253ndash260 1981

[11] A H Roux and J E Desnoyers ldquoAssociation models for alco-hol-water mixturesrdquo Journal of Proceedings of the Indian Acad-emy of Sciences Chemical Sciences vol 98 no 5-6 pp 435ndash451

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 5: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2014/607052.pdfResearch Article Thermophysical Properties of Binary Mixtures of Dimethylsulfoxide

Journal of Thermodynamics 5

where 120578 is the viscosity of mixture and 1205781 1205782refer to the

viscosities of pure componentsMcAllister [6] model

ln ] = 1199093

1ln ]1+ 1199093

2ln ]2+ 31199092

11199092ln 12057812+ 311990911199092

2ln 12057821

minus ln [1199091+ 1199092

1198722

1198721

] + 31199092

11199092ln [2 +11987221198721

3]

+ 311990911199092

2ln[

1 + (211987221198721)

3] + 1199093

2ln [1198722

1198721

]

(5)

Herric [6] correlation

ln ] = 1199091ln ]1+ 1199092ln ]2+ 11990911199092[12057212+ 12(1199091minus 1199092)]

minus ln119872mix + 1199091 ln1198721 + 1199092 ln1198722(6)

and Grunberg-Nissan [7] equation

ln (120578) = 1199091ln (1205781) + 1199092ln (1205782) + 1198891211990911199092 (7)

have been fitted to viscosity data and it was found that bothhave the same standard errors at each temperature

33 Isentropic Compressibility The experimental results forthe speed of sound of binary mixtures are listed in Tables 2and 3 The isentropic compressibility was evaluated by using119870119878= 119906minus2120588minus1 and the deviation in isentropic compressibility

is calculated using the following equation

119870119864

119878= 119870119878minus 119870

id119878 (8)

where 119870id119878stands for isentropic compressibility for an ideal

mixture calculated using Benson-Kiyohara model [8 9]

119870id119878=

2

sum

119894=1

Φ119894[119870119878119894+

119879119881119894(1205722

119894)

119862119901119894

]

minus

119879(sum2

119894=1119909119894119881119894) (sum2

119894=1Φ119894119886119894)2

sum2

119894=1119909119894119862119901119894

(9)

where 119886119894and 119862

119901are the thermal expansion coefficient and

molar heat capacity of the 119894th components respectivelyThe deviation in speed of sound is given by

Δ119906 = 119906 minus 11990911199061minus 11990921199062 (10)

34 Molar Refraction Refractive indices have been used forthe calculation of molar refraction (119877

119898) that is obtained by

using Lorentz-Lorenz equation [8]Deviation in molar refraction (Δ119877) is calculated by the

following equation

119877 = 119877119898minussumΦ

119894119877119894

Φ119894=

119909119894

sum119909119895119881119895

(11)

00

05

00 01 02 03 04 05 06 07 08 09 10

minus05

minus10

minus15

minus20

minus25

minus30

minus35

x1

VE(cm3middotm

olminus1)

Figure 1 Experimental and calculated excess molar volume for(i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-Xylene(2)at 31315 K Q 31815 K ◼ 32315 K 998771 32815 K e symbols rep-resent the experimental values dotted lines represent DMSO-acetophenone mixture and solid lines represent DMSO-119901-Xylenemixture both optimised by Redlich-Kister parameters

where 119899119863refers to the refractive index119877

119898is molar refraction

of the mixture 119877119894is molar refraction of the 119894th component

and Φ is ideal state volume fractionAll the deviations (119881119864 Δ119877 Δ120578 Δ119906 and 119870

119864

119878) have been

fitted to Redlich-Kister polynomial regression of the type

Δ119884 = 11990911199092

119898

sum

119894=1

119860119894(1 minus 2119909

1)119894minus1 (12)

to derive the constant119860119894using themethod of the least square

Standard deviation for each case is calculated by

120590 = [

sum (Δ119884exptl minus Δ119884calcd)2

119898 minus 119899]

05

(13)

where 119898 is the number of data points and 119899 is the numberof coefficients Derived parameters of the Redlich-Kisterequation (12) and standard deviations (13) are presented inTables 4 and 5

4 Discussions

The excess molar volume from 31315 to 32815 K versusthe mole fraction of both mixtures with respect to DMSOis shown in Figure 1 The molar volume of the mixturesand the viscosity data have been used for the calculationof Gibbsrsquo free energy presented in Figure 5 The 119881119864 valuesdecrease with increasing temperatures for the systems butare positive in case of DMSO-acetophenone mixture andnegative for DMSO-119901-xylene mixture Treszczanowicz et al

6 Journal of Thermodynamics

Table 4 Derived parameters of Redlich-Kister equation (12) and standard deviation (13) for various functions of the binary mixtures atdifferent temperatures (DMSO-acetophenone)

119879119870 1198600

1198601

1198602

1198603

120590

119881119864 (cm3

sdotmolminus1)31315 12005 0741 minus01784 minus06838 00137731815 10176 07493 minus05481 minus07711 00137932315 07709 08700 minus07689 minus12620 00152732815 06714 09374 minus09528 minus13257 001381

Δ120578 (mPasdots)31315 minus02371 02135 02487 minus04972 00046131815 minus02575 02259 01846 minus04935 00032332315 minus02722 02375 00974 minus04693 00030932815 minus02887 02407 00508 minus04755 000290

119870119864

119904(TPaminus1)

31315 48515 154271 minus13121 minus125359 01107631815 35099 157048 minus18315 minus12902 00923632315 20047 211502 minus47008 minus348976 04467232815 00146 151308 minus20538 minus118737 017247

Δ119877

31315 006817 0039577 minus006186 minus009945 000627131815 0102475 0056959 minus000441 minus006411 000307385232315 0147987 0106458 0080891 minus010664 000597632815 0175329 0134545 0138756 minus014317 0008927

Δ119866119864 (Jsdotmolminus1)

31315 minus663882 5163512 4920794 minus9818602 90099831815 minus141309 625565 410846 minus1119199 73825532315 minus234912 7001368 2306251 minus11433850 73360232815 minus321946 7801317 1323463 minus125691 721134

[10] and Roux and Desnoyers [11] suggested that 119881119864 is theresultant contribution from several opposing effects Theseeffects can be primarily divided into three types namelychemical physical and structural A physical contributionthat is specific interactions between the real species presentin the mixture contribute in negative terms to 119881

119864 Thechemical or specific intermolecular interactions result ina volume decrease and these include charge transfer typeforces and other complex forming interactions This effectalso contributes in negative values to 119881

119864 The structuralcontributions are mostly negative and can arise from severaleffects especially from changes of free volume and interstitialaccommodation In other words structural contributionsarising from geometrical fitting of one component into theother due to the differences in the free volume and molarvolume between components lead to a negative contributionto 119881119864 The viscosity and deviations are presented in Table 2and plotted in Figure 2 respectively for both systems Theviscosity deviations decreasewith the increase in temperaturefor both systems The negative Δ120578 values are generallyobserved for systems where dispersion or weak dipole-dipoleforces are primarily responsible for interaction between the

component molecules The viscosity data is also fitted tothe two and the three-parameter models that is Herriccorrelation the McAllister model and Grunberg-Nissancorrelation and the evaluated parameters are presented inTables 6 and 7 The deviations in molar refraction for bothsystems are shown in Figure 3 The Δ119877 values are positivefor acetophenone system for the whole composition rangewhich goes on increasing as the temperature of the solutionincreasesThe Δ119877 values are negative for 119901119886119903119886-xylene systemfor the whole composition range which goes on decreasingas the temperature of the solution increases In general thenegative values of Δ119877 suggest that we have weak interactionsbetween the componentmolecules in themixtureThe resultsof excess isentropic compressibility (119870119864

119878) are also plotted in

Figure 4The deviations for DMSO-acetophenone system areinitially negative and then become positive when mole frac-tion is around 05 whereas for DMSO-119901-xylene system theyare negative over the entire composition range Deviation inGibbs free energy forDMSO-acetophenone system follows anarbitrary path going from negative to positive and vice versatwice while for DMSO-119901119886119903119886-xylene system the deviationsare negative and increase with increasing temperature

Journal of Thermodynamics 7

Table 5 Derived parameters of Redlich-Kister equation (12) and standard deviation (13) for various functions of the binary mixtures atdifferent temperatures (DMSO-119901-xylene)

119879119870 1198600

1198601

1198602

1198603

120590

119881119864 (cm3

sdotmolminus1)31315 minus85850 minus151234 minus6084 128652 01568731815 minus82010 minus159715 minus54345 156022 01702432315 minus77110 minus16483 minus47908 177396 01933732815 minus71898 minus163123 minus40863 180512 020482

Δ120578 (mPasdots)31315 minus09028 minus07268 minus02127 025 00055331815 minus08069 minus07852 minus01061 05942 00047532315 minus07589 minus07364 0093 06582 00061932815 minus07126 minus06943 02137 06476 00067

119870119864

119904(TPaminus1)

31315 minus1190039 minus644234 minus749361 minus362431 10383531815 minus1372976 minus763846 minus705856 minus215844 09774532315 minus1480003 minus818649 minus677606 minus176011 08483232815 minus1665237 minus921709 minus616439 minus29525 087227

Δ119877

31315 minus325811 4787247 minus177213 minus39986 022622231815 minus320078 4955419 minus149922 minus45735 023904932315 minus314001 5033874 minus126969 minus489488 024533732815 minus30793 5147192 minus101287 minus528097 0254675

Δ119866119864 (Jsdotmolminus1)

31315 minus10222560 minus175398 minus140348 1173282 15875531815 minus10138590 minus21904 883584 2252137 143056332315 minus10116820 minus220058 7691765 2310619 222004132815 minus11138360 minus224967 1294863 2307221 241139

Table 6 Interaction parameters for the McAllister model (5) Herric correlation (6) and Grunberg-Nissan correlation (7) for viscosity atdifferent temperatures (DMSO-acetophenone)

McAllister model119879119870 120578

1212057821

120590(120578)mPasdots31315 13242 13473 00001631815 1350624 1334886 00002532315 1377883 1314174 00003832815 1348994 1240874 000042

Herric correlation119879119870 120572

1212

120590(120578)mPasdots31315 minus002338 minus001368 00001631815 minus0026 minus001677 00002532315 minus002874 minus001993 00003832815 minus003047 minus002084 000042

Grunberg-Nissan correlation119879119870 119889

12120590(120578)mPasdots

31315 minus00956181 015641431815 minus01201454 009516132315 minus01618181 012439232815 minus01988545 02077

8 Journal of Thermodynamics

Table 7 Interaction parameters for the McAllister model (5) Herric correlation (6) and Grunberg-Nissan correlation (7) for viscosity atdifferent temperatures (DMSO-119901-xylene)

McAllister model119879119870 120578

1212057821

120590(120578)mPasdots31315 104511700 088014850 00030431815 103668800 087514410 00031032315 102613100 087012170 00032532815 101597400 086517980 000327

Herric correlation119879119870 12057212 12 120590(120578)mPasdots31315 004364338 013563440 00030431815 003664824 013067020 00031032315 003026920 012422880 00032532815 002245963 011706220 000327

Grunberg-Nissan correlation119879119870 119889

12120590(120578)mPasdots

31315 minus0408281 00159131815 minus0377472 002516132315 minus0320472 00123932815 minus0312945 002016

00000 01 02 03 04 05 06 07 08 09 10

x1

minus005

minus010

minus015

minus020

minus025

minus030

Δ120578(m

Pamiddots)

Figure 2 Experimental and calculated deviations in viscosityfor (i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-xylene(2) at 31315 KQ 31815 K ◼ 32315 K998771 32815 Ke symbolsrepresent the experimental values dotted lines represent DMSO-acetophenone mixture and solid lines represent DMSO-119901-xylenemixture both optimised by Redlich-Kister parameters

Symbols Used

1198601 1198602 1198603 1198604 Parameters of Redlich-Kister equation

11986012 11986021 Interaction coefficients of McAllister

model12057212 12 Coefficients of Herricrsquos correlation

] Kinematic viscosity (m2sminus1)120588 Density (g cmminus3)

005

00 01 02 03 04 05 06 07 08 09 10

minus015

minus035

minus055

minus075

minus095

minus115

x1

ΔR

Figure 3 Experimental and calculated deviations in molar refrac-tion for (i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 998771 32815 K e andsymbols represent the experimental values dotted lines representDMSO-acetophenone mixture and solid lines represent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

120590 Standard deviation120572 Thermal expansion coefficient (Kminus1)120578 Dynamic viscosity (mPasdots)Δ119866119864 Excess Gibbs free energy (Jmolminus1)

119881119864 Excess molar volume (m3molminus1)

Δ119870119864

119878 Excess isentropic compressibility(TPaminus1)

Journal of Thermodynamics 9ΔKs(TPa

minus1)

000 01 02 03 04 05 06 07 08 09 10

minus10

minus20

minus30

minus40

minus50

x1

Figure 4 Experimental and calculated deviations in isentropiccompressibility for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values dottedlines represent DMSO-Acetophenone mixture and solid lines rep-resent DMSO-119901-xylene mixture both optimised by Redlich-Kisterparameters

0

50

00 01 02 03 04 05 06 07 08 09 10minus50

minus100

minus150

minus200

minus250

minus300

minus350

minus400

x1

ΔGE(Jmiddotm

olminus1)

Figure 5 Experimental and calculated deviations in Gibbs freeenergy of activation for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values solidlines represent DMSO-Acetophenone mixture and dotted linesrepresent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

119877 Universal gas constant(8314 Jmolminus1Kminus1)

119879 Absolute temperature (K)11988912 Grunberg-nissan parameter

Φ119894 Volume fraction (dimensionless)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] M M Palaiologou G K Arianas and N G Tsierkezos ldquoTher-modynamic investigation of dimethyl sulfoxide binarymixturesat 29315 and 31315 Krdquo Journal of Solution Chemistry vol 35 no11 pp 1551ndash1565 2006

[2] K Zhang J Yang X Yu J Zhang and X Wei ldquoDensities andviscosities for binary mixtures of poly(ethylene glycol) 400 +dimethyl sulfoxide and poly(ethylene glycol) 600 + water atdifferent temperaturesrdquo Journal of Chemical and EngineeringData vol 56 no 7 pp 3083ndash3088 2011

[3] A Ali A K Nain D Chand and R Ahmad ldquoViscosities andrefractive indices of binary mixtures of dimethylsulphoxidewith some aromatic hydrocarbons at different temperaturesan experimental and theoretical studyrdquo Journal of the ChineseChemical Society vol 53 no 3 pp 531ndash543 2006

[4] J A Riddick W B Bunger and T K Sakano Organic SolventsPhysical Properties and Methods of Purifications vol 2 ofTechniques of Chemistry John Wiley amp Sons New York NYUSA 1986

[5] V K Rattan S Kapoor and K Tochigi ldquoViscosities anddensities of binary mixtures of toluene with acetic acid andpropionic acid at (29315 30315 31315 and 32315) Krdquo Journalof Chemical and Engineering Data vol 47 no 5 pp 1182ndash11842002

[6] R A McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[7] L Grunberg and A H Nissan ldquoThe energies of vaporisationviscosity and cohesion and the structure of liquidsrdquo Transac-tions of the Faraday Society vol 45 pp 125ndash137 1949

[8] G C Benson and O Kiyohara ldquoEvaluation of excess isentropiccompressibilities and isochoric heat capacitiesrdquo The Journal ofChemical Thermodynamics vol 11 no 11 pp 1061ndash1064 1979

[9] GDouheretM I Davis I J Fjellanger andHHoslashiland ldquoUltra-sonic speeds and volumetric properties of binary mixtures ofwater with poly(ethylene glycol)s at 29815 Krdquo Journal of theChemical Society - Faraday Transactions vol 93 no 10 pp1943ndash1949 1997

[10] A J Treszczanowicz O Kiyohara and G C Benson ldquoExcessvolumes for n-alkanols +n-alkanes IV Binary mixtures ofdecan-1-ol +n-pentane +n-hexane +n-octane +n-decane and+n-hexadecanerdquoThe Journal of ChemicalThermodynamics vol13 no 3 pp 253ndash260 1981

[11] A H Roux and J E Desnoyers ldquoAssociation models for alco-hol-water mixturesrdquo Journal of Proceedings of the Indian Acad-emy of Sciences Chemical Sciences vol 98 no 5-6 pp 435ndash451

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 6: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2014/607052.pdfResearch Article Thermophysical Properties of Binary Mixtures of Dimethylsulfoxide

6 Journal of Thermodynamics

Table 4 Derived parameters of Redlich-Kister equation (12) and standard deviation (13) for various functions of the binary mixtures atdifferent temperatures (DMSO-acetophenone)

119879119870 1198600

1198601

1198602

1198603

120590

119881119864 (cm3

sdotmolminus1)31315 12005 0741 minus01784 minus06838 00137731815 10176 07493 minus05481 minus07711 00137932315 07709 08700 minus07689 minus12620 00152732815 06714 09374 minus09528 minus13257 001381

Δ120578 (mPasdots)31315 minus02371 02135 02487 minus04972 00046131815 minus02575 02259 01846 minus04935 00032332315 minus02722 02375 00974 minus04693 00030932815 minus02887 02407 00508 minus04755 000290

119870119864

119904(TPaminus1)

31315 48515 154271 minus13121 minus125359 01107631815 35099 157048 minus18315 minus12902 00923632315 20047 211502 minus47008 minus348976 04467232815 00146 151308 minus20538 minus118737 017247

Δ119877

31315 006817 0039577 minus006186 minus009945 000627131815 0102475 0056959 minus000441 minus006411 000307385232315 0147987 0106458 0080891 minus010664 000597632815 0175329 0134545 0138756 minus014317 0008927

Δ119866119864 (Jsdotmolminus1)

31315 minus663882 5163512 4920794 minus9818602 90099831815 minus141309 625565 410846 minus1119199 73825532315 minus234912 7001368 2306251 minus11433850 73360232815 minus321946 7801317 1323463 minus125691 721134

[10] and Roux and Desnoyers [11] suggested that 119881119864 is theresultant contribution from several opposing effects Theseeffects can be primarily divided into three types namelychemical physical and structural A physical contributionthat is specific interactions between the real species presentin the mixture contribute in negative terms to 119881

119864 Thechemical or specific intermolecular interactions result ina volume decrease and these include charge transfer typeforces and other complex forming interactions This effectalso contributes in negative values to 119881

119864 The structuralcontributions are mostly negative and can arise from severaleffects especially from changes of free volume and interstitialaccommodation In other words structural contributionsarising from geometrical fitting of one component into theother due to the differences in the free volume and molarvolume between components lead to a negative contributionto 119881119864 The viscosity and deviations are presented in Table 2and plotted in Figure 2 respectively for both systems Theviscosity deviations decreasewith the increase in temperaturefor both systems The negative Δ120578 values are generallyobserved for systems where dispersion or weak dipole-dipoleforces are primarily responsible for interaction between the

component molecules The viscosity data is also fitted tothe two and the three-parameter models that is Herriccorrelation the McAllister model and Grunberg-Nissancorrelation and the evaluated parameters are presented inTables 6 and 7 The deviations in molar refraction for bothsystems are shown in Figure 3 The Δ119877 values are positivefor acetophenone system for the whole composition rangewhich goes on increasing as the temperature of the solutionincreasesThe Δ119877 values are negative for 119901119886119903119886-xylene systemfor the whole composition range which goes on decreasingas the temperature of the solution increases In general thenegative values of Δ119877 suggest that we have weak interactionsbetween the componentmolecules in themixtureThe resultsof excess isentropic compressibility (119870119864

119878) are also plotted in

Figure 4The deviations for DMSO-acetophenone system areinitially negative and then become positive when mole frac-tion is around 05 whereas for DMSO-119901-xylene system theyare negative over the entire composition range Deviation inGibbs free energy forDMSO-acetophenone system follows anarbitrary path going from negative to positive and vice versatwice while for DMSO-119901119886119903119886-xylene system the deviationsare negative and increase with increasing temperature

Journal of Thermodynamics 7

Table 5 Derived parameters of Redlich-Kister equation (12) and standard deviation (13) for various functions of the binary mixtures atdifferent temperatures (DMSO-119901-xylene)

119879119870 1198600

1198601

1198602

1198603

120590

119881119864 (cm3

sdotmolminus1)31315 minus85850 minus151234 minus6084 128652 01568731815 minus82010 minus159715 minus54345 156022 01702432315 minus77110 minus16483 minus47908 177396 01933732815 minus71898 minus163123 minus40863 180512 020482

Δ120578 (mPasdots)31315 minus09028 minus07268 minus02127 025 00055331815 minus08069 minus07852 minus01061 05942 00047532315 minus07589 minus07364 0093 06582 00061932815 minus07126 minus06943 02137 06476 00067

119870119864

119904(TPaminus1)

31315 minus1190039 minus644234 minus749361 minus362431 10383531815 minus1372976 minus763846 minus705856 minus215844 09774532315 minus1480003 minus818649 minus677606 minus176011 08483232815 minus1665237 minus921709 minus616439 minus29525 087227

Δ119877

31315 minus325811 4787247 minus177213 minus39986 022622231815 minus320078 4955419 minus149922 minus45735 023904932315 minus314001 5033874 minus126969 minus489488 024533732815 minus30793 5147192 minus101287 minus528097 0254675

Δ119866119864 (Jsdotmolminus1)

31315 minus10222560 minus175398 minus140348 1173282 15875531815 minus10138590 minus21904 883584 2252137 143056332315 minus10116820 minus220058 7691765 2310619 222004132815 minus11138360 minus224967 1294863 2307221 241139

Table 6 Interaction parameters for the McAllister model (5) Herric correlation (6) and Grunberg-Nissan correlation (7) for viscosity atdifferent temperatures (DMSO-acetophenone)

McAllister model119879119870 120578

1212057821

120590(120578)mPasdots31315 13242 13473 00001631815 1350624 1334886 00002532315 1377883 1314174 00003832815 1348994 1240874 000042

Herric correlation119879119870 120572

1212

120590(120578)mPasdots31315 minus002338 minus001368 00001631815 minus0026 minus001677 00002532315 minus002874 minus001993 00003832815 minus003047 minus002084 000042

Grunberg-Nissan correlation119879119870 119889

12120590(120578)mPasdots

31315 minus00956181 015641431815 minus01201454 009516132315 minus01618181 012439232815 minus01988545 02077

8 Journal of Thermodynamics

Table 7 Interaction parameters for the McAllister model (5) Herric correlation (6) and Grunberg-Nissan correlation (7) for viscosity atdifferent temperatures (DMSO-119901-xylene)

McAllister model119879119870 120578

1212057821

120590(120578)mPasdots31315 104511700 088014850 00030431815 103668800 087514410 00031032315 102613100 087012170 00032532815 101597400 086517980 000327

Herric correlation119879119870 12057212 12 120590(120578)mPasdots31315 004364338 013563440 00030431815 003664824 013067020 00031032315 003026920 012422880 00032532815 002245963 011706220 000327

Grunberg-Nissan correlation119879119870 119889

12120590(120578)mPasdots

31315 minus0408281 00159131815 minus0377472 002516132315 minus0320472 00123932815 minus0312945 002016

00000 01 02 03 04 05 06 07 08 09 10

x1

minus005

minus010

minus015

minus020

minus025

minus030

Δ120578(m

Pamiddots)

Figure 2 Experimental and calculated deviations in viscosityfor (i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-xylene(2) at 31315 KQ 31815 K ◼ 32315 K998771 32815 Ke symbolsrepresent the experimental values dotted lines represent DMSO-acetophenone mixture and solid lines represent DMSO-119901-xylenemixture both optimised by Redlich-Kister parameters

Symbols Used

1198601 1198602 1198603 1198604 Parameters of Redlich-Kister equation

11986012 11986021 Interaction coefficients of McAllister

model12057212 12 Coefficients of Herricrsquos correlation

] Kinematic viscosity (m2sminus1)120588 Density (g cmminus3)

005

00 01 02 03 04 05 06 07 08 09 10

minus015

minus035

minus055

minus075

minus095

minus115

x1

ΔR

Figure 3 Experimental and calculated deviations in molar refrac-tion for (i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 998771 32815 K e andsymbols represent the experimental values dotted lines representDMSO-acetophenone mixture and solid lines represent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

120590 Standard deviation120572 Thermal expansion coefficient (Kminus1)120578 Dynamic viscosity (mPasdots)Δ119866119864 Excess Gibbs free energy (Jmolminus1)

119881119864 Excess molar volume (m3molminus1)

Δ119870119864

119878 Excess isentropic compressibility(TPaminus1)

Journal of Thermodynamics 9ΔKs(TPa

minus1)

000 01 02 03 04 05 06 07 08 09 10

minus10

minus20

minus30

minus40

minus50

x1

Figure 4 Experimental and calculated deviations in isentropiccompressibility for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values dottedlines represent DMSO-Acetophenone mixture and solid lines rep-resent DMSO-119901-xylene mixture both optimised by Redlich-Kisterparameters

0

50

00 01 02 03 04 05 06 07 08 09 10minus50

minus100

minus150

minus200

minus250

minus300

minus350

minus400

x1

ΔGE(Jmiddotm

olminus1)

Figure 5 Experimental and calculated deviations in Gibbs freeenergy of activation for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values solidlines represent DMSO-Acetophenone mixture and dotted linesrepresent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

119877 Universal gas constant(8314 Jmolminus1Kminus1)

119879 Absolute temperature (K)11988912 Grunberg-nissan parameter

Φ119894 Volume fraction (dimensionless)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] M M Palaiologou G K Arianas and N G Tsierkezos ldquoTher-modynamic investigation of dimethyl sulfoxide binarymixturesat 29315 and 31315 Krdquo Journal of Solution Chemistry vol 35 no11 pp 1551ndash1565 2006

[2] K Zhang J Yang X Yu J Zhang and X Wei ldquoDensities andviscosities for binary mixtures of poly(ethylene glycol) 400 +dimethyl sulfoxide and poly(ethylene glycol) 600 + water atdifferent temperaturesrdquo Journal of Chemical and EngineeringData vol 56 no 7 pp 3083ndash3088 2011

[3] A Ali A K Nain D Chand and R Ahmad ldquoViscosities andrefractive indices of binary mixtures of dimethylsulphoxidewith some aromatic hydrocarbons at different temperaturesan experimental and theoretical studyrdquo Journal of the ChineseChemical Society vol 53 no 3 pp 531ndash543 2006

[4] J A Riddick W B Bunger and T K Sakano Organic SolventsPhysical Properties and Methods of Purifications vol 2 ofTechniques of Chemistry John Wiley amp Sons New York NYUSA 1986

[5] V K Rattan S Kapoor and K Tochigi ldquoViscosities anddensities of binary mixtures of toluene with acetic acid andpropionic acid at (29315 30315 31315 and 32315) Krdquo Journalof Chemical and Engineering Data vol 47 no 5 pp 1182ndash11842002

[6] R A McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[7] L Grunberg and A H Nissan ldquoThe energies of vaporisationviscosity and cohesion and the structure of liquidsrdquo Transac-tions of the Faraday Society vol 45 pp 125ndash137 1949

[8] G C Benson and O Kiyohara ldquoEvaluation of excess isentropiccompressibilities and isochoric heat capacitiesrdquo The Journal ofChemical Thermodynamics vol 11 no 11 pp 1061ndash1064 1979

[9] GDouheretM I Davis I J Fjellanger andHHoslashiland ldquoUltra-sonic speeds and volumetric properties of binary mixtures ofwater with poly(ethylene glycol)s at 29815 Krdquo Journal of theChemical Society - Faraday Transactions vol 93 no 10 pp1943ndash1949 1997

[10] A J Treszczanowicz O Kiyohara and G C Benson ldquoExcessvolumes for n-alkanols +n-alkanes IV Binary mixtures ofdecan-1-ol +n-pentane +n-hexane +n-octane +n-decane and+n-hexadecanerdquoThe Journal of ChemicalThermodynamics vol13 no 3 pp 253ndash260 1981

[11] A H Roux and J E Desnoyers ldquoAssociation models for alco-hol-water mixturesrdquo Journal of Proceedings of the Indian Acad-emy of Sciences Chemical Sciences vol 98 no 5-6 pp 435ndash451

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 7: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2014/607052.pdfResearch Article Thermophysical Properties of Binary Mixtures of Dimethylsulfoxide

Journal of Thermodynamics 7

Table 5 Derived parameters of Redlich-Kister equation (12) and standard deviation (13) for various functions of the binary mixtures atdifferent temperatures (DMSO-119901-xylene)

119879119870 1198600

1198601

1198602

1198603

120590

119881119864 (cm3

sdotmolminus1)31315 minus85850 minus151234 minus6084 128652 01568731815 minus82010 minus159715 minus54345 156022 01702432315 minus77110 minus16483 minus47908 177396 01933732815 minus71898 minus163123 minus40863 180512 020482

Δ120578 (mPasdots)31315 minus09028 minus07268 minus02127 025 00055331815 minus08069 minus07852 minus01061 05942 00047532315 minus07589 minus07364 0093 06582 00061932815 minus07126 minus06943 02137 06476 00067

119870119864

119904(TPaminus1)

31315 minus1190039 minus644234 minus749361 minus362431 10383531815 minus1372976 minus763846 minus705856 minus215844 09774532315 minus1480003 minus818649 minus677606 minus176011 08483232815 minus1665237 minus921709 minus616439 minus29525 087227

Δ119877

31315 minus325811 4787247 minus177213 minus39986 022622231815 minus320078 4955419 minus149922 minus45735 023904932315 minus314001 5033874 minus126969 minus489488 024533732815 minus30793 5147192 minus101287 minus528097 0254675

Δ119866119864 (Jsdotmolminus1)

31315 minus10222560 minus175398 minus140348 1173282 15875531815 minus10138590 minus21904 883584 2252137 143056332315 minus10116820 minus220058 7691765 2310619 222004132815 minus11138360 minus224967 1294863 2307221 241139

Table 6 Interaction parameters for the McAllister model (5) Herric correlation (6) and Grunberg-Nissan correlation (7) for viscosity atdifferent temperatures (DMSO-acetophenone)

McAllister model119879119870 120578

1212057821

120590(120578)mPasdots31315 13242 13473 00001631815 1350624 1334886 00002532315 1377883 1314174 00003832815 1348994 1240874 000042

Herric correlation119879119870 120572

1212

120590(120578)mPasdots31315 minus002338 minus001368 00001631815 minus0026 minus001677 00002532315 minus002874 minus001993 00003832815 minus003047 minus002084 000042

Grunberg-Nissan correlation119879119870 119889

12120590(120578)mPasdots

31315 minus00956181 015641431815 minus01201454 009516132315 minus01618181 012439232815 minus01988545 02077

8 Journal of Thermodynamics

Table 7 Interaction parameters for the McAllister model (5) Herric correlation (6) and Grunberg-Nissan correlation (7) for viscosity atdifferent temperatures (DMSO-119901-xylene)

McAllister model119879119870 120578

1212057821

120590(120578)mPasdots31315 104511700 088014850 00030431815 103668800 087514410 00031032315 102613100 087012170 00032532815 101597400 086517980 000327

Herric correlation119879119870 12057212 12 120590(120578)mPasdots31315 004364338 013563440 00030431815 003664824 013067020 00031032315 003026920 012422880 00032532815 002245963 011706220 000327

Grunberg-Nissan correlation119879119870 119889

12120590(120578)mPasdots

31315 minus0408281 00159131815 minus0377472 002516132315 minus0320472 00123932815 minus0312945 002016

00000 01 02 03 04 05 06 07 08 09 10

x1

minus005

minus010

minus015

minus020

minus025

minus030

Δ120578(m

Pamiddots)

Figure 2 Experimental and calculated deviations in viscosityfor (i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-xylene(2) at 31315 KQ 31815 K ◼ 32315 K998771 32815 Ke symbolsrepresent the experimental values dotted lines represent DMSO-acetophenone mixture and solid lines represent DMSO-119901-xylenemixture both optimised by Redlich-Kister parameters

Symbols Used

1198601 1198602 1198603 1198604 Parameters of Redlich-Kister equation

11986012 11986021 Interaction coefficients of McAllister

model12057212 12 Coefficients of Herricrsquos correlation

] Kinematic viscosity (m2sminus1)120588 Density (g cmminus3)

005

00 01 02 03 04 05 06 07 08 09 10

minus015

minus035

minus055

minus075

minus095

minus115

x1

ΔR

Figure 3 Experimental and calculated deviations in molar refrac-tion for (i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 998771 32815 K e andsymbols represent the experimental values dotted lines representDMSO-acetophenone mixture and solid lines represent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

120590 Standard deviation120572 Thermal expansion coefficient (Kminus1)120578 Dynamic viscosity (mPasdots)Δ119866119864 Excess Gibbs free energy (Jmolminus1)

119881119864 Excess molar volume (m3molminus1)

Δ119870119864

119878 Excess isentropic compressibility(TPaminus1)

Journal of Thermodynamics 9ΔKs(TPa

minus1)

000 01 02 03 04 05 06 07 08 09 10

minus10

minus20

minus30

minus40

minus50

x1

Figure 4 Experimental and calculated deviations in isentropiccompressibility for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values dottedlines represent DMSO-Acetophenone mixture and solid lines rep-resent DMSO-119901-xylene mixture both optimised by Redlich-Kisterparameters

0

50

00 01 02 03 04 05 06 07 08 09 10minus50

minus100

minus150

minus200

minus250

minus300

minus350

minus400

x1

ΔGE(Jmiddotm

olminus1)

Figure 5 Experimental and calculated deviations in Gibbs freeenergy of activation for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values solidlines represent DMSO-Acetophenone mixture and dotted linesrepresent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

119877 Universal gas constant(8314 Jmolminus1Kminus1)

119879 Absolute temperature (K)11988912 Grunberg-nissan parameter

Φ119894 Volume fraction (dimensionless)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] M M Palaiologou G K Arianas and N G Tsierkezos ldquoTher-modynamic investigation of dimethyl sulfoxide binarymixturesat 29315 and 31315 Krdquo Journal of Solution Chemistry vol 35 no11 pp 1551ndash1565 2006

[2] K Zhang J Yang X Yu J Zhang and X Wei ldquoDensities andviscosities for binary mixtures of poly(ethylene glycol) 400 +dimethyl sulfoxide and poly(ethylene glycol) 600 + water atdifferent temperaturesrdquo Journal of Chemical and EngineeringData vol 56 no 7 pp 3083ndash3088 2011

[3] A Ali A K Nain D Chand and R Ahmad ldquoViscosities andrefractive indices of binary mixtures of dimethylsulphoxidewith some aromatic hydrocarbons at different temperaturesan experimental and theoretical studyrdquo Journal of the ChineseChemical Society vol 53 no 3 pp 531ndash543 2006

[4] J A Riddick W B Bunger and T K Sakano Organic SolventsPhysical Properties and Methods of Purifications vol 2 ofTechniques of Chemistry John Wiley amp Sons New York NYUSA 1986

[5] V K Rattan S Kapoor and K Tochigi ldquoViscosities anddensities of binary mixtures of toluene with acetic acid andpropionic acid at (29315 30315 31315 and 32315) Krdquo Journalof Chemical and Engineering Data vol 47 no 5 pp 1182ndash11842002

[6] R A McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[7] L Grunberg and A H Nissan ldquoThe energies of vaporisationviscosity and cohesion and the structure of liquidsrdquo Transac-tions of the Faraday Society vol 45 pp 125ndash137 1949

[8] G C Benson and O Kiyohara ldquoEvaluation of excess isentropiccompressibilities and isochoric heat capacitiesrdquo The Journal ofChemical Thermodynamics vol 11 no 11 pp 1061ndash1064 1979

[9] GDouheretM I Davis I J Fjellanger andHHoslashiland ldquoUltra-sonic speeds and volumetric properties of binary mixtures ofwater with poly(ethylene glycol)s at 29815 Krdquo Journal of theChemical Society - Faraday Transactions vol 93 no 10 pp1943ndash1949 1997

[10] A J Treszczanowicz O Kiyohara and G C Benson ldquoExcessvolumes for n-alkanols +n-alkanes IV Binary mixtures ofdecan-1-ol +n-pentane +n-hexane +n-octane +n-decane and+n-hexadecanerdquoThe Journal of ChemicalThermodynamics vol13 no 3 pp 253ndash260 1981

[11] A H Roux and J E Desnoyers ldquoAssociation models for alco-hol-water mixturesrdquo Journal of Proceedings of the Indian Acad-emy of Sciences Chemical Sciences vol 98 no 5-6 pp 435ndash451

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 8: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2014/607052.pdfResearch Article Thermophysical Properties of Binary Mixtures of Dimethylsulfoxide

8 Journal of Thermodynamics

Table 7 Interaction parameters for the McAllister model (5) Herric correlation (6) and Grunberg-Nissan correlation (7) for viscosity atdifferent temperatures (DMSO-119901-xylene)

McAllister model119879119870 120578

1212057821

120590(120578)mPasdots31315 104511700 088014850 00030431815 103668800 087514410 00031032315 102613100 087012170 00032532815 101597400 086517980 000327

Herric correlation119879119870 12057212 12 120590(120578)mPasdots31315 004364338 013563440 00030431815 003664824 013067020 00031032315 003026920 012422880 00032532815 002245963 011706220 000327

Grunberg-Nissan correlation119879119870 119889

12120590(120578)mPasdots

31315 minus0408281 00159131815 minus0377472 002516132315 minus0320472 00123932815 minus0312945 002016

00000 01 02 03 04 05 06 07 08 09 10

x1

minus005

minus010

minus015

minus020

minus025

minus030

Δ120578(m

Pamiddots)

Figure 2 Experimental and calculated deviations in viscosityfor (i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-xylene(2) at 31315 KQ 31815 K ◼ 32315 K998771 32815 Ke symbolsrepresent the experimental values dotted lines represent DMSO-acetophenone mixture and solid lines represent DMSO-119901-xylenemixture both optimised by Redlich-Kister parameters

Symbols Used

1198601 1198602 1198603 1198604 Parameters of Redlich-Kister equation

11986012 11986021 Interaction coefficients of McAllister

model12057212 12 Coefficients of Herricrsquos correlation

] Kinematic viscosity (m2sminus1)120588 Density (g cmminus3)

005

00 01 02 03 04 05 06 07 08 09 10

minus015

minus035

minus055

minus075

minus095

minus115

x1

ΔR

Figure 3 Experimental and calculated deviations in molar refrac-tion for (i) DMSO(1) + acetophenone(2) and (ii) DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 998771 32815 K e andsymbols represent the experimental values dotted lines representDMSO-acetophenone mixture and solid lines represent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

120590 Standard deviation120572 Thermal expansion coefficient (Kminus1)120578 Dynamic viscosity (mPasdots)Δ119866119864 Excess Gibbs free energy (Jmolminus1)

119881119864 Excess molar volume (m3molminus1)

Δ119870119864

119878 Excess isentropic compressibility(TPaminus1)

Journal of Thermodynamics 9ΔKs(TPa

minus1)

000 01 02 03 04 05 06 07 08 09 10

minus10

minus20

minus30

minus40

minus50

x1

Figure 4 Experimental and calculated deviations in isentropiccompressibility for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values dottedlines represent DMSO-Acetophenone mixture and solid lines rep-resent DMSO-119901-xylene mixture both optimised by Redlich-Kisterparameters

0

50

00 01 02 03 04 05 06 07 08 09 10minus50

minus100

minus150

minus200

minus250

minus300

minus350

minus400

x1

ΔGE(Jmiddotm

olminus1)

Figure 5 Experimental and calculated deviations in Gibbs freeenergy of activation for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values solidlines represent DMSO-Acetophenone mixture and dotted linesrepresent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

119877 Universal gas constant(8314 Jmolminus1Kminus1)

119879 Absolute temperature (K)11988912 Grunberg-nissan parameter

Φ119894 Volume fraction (dimensionless)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] M M Palaiologou G K Arianas and N G Tsierkezos ldquoTher-modynamic investigation of dimethyl sulfoxide binarymixturesat 29315 and 31315 Krdquo Journal of Solution Chemistry vol 35 no11 pp 1551ndash1565 2006

[2] K Zhang J Yang X Yu J Zhang and X Wei ldquoDensities andviscosities for binary mixtures of poly(ethylene glycol) 400 +dimethyl sulfoxide and poly(ethylene glycol) 600 + water atdifferent temperaturesrdquo Journal of Chemical and EngineeringData vol 56 no 7 pp 3083ndash3088 2011

[3] A Ali A K Nain D Chand and R Ahmad ldquoViscosities andrefractive indices of binary mixtures of dimethylsulphoxidewith some aromatic hydrocarbons at different temperaturesan experimental and theoretical studyrdquo Journal of the ChineseChemical Society vol 53 no 3 pp 531ndash543 2006

[4] J A Riddick W B Bunger and T K Sakano Organic SolventsPhysical Properties and Methods of Purifications vol 2 ofTechniques of Chemistry John Wiley amp Sons New York NYUSA 1986

[5] V K Rattan S Kapoor and K Tochigi ldquoViscosities anddensities of binary mixtures of toluene with acetic acid andpropionic acid at (29315 30315 31315 and 32315) Krdquo Journalof Chemical and Engineering Data vol 47 no 5 pp 1182ndash11842002

[6] R A McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[7] L Grunberg and A H Nissan ldquoThe energies of vaporisationviscosity and cohesion and the structure of liquidsrdquo Transac-tions of the Faraday Society vol 45 pp 125ndash137 1949

[8] G C Benson and O Kiyohara ldquoEvaluation of excess isentropiccompressibilities and isochoric heat capacitiesrdquo The Journal ofChemical Thermodynamics vol 11 no 11 pp 1061ndash1064 1979

[9] GDouheretM I Davis I J Fjellanger andHHoslashiland ldquoUltra-sonic speeds and volumetric properties of binary mixtures ofwater with poly(ethylene glycol)s at 29815 Krdquo Journal of theChemical Society - Faraday Transactions vol 93 no 10 pp1943ndash1949 1997

[10] A J Treszczanowicz O Kiyohara and G C Benson ldquoExcessvolumes for n-alkanols +n-alkanes IV Binary mixtures ofdecan-1-ol +n-pentane +n-hexane +n-octane +n-decane and+n-hexadecanerdquoThe Journal of ChemicalThermodynamics vol13 no 3 pp 253ndash260 1981

[11] A H Roux and J E Desnoyers ldquoAssociation models for alco-hol-water mixturesrdquo Journal of Proceedings of the Indian Acad-emy of Sciences Chemical Sciences vol 98 no 5-6 pp 435ndash451

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 9: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2014/607052.pdfResearch Article Thermophysical Properties of Binary Mixtures of Dimethylsulfoxide

Journal of Thermodynamics 9ΔKs(TPa

minus1)

000 01 02 03 04 05 06 07 08 09 10

minus10

minus20

minus30

minus40

minus50

x1

Figure 4 Experimental and calculated deviations in isentropiccompressibility for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values dottedlines represent DMSO-Acetophenone mixture and solid lines rep-resent DMSO-119901-xylene mixture both optimised by Redlich-Kisterparameters

0

50

00 01 02 03 04 05 06 07 08 09 10minus50

minus100

minus150

minus200

minus250

minus300

minus350

minus400

x1

ΔGE(Jmiddotm

olminus1)

Figure 5 Experimental and calculated deviations in Gibbs freeenergy of activation for (i) DMSO(1) + acetophenone(2) and (ii)DMSO(1) + p-xylene(2) at 31315 K Q 31815 K ◼ 32315 K 99877132815 K e and symbols represent the experimental values solidlines represent DMSO-Acetophenone mixture and dotted linesrepresent DMSO-119901-xylene mixture both optimised by Redlich-Kister parameters

119877 Universal gas constant(8314 Jmolminus1Kminus1)

119879 Absolute temperature (K)11988912 Grunberg-nissan parameter

Φ119894 Volume fraction (dimensionless)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] M M Palaiologou G K Arianas and N G Tsierkezos ldquoTher-modynamic investigation of dimethyl sulfoxide binarymixturesat 29315 and 31315 Krdquo Journal of Solution Chemistry vol 35 no11 pp 1551ndash1565 2006

[2] K Zhang J Yang X Yu J Zhang and X Wei ldquoDensities andviscosities for binary mixtures of poly(ethylene glycol) 400 +dimethyl sulfoxide and poly(ethylene glycol) 600 + water atdifferent temperaturesrdquo Journal of Chemical and EngineeringData vol 56 no 7 pp 3083ndash3088 2011

[3] A Ali A K Nain D Chand and R Ahmad ldquoViscosities andrefractive indices of binary mixtures of dimethylsulphoxidewith some aromatic hydrocarbons at different temperaturesan experimental and theoretical studyrdquo Journal of the ChineseChemical Society vol 53 no 3 pp 531ndash543 2006

[4] J A Riddick W B Bunger and T K Sakano Organic SolventsPhysical Properties and Methods of Purifications vol 2 ofTechniques of Chemistry John Wiley amp Sons New York NYUSA 1986

[5] V K Rattan S Kapoor and K Tochigi ldquoViscosities anddensities of binary mixtures of toluene with acetic acid andpropionic acid at (29315 30315 31315 and 32315) Krdquo Journalof Chemical and Engineering Data vol 47 no 5 pp 1182ndash11842002

[6] R A McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[7] L Grunberg and A H Nissan ldquoThe energies of vaporisationviscosity and cohesion and the structure of liquidsrdquo Transac-tions of the Faraday Society vol 45 pp 125ndash137 1949

[8] G C Benson and O Kiyohara ldquoEvaluation of excess isentropiccompressibilities and isochoric heat capacitiesrdquo The Journal ofChemical Thermodynamics vol 11 no 11 pp 1061ndash1064 1979

[9] GDouheretM I Davis I J Fjellanger andHHoslashiland ldquoUltra-sonic speeds and volumetric properties of binary mixtures ofwater with poly(ethylene glycol)s at 29815 Krdquo Journal of theChemical Society - Faraday Transactions vol 93 no 10 pp1943ndash1949 1997

[10] A J Treszczanowicz O Kiyohara and G C Benson ldquoExcessvolumes for n-alkanols +n-alkanes IV Binary mixtures ofdecan-1-ol +n-pentane +n-hexane +n-octane +n-decane and+n-hexadecanerdquoThe Journal of ChemicalThermodynamics vol13 no 3 pp 253ndash260 1981

[11] A H Roux and J E Desnoyers ldquoAssociation models for alco-hol-water mixturesrdquo Journal of Proceedings of the Indian Acad-emy of Sciences Chemical Sciences vol 98 no 5-6 pp 435ndash451

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of

Page 10: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2014/607052.pdfResearch Article Thermophysical Properties of Binary Mixtures of Dimethylsulfoxide

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

High Energy PhysicsAdvances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

FluidsJournal of

Atomic and Molecular Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in Condensed Matter Physics

OpticsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstronomyAdvances in

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Superconductivity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Statistical MechanicsInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

GravityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

AstrophysicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Physics Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Solid State PhysicsJournal of

 Computational  Methods in Physics

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Soft MatterJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

AerodynamicsJournal of

Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PhotonicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ThermodynamicsJournal of