Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System...

15
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2013, Article ID 936952, 14 pages http://dx.doi.org/10.1155/2013/936952 Research Article Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays Wenzhen Gan, 1 Canrong Tian, 2 Qunying Zhang, 3 and Zhigui Lin 3 1 School of Mathematics and Physics, Jiangsu Teachers University of Technology, Changzhou 213001, China 2 Basic Department, Yancheng Institute of Technology, Yangcheng 224003, China 3 School of Mathematical Science, Yangzhou University, Yangzhou 225002, China Correspondence should be addressed to Zhigui Lin; [email protected] Received 26 April 2013; Accepted 8 July 2013 Academic Editor: Rodrigo Lopez Pouso Copyright © 2013 Wenzhen Gan et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. is paper is concerned with the asymptotical behavior of solutions to the reaction-diffusion system under homogeneous Neumann boundary condition. By taking food ingestion and species’ moving into account, the model is further coupled with Michaelis- Menten type functional response and nonlocal delay. Sufficient conditions are derived for the global stability of the positive steady state and the semitrivial steady state of the proposed problem by using the Lyapunov functional. Our results show that intraspecific competition benefits the coexistence of prey and predator. Furthermore, the introduction of Michaelis-Menten type functional response positively affects the coexistence of prey and predator, and the nonlocal delay is harmless for stabilities of all nonnegative steady states of the system. Numerical simulations are carried out to illustrate the main results. 1. Introduction e overall behavior of ecological systems continues to be of great interest to both applied mathematicians and ecol- ogists. Two species predator-prey models have been exten- sively investigated in the literature. But recently more and more attention has been focused on systems with three or more trophic levels. For example, the predator-prey system for three species with Michaelis-Menten type functional response was studied by many authors [14]. However, the systems in [14] are either with discrete delay or without delay or without diffusion. In view of individuals taking time to move, spatial dispersal was dealt with by introducing diffusion term to corresponding delayed ODE model in previous literatures, namely, adding a Laplacian term to the ODE model. In recent years, it has been recognized that there are modelling difficulties with this approach. e difficulty is that diffusion and time delay are independent of each other, since individuals have not been at the same point at previous times. Britton [5] made a first comprehensive attempt to address this difficulty by introducing a nonlocal delay; that is, the delay term involves a weighted-temporal average over the whole of the infinite domain and the whole of the previous times. ere are many results for reaction-diffusion equations with nonlocal delays [518]. e existence and stability of traveling wave fronts were studied in reaction-diffusion equa- tions with nonlocal delay [59]. e stability of impulsive cellular neural networks with time varying was discussed in [10] by means of new Poincare integral inequality. e asymptotic behavior of solutions of the reaction-diffusion equations with nonlocal delay was investigated in [11, 12] by using an iterative technique and in [1315] by the Lyapunov functional. e stability and Hopf bifurcation were discussed in [16] for a diffusive logistic population model with nonlocal delay effect. Motivated by the work above, we are concerned with the following food chain model with Michaelis-Menten type functional response: 1 1 Δ 1 = 1 ( 1 11 1 12 2 1 + 1 ),

Transcript of Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System...

Page 1: Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays WenzhenGan, 1 CanrongTian,

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2013 Article ID 936952 14 pageshttpdxdoiorg1011552013936952

Research ArticleStability in a Simple Food Chain System with Michaelis-MentenFunctional Response and Nonlocal Delays

Wenzhen Gan1 Canrong Tian2 Qunying Zhang3 and Zhigui Lin3

1 School of Mathematics and Physics Jiangsu Teachers University of Technology Changzhou 213001 China2 Basic Department Yancheng Institute of Technology Yangcheng 224003 China3 School of Mathematical Science Yangzhou University Yangzhou 225002 China

Correspondence should be addressed to Zhigui Lin zglin68hotmailcom

Received 26 April 2013 Accepted 8 July 2013

Academic Editor Rodrigo Lopez Pouso

Copyright copy 2013 Wenzhen Gan et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

This paper is concernedwith the asymptotical behavior of solutions to the reaction-diffusion systemunder homogeneousNeumannboundary condition By taking food ingestion and speciesrsquo moving into account the model is further coupled with Michaelis-Menten type functional response and nonlocal delay Sufficient conditions are derived for the global stability of the positive steadystate and the semitrivial steady state of the proposed problem by using the Lyapunov functional Our results show that intraspecificcompetition benefits the coexistence of prey and predator Furthermore the introduction of Michaelis-Menten type functionalresponse positively affects the coexistence of prey and predator and the nonlocal delay is harmless for stabilities of all nonnegativesteady states of the system Numerical simulations are carried out to illustrate the main results

1 Introduction

The overall behavior of ecological systems continues to beof great interest to both applied mathematicians and ecol-ogists Two species predator-prey models have been exten-sively investigated in the literature But recently more andmore attention has been focused on systems with three ormore trophic levels For example the predator-prey systemfor three species with Michaelis-Menten type functionalresponse was studied by many authors [1ndash4] However thesystems in [1ndash4] are either with discrete delay or withoutdelay or without diffusion In view of individuals takingtime to move spatial dispersal was dealt with by introducingdiffusion term to corresponding delayed ODE model inprevious literatures namely adding a Laplacian term to theODEmodel In recent years it has been recognized that thereare modelling difficulties with this approach The difficulty isthat diffusion and time delay are independent of each othersince individuals have not been at the same point at previoustimes Britton [5] made a first comprehensive attempt toaddress this difficulty by introducing a nonlocal delay that

is the delay term involves a weighted-temporal average overthewhole of the infinite domain and thewhole of the previoustimes

There are many results for reaction-diffusion equationswith nonlocal delays [5ndash18] The existence and stability oftravelingwave fronts were studied in reaction-diffusion equa-tions with nonlocal delay [5ndash9] The stability of impulsivecellular neural networks with time varying was discussedin [10] by means of new Poincare integral inequality Theasymptotic behavior of solutions of the reaction-diffusionequations with nonlocal delay was investigated in [11 12] byusing an iterative technique and in [13ndash15] by the LyapunovfunctionalThe stability and Hopf bifurcation were discussedin [16] for a diffusive logistic populationmodel with nonlocaldelay effect

Motivated by the work above we are concerned withthe following food chain model with Michaelis-Menten typefunctional response

1205971199061

120597119905minus 1198891Δ1199061= 1199061(1198861minus 119886111199061minus119886121199062

1198981+ 1199061

)

2 Abstract and Applied Analysis

1205971199062

120597119905minus 1198892Δ1199062

= 1199062(minus1198862+ 11988621intΩ

int

119905

minusinfin

1199061(119904 119910)

1198981+ 1199061(119904 119910)

times 1198701(119909 119910 119905 minus 119904) 119889119904 119889119910

minus119886221199062minus119886231199063

1198982+ 1199062

)

1205971199063

120597119905minus 1198893Δ1199063

= 1199063(minus1198863+ 11988632intΩ

int

119905

minusinfin

1199062(119904 119910)

1198982+ 1199062(119904 119910)

times 1198702(119909 119910 119905 minus 119904) 119889119904 119889119910

minus119886331199063)

(1)

for 119905 gt 0 119909 isin Ω with homogeneous Neumann boundaryconditions

1205971199061

120597]=1205971199062

120597]=1205971199063

120597]= 0 119905 gt 0 119909 isin 120597Ω (2)

and initial conditions

119906119894(119905 119909) = 120601

119894(119905 119909) ge 0 (119894 = 1 2) (119905 119909) isin (minusinfin 0] times Ω

1199063(0 119909) = 120601

3(119909) ge 0 119909 isin Ω

(3)

where 120601119894is bounded Holder continuous function and satis-

fies 120597120601119894120597] = 0 (119894 = 1 2 3) on (minusinfin 0] times 120597Ω Here Ω is a

bounded domain in R119899 with smooth boundary 120597Ω and 120597120597]is the outward normal derivative on 120597Ω 119906

119894(119905 119909) represents

the density of the 119894th species (prey predator and top predatorresp) at time 119905 and location 119909 and thus only nonnegative119906119894(119905 119909) is of interest The parameter 119886

1is the intrinsic growth

rate of the prey and 1198862and 119886

3are the death rates of the

predator and top-predator 119886119894119894is the intraspecific competitive

rate of the 119894th species 11988612is the maximum predation rate 119886

23

and 11988632are the efficiencies of food utilization of the predator

and top predator respectively We assume the predator andtop predator show the Michaelis-Menten (or Holling typeII) functional response with 119906

1(1198981+ 1199061) and 119906

2(1198982+ 1199062)

respectively where 1198981and 119898

2are half-saturation constants

For a through biological background of similar models see[18 19] As our most knowledge the tritrophic food chainmodel has been found to have many interesting biologicalproperties such as the coexistence and the Hopf bifurcationHowever the effect of nonlocal time delays on the coexistencehas not been reported Our paper mainly concerns thisperspective

Additionally intΩint119905

minusinfin(119906119894(119904 119910)(119898

119894+ 119906119894(119904 119910)))119870

119894(119909 119910 119905 minus

119904)119889119904 119889119910 (119894 = 1 2) represents the nonlocal delay due tothe ingestion of predator that is mature adult predator can

only contribute to the production of predator biomass Theboundary condition in (2) implies that there is no migrationacross the boundary ofΩ

The main purpose of this paper is to study the globalasymptotic behavior of the solution of system (1)ndash(3) Thepreliminary results are presented in Section 2 Section 3 con-tains sufficient conditions for the global asymptotic behaviorsof the equilibria of system (1)ndash(3) by means of the Lyapunovfunctional Numerical simulations are carried out to show thefeasibility of the conditions in Theorems 8ndash10 in Section 4Finally a brief discussion is given to conclude this work

2 Preliminary Results

In this section we present several preliminary results that willbe employed in the sequel

Lemma 1 (see [3]) Let 119886 and 119887 be positive constants Assumethat 120601 120593 isin 1198621(119886 +infin) 120593(119905) ge 0 and 120601 is bounded frombelow If 1206011015840(119905) le minus119887120593(119905) and 1205931015840(119905) le 119870 in [119886 +infin) for somepositive constant 119870 then lim

119905rarr+infin120593(119905) = 0

The following lemma is the Positivity Lemma in [20]

Lemma 2 Let 119906119894isin 119862([0 119879] times Ω)⋂119862

12((0 119879] times Ω) (119894 =

1 2 3) and satisfy

119906119894119905minus 119889119894Δ119906119894ge

3

sum

119895=1

119887119894119895(119905 119909) 119906

119895(119905 119909)

+

3

sum

119895=1

119888119894119895119906119895(119905 minus 120591119895 119909) in (0 119879] times Ω

120597119906119894(119905 119909)

120597]ge 0 on (0 119879] times 120597Ω

119906119894(119905 119909) ge 0 in [minus120591

119894 0] times Ω

(4)

where 119887119894119895 119888119894119895isin 119862([0 119879] times Ω) 119906

119894119905= (119906119894)119905 If 119887119894119895ge 0 for 119895 = 119894

and 119888119894119895ge 0 for all 119894 119895 = 1 2 3 Then 119906

119894(119905 119909) ge 0 on [0 119879] times Ω

Moreover if the initial function is nontrivial then 119906119894gt 0 in

(0 119879] times Ω

Lemma 3 (see [20]) Let c and c be a pair of constant vectorsatisfying c ge c and let the reaction functions satisfy localLipschitz condition withΛ = ⟨c c⟩Then system (1)ndash(3) admitsa unique global solution u(119905 119909) such that

c le u (119905 119909) le c forall119905 gt 0 119909 isin Ω (5)

whenever c le 120601(119905 119909) le c (119905 119909) isin (minusinfin 0] times Ω

The following result was obtained by themethod of upperand lower solutions and the associated iterations in [21]

Abstract and Applied Analysis 3

Lemma 4 (see [21]) Let 119906(119905 119909) isin 119862([0infin) times Ω) cap

11986221((0infin)timesΩ) be the nontrivial positive solution of the system

119906119905minus 119889Δ119906 = 119861119906 (119905 minus 120591 119909) plusmn 119860

1119906 (119905 119909)

minus 11986021199062(119905 119909) (119905 119909) isin (0infin) times Ω

120597119906

120597]= 0 (119905 119909) isin (0infin) times 120597Ω

119906 (119905 119909) = 120601 (119905 119909) ge 0 (119905 119909) isin (minus120591 0) times Ω

(6)

where 1198601ge 0 119861 119860

2 120591 gt 0 The following results hold

(1) if 119861plusmn1198601gt 0 then 119906 rarr (119861 plusmn119860

1)1198602uniformly onΩ

as 119905 rarr infin

(2) if 119861plusmn1198601le 0 then 119906 rarr 0 uniformly onΩ as 119905 rarr infin

Throughout this paper we assume that

119870119894(119909 119910 119905) = 119866

119894(119909 119910 119905) 119896

119894(119905) 119909 119910 isin Ω 119896

119894(119905) ge 0

intΩ

119866119894(119909 119910 119905) 119889119909 = int

Ω

119866119894(119909 119910 119905) 119889119910 = 1 119905 ge 0

int

+infin

0

119896119894(119905) 119889119905 = 1 119905119896

119894(119905) isin 119871

1((0 +infin) 119877)

(7)

where119866119894(119909 119910 119905) is a nonnegative function which is continu-

ous in (119909 119910) isin ΩtimesΩ for each 119905 isin [0 +infin) and measurable in119905 isin [0 +infin) for each pair (119909 119910) isin Ω times Ω

Now we prove the following propositions which will beused in the sequel

Proposition 5 For any nonnegative initial function thecorresponding solution of system (1)ndash(3) is nonnegative

Proof Suppose that (1199061 1199062 1199063) is a solution and satisfies 119906

119894isin

119862([0 119879) times Ω) cap 11986212((0 119879) times Ω) with 119879 le +infin Choose 0 lt

120591 lt 119879 Then

1199061119905minus 1198891Δ1199061= 11986011199061 0 lt 119905 lt 120591 119909 isin Ω

1199062119905minus 1198892Δ1199062= 11986021199062 0 lt 119905 lt 120591 119909 isin Ω

1199063119905minus 1198893Δ1199063= 11986031199063 0 lt 119905 lt 120591 119909 isin Ω

120597119906119894

120597]= 0 0 lt 119905 lt 120591 119909 isin 120597Ω

119906119894(119905 119909) ge 0 (119894 = 1 2 3) 119905 le 0 119909 isin Ω

(8)

where

1198601= 1198861minus 119886111199061minus119886121199062

1198981+ 1199061

1198602= minus1198862+ 11988621intΩ

int

119905

minusinfin

1199061(119904 119910)

1198981+ 1199061(119904 119910)

times 1198701(119909 119910 119905 minus 119904) 119889119904 119889119910

minus 119886221199062minus119886231199063

1198982+ 1199063

1198603= minus1198863+ 11988632intΩ

int

119905

minusinfin

1199062(119904 119910)

1198982+ 1199062(119904 119910)

times 1198702(119909 119910 119905 minus 119904) 119889119904 119889119910 minus 119886

331199063

(9)

It follows from Lemma 2 that 119906119894ge 0 (119905 119909) isin [0 120591] times Ω Due

to the arbitrariness of 120591 we have 119906119894ge 0 for (119905 119909) isin [0 119879) times

Ω

Proposition 6 System (1)ndash(3) with initial functions 120601119894admits

a unique global solution (1199061 1199062 1199063) satisfying 0 le 119906

119894(119905 119909) le

119872119894for 119894 = 1 2 3 where119872

119894is defined as

1198721= max 1198861

11988611

10038171003817100381710038171206011 (119905 119909)

1003817100381710038171003817119871infin((minusinfin0]timesΩ)

1198722= max

(11988621minus 1198862)1198721minus 11989811198862

11988622(1198981+1198721)

10038171003817100381710038171206012 (119905 119909)

1003817100381710038171003817119871infin((minusinfin0]timesΩ)

1198723= max

(11988632minus 1198863)1198722minus 11989821198863

11988622(1198982+1198722)

10038171003817100381710038171206013 (119909)

1003817100381710038171003817119871infin(Ω)

(10)

Proof It follows from standard PDE theory that there existsa 119879 gt 0 such that problem (1)ndash(3) admits a unique solutionin [0 119879) times Ω From Lemma 2 we know that 119906

119894(119905 119909) ge 0 for

(119905 119909) isin [0 119879) times Ω Considering the first equation in (1) wehave

1205971199061

120597119905minus 1198891Δ1199061le 1199061(1198861minus 119886111199061) (11)

Using themaximumprinciple gives that 1199061le 1198721 In a similar

way we have 119906119894le 119872119894for 119894 = 2 3 It is easy to see that (0 0 0)

and (119872111987221198723) are a pair of coupled upper and lower

solutions to system (1)ndash(3) from the direct computation Invirtue of Lemma 3 system (1)ndash(3) admits a unique globalsolution (119906

1 1199062 1199063) satisfying 0 le 119906

119894(119905 119909) le 119872

119894for 119894 = 1 2 3

In addition if 1206011(119905 119909) 120601

2(119905 119909) 120601

3(119909) (119905 119909) isin (minusinfin 0] times Ω is

nontrivial it follows from the strongmaximumprinciple that119906119894(119905 119909) gt 0 (119894 = 1 2 3) for all 119905 gt 0 119909 isin Ω

3 Global Stability

In this section we study the asymptotic behavior of theequilibrium of system (1)ndash(3) In the beginning we show theexistence and uniqueness of positive steady state

4 Abstract and Applied Analysis

L1

L2

L3

025

02

015

01

005

0

0 02 04 06 081

2

Figure 1 Graphs of the equations in (12) 1198713is the boundary

condition (1198863= 11988632V2(1198982+ V2)) and 119871

2corresponds to minus119886

2+

11988621(V1(1198981+ V1)) minus 119886

22V2= 0 while 119871

1corresponds to 119886

1minus 11988611V1minus

11988612V2(1198981+ V1) = 0 Intersection point between 119871

1and 119871

2gives the

positive solution (Vlowast1 Vlowast2) to (12) Parameter values are listed in the

example in Section 4

Let us consider the following equations

1198861minus 11988611V1minus11988612V2

1198981+ V1

= 0

minus 1198862+11988621V1

1198981+ V1

minus 11988622V2= 0

(12)

A direct computation shows that the above equations haveonly one positive solution (Vlowast

1 Vlowast2) if and only if

1198671 1198861(11988621minus 1198862) gt 119898

1119886211988611 (13)

is satisfied Taking1198671into account we consider the equation

1198863= 11988632Vlowast2(1198982+ Vlowast2) which corresponds to 119871

3in Figure 1

It is clear that if 1198863lt 11988632Vlowast2(1198982+ Vlowast2) the intersection

point (Vlowast1 Vlowast2) always lies in 119871

3 Let

1198672 11988631198982lt (11988632minus 1198863) Vlowast

2 (14)

Suppose that1198671and119867

2hold We take 119906

3as a parameter and

consider the following system

1198861minus 119886111199061minus119886121199062

1198981+ 1199061

= 0

minus 1198862+119886211199061

1198981+ 1199061

minus 119886221199062minus119886231199063

1198982+ 1199062

= 0

minus 1198863+119886321199062

1198982+ 1199062

minus 119886331199063= 0

(15)

When the parameter 1199063is sufficiently small the first two

equations in (15) can be approximated by (12) Moreover

by continuously increasing the value of 1199063 1198713goes up and

meanwhile the intersection point between 1198711and 119871

2also

goes up However 1198713goes up faster than 119871

2 while 119871

1keeps

still In other words there exists a critical value 1199063such

that the intersection point lies in 1198713 which implies that

there is a unique positive solution 119864lowast(119906lowast1 119906lowast

2 119906lowast

3) to (15) or

equivalently (1)ndash(3)

Lemma 7 Assume that1198672and 119866

2hold and then the positive

steady state119864lowast of system (1)ndash(3) is locally asymptotically stable

Proof We get the local stability of 119864lowast by performing alinearization and analyzing the corresponding characteristicequation Similarly as in [22] let 0 lt 120583

1lt 1205832lt 1205833lt

be the eigenvalues of minusΔ on Ω with the homogeneousNeumann boundary condition Let 119864(120583

119894) be the eigenspace

corresponding to 120583119894in 1198621(Ω) for 119894 = 1 2 3 Let

X = u = (1199061 1199062 1199063) isin [119862

1(Ω)]3

120597120578u = 0 119909 isin 120597Ω (16)

120593119894119895 119895 = 1 dim119864(120583

119894) be an orthonormal basis of 119864(120583

119894)

and X119894119895= 119888 sdot 120593

119894119895| 119888 isin 119877

3 Then

X119894=

dim119864(120583119894)

119895=1

X119894119895 X =

infin

119894=1

X119894 (17)

Let 119863 = diag(1198631 1198632 1198633) and k = (V

1 V2 V3) V119894=

119906119894minus 119906lowast

119894 (119894 = 1 2 3) Then the linearization of (1)

is k119905= 119871k = 119863Δk + Fk(Elowast)k Fk(Elowast)k = 119888

119894119895

where 119888119894119894

= 119887119894119894V119894 119894 = 1 2 3 119888

12= 11988712V2 11988823

=

11988723V3 11988821= 11988721intΩint119905

minusinfinV1(119904 119910)119870

1(119909 119910 119905 minus 119904)119889119904 119889119910 and 119888

32=

11988732intΩint119905

minusinfinV2(119904 119910)119870

2(119909 119910 119905 minus 119904)119889119904 119889119910 The coefficients 119887

119894119895are

defined as follows

11988711= minus11988611119906lowast

1+11988612119906lowast

1119906lowast

2

(1198981+ 119906lowast1)2

11988712= minus

11988612119906lowast

1

1198981+ 119906lowast1

11988713= 0

11988721=119886211198981119906lowast

2

(1198981+ 119906lowast1)2

11988722= minus11988622119906lowast

2+11988623119906lowast

2119906lowast

3

(1198982+ 119906lowast2)2 119887

23= minus

11988623119906lowast

2

1198982+ 119906lowast2

11988731= 0 119887

32=119886321198982119906lowast

3

(1198982+ 119906lowast2)2 119887

33= minus11988633119906lowast

3

(18)

SinceX119894is invariant under the operator 119871 for each 119894 ge 1 then

the operator 119871 on X119894is k119905= 119871k = 119863120583

119894k + Fk(Elowast)k Let V119894 =

119888119894119890120582119905(119894 = 1 2 3) and we can get the characteristic equation

Abstract and Applied Analysis 5

120593119894(120582) = 120582

3+ 1198601198941205822+ 119861119894120582 + 119862

119894= 0 where 119860

119894 119861119894 and 119862

119894are

defined as follows

119860119894= (1198891+ 1198892+ 1198893) 120583119894minus 11988711minus 11988722minus 11988733

119861119894= (11988911198892+ 11988921198893+ 11988931198891) 1205832

119894

+ [1198893(minus11988711minus 11988722) + 1198891(minus11988733minus 11988722)

+1198892(minus11988711minus 11988733)] 120583119894

+ 1198871111988722+ 1198871111988733+ 1198872211988733

minus 1198871211988721int

infin

0

1198961(119904) 119890minus120582119904119889119904 minus 119887

2311988732int

infin

0

1198962(119904) 119890minus120582119904119889119904

119862119894= 1198891119889211988931205833

119894+ [minus1198873311988911198892minus 1198871111988921198893minus 1198872211988911198893] 1205832

119894

+ [11988711119887221198893+ 11988711119887331198892+ 11988722119887331198891+ 11988722119887331198891

minus 11988931198871211988721int

infin

0

1198961(119904) 119890minus120582119904119889119904

minus11988911198872311988732int

infin

0

1198962(119904) 119890minus120582119904119889119904] 120583119894

+ [minus119887111198872211988733+ 119887121198872111988733int

infin

0

1198961(119904) 119890minus120582119904119889119904

+119887111198872311988732int

infin

0

1198962(119904) 119890minus120582119904119889119904]

(19)

It is easy to see that 11988712 11988723 11988733lt 0 and 119887

21 11988732gt 0 It

follows from assumption 1198661and 119866

2that 119886

11lt 0 119886

22lt 0

So 119860119894gt 0 119861

119894gt 0 119862

119894gt 0 and 119860

119894119861119894minus 119862119894gt 0 for 119894 ge 1

from the direct calculation According to the Routh-Hurwitzcriterion the three roots 120582

1198941 1205821198942 1205821198943

of 120593119894(120582) = 0 all have

negative real partsBy continuity of the roots with respect to 120583

119894and Routh-

Hurwitz criterion we can conclude that there exists a positiveconstant 120576 such that

Re 1205821198941 Re 120582

1198942 Re 120582

1198943 le minus120576 119894 ge 1 (20)

Consequently the spectrum of 119871 consisting only of eigen-values lies in Re 120582 le minus120576 It is easy to see that Elowast islocally asymptotically stable and follows fromTheorem 511of [23]

Theorem 8 Assume that

11986731198861(11988621minus 1198862)

11989811198862

gt 11988611gt11988612119906lowast

2

11989821

(21)

1198672and 119866

2hold and the positive steady state 119864lowast of system (1)ndash

(3) with nontrivial initial function is globally asymptoticallystable

Proof It is easy to see that the equations in (1) can be rewrittenas

1205971199061

120597119905minus 1198891Δ1199061= 1199061[ minus 11988611(1199061minus 119906lowast

1)

minus11988612(1199062minus 119906lowast

2)

1198981+ 1199061

+11988612119906lowast

2(1199061minus 119906lowast

1)

(1198981+ 1199061) (1198981+ 119906lowast1)]

1205971199062

120597119905minus 1198892Δ1199062= 1199062[intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus 119906

lowast

1)

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)119889119904 119889119910

minus 11988622(1199062minus 119906lowast

2) minus11988623(1199063minus 119906lowast

3)

1198982+ 1199062

+11988623119906lowast

3(1199062minus 119906lowast

2)

(1198982+ 1199062) (1198982+ 119906lowast2)]

1205971199063

120597119905minus 1198893Δ1199063= 1199063[intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus 119906

lowast

2)

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)119889119904 119889119910

minus11988633(1199063minus 119906lowast

3) ]

(22)

Define

119881 (119905) = 120572intΩ

(1199061minus 119906lowast

1minus 119906lowast

1ln 1199061119906lowast1

)119889119909

+ intΩ

(1199062minus 119906lowast

2minus 119906lowast

2ln 1199062119906lowast2

)119889119909

+ 120573intΩ

(1199062minus 119906lowast

3minus 119906lowast

3ln1199063

119906lowast3

)119889119909

(23)

where 120572 and 120573 are positive constants to be determinedCalculating the derivatives 119881(119905) along the positive solutionto the system (1)ndash(3) yields

1198811015840(119905) = Φ

1(119905) + Φ

2(119905) (24)

where

Φ1(119905) = minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

6 Abstract and Applied Analysis

Φ2(119905) = minusint

Ω

120572[11988611minus

11988612119906lowast

2

(1198981+ 1199061) (1198981+ 119906lowast1)] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

[11988622minus

11988623119906lowast

3

(1198982+ 1199062) (1198982+ 119906lowast2)] (1199062minus 119906lowast

2)2

119889119909

minus intΩ

11988633120573(1199063minus 119906lowast

3)2

119889119909

minus intΩ

11988623(1199063minus 119906lowast

3) (1199062minus 119906lowast

2)

1198982+ 1199062

119889119909

minus intΩ

12057211988612(1199062minus 119906lowast

2) (1199061minus 119906lowast

1)

1198981+ 1199061

119889119909

+∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus 119906

lowast

1) (1199062(119905 119909) minus 119906

lowast

2)

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)

119889119904 119889119910 119889119909

+ 120573∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus 119906

lowast

2) (1199063(119905 119909) minus 119906

lowast

3)

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)

119889119904 119889119910 119889119909

(25)

Applying the inequality 119886119887 le 1205981198862 + (14120598)1198872 we derive from(25) that

Φ2(119905) le minusint

Ω

120572[11988611minus

11988612119906lowast

2

(1198981+ 1199061) (1198981+ 119906lowast1)] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

11988633120573(1199063minus 119906lowast

3)2

119889119909

minus intΩ

[11988622minus

11988623119906lowast

3

(1198982+ 1199062) (1198982+ 119906lowast2)] (1199062minus 119906lowast

2)2

119889119909

+ intΩ

12057211988612

1198981+ 1199061

[1205981(1199061minus 119906lowast

1)2

+1

41205981

(1199062minus 119906lowast

2)2

] 119889119909

+ intΩ

11988623

1198982+ 1199062

[1

41205982

(1199062minus 119906lowast

2)2

+ 1205982(1199063minus 119906lowast

3)2

] 119889119909

+∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)

times [1205983(1199061(119904 119910) minus 119906

lowast

1)2

+1

41205983

(1199062(119905 119909) minus 119906

lowast

2)2

] 119889119904 119889119910 119889119909

+∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321205731198982

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)

times [1

41205984

(1199062(119904 119910) minus 119906

lowast

2)2

+1205984(1199063(119905 119909) minus 119906

lowast

3)2

] 119889119904 119889119910 119889119909

(26)

According to the property of the Kernel functions119870119894(119909 119910 119905)

(119894 = 1 2) we know that

Φ2(119905) le minusint

Ω

[12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

[11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

] (1199062minus 119906lowast

2)2

119889119909

minus intΩ

[11988633120573 minus

119886231205982

1198982

minus119886321205731205984

1198982

] (1199063minus 119906lowast

3)2

119889119909

+119886211205983

1198981

∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119910 119889119909

+11988632120573

411989821205984

∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119910 119889119909

(27)

Define a new Lyapunov functional as follows

119864 (119905) = 119881 (119905)

+119886211205983

1198981

∬Ω

int

+infin

0

int

119905

119905minus119903

1198701(119909 119910 119903)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119903 119889119910 119889119909

+11988632120573

411989821205984

∬Ω

int

+infin

0

int

119905

119905minus119903

1198702(119909 119910 119903)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119903 119889119910 119889119909

(28)

Abstract and Applied Analysis 7

It is derived from (27) and (28) that

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

minus [12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

minus119886211205983

1198981

]intΩ

(1199061minus 119906lowast

1)2

119889119909

minus [11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

]intΩ

(1199062minus 119906lowast

2)2

119889119909

minus [11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

]intΩ

(1199063minus 119906lowast

3)2

119889119909

(29)

Since (1199061 1199062 1199063) is the unique positive solution of system (1)

Using Proposition 5 there exists a constant119862which does notdepend on119909 isin Ω or 119905 ge 0 such that 119906

119894(sdot 119905)infinle 119862 (119894 = 1 2 3)

for 119905 ge 0 By Theorem 1198602in [24] we have

1003817100381710038171003817119906119894 (sdot 119905)10038171003817100381710038171198622120572(Ω) le 119862 forall119905 ge 1 (30)

Assume that

1198661 119886111198982

1gt 11988612119906lowast

2

1198662 119886221198982

2gt 11988623119906lowast

3+21198862311988632

11988633

+211988612119886211198982

2

1198861111989821minus 11988612119906lowast2

(31)

and denote

1198971= 12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

minus119886211205983

1198981

1198972= 11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

1198973= 11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

(32)

Then (29) is transformed into

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

minus

3

sum

119894=1

119897119894intΩ

(119906119894minus 119906lowast

119894)2

119889119909

(33)

If we choose

120572 =11988621

11988612

120573 =11988623

11988632

1205981= 1205983=119886111198982

1minus 11988612119906lowast

2

4119898111988612

1205982= 1205984=119898211988633

411988632

(34)

then 119897119894gt 0 (119894 = 1 2 3) Therefore we have

1198641015840(119905) le minus

3

sum

119894=1

119897119894intΩ

(119906119894minus 119906lowast

119894)2

119889119909 (35)

FromProposition 6 we can see that the solution of system(1) and (3) is bounded and so are the derivatives of (119906

119894minus 119906lowast

119894)

(119894 = 1 2 3) by the equations in (1) Applying Lemma 1 weobtain that

lim119905rarrinfin

intΩ

(119906119894minus 119906lowast

119894) 119889119909 = 0 (119894 = 1 2 3) (36)

Recomputing 1198641015840(119905) gives

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

le minus119888intΩ

(1003816100381610038161003816nabla1199061

10038161003816100381610038162

+1003816100381610038161003816nabla1199062

10038161003816100381610038162

+1003816100381610038161003816nabla1199063

10038161003816100381610038162

) 119889119909 = minus119892 (119905)

(37)

where 119888 = min1205721198891119906lowast

11198722

1 1198892119906lowast

21198722

2 1205731198893119906lowast

311987223 Using (30)

and (1) we obtain that the derivative of 119892(119905) is bounded in[1 +infin) From Lemma 1 we conclude that 119892(119905) rarr 0 as 119905 rarrinfin Therefore

lim119905rarrinfin

intΩ

(1003816100381610038161003816nabla1199061

10038161003816100381610038162

+1003816100381610038161003816nabla1199062

10038161003816100381610038162

+1003816100381610038161003816nabla1199063

10038161003816100381610038162

) 119889119909 = 0 (38)

Applying the Poincare inequality

intΩ

120582|119906 minus 119906|2119889119909 le int

Ω

|nabla119906|2119889119909 (39)

leads to

lim119905rarrinfin

intΩ

(119906119894minus 119906119894)2

119889119909 = 0 (119894 = 1 2 3) (40)

where 119906119894= (1|Ω|) int

Ω119906119894119889119909 and 120582 is the smallest positive

eigenvalue ofminusΔwith the homogeneousNeumann conditionTherefore

|Ω| (1199061 (119905) minus 119906lowast

1)2

= intΩ

(1199061(119905) minus 119906

lowast

1)2

119889119909

= intΩ

(1199061(119905) minus 119906

1(119905 119909) + 119906

1(119905 119909) minus 119906

lowast

1)2

119889119909

le 2intΩ

(1199061(119905) minus 119906

1(119905 119909))

2

119889119909

+ 2intΩ

(1199061(119905 119909) minus 119906

lowast

1)2

119889119909

(41)

8 Abstract and Applied Analysis

So we have 1199061(119905) rarr 119906

lowast

1as 119905 rarr infin Similarly 119906

2(119905) rarr 119906

lowast

2

and 1199063(119905) rarr 119906

lowast

3as 119905 rarr infin According to (30) there exists

a subsequence 119905119898 and non-negative functions 119908

119894isin 1198622(Ω)

such thatlim119898rarrinfin

1003817100381710038171003817119906119894 (sdot 119905119898) minus 119908119894 (sdot)10038171003817100381710038171198622(Ω) = 0 (119894 = 1 2 3) (42)

Applying (40) and noting that 119906119894(119905) rarr 119906

lowast

119894 we then have119908

119894=

119906lowast

119894 (119894 = 1 2 3) That is

lim119898rarrinfin

1003817100381710038171003817119906119894 (sdot 119905119898) minus 119906lowast

119894

10038171003817100381710038171198622(Ω) = 0 (119894 = 1 2 3) (43)

Furthermore the local stability ofElowast combiningwith (43)gives the following global stability

Theorem 9 Assume that

11986751198861(11988621minus 1198862)

11989811198862

gt 11988611gt11988612Vlowast2

11989821

(44)

1198674and 119866

4hold and then the semi-trivial steady state 119864

2

of system (1)ndash(3) with non-trivial initial functions is globallyasymptotically stable

Proof It is obvious that system (1)ndash(3) always has two non-negative equilibria (119906

1 1199062 1199063) as follows 119864

0= (0 0 0) and

1198641= (119886111988611 0 0) If 119867

1and 119867

4are satisfied system (1) has

the other semitrivial solution denoted by 1198642(Vlowast1 Vlowast2 0) where

1198674 11988631198982gt (11988632minus 1198863) Vlowast

2 (45)

We consider the stability of 1198642under condition 119867

1and

1198674 Equation (1) can be rewritten as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus Vlowast

1) minus11988612(1199062minus Vlowast2)

1198981+ 1199061

+11988612Vlowast2(1199061minus Vlowast1)

(1198981+ 1199061) (1198981+ Vlowast1)]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus Vlowast

1)

(1198981+ 1199061(119904 119910)) (119898

1+ Vlowast1)119889119904 119889119910

minus11988622(1199062minus Vlowast

2) minus

119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus Vlowast

2)

(1198982+ 1199062(119904 119910)) (119898

2+ Vlowast2)119889119904 119889119910

minus119886331199063]

(46)

Similar to the argument ofTheorem 8 we have 1199061(119909 119905) rarr Vlowast

1

and 1199062(119909 119905) rarr Vlowast

2as 119905 rarr infin uniformly on Ω provided that

the following additional condition holds

1198663 119886111198982

1gt 11988612Vlowast

2

1198664 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821minus 11988612Vlowast2

(47)

Next we consider the asymptotic behavior of 1199063(119905 119909) Let

120579 =1198863minus (11988632minus 1198863) Vlowast2

2120575 120575 =

100381610038161003816100381611988632 minus 11988631003816100381610038161003816

(48)

Then there exists 1199051gt 0 such that

Vlowast

2minus 120579 lt 119906

2(119905 119909) lt V

lowast

2+ 120579 forall119905 gt 119905

1 119909 isin Ω (49)

Consider the following two systems

1199083119905minus 1198893Δ1199083= 1199083[minus1198863+11988632(Vlowast2+ 120579)

1198982+ Vlowast2+ 120579

minus 119886331199083]

(119905 119909) isin [1199051 +infin) times Ω

1205971199083

120597]= 0 (119905 119909) isin [119905

1 +infin) times 120597Ω

1199083= 1199063 (119905 119909) isin (minusinfin 119905

1] times Ω

1198823119905minus 1198893Δ1198823= 1198823[minus1198863+11988632(Vlowast2minus 120579)

1198982+ Vlowast2minus 120579

minus 11988633V3]

(119905 119909) isin [1199051 +infin) times Ω

1205971198823

120597]= 0 (119905 119909) isin [119905

1 +infin) times 120597Ω

1198823= 1199063 (119905 119909) isin (minusinfin 119905

1] times Ω

(50)

Combining comparison principle with (50) we obtain that

1198823(119905 119909) le 119906

3(119905 119909) le 119908

3(119905 119909) forall119905 gt 119905

1 119909 isin Ω (51)

By Lemma 4 we obtain

0 = lim119905rarrinfin

1198823(119905 119909) le inf 119906

3(119905 119909) le sup 119906

3(119905 119909)

le lim119905rarrinfin

1199083(119905 119909) = 0 forall119909 isin Ω

(52)

which implies that lim119905rarrinfin

1199063(119905 119909) = 0 uniformly onΩ

Theorem 10 Suppose that1198665and119866

6hold and then the semi-

trivial steady state 1198641of system (1)ndash(3) with non-trivial initial

functions is globally asymptotically stable

Abstract and Applied Analysis 9

Proof We study the stability of the semi-trivial solution 1198641=

(1 0 0) Similarly the equations in (1) can be written as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus 1) minus

119886121199062

1198981+ 1199061

]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[minus1198862+ intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus

1)

(1198981+ 1199061(119904 119910)) (119898

1+ 1)119889119904 119889119910

+119886211

1198981+ 1

minus 119886221199062minus119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[minus1198863+ intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321199062(119904 119910)

1198982+ 1199062(119904 119910)

119889119904 119889119910 minus 119886331199063]

(53)

Define

119881 (119905) = 120572intΩ

[1199061minus 1minus 1log 11990611

] 119889119909 + intΩ

1199062119889119909

+ 120573intΩ

1199063119889119909

(54)

Calculating the derivative of 119881(119905) along 1198641 we get from (54)

that

1198811015840(119905) le minusint

Ω

[120572(11988611minus119886121205981

1198981

)] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

412059821198982

minus11988621

411989811205983

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062+ 11988631199063] 119889119909

+119886211205983

1198981

intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times (1199061(119904 119910) minus

1)2

119889119904 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times 1199062

2(119904 119910) 119889119904 119889119910 119889119909

(55)

Define119864 (119905) = 119881 (119905)

+119886211205983

1198981

∬Ω

int

+infin

0

int

119905

119905minus119903

1198701(119909 119910 119903)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119903 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

+infin

0

int

119905

119905minus119903

1198702(119909 119910 119903)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119903 119889119910 119889119909

(56)

It is easy to see that

1198641015840(119905) le minus120572119889

11intΩ

1003816100381610038161003816nabla119906110038161003816100381610038162

11990621

119889119909

minus intΩ

[120572(11988611minus119886121205981

1198981

) minus119886211205983

1198981

] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632

411989821205984

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

minus119886321205731205984

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062minus 11988631205731199063] 119889119909

(57)

Assume that1198665 1198861(11988621minus 1198862) lt 119898

1119886211988611

1198666 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821

(58)

Let

1198971= 12057211988611minus120572119886121205981

1198981

minus119886211205983

1198981

1198972= 11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

1198973= 11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

(59)

Choose

120572 =11988621

11988612

120573 =11988623

11988632

1205981= 1205983=119886111198981

411988612

1205982= 1205984=119898211988633

411988632

(60)

Then we get 119897119894gt 0 (119894 = 1 2 3) Therefore we have

lim119905rarrinfin

1199061(119905 119909) =

1 (61)

uniformly onΩ

10 Abstract and Applied Analysis

tx

u1

02

46

8

01

23

40

1

2

3

4

(a)

02

46

8

01

23

40

1

2

3

4

t

x

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 2 Global stability of the positive equilibrium 119864lowast with an initial condition (1206011 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

Next we consider the asymptotic behavior of 1199062(119905 119909) and

1199063(119905 119909) For any 119879 gt 0 integrating (57) over [0 119879] yields

119864 (119879) + 1205721198891

10038171003817100381710038171003817100381710038171003817

10038161003816100381610038161003816100381610038161003816

nabla1199061

1199061

10038161003816100381610038161003816100381610038161003816

10038171003817100381710038171003817100381710038171003817

2

2

+ 1198971

100381710038171003817100381710038161003816100381610038161199061 minus 1

100381610038161003816100381610038171003817100381710038172

2

+ 1198972

100381710038171003817100381710038161003816100381610038161199062100381610038161003816100381610038171003817100381710038172

2+ 1198973

100381710038171003817100381710038161003816100381610038161199063100381610038161003816100381610038171003817100381710038172

2le 119864 (0)

(62)

where |119906119894|2

2= int119879

0intΩ1199062

119894119889119909 119889119905 It implies that |119906

119894|2le 119862119894(119894 =

2 3) for the constant 119862119894which is independent of 119879 Now we

consider the boundedness of |nabla1199062|2and |nabla119906

3|2 From the

Greenrsquos identity we obtain

1198892int

119879

0

intΩ

1003816100381610038161003816nabla1199062 (119905 119909)10038161003816100381610038162

119889119909 119889119905

= minus1198892int

119879

0

intΩ

1199062(119905 119909) Δ119906

2(119905 119909) 119889119909 119889119905

= minusint

119879

0

intΩ

1199062

1205971199062

120597119905119889119909 119889119905 minus 119886

2int

119879

0

intΩ

1199062

2119889119909 119889119905

minus 11988622int

119879

0

intΩ

1199063

2119889119909 119889119905 minus 119886

23int

119879

0

intΩ

1199062

21199063

1198982+ 1199063

119889119909 119889119905

+ 11988621int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

times 1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

(63)

Note that

int

119879

0

intΩ

1199062(119905 119909)

1205971199062(119905 119909)

120597119905119889119909 119889119905

= int

119879

0

intΩ

1

2

1205971199062

2

120597119905119889119905 119889119909

=1

2intΩ

1199062

2(119879 119909) 119889119909 minus

1

2intΩ

1199062

2(0 119909) 119889119909 le 119872

2

2|Ω|

int

119879

0

intΩ

1199062

21199063119889119909 119889119905 le 119872

3int

119879

0

intΩ

1199062

2119889119909 119889119905

Abstract and Applied Analysis 11

02

46

8

01

23

40

1

2

3

4

tx

u1

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 3 Global stability of the positive equilibrium 1198642with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

int

119879

0

intΩ

1199063

2119889119909 119889119905 le 119872

2int

119879

0

intΩ

1199062

2119889119909 119889119905

int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

le int

119879

0

intΩ

1199062

2(119905 119909) 119889119909 119889119905

(64)

Thus we get |nabla1199062|2le 1198624 In a similar way we have

|nabla1199063|2le 1198625 Here 119862

4and 119862

5are independent of 119879

It is easy to see that 1199062(119905 119909) 119906

3(119905 119909) isin 119871

2((0infin)

11988212(Ω)) These imply that

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)100381710038171003817100381711988212(Ω) = 0 119894 = 2 3 (65)

From the Sobolev compact embedding theorem we know

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)1003817100381710038171003817119862(Ω) = 0 119894 = 2 3 (66)

In the end we show that the trivial solution 1198640is an

unstable equilibrium Similarly to the local stability to 119864lowast wecan get the characteristic equation of 119864

0as

(120582 + 1205831198941198631minus 1198861) (120582 + 120583

1198941198632+ 1198862) (120582 + 120583

1198941198633+ 1198863) = 0 (67)

If 119894 = 1 then 1205831= 0 It is easy to see that this equation admits

a positive solution 120582 = 1198861 According to Theorem 51 in [23]

we have the following result

Theorem 11 The trivial equilibrium 1198640is an unstable equilib-

rium of system (1)ndash(3)

4 Numerical Illustrations

In this section we performnumerical simulations to illustratethe theoretical results given in Section 3

12 Abstract and Applied Analysis

u1

02

46

8

01

23

40

1

2

3

4

tx

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 4 Global stability of the positive equilibrium 1198641with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos119909 27 + 05 sin119909)

In the following we always take Ω = [0 120587] 119870119894(119909 119910 119905) =

119866119894(119909 119910 119905)119896

119894(119905) where 119896

119894(119905) = (1120591

lowast)119890minus119905120591lowast

(119894 = 1 2) and

1198661(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988921198992

119905 cos 119899119909 cos 119899119910

1198662(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988931198992

119905 cos 119899119909 cos 119899119910

(68)

However it is difficult for us to simulate our results directlybecause of the nonlocal term Similar to [25] the equationsin (1) can be rewritten as follows

1205971199061

120597119905minus 1198891Δ1199061= 1199061(1198861minus 119886111199061minus119886121199062

1198981+ 1199061

)

1205971199062

120597119905minus 1198892Δ1199062= 1199062(minus1198862+ 11988621V1minus 119886221199062minus119886231199063

1198982+ 1199063

)

1205971199063

120597119905minus 1198893Δ1199063= 1199063(minus1198863+ 11988632V2minus 119886331199063)

120597V1

120597119905minus 1198892ΔV1=1

120591lowast(

1199061

1198981+ 1199061

minus V1)

120597V2

120597119905minus 1198893ΔV2=1

120591lowast(

1199062

1198982+ 1199062

minus V2)

(69)

where

V119894= int

120587

0

int

119905

minusinfin

119866119894(119909 119910 119905 minus 119904)

1

120591lowast119890minus(119905minus119904)120591

lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(70)

Each component is considered with homogeneous Neumannboundary conditions and the initial condition of V

119894is

V119894(0 119909) = int

120587

0

int

0

minusinfin

119866119894(119909 119910 minus119904)

1

120591lowast119890119904120591lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(71)

Abstract and Applied Analysis 13

In the following examples we fix some coefficients andassume that 119889

1= 1198892= 1198893= 1 119886

1= 3 119886

12= 1 119898

1= 1198982=

1 1198862= 1 119886

22= 12 119886

23= 1 119886

33= 12 and 120591lowast = 1 The

asymptotic behaviors of system (1)ndash(3) are shownby choosingdifferent coefficients 119886

11 11988621 1198863 and 119886

32

Example 12 Let 11988611= 539 119886

21= 8113 119886

3= 113 and

11988632= 14Then it is easy to see that the system admits a unique

positive equilibrium 119864lowast(12 112 112) By Theorem 8 we

see that the positive solution (1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of

system (1)ndash(3) converges to 119864lowast as 119905 rarr infin See Figure 2

Example 13 Let 11988611

= 6 11988621

= 12 1198863= 14 and

11988632= 1 Clearly 119867

2does not hold Hence the positive

steady state is not feasible System (1) admits two semi-trivial steady state 119864

2(04732 02372 0) and 119864

1(12 0 0)

According to Theorem 9 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

2

as 119905 rarr infin See Figure 3

Example 14 Let 11988611= 6 119886

21= 2 119886

3= 14 and 119886

32= 1

Clearly1198671does not hold Hence 119864lowast and 119864

2are not feasible

System (1) has a unique semi-trivial steady state 1198641(12 0 0)

According to Theorem 10 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

1

as 119905 rarr infin See Figure 4

5 Discussion

In this paper we incorporate nonlocal delay into a three-species food chain model with Michaelis-Menten functionalresponse to represent a delay due to the gestation of the preda-tor The conditions under which the spatial homogeneousequilibria are asymptotically stable are given by using theLyapunov functional

We now summarize the ecological meanings of ourtheoretical results Firstly the positive equilibrium 119864

lowast ofsystem (1)ndash(3) exists under the high birth rate of the prey(1198861) and low death rates (119886

2and 119886

3) of predator and top

predator 119864lowast is globally stable if the intraspecific competition11988611is neither too big nor too small and the maximum harvest

rates 11988612 11988623

are small enough Secondly the semi-trivialequilibrium 119864

2of system (1)ndash(3) exists if the birth rate of the

prey (1198861) is high death rate of predator 119886

2is low and the death

rate (1198863) exceeds the conversion rate from predator to top

predator (11988632) 1198642is globally stable if the maximum harvest

rates 11988612 11988623are small and the intra-specific competition 119886

11

is neither too big nor too small Thirdly system (1)ndash(3) hasonly one semi-trivial equilibrium 119864

1when the death rate (119886

2)

exceeds the conversion rate from prey to predator (11988621) 1198641

is globally stable if intra-specific competitions (11988611 11988622 and

11988633) are strong Finally 119864

0is unstable and the non-stability of

trivial equilibrium tells us that not all of the populations goto extinction Furthermore our main results imply that thenonlocal delay is harmless for stabilities of all non-negativesteady states of system (1)ndash(3)

There are still many interesting and challenging problemswith respect to system (1)ndash(3) for example the permanence

and stability of periodic solution or almost periodic solutionThese problems are clearly worthy for further investigations

Acknowledgments

This work is partially supported by PRC Grants NSFC11102076 and 11071209 andNSF of theHigher Education Insti-tutions of Jiangsu Province (12KJD110002 and 12KJD110008)

References

[1] R Xu and M A J Chaplain ldquoPersistence and global stabilityin a delayed predator-prey system with Michaelis-Menten typefunctional responserdquo Applied Mathematics and Computationvol 130 no 2-3 pp 441ndash455 2002

[2] H F Huo andW T Li ldquoPeriodic solution of a delayed predator-prey system with Michaelis-Menten type functional responserdquoJournal of Computational and AppliedMathematics vol 166 no2 pp 453ndash463 2004

[3] Z Lin and M Pedersen ldquoStability in a diffusive food-chainmodel with Michaelis-Menten functional responserdquo NonlinearAnalysis Theory Methods amp Applications vol 57 no 3 pp 421ndash433 2004

[4] B X Dai N Zhang and J Z Zou ldquoPermanence for theMichaelis-Menten type discrete three-species ratio-dependentfood chain model with delayrdquo Journal of Mathematical Analysisand Applications vol 324 no 1 pp 728ndash738 2006

[5] N F Britton ldquoSpatial structures and periodic travelling wavesin an integro-differential reaction-diffusion population modelrdquoSIAM Journal on Applied Mathematics vol 50 no 6 pp 1663ndash1688 1990

[6] S A Gourley and N F Britton ldquoInstability of travelling wavesolutions of a population model with nonlocal effectsrdquo IMAJournal of Applied Mathematics vol 51 no 3 pp 299ndash310 1993

[7] X Zhang and R Xu ldquoTraveling waves of a diffusive predator-prey model with nonlocal delay and stage structurerdquo Journal ofMathematical Analysis and Applications vol 373 no 2 pp 475ndash484 2011

[8] Z C Wang W T Li and S G Ruan ldquoExistence and stability oftraveling wave fronts in reaction advection diffusion equationswith nonlocal delayrdquo Journal of Differential Equations vol 238no 1 pp 153ndash200 2007

[9] S A Gourley and S G Ruan ldquoConvergence and travellingfronts in functional differential equations with nonlocal termsa competition modelrdquo SIAM Journal on Mathematical Analysisvol 35 no 3 pp 806ndash822 2003

[10] X H Lai and T X Yao ldquoExponential stability of impul-sive delayed reaction-diffusion cellular neural networks viaPoincare integral inequalityrdquoAbstract and Applied Analysis vol2013 Article ID 131836 10 pages 2013

[11] R Xu and Z E Ma ldquoGlobal stability of a reaction-diffusionpredator-prey model with a nonlocal delayrdquo Mathematical andComputer Modelling vol 50 no 1-2 pp 194ndash206 2009

[12] Z Li F D Chen and M X He ldquoAsymptotic behavior of thereaction-diffusion model of plankton allelopathy with nonlocaldelaysrdquo Nonlinear Analysis Real World Applications vol 12 no3 pp 1748ndash1758 2011

[13] Y Kuang and H L Smith ldquoGlobal stability in diffusive delayLotka-Volterra systemsrdquoDifferential and Integral Equations vol4 no 1 pp 117ndash128 1991

14 Abstract and Applied Analysis

[14] Z G Lin M Pedersen and L Zhang ldquoA predator-prey systemwith stage-structure for predator and nonlocal delayrdquoNonlinearAnalysis Theory Methods amp Applications vol 72 no 3-4 pp2019ndash2030 2010

[15] R Xu ldquoA reaction-diffusion predator-prey model with stagestructure and nonlocal delayrdquo Applied Mathematics and Com-putation vol 175 no 2 pp 984ndash1006 2006

[16] S S Chen and J P Shi ldquoStability and Hopf bifurcation in adiffusive logistic population model with nonlocal delay effectrdquoJournal of Differential Equations vol 253 no 12 pp 3440ndash34702012

[17] H I Freedman Deterministic Mathematical Models in Popula-tion Ecology vol 57 of Monographs and Textbooks in Pure andAppliedMathematicsMarcelDekker NewYorkNYUSA 1980

[18] P A Abrams and L R Ginzburg ldquoThe nature of predation preydepedent ratio dependent or neitherrdquo Trends in Ecology andEvolution vol 15 no 8 pp 337ndash341 2000

[19] D L DeAngelis R A Goldstein and R V OrsquoNeill ldquoA modelfor trophic iterationrdquo Ecology vol 56 no 4 pp 881ndash892 1975

[20] C V Pao ldquoDynamics of nonlinear parabolic systems with timedelaysrdquo Journal of Mathematical Analysis and Applications vol198 no 3 pp 751ndash779 1996

[21] F Xu Y Hou and Z G Lin ldquoTime delay parabolic system ina predator-prey model with stage structurerdquo Acta MathematicaSinica vol 48 no 6 pp 1121ndash1130 2005 (Chinese)

[22] P Y H Pang and M X Wang ldquoStrategy and stationary patternin a three-species predator-prey modelrdquo Journal of DifferentialEquations vol 200 no 2 pp 245ndash273 2004

[23] D Henry Geometric Theory of Semilinear Parabolic Equationsvol 840 of Lecture Notes in Mathematics Springer New YorkNY USA 1981

[24] K J Brown P C Dunne and R A Gardner ldquoA semilinearparabolic system arising in the theory of superconductivityrdquoJournal of Differential Equations vol 40 no 2 pp 232ndash252 1981

[25] S A Gourley and J W H So ldquoDynamics of a food-limitedpopulation model incorporating nonlocal delays on a finitedomainrdquo Journal of Mathematical Biology vol 44 no 1 pp 49ndash78 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays WenzhenGan, 1 CanrongTian,

2 Abstract and Applied Analysis

1205971199062

120597119905minus 1198892Δ1199062

= 1199062(minus1198862+ 11988621intΩ

int

119905

minusinfin

1199061(119904 119910)

1198981+ 1199061(119904 119910)

times 1198701(119909 119910 119905 minus 119904) 119889119904 119889119910

minus119886221199062minus119886231199063

1198982+ 1199062

)

1205971199063

120597119905minus 1198893Δ1199063

= 1199063(minus1198863+ 11988632intΩ

int

119905

minusinfin

1199062(119904 119910)

1198982+ 1199062(119904 119910)

times 1198702(119909 119910 119905 minus 119904) 119889119904 119889119910

minus119886331199063)

(1)

for 119905 gt 0 119909 isin Ω with homogeneous Neumann boundaryconditions

1205971199061

120597]=1205971199062

120597]=1205971199063

120597]= 0 119905 gt 0 119909 isin 120597Ω (2)

and initial conditions

119906119894(119905 119909) = 120601

119894(119905 119909) ge 0 (119894 = 1 2) (119905 119909) isin (minusinfin 0] times Ω

1199063(0 119909) = 120601

3(119909) ge 0 119909 isin Ω

(3)

where 120601119894is bounded Holder continuous function and satis-

fies 120597120601119894120597] = 0 (119894 = 1 2 3) on (minusinfin 0] times 120597Ω Here Ω is a

bounded domain in R119899 with smooth boundary 120597Ω and 120597120597]is the outward normal derivative on 120597Ω 119906

119894(119905 119909) represents

the density of the 119894th species (prey predator and top predatorresp) at time 119905 and location 119909 and thus only nonnegative119906119894(119905 119909) is of interest The parameter 119886

1is the intrinsic growth

rate of the prey and 1198862and 119886

3are the death rates of the

predator and top-predator 119886119894119894is the intraspecific competitive

rate of the 119894th species 11988612is the maximum predation rate 119886

23

and 11988632are the efficiencies of food utilization of the predator

and top predator respectively We assume the predator andtop predator show the Michaelis-Menten (or Holling typeII) functional response with 119906

1(1198981+ 1199061) and 119906

2(1198982+ 1199062)

respectively where 1198981and 119898

2are half-saturation constants

For a through biological background of similar models see[18 19] As our most knowledge the tritrophic food chainmodel has been found to have many interesting biologicalproperties such as the coexistence and the Hopf bifurcationHowever the effect of nonlocal time delays on the coexistencehas not been reported Our paper mainly concerns thisperspective

Additionally intΩint119905

minusinfin(119906119894(119904 119910)(119898

119894+ 119906119894(119904 119910)))119870

119894(119909 119910 119905 minus

119904)119889119904 119889119910 (119894 = 1 2) represents the nonlocal delay due tothe ingestion of predator that is mature adult predator can

only contribute to the production of predator biomass Theboundary condition in (2) implies that there is no migrationacross the boundary ofΩ

The main purpose of this paper is to study the globalasymptotic behavior of the solution of system (1)ndash(3) Thepreliminary results are presented in Section 2 Section 3 con-tains sufficient conditions for the global asymptotic behaviorsof the equilibria of system (1)ndash(3) by means of the Lyapunovfunctional Numerical simulations are carried out to show thefeasibility of the conditions in Theorems 8ndash10 in Section 4Finally a brief discussion is given to conclude this work

2 Preliminary Results

In this section we present several preliminary results that willbe employed in the sequel

Lemma 1 (see [3]) Let 119886 and 119887 be positive constants Assumethat 120601 120593 isin 1198621(119886 +infin) 120593(119905) ge 0 and 120601 is bounded frombelow If 1206011015840(119905) le minus119887120593(119905) and 1205931015840(119905) le 119870 in [119886 +infin) for somepositive constant 119870 then lim

119905rarr+infin120593(119905) = 0

The following lemma is the Positivity Lemma in [20]

Lemma 2 Let 119906119894isin 119862([0 119879] times Ω)⋂119862

12((0 119879] times Ω) (119894 =

1 2 3) and satisfy

119906119894119905minus 119889119894Δ119906119894ge

3

sum

119895=1

119887119894119895(119905 119909) 119906

119895(119905 119909)

+

3

sum

119895=1

119888119894119895119906119895(119905 minus 120591119895 119909) in (0 119879] times Ω

120597119906119894(119905 119909)

120597]ge 0 on (0 119879] times 120597Ω

119906119894(119905 119909) ge 0 in [minus120591

119894 0] times Ω

(4)

where 119887119894119895 119888119894119895isin 119862([0 119879] times Ω) 119906

119894119905= (119906119894)119905 If 119887119894119895ge 0 for 119895 = 119894

and 119888119894119895ge 0 for all 119894 119895 = 1 2 3 Then 119906

119894(119905 119909) ge 0 on [0 119879] times Ω

Moreover if the initial function is nontrivial then 119906119894gt 0 in

(0 119879] times Ω

Lemma 3 (see [20]) Let c and c be a pair of constant vectorsatisfying c ge c and let the reaction functions satisfy localLipschitz condition withΛ = ⟨c c⟩Then system (1)ndash(3) admitsa unique global solution u(119905 119909) such that

c le u (119905 119909) le c forall119905 gt 0 119909 isin Ω (5)

whenever c le 120601(119905 119909) le c (119905 119909) isin (minusinfin 0] times Ω

The following result was obtained by themethod of upperand lower solutions and the associated iterations in [21]

Abstract and Applied Analysis 3

Lemma 4 (see [21]) Let 119906(119905 119909) isin 119862([0infin) times Ω) cap

11986221((0infin)timesΩ) be the nontrivial positive solution of the system

119906119905minus 119889Δ119906 = 119861119906 (119905 minus 120591 119909) plusmn 119860

1119906 (119905 119909)

minus 11986021199062(119905 119909) (119905 119909) isin (0infin) times Ω

120597119906

120597]= 0 (119905 119909) isin (0infin) times 120597Ω

119906 (119905 119909) = 120601 (119905 119909) ge 0 (119905 119909) isin (minus120591 0) times Ω

(6)

where 1198601ge 0 119861 119860

2 120591 gt 0 The following results hold

(1) if 119861plusmn1198601gt 0 then 119906 rarr (119861 plusmn119860

1)1198602uniformly onΩ

as 119905 rarr infin

(2) if 119861plusmn1198601le 0 then 119906 rarr 0 uniformly onΩ as 119905 rarr infin

Throughout this paper we assume that

119870119894(119909 119910 119905) = 119866

119894(119909 119910 119905) 119896

119894(119905) 119909 119910 isin Ω 119896

119894(119905) ge 0

intΩ

119866119894(119909 119910 119905) 119889119909 = int

Ω

119866119894(119909 119910 119905) 119889119910 = 1 119905 ge 0

int

+infin

0

119896119894(119905) 119889119905 = 1 119905119896

119894(119905) isin 119871

1((0 +infin) 119877)

(7)

where119866119894(119909 119910 119905) is a nonnegative function which is continu-

ous in (119909 119910) isin ΩtimesΩ for each 119905 isin [0 +infin) and measurable in119905 isin [0 +infin) for each pair (119909 119910) isin Ω times Ω

Now we prove the following propositions which will beused in the sequel

Proposition 5 For any nonnegative initial function thecorresponding solution of system (1)ndash(3) is nonnegative

Proof Suppose that (1199061 1199062 1199063) is a solution and satisfies 119906

119894isin

119862([0 119879) times Ω) cap 11986212((0 119879) times Ω) with 119879 le +infin Choose 0 lt

120591 lt 119879 Then

1199061119905minus 1198891Δ1199061= 11986011199061 0 lt 119905 lt 120591 119909 isin Ω

1199062119905minus 1198892Δ1199062= 11986021199062 0 lt 119905 lt 120591 119909 isin Ω

1199063119905minus 1198893Δ1199063= 11986031199063 0 lt 119905 lt 120591 119909 isin Ω

120597119906119894

120597]= 0 0 lt 119905 lt 120591 119909 isin 120597Ω

119906119894(119905 119909) ge 0 (119894 = 1 2 3) 119905 le 0 119909 isin Ω

(8)

where

1198601= 1198861minus 119886111199061minus119886121199062

1198981+ 1199061

1198602= minus1198862+ 11988621intΩ

int

119905

minusinfin

1199061(119904 119910)

1198981+ 1199061(119904 119910)

times 1198701(119909 119910 119905 minus 119904) 119889119904 119889119910

minus 119886221199062minus119886231199063

1198982+ 1199063

1198603= minus1198863+ 11988632intΩ

int

119905

minusinfin

1199062(119904 119910)

1198982+ 1199062(119904 119910)

times 1198702(119909 119910 119905 minus 119904) 119889119904 119889119910 minus 119886

331199063

(9)

It follows from Lemma 2 that 119906119894ge 0 (119905 119909) isin [0 120591] times Ω Due

to the arbitrariness of 120591 we have 119906119894ge 0 for (119905 119909) isin [0 119879) times

Ω

Proposition 6 System (1)ndash(3) with initial functions 120601119894admits

a unique global solution (1199061 1199062 1199063) satisfying 0 le 119906

119894(119905 119909) le

119872119894for 119894 = 1 2 3 where119872

119894is defined as

1198721= max 1198861

11988611

10038171003817100381710038171206011 (119905 119909)

1003817100381710038171003817119871infin((minusinfin0]timesΩ)

1198722= max

(11988621minus 1198862)1198721minus 11989811198862

11988622(1198981+1198721)

10038171003817100381710038171206012 (119905 119909)

1003817100381710038171003817119871infin((minusinfin0]timesΩ)

1198723= max

(11988632minus 1198863)1198722minus 11989821198863

11988622(1198982+1198722)

10038171003817100381710038171206013 (119909)

1003817100381710038171003817119871infin(Ω)

(10)

Proof It follows from standard PDE theory that there existsa 119879 gt 0 such that problem (1)ndash(3) admits a unique solutionin [0 119879) times Ω From Lemma 2 we know that 119906

119894(119905 119909) ge 0 for

(119905 119909) isin [0 119879) times Ω Considering the first equation in (1) wehave

1205971199061

120597119905minus 1198891Δ1199061le 1199061(1198861minus 119886111199061) (11)

Using themaximumprinciple gives that 1199061le 1198721 In a similar

way we have 119906119894le 119872119894for 119894 = 2 3 It is easy to see that (0 0 0)

and (119872111987221198723) are a pair of coupled upper and lower

solutions to system (1)ndash(3) from the direct computation Invirtue of Lemma 3 system (1)ndash(3) admits a unique globalsolution (119906

1 1199062 1199063) satisfying 0 le 119906

119894(119905 119909) le 119872

119894for 119894 = 1 2 3

In addition if 1206011(119905 119909) 120601

2(119905 119909) 120601

3(119909) (119905 119909) isin (minusinfin 0] times Ω is

nontrivial it follows from the strongmaximumprinciple that119906119894(119905 119909) gt 0 (119894 = 1 2 3) for all 119905 gt 0 119909 isin Ω

3 Global Stability

In this section we study the asymptotic behavior of theequilibrium of system (1)ndash(3) In the beginning we show theexistence and uniqueness of positive steady state

4 Abstract and Applied Analysis

L1

L2

L3

025

02

015

01

005

0

0 02 04 06 081

2

Figure 1 Graphs of the equations in (12) 1198713is the boundary

condition (1198863= 11988632V2(1198982+ V2)) and 119871

2corresponds to minus119886

2+

11988621(V1(1198981+ V1)) minus 119886

22V2= 0 while 119871

1corresponds to 119886

1minus 11988611V1minus

11988612V2(1198981+ V1) = 0 Intersection point between 119871

1and 119871

2gives the

positive solution (Vlowast1 Vlowast2) to (12) Parameter values are listed in the

example in Section 4

Let us consider the following equations

1198861minus 11988611V1minus11988612V2

1198981+ V1

= 0

minus 1198862+11988621V1

1198981+ V1

minus 11988622V2= 0

(12)

A direct computation shows that the above equations haveonly one positive solution (Vlowast

1 Vlowast2) if and only if

1198671 1198861(11988621minus 1198862) gt 119898

1119886211988611 (13)

is satisfied Taking1198671into account we consider the equation

1198863= 11988632Vlowast2(1198982+ Vlowast2) which corresponds to 119871

3in Figure 1

It is clear that if 1198863lt 11988632Vlowast2(1198982+ Vlowast2) the intersection

point (Vlowast1 Vlowast2) always lies in 119871

3 Let

1198672 11988631198982lt (11988632minus 1198863) Vlowast

2 (14)

Suppose that1198671and119867

2hold We take 119906

3as a parameter and

consider the following system

1198861minus 119886111199061minus119886121199062

1198981+ 1199061

= 0

minus 1198862+119886211199061

1198981+ 1199061

minus 119886221199062minus119886231199063

1198982+ 1199062

= 0

minus 1198863+119886321199062

1198982+ 1199062

minus 119886331199063= 0

(15)

When the parameter 1199063is sufficiently small the first two

equations in (15) can be approximated by (12) Moreover

by continuously increasing the value of 1199063 1198713goes up and

meanwhile the intersection point between 1198711and 119871

2also

goes up However 1198713goes up faster than 119871

2 while 119871

1keeps

still In other words there exists a critical value 1199063such

that the intersection point lies in 1198713 which implies that

there is a unique positive solution 119864lowast(119906lowast1 119906lowast

2 119906lowast

3) to (15) or

equivalently (1)ndash(3)

Lemma 7 Assume that1198672and 119866

2hold and then the positive

steady state119864lowast of system (1)ndash(3) is locally asymptotically stable

Proof We get the local stability of 119864lowast by performing alinearization and analyzing the corresponding characteristicequation Similarly as in [22] let 0 lt 120583

1lt 1205832lt 1205833lt

be the eigenvalues of minusΔ on Ω with the homogeneousNeumann boundary condition Let 119864(120583

119894) be the eigenspace

corresponding to 120583119894in 1198621(Ω) for 119894 = 1 2 3 Let

X = u = (1199061 1199062 1199063) isin [119862

1(Ω)]3

120597120578u = 0 119909 isin 120597Ω (16)

120593119894119895 119895 = 1 dim119864(120583

119894) be an orthonormal basis of 119864(120583

119894)

and X119894119895= 119888 sdot 120593

119894119895| 119888 isin 119877

3 Then

X119894=

dim119864(120583119894)

119895=1

X119894119895 X =

infin

119894=1

X119894 (17)

Let 119863 = diag(1198631 1198632 1198633) and k = (V

1 V2 V3) V119894=

119906119894minus 119906lowast

119894 (119894 = 1 2 3) Then the linearization of (1)

is k119905= 119871k = 119863Δk + Fk(Elowast)k Fk(Elowast)k = 119888

119894119895

where 119888119894119894

= 119887119894119894V119894 119894 = 1 2 3 119888

12= 11988712V2 11988823

=

11988723V3 11988821= 11988721intΩint119905

minusinfinV1(119904 119910)119870

1(119909 119910 119905 minus 119904)119889119904 119889119910 and 119888

32=

11988732intΩint119905

minusinfinV2(119904 119910)119870

2(119909 119910 119905 minus 119904)119889119904 119889119910 The coefficients 119887

119894119895are

defined as follows

11988711= minus11988611119906lowast

1+11988612119906lowast

1119906lowast

2

(1198981+ 119906lowast1)2

11988712= minus

11988612119906lowast

1

1198981+ 119906lowast1

11988713= 0

11988721=119886211198981119906lowast

2

(1198981+ 119906lowast1)2

11988722= minus11988622119906lowast

2+11988623119906lowast

2119906lowast

3

(1198982+ 119906lowast2)2 119887

23= minus

11988623119906lowast

2

1198982+ 119906lowast2

11988731= 0 119887

32=119886321198982119906lowast

3

(1198982+ 119906lowast2)2 119887

33= minus11988633119906lowast

3

(18)

SinceX119894is invariant under the operator 119871 for each 119894 ge 1 then

the operator 119871 on X119894is k119905= 119871k = 119863120583

119894k + Fk(Elowast)k Let V119894 =

119888119894119890120582119905(119894 = 1 2 3) and we can get the characteristic equation

Abstract and Applied Analysis 5

120593119894(120582) = 120582

3+ 1198601198941205822+ 119861119894120582 + 119862

119894= 0 where 119860

119894 119861119894 and 119862

119894are

defined as follows

119860119894= (1198891+ 1198892+ 1198893) 120583119894minus 11988711minus 11988722minus 11988733

119861119894= (11988911198892+ 11988921198893+ 11988931198891) 1205832

119894

+ [1198893(minus11988711minus 11988722) + 1198891(minus11988733minus 11988722)

+1198892(minus11988711minus 11988733)] 120583119894

+ 1198871111988722+ 1198871111988733+ 1198872211988733

minus 1198871211988721int

infin

0

1198961(119904) 119890minus120582119904119889119904 minus 119887

2311988732int

infin

0

1198962(119904) 119890minus120582119904119889119904

119862119894= 1198891119889211988931205833

119894+ [minus1198873311988911198892minus 1198871111988921198893minus 1198872211988911198893] 1205832

119894

+ [11988711119887221198893+ 11988711119887331198892+ 11988722119887331198891+ 11988722119887331198891

minus 11988931198871211988721int

infin

0

1198961(119904) 119890minus120582119904119889119904

minus11988911198872311988732int

infin

0

1198962(119904) 119890minus120582119904119889119904] 120583119894

+ [minus119887111198872211988733+ 119887121198872111988733int

infin

0

1198961(119904) 119890minus120582119904119889119904

+119887111198872311988732int

infin

0

1198962(119904) 119890minus120582119904119889119904]

(19)

It is easy to see that 11988712 11988723 11988733lt 0 and 119887

21 11988732gt 0 It

follows from assumption 1198661and 119866

2that 119886

11lt 0 119886

22lt 0

So 119860119894gt 0 119861

119894gt 0 119862

119894gt 0 and 119860

119894119861119894minus 119862119894gt 0 for 119894 ge 1

from the direct calculation According to the Routh-Hurwitzcriterion the three roots 120582

1198941 1205821198942 1205821198943

of 120593119894(120582) = 0 all have

negative real partsBy continuity of the roots with respect to 120583

119894and Routh-

Hurwitz criterion we can conclude that there exists a positiveconstant 120576 such that

Re 1205821198941 Re 120582

1198942 Re 120582

1198943 le minus120576 119894 ge 1 (20)

Consequently the spectrum of 119871 consisting only of eigen-values lies in Re 120582 le minus120576 It is easy to see that Elowast islocally asymptotically stable and follows fromTheorem 511of [23]

Theorem 8 Assume that

11986731198861(11988621minus 1198862)

11989811198862

gt 11988611gt11988612119906lowast

2

11989821

(21)

1198672and 119866

2hold and the positive steady state 119864lowast of system (1)ndash

(3) with nontrivial initial function is globally asymptoticallystable

Proof It is easy to see that the equations in (1) can be rewrittenas

1205971199061

120597119905minus 1198891Δ1199061= 1199061[ minus 11988611(1199061minus 119906lowast

1)

minus11988612(1199062minus 119906lowast

2)

1198981+ 1199061

+11988612119906lowast

2(1199061minus 119906lowast

1)

(1198981+ 1199061) (1198981+ 119906lowast1)]

1205971199062

120597119905minus 1198892Δ1199062= 1199062[intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus 119906

lowast

1)

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)119889119904 119889119910

minus 11988622(1199062minus 119906lowast

2) minus11988623(1199063minus 119906lowast

3)

1198982+ 1199062

+11988623119906lowast

3(1199062minus 119906lowast

2)

(1198982+ 1199062) (1198982+ 119906lowast2)]

1205971199063

120597119905minus 1198893Δ1199063= 1199063[intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus 119906

lowast

2)

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)119889119904 119889119910

minus11988633(1199063minus 119906lowast

3) ]

(22)

Define

119881 (119905) = 120572intΩ

(1199061minus 119906lowast

1minus 119906lowast

1ln 1199061119906lowast1

)119889119909

+ intΩ

(1199062minus 119906lowast

2minus 119906lowast

2ln 1199062119906lowast2

)119889119909

+ 120573intΩ

(1199062minus 119906lowast

3minus 119906lowast

3ln1199063

119906lowast3

)119889119909

(23)

where 120572 and 120573 are positive constants to be determinedCalculating the derivatives 119881(119905) along the positive solutionto the system (1)ndash(3) yields

1198811015840(119905) = Φ

1(119905) + Φ

2(119905) (24)

where

Φ1(119905) = minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

6 Abstract and Applied Analysis

Φ2(119905) = minusint

Ω

120572[11988611minus

11988612119906lowast

2

(1198981+ 1199061) (1198981+ 119906lowast1)] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

[11988622minus

11988623119906lowast

3

(1198982+ 1199062) (1198982+ 119906lowast2)] (1199062minus 119906lowast

2)2

119889119909

minus intΩ

11988633120573(1199063minus 119906lowast

3)2

119889119909

minus intΩ

11988623(1199063minus 119906lowast

3) (1199062minus 119906lowast

2)

1198982+ 1199062

119889119909

minus intΩ

12057211988612(1199062minus 119906lowast

2) (1199061minus 119906lowast

1)

1198981+ 1199061

119889119909

+∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus 119906

lowast

1) (1199062(119905 119909) minus 119906

lowast

2)

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)

119889119904 119889119910 119889119909

+ 120573∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus 119906

lowast

2) (1199063(119905 119909) minus 119906

lowast

3)

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)

119889119904 119889119910 119889119909

(25)

Applying the inequality 119886119887 le 1205981198862 + (14120598)1198872 we derive from(25) that

Φ2(119905) le minusint

Ω

120572[11988611minus

11988612119906lowast

2

(1198981+ 1199061) (1198981+ 119906lowast1)] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

11988633120573(1199063minus 119906lowast

3)2

119889119909

minus intΩ

[11988622minus

11988623119906lowast

3

(1198982+ 1199062) (1198982+ 119906lowast2)] (1199062minus 119906lowast

2)2

119889119909

+ intΩ

12057211988612

1198981+ 1199061

[1205981(1199061minus 119906lowast

1)2

+1

41205981

(1199062minus 119906lowast

2)2

] 119889119909

+ intΩ

11988623

1198982+ 1199062

[1

41205982

(1199062minus 119906lowast

2)2

+ 1205982(1199063minus 119906lowast

3)2

] 119889119909

+∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)

times [1205983(1199061(119904 119910) minus 119906

lowast

1)2

+1

41205983

(1199062(119905 119909) minus 119906

lowast

2)2

] 119889119904 119889119910 119889119909

+∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321205731198982

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)

times [1

41205984

(1199062(119904 119910) minus 119906

lowast

2)2

+1205984(1199063(119905 119909) minus 119906

lowast

3)2

] 119889119904 119889119910 119889119909

(26)

According to the property of the Kernel functions119870119894(119909 119910 119905)

(119894 = 1 2) we know that

Φ2(119905) le minusint

Ω

[12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

[11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

] (1199062minus 119906lowast

2)2

119889119909

minus intΩ

[11988633120573 minus

119886231205982

1198982

minus119886321205731205984

1198982

] (1199063minus 119906lowast

3)2

119889119909

+119886211205983

1198981

∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119910 119889119909

+11988632120573

411989821205984

∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119910 119889119909

(27)

Define a new Lyapunov functional as follows

119864 (119905) = 119881 (119905)

+119886211205983

1198981

∬Ω

int

+infin

0

int

119905

119905minus119903

1198701(119909 119910 119903)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119903 119889119910 119889119909

+11988632120573

411989821205984

∬Ω

int

+infin

0

int

119905

119905minus119903

1198702(119909 119910 119903)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119903 119889119910 119889119909

(28)

Abstract and Applied Analysis 7

It is derived from (27) and (28) that

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

minus [12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

minus119886211205983

1198981

]intΩ

(1199061minus 119906lowast

1)2

119889119909

minus [11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

]intΩ

(1199062minus 119906lowast

2)2

119889119909

minus [11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

]intΩ

(1199063minus 119906lowast

3)2

119889119909

(29)

Since (1199061 1199062 1199063) is the unique positive solution of system (1)

Using Proposition 5 there exists a constant119862which does notdepend on119909 isin Ω or 119905 ge 0 such that 119906

119894(sdot 119905)infinle 119862 (119894 = 1 2 3)

for 119905 ge 0 By Theorem 1198602in [24] we have

1003817100381710038171003817119906119894 (sdot 119905)10038171003817100381710038171198622120572(Ω) le 119862 forall119905 ge 1 (30)

Assume that

1198661 119886111198982

1gt 11988612119906lowast

2

1198662 119886221198982

2gt 11988623119906lowast

3+21198862311988632

11988633

+211988612119886211198982

2

1198861111989821minus 11988612119906lowast2

(31)

and denote

1198971= 12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

minus119886211205983

1198981

1198972= 11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

1198973= 11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

(32)

Then (29) is transformed into

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

minus

3

sum

119894=1

119897119894intΩ

(119906119894minus 119906lowast

119894)2

119889119909

(33)

If we choose

120572 =11988621

11988612

120573 =11988623

11988632

1205981= 1205983=119886111198982

1minus 11988612119906lowast

2

4119898111988612

1205982= 1205984=119898211988633

411988632

(34)

then 119897119894gt 0 (119894 = 1 2 3) Therefore we have

1198641015840(119905) le minus

3

sum

119894=1

119897119894intΩ

(119906119894minus 119906lowast

119894)2

119889119909 (35)

FromProposition 6 we can see that the solution of system(1) and (3) is bounded and so are the derivatives of (119906

119894minus 119906lowast

119894)

(119894 = 1 2 3) by the equations in (1) Applying Lemma 1 weobtain that

lim119905rarrinfin

intΩ

(119906119894minus 119906lowast

119894) 119889119909 = 0 (119894 = 1 2 3) (36)

Recomputing 1198641015840(119905) gives

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

le minus119888intΩ

(1003816100381610038161003816nabla1199061

10038161003816100381610038162

+1003816100381610038161003816nabla1199062

10038161003816100381610038162

+1003816100381610038161003816nabla1199063

10038161003816100381610038162

) 119889119909 = minus119892 (119905)

(37)

where 119888 = min1205721198891119906lowast

11198722

1 1198892119906lowast

21198722

2 1205731198893119906lowast

311987223 Using (30)

and (1) we obtain that the derivative of 119892(119905) is bounded in[1 +infin) From Lemma 1 we conclude that 119892(119905) rarr 0 as 119905 rarrinfin Therefore

lim119905rarrinfin

intΩ

(1003816100381610038161003816nabla1199061

10038161003816100381610038162

+1003816100381610038161003816nabla1199062

10038161003816100381610038162

+1003816100381610038161003816nabla1199063

10038161003816100381610038162

) 119889119909 = 0 (38)

Applying the Poincare inequality

intΩ

120582|119906 minus 119906|2119889119909 le int

Ω

|nabla119906|2119889119909 (39)

leads to

lim119905rarrinfin

intΩ

(119906119894minus 119906119894)2

119889119909 = 0 (119894 = 1 2 3) (40)

where 119906119894= (1|Ω|) int

Ω119906119894119889119909 and 120582 is the smallest positive

eigenvalue ofminusΔwith the homogeneousNeumann conditionTherefore

|Ω| (1199061 (119905) minus 119906lowast

1)2

= intΩ

(1199061(119905) minus 119906

lowast

1)2

119889119909

= intΩ

(1199061(119905) minus 119906

1(119905 119909) + 119906

1(119905 119909) minus 119906

lowast

1)2

119889119909

le 2intΩ

(1199061(119905) minus 119906

1(119905 119909))

2

119889119909

+ 2intΩ

(1199061(119905 119909) minus 119906

lowast

1)2

119889119909

(41)

8 Abstract and Applied Analysis

So we have 1199061(119905) rarr 119906

lowast

1as 119905 rarr infin Similarly 119906

2(119905) rarr 119906

lowast

2

and 1199063(119905) rarr 119906

lowast

3as 119905 rarr infin According to (30) there exists

a subsequence 119905119898 and non-negative functions 119908

119894isin 1198622(Ω)

such thatlim119898rarrinfin

1003817100381710038171003817119906119894 (sdot 119905119898) minus 119908119894 (sdot)10038171003817100381710038171198622(Ω) = 0 (119894 = 1 2 3) (42)

Applying (40) and noting that 119906119894(119905) rarr 119906

lowast

119894 we then have119908

119894=

119906lowast

119894 (119894 = 1 2 3) That is

lim119898rarrinfin

1003817100381710038171003817119906119894 (sdot 119905119898) minus 119906lowast

119894

10038171003817100381710038171198622(Ω) = 0 (119894 = 1 2 3) (43)

Furthermore the local stability ofElowast combiningwith (43)gives the following global stability

Theorem 9 Assume that

11986751198861(11988621minus 1198862)

11989811198862

gt 11988611gt11988612Vlowast2

11989821

(44)

1198674and 119866

4hold and then the semi-trivial steady state 119864

2

of system (1)ndash(3) with non-trivial initial functions is globallyasymptotically stable

Proof It is obvious that system (1)ndash(3) always has two non-negative equilibria (119906

1 1199062 1199063) as follows 119864

0= (0 0 0) and

1198641= (119886111988611 0 0) If 119867

1and 119867

4are satisfied system (1) has

the other semitrivial solution denoted by 1198642(Vlowast1 Vlowast2 0) where

1198674 11988631198982gt (11988632minus 1198863) Vlowast

2 (45)

We consider the stability of 1198642under condition 119867

1and

1198674 Equation (1) can be rewritten as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus Vlowast

1) minus11988612(1199062minus Vlowast2)

1198981+ 1199061

+11988612Vlowast2(1199061minus Vlowast1)

(1198981+ 1199061) (1198981+ Vlowast1)]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus Vlowast

1)

(1198981+ 1199061(119904 119910)) (119898

1+ Vlowast1)119889119904 119889119910

minus11988622(1199062minus Vlowast

2) minus

119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus Vlowast

2)

(1198982+ 1199062(119904 119910)) (119898

2+ Vlowast2)119889119904 119889119910

minus119886331199063]

(46)

Similar to the argument ofTheorem 8 we have 1199061(119909 119905) rarr Vlowast

1

and 1199062(119909 119905) rarr Vlowast

2as 119905 rarr infin uniformly on Ω provided that

the following additional condition holds

1198663 119886111198982

1gt 11988612Vlowast

2

1198664 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821minus 11988612Vlowast2

(47)

Next we consider the asymptotic behavior of 1199063(119905 119909) Let

120579 =1198863minus (11988632minus 1198863) Vlowast2

2120575 120575 =

100381610038161003816100381611988632 minus 11988631003816100381610038161003816

(48)

Then there exists 1199051gt 0 such that

Vlowast

2minus 120579 lt 119906

2(119905 119909) lt V

lowast

2+ 120579 forall119905 gt 119905

1 119909 isin Ω (49)

Consider the following two systems

1199083119905minus 1198893Δ1199083= 1199083[minus1198863+11988632(Vlowast2+ 120579)

1198982+ Vlowast2+ 120579

minus 119886331199083]

(119905 119909) isin [1199051 +infin) times Ω

1205971199083

120597]= 0 (119905 119909) isin [119905

1 +infin) times 120597Ω

1199083= 1199063 (119905 119909) isin (minusinfin 119905

1] times Ω

1198823119905minus 1198893Δ1198823= 1198823[minus1198863+11988632(Vlowast2minus 120579)

1198982+ Vlowast2minus 120579

minus 11988633V3]

(119905 119909) isin [1199051 +infin) times Ω

1205971198823

120597]= 0 (119905 119909) isin [119905

1 +infin) times 120597Ω

1198823= 1199063 (119905 119909) isin (minusinfin 119905

1] times Ω

(50)

Combining comparison principle with (50) we obtain that

1198823(119905 119909) le 119906

3(119905 119909) le 119908

3(119905 119909) forall119905 gt 119905

1 119909 isin Ω (51)

By Lemma 4 we obtain

0 = lim119905rarrinfin

1198823(119905 119909) le inf 119906

3(119905 119909) le sup 119906

3(119905 119909)

le lim119905rarrinfin

1199083(119905 119909) = 0 forall119909 isin Ω

(52)

which implies that lim119905rarrinfin

1199063(119905 119909) = 0 uniformly onΩ

Theorem 10 Suppose that1198665and119866

6hold and then the semi-

trivial steady state 1198641of system (1)ndash(3) with non-trivial initial

functions is globally asymptotically stable

Abstract and Applied Analysis 9

Proof We study the stability of the semi-trivial solution 1198641=

(1 0 0) Similarly the equations in (1) can be written as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus 1) minus

119886121199062

1198981+ 1199061

]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[minus1198862+ intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus

1)

(1198981+ 1199061(119904 119910)) (119898

1+ 1)119889119904 119889119910

+119886211

1198981+ 1

minus 119886221199062minus119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[minus1198863+ intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321199062(119904 119910)

1198982+ 1199062(119904 119910)

119889119904 119889119910 minus 119886331199063]

(53)

Define

119881 (119905) = 120572intΩ

[1199061minus 1minus 1log 11990611

] 119889119909 + intΩ

1199062119889119909

+ 120573intΩ

1199063119889119909

(54)

Calculating the derivative of 119881(119905) along 1198641 we get from (54)

that

1198811015840(119905) le minusint

Ω

[120572(11988611minus119886121205981

1198981

)] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

412059821198982

minus11988621

411989811205983

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062+ 11988631199063] 119889119909

+119886211205983

1198981

intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times (1199061(119904 119910) minus

1)2

119889119904 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times 1199062

2(119904 119910) 119889119904 119889119910 119889119909

(55)

Define119864 (119905) = 119881 (119905)

+119886211205983

1198981

∬Ω

int

+infin

0

int

119905

119905minus119903

1198701(119909 119910 119903)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119903 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

+infin

0

int

119905

119905minus119903

1198702(119909 119910 119903)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119903 119889119910 119889119909

(56)

It is easy to see that

1198641015840(119905) le minus120572119889

11intΩ

1003816100381610038161003816nabla119906110038161003816100381610038162

11990621

119889119909

minus intΩ

[120572(11988611minus119886121205981

1198981

) minus119886211205983

1198981

] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632

411989821205984

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

minus119886321205731205984

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062minus 11988631205731199063] 119889119909

(57)

Assume that1198665 1198861(11988621minus 1198862) lt 119898

1119886211988611

1198666 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821

(58)

Let

1198971= 12057211988611minus120572119886121205981

1198981

minus119886211205983

1198981

1198972= 11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

1198973= 11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

(59)

Choose

120572 =11988621

11988612

120573 =11988623

11988632

1205981= 1205983=119886111198981

411988612

1205982= 1205984=119898211988633

411988632

(60)

Then we get 119897119894gt 0 (119894 = 1 2 3) Therefore we have

lim119905rarrinfin

1199061(119905 119909) =

1 (61)

uniformly onΩ

10 Abstract and Applied Analysis

tx

u1

02

46

8

01

23

40

1

2

3

4

(a)

02

46

8

01

23

40

1

2

3

4

t

x

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 2 Global stability of the positive equilibrium 119864lowast with an initial condition (1206011 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

Next we consider the asymptotic behavior of 1199062(119905 119909) and

1199063(119905 119909) For any 119879 gt 0 integrating (57) over [0 119879] yields

119864 (119879) + 1205721198891

10038171003817100381710038171003817100381710038171003817

10038161003816100381610038161003816100381610038161003816

nabla1199061

1199061

10038161003816100381610038161003816100381610038161003816

10038171003817100381710038171003817100381710038171003817

2

2

+ 1198971

100381710038171003817100381710038161003816100381610038161199061 minus 1

100381610038161003816100381610038171003817100381710038172

2

+ 1198972

100381710038171003817100381710038161003816100381610038161199062100381610038161003816100381610038171003817100381710038172

2+ 1198973

100381710038171003817100381710038161003816100381610038161199063100381610038161003816100381610038171003817100381710038172

2le 119864 (0)

(62)

where |119906119894|2

2= int119879

0intΩ1199062

119894119889119909 119889119905 It implies that |119906

119894|2le 119862119894(119894 =

2 3) for the constant 119862119894which is independent of 119879 Now we

consider the boundedness of |nabla1199062|2and |nabla119906

3|2 From the

Greenrsquos identity we obtain

1198892int

119879

0

intΩ

1003816100381610038161003816nabla1199062 (119905 119909)10038161003816100381610038162

119889119909 119889119905

= minus1198892int

119879

0

intΩ

1199062(119905 119909) Δ119906

2(119905 119909) 119889119909 119889119905

= minusint

119879

0

intΩ

1199062

1205971199062

120597119905119889119909 119889119905 minus 119886

2int

119879

0

intΩ

1199062

2119889119909 119889119905

minus 11988622int

119879

0

intΩ

1199063

2119889119909 119889119905 minus 119886

23int

119879

0

intΩ

1199062

21199063

1198982+ 1199063

119889119909 119889119905

+ 11988621int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

times 1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

(63)

Note that

int

119879

0

intΩ

1199062(119905 119909)

1205971199062(119905 119909)

120597119905119889119909 119889119905

= int

119879

0

intΩ

1

2

1205971199062

2

120597119905119889119905 119889119909

=1

2intΩ

1199062

2(119879 119909) 119889119909 minus

1

2intΩ

1199062

2(0 119909) 119889119909 le 119872

2

2|Ω|

int

119879

0

intΩ

1199062

21199063119889119909 119889119905 le 119872

3int

119879

0

intΩ

1199062

2119889119909 119889119905

Abstract and Applied Analysis 11

02

46

8

01

23

40

1

2

3

4

tx

u1

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 3 Global stability of the positive equilibrium 1198642with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

int

119879

0

intΩ

1199063

2119889119909 119889119905 le 119872

2int

119879

0

intΩ

1199062

2119889119909 119889119905

int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

le int

119879

0

intΩ

1199062

2(119905 119909) 119889119909 119889119905

(64)

Thus we get |nabla1199062|2le 1198624 In a similar way we have

|nabla1199063|2le 1198625 Here 119862

4and 119862

5are independent of 119879

It is easy to see that 1199062(119905 119909) 119906

3(119905 119909) isin 119871

2((0infin)

11988212(Ω)) These imply that

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)100381710038171003817100381711988212(Ω) = 0 119894 = 2 3 (65)

From the Sobolev compact embedding theorem we know

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)1003817100381710038171003817119862(Ω) = 0 119894 = 2 3 (66)

In the end we show that the trivial solution 1198640is an

unstable equilibrium Similarly to the local stability to 119864lowast wecan get the characteristic equation of 119864

0as

(120582 + 1205831198941198631minus 1198861) (120582 + 120583

1198941198632+ 1198862) (120582 + 120583

1198941198633+ 1198863) = 0 (67)

If 119894 = 1 then 1205831= 0 It is easy to see that this equation admits

a positive solution 120582 = 1198861 According to Theorem 51 in [23]

we have the following result

Theorem 11 The trivial equilibrium 1198640is an unstable equilib-

rium of system (1)ndash(3)

4 Numerical Illustrations

In this section we performnumerical simulations to illustratethe theoretical results given in Section 3

12 Abstract and Applied Analysis

u1

02

46

8

01

23

40

1

2

3

4

tx

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 4 Global stability of the positive equilibrium 1198641with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos119909 27 + 05 sin119909)

In the following we always take Ω = [0 120587] 119870119894(119909 119910 119905) =

119866119894(119909 119910 119905)119896

119894(119905) where 119896

119894(119905) = (1120591

lowast)119890minus119905120591lowast

(119894 = 1 2) and

1198661(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988921198992

119905 cos 119899119909 cos 119899119910

1198662(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988931198992

119905 cos 119899119909 cos 119899119910

(68)

However it is difficult for us to simulate our results directlybecause of the nonlocal term Similar to [25] the equationsin (1) can be rewritten as follows

1205971199061

120597119905minus 1198891Δ1199061= 1199061(1198861minus 119886111199061minus119886121199062

1198981+ 1199061

)

1205971199062

120597119905minus 1198892Δ1199062= 1199062(minus1198862+ 11988621V1minus 119886221199062minus119886231199063

1198982+ 1199063

)

1205971199063

120597119905minus 1198893Δ1199063= 1199063(minus1198863+ 11988632V2minus 119886331199063)

120597V1

120597119905minus 1198892ΔV1=1

120591lowast(

1199061

1198981+ 1199061

minus V1)

120597V2

120597119905minus 1198893ΔV2=1

120591lowast(

1199062

1198982+ 1199062

minus V2)

(69)

where

V119894= int

120587

0

int

119905

minusinfin

119866119894(119909 119910 119905 minus 119904)

1

120591lowast119890minus(119905minus119904)120591

lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(70)

Each component is considered with homogeneous Neumannboundary conditions and the initial condition of V

119894is

V119894(0 119909) = int

120587

0

int

0

minusinfin

119866119894(119909 119910 minus119904)

1

120591lowast119890119904120591lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(71)

Abstract and Applied Analysis 13

In the following examples we fix some coefficients andassume that 119889

1= 1198892= 1198893= 1 119886

1= 3 119886

12= 1 119898

1= 1198982=

1 1198862= 1 119886

22= 12 119886

23= 1 119886

33= 12 and 120591lowast = 1 The

asymptotic behaviors of system (1)ndash(3) are shownby choosingdifferent coefficients 119886

11 11988621 1198863 and 119886

32

Example 12 Let 11988611= 539 119886

21= 8113 119886

3= 113 and

11988632= 14Then it is easy to see that the system admits a unique

positive equilibrium 119864lowast(12 112 112) By Theorem 8 we

see that the positive solution (1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of

system (1)ndash(3) converges to 119864lowast as 119905 rarr infin See Figure 2

Example 13 Let 11988611

= 6 11988621

= 12 1198863= 14 and

11988632= 1 Clearly 119867

2does not hold Hence the positive

steady state is not feasible System (1) admits two semi-trivial steady state 119864

2(04732 02372 0) and 119864

1(12 0 0)

According to Theorem 9 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

2

as 119905 rarr infin See Figure 3

Example 14 Let 11988611= 6 119886

21= 2 119886

3= 14 and 119886

32= 1

Clearly1198671does not hold Hence 119864lowast and 119864

2are not feasible

System (1) has a unique semi-trivial steady state 1198641(12 0 0)

According to Theorem 10 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

1

as 119905 rarr infin See Figure 4

5 Discussion

In this paper we incorporate nonlocal delay into a three-species food chain model with Michaelis-Menten functionalresponse to represent a delay due to the gestation of the preda-tor The conditions under which the spatial homogeneousequilibria are asymptotically stable are given by using theLyapunov functional

We now summarize the ecological meanings of ourtheoretical results Firstly the positive equilibrium 119864

lowast ofsystem (1)ndash(3) exists under the high birth rate of the prey(1198861) and low death rates (119886

2and 119886

3) of predator and top

predator 119864lowast is globally stable if the intraspecific competition11988611is neither too big nor too small and the maximum harvest

rates 11988612 11988623

are small enough Secondly the semi-trivialequilibrium 119864

2of system (1)ndash(3) exists if the birth rate of the

prey (1198861) is high death rate of predator 119886

2is low and the death

rate (1198863) exceeds the conversion rate from predator to top

predator (11988632) 1198642is globally stable if the maximum harvest

rates 11988612 11988623are small and the intra-specific competition 119886

11

is neither too big nor too small Thirdly system (1)ndash(3) hasonly one semi-trivial equilibrium 119864

1when the death rate (119886

2)

exceeds the conversion rate from prey to predator (11988621) 1198641

is globally stable if intra-specific competitions (11988611 11988622 and

11988633) are strong Finally 119864

0is unstable and the non-stability of

trivial equilibrium tells us that not all of the populations goto extinction Furthermore our main results imply that thenonlocal delay is harmless for stabilities of all non-negativesteady states of system (1)ndash(3)

There are still many interesting and challenging problemswith respect to system (1)ndash(3) for example the permanence

and stability of periodic solution or almost periodic solutionThese problems are clearly worthy for further investigations

Acknowledgments

This work is partially supported by PRC Grants NSFC11102076 and 11071209 andNSF of theHigher Education Insti-tutions of Jiangsu Province (12KJD110002 and 12KJD110008)

References

[1] R Xu and M A J Chaplain ldquoPersistence and global stabilityin a delayed predator-prey system with Michaelis-Menten typefunctional responserdquo Applied Mathematics and Computationvol 130 no 2-3 pp 441ndash455 2002

[2] H F Huo andW T Li ldquoPeriodic solution of a delayed predator-prey system with Michaelis-Menten type functional responserdquoJournal of Computational and AppliedMathematics vol 166 no2 pp 453ndash463 2004

[3] Z Lin and M Pedersen ldquoStability in a diffusive food-chainmodel with Michaelis-Menten functional responserdquo NonlinearAnalysis Theory Methods amp Applications vol 57 no 3 pp 421ndash433 2004

[4] B X Dai N Zhang and J Z Zou ldquoPermanence for theMichaelis-Menten type discrete three-species ratio-dependentfood chain model with delayrdquo Journal of Mathematical Analysisand Applications vol 324 no 1 pp 728ndash738 2006

[5] N F Britton ldquoSpatial structures and periodic travelling wavesin an integro-differential reaction-diffusion population modelrdquoSIAM Journal on Applied Mathematics vol 50 no 6 pp 1663ndash1688 1990

[6] S A Gourley and N F Britton ldquoInstability of travelling wavesolutions of a population model with nonlocal effectsrdquo IMAJournal of Applied Mathematics vol 51 no 3 pp 299ndash310 1993

[7] X Zhang and R Xu ldquoTraveling waves of a diffusive predator-prey model with nonlocal delay and stage structurerdquo Journal ofMathematical Analysis and Applications vol 373 no 2 pp 475ndash484 2011

[8] Z C Wang W T Li and S G Ruan ldquoExistence and stability oftraveling wave fronts in reaction advection diffusion equationswith nonlocal delayrdquo Journal of Differential Equations vol 238no 1 pp 153ndash200 2007

[9] S A Gourley and S G Ruan ldquoConvergence and travellingfronts in functional differential equations with nonlocal termsa competition modelrdquo SIAM Journal on Mathematical Analysisvol 35 no 3 pp 806ndash822 2003

[10] X H Lai and T X Yao ldquoExponential stability of impul-sive delayed reaction-diffusion cellular neural networks viaPoincare integral inequalityrdquoAbstract and Applied Analysis vol2013 Article ID 131836 10 pages 2013

[11] R Xu and Z E Ma ldquoGlobal stability of a reaction-diffusionpredator-prey model with a nonlocal delayrdquo Mathematical andComputer Modelling vol 50 no 1-2 pp 194ndash206 2009

[12] Z Li F D Chen and M X He ldquoAsymptotic behavior of thereaction-diffusion model of plankton allelopathy with nonlocaldelaysrdquo Nonlinear Analysis Real World Applications vol 12 no3 pp 1748ndash1758 2011

[13] Y Kuang and H L Smith ldquoGlobal stability in diffusive delayLotka-Volterra systemsrdquoDifferential and Integral Equations vol4 no 1 pp 117ndash128 1991

14 Abstract and Applied Analysis

[14] Z G Lin M Pedersen and L Zhang ldquoA predator-prey systemwith stage-structure for predator and nonlocal delayrdquoNonlinearAnalysis Theory Methods amp Applications vol 72 no 3-4 pp2019ndash2030 2010

[15] R Xu ldquoA reaction-diffusion predator-prey model with stagestructure and nonlocal delayrdquo Applied Mathematics and Com-putation vol 175 no 2 pp 984ndash1006 2006

[16] S S Chen and J P Shi ldquoStability and Hopf bifurcation in adiffusive logistic population model with nonlocal delay effectrdquoJournal of Differential Equations vol 253 no 12 pp 3440ndash34702012

[17] H I Freedman Deterministic Mathematical Models in Popula-tion Ecology vol 57 of Monographs and Textbooks in Pure andAppliedMathematicsMarcelDekker NewYorkNYUSA 1980

[18] P A Abrams and L R Ginzburg ldquoThe nature of predation preydepedent ratio dependent or neitherrdquo Trends in Ecology andEvolution vol 15 no 8 pp 337ndash341 2000

[19] D L DeAngelis R A Goldstein and R V OrsquoNeill ldquoA modelfor trophic iterationrdquo Ecology vol 56 no 4 pp 881ndash892 1975

[20] C V Pao ldquoDynamics of nonlinear parabolic systems with timedelaysrdquo Journal of Mathematical Analysis and Applications vol198 no 3 pp 751ndash779 1996

[21] F Xu Y Hou and Z G Lin ldquoTime delay parabolic system ina predator-prey model with stage structurerdquo Acta MathematicaSinica vol 48 no 6 pp 1121ndash1130 2005 (Chinese)

[22] P Y H Pang and M X Wang ldquoStrategy and stationary patternin a three-species predator-prey modelrdquo Journal of DifferentialEquations vol 200 no 2 pp 245ndash273 2004

[23] D Henry Geometric Theory of Semilinear Parabolic Equationsvol 840 of Lecture Notes in Mathematics Springer New YorkNY USA 1981

[24] K J Brown P C Dunne and R A Gardner ldquoA semilinearparabolic system arising in the theory of superconductivityrdquoJournal of Differential Equations vol 40 no 2 pp 232ndash252 1981

[25] S A Gourley and J W H So ldquoDynamics of a food-limitedpopulation model incorporating nonlocal delays on a finitedomainrdquo Journal of Mathematical Biology vol 44 no 1 pp 49ndash78 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays WenzhenGan, 1 CanrongTian,

Abstract and Applied Analysis 3

Lemma 4 (see [21]) Let 119906(119905 119909) isin 119862([0infin) times Ω) cap

11986221((0infin)timesΩ) be the nontrivial positive solution of the system

119906119905minus 119889Δ119906 = 119861119906 (119905 minus 120591 119909) plusmn 119860

1119906 (119905 119909)

minus 11986021199062(119905 119909) (119905 119909) isin (0infin) times Ω

120597119906

120597]= 0 (119905 119909) isin (0infin) times 120597Ω

119906 (119905 119909) = 120601 (119905 119909) ge 0 (119905 119909) isin (minus120591 0) times Ω

(6)

where 1198601ge 0 119861 119860

2 120591 gt 0 The following results hold

(1) if 119861plusmn1198601gt 0 then 119906 rarr (119861 plusmn119860

1)1198602uniformly onΩ

as 119905 rarr infin

(2) if 119861plusmn1198601le 0 then 119906 rarr 0 uniformly onΩ as 119905 rarr infin

Throughout this paper we assume that

119870119894(119909 119910 119905) = 119866

119894(119909 119910 119905) 119896

119894(119905) 119909 119910 isin Ω 119896

119894(119905) ge 0

intΩ

119866119894(119909 119910 119905) 119889119909 = int

Ω

119866119894(119909 119910 119905) 119889119910 = 1 119905 ge 0

int

+infin

0

119896119894(119905) 119889119905 = 1 119905119896

119894(119905) isin 119871

1((0 +infin) 119877)

(7)

where119866119894(119909 119910 119905) is a nonnegative function which is continu-

ous in (119909 119910) isin ΩtimesΩ for each 119905 isin [0 +infin) and measurable in119905 isin [0 +infin) for each pair (119909 119910) isin Ω times Ω

Now we prove the following propositions which will beused in the sequel

Proposition 5 For any nonnegative initial function thecorresponding solution of system (1)ndash(3) is nonnegative

Proof Suppose that (1199061 1199062 1199063) is a solution and satisfies 119906

119894isin

119862([0 119879) times Ω) cap 11986212((0 119879) times Ω) with 119879 le +infin Choose 0 lt

120591 lt 119879 Then

1199061119905minus 1198891Δ1199061= 11986011199061 0 lt 119905 lt 120591 119909 isin Ω

1199062119905minus 1198892Δ1199062= 11986021199062 0 lt 119905 lt 120591 119909 isin Ω

1199063119905minus 1198893Δ1199063= 11986031199063 0 lt 119905 lt 120591 119909 isin Ω

120597119906119894

120597]= 0 0 lt 119905 lt 120591 119909 isin 120597Ω

119906119894(119905 119909) ge 0 (119894 = 1 2 3) 119905 le 0 119909 isin Ω

(8)

where

1198601= 1198861minus 119886111199061minus119886121199062

1198981+ 1199061

1198602= minus1198862+ 11988621intΩ

int

119905

minusinfin

1199061(119904 119910)

1198981+ 1199061(119904 119910)

times 1198701(119909 119910 119905 minus 119904) 119889119904 119889119910

minus 119886221199062minus119886231199063

1198982+ 1199063

1198603= minus1198863+ 11988632intΩ

int

119905

minusinfin

1199062(119904 119910)

1198982+ 1199062(119904 119910)

times 1198702(119909 119910 119905 minus 119904) 119889119904 119889119910 minus 119886

331199063

(9)

It follows from Lemma 2 that 119906119894ge 0 (119905 119909) isin [0 120591] times Ω Due

to the arbitrariness of 120591 we have 119906119894ge 0 for (119905 119909) isin [0 119879) times

Ω

Proposition 6 System (1)ndash(3) with initial functions 120601119894admits

a unique global solution (1199061 1199062 1199063) satisfying 0 le 119906

119894(119905 119909) le

119872119894for 119894 = 1 2 3 where119872

119894is defined as

1198721= max 1198861

11988611

10038171003817100381710038171206011 (119905 119909)

1003817100381710038171003817119871infin((minusinfin0]timesΩ)

1198722= max

(11988621minus 1198862)1198721minus 11989811198862

11988622(1198981+1198721)

10038171003817100381710038171206012 (119905 119909)

1003817100381710038171003817119871infin((minusinfin0]timesΩ)

1198723= max

(11988632minus 1198863)1198722minus 11989821198863

11988622(1198982+1198722)

10038171003817100381710038171206013 (119909)

1003817100381710038171003817119871infin(Ω)

(10)

Proof It follows from standard PDE theory that there existsa 119879 gt 0 such that problem (1)ndash(3) admits a unique solutionin [0 119879) times Ω From Lemma 2 we know that 119906

119894(119905 119909) ge 0 for

(119905 119909) isin [0 119879) times Ω Considering the first equation in (1) wehave

1205971199061

120597119905minus 1198891Δ1199061le 1199061(1198861minus 119886111199061) (11)

Using themaximumprinciple gives that 1199061le 1198721 In a similar

way we have 119906119894le 119872119894for 119894 = 2 3 It is easy to see that (0 0 0)

and (119872111987221198723) are a pair of coupled upper and lower

solutions to system (1)ndash(3) from the direct computation Invirtue of Lemma 3 system (1)ndash(3) admits a unique globalsolution (119906

1 1199062 1199063) satisfying 0 le 119906

119894(119905 119909) le 119872

119894for 119894 = 1 2 3

In addition if 1206011(119905 119909) 120601

2(119905 119909) 120601

3(119909) (119905 119909) isin (minusinfin 0] times Ω is

nontrivial it follows from the strongmaximumprinciple that119906119894(119905 119909) gt 0 (119894 = 1 2 3) for all 119905 gt 0 119909 isin Ω

3 Global Stability

In this section we study the asymptotic behavior of theequilibrium of system (1)ndash(3) In the beginning we show theexistence and uniqueness of positive steady state

4 Abstract and Applied Analysis

L1

L2

L3

025

02

015

01

005

0

0 02 04 06 081

2

Figure 1 Graphs of the equations in (12) 1198713is the boundary

condition (1198863= 11988632V2(1198982+ V2)) and 119871

2corresponds to minus119886

2+

11988621(V1(1198981+ V1)) minus 119886

22V2= 0 while 119871

1corresponds to 119886

1minus 11988611V1minus

11988612V2(1198981+ V1) = 0 Intersection point between 119871

1and 119871

2gives the

positive solution (Vlowast1 Vlowast2) to (12) Parameter values are listed in the

example in Section 4

Let us consider the following equations

1198861minus 11988611V1minus11988612V2

1198981+ V1

= 0

minus 1198862+11988621V1

1198981+ V1

minus 11988622V2= 0

(12)

A direct computation shows that the above equations haveonly one positive solution (Vlowast

1 Vlowast2) if and only if

1198671 1198861(11988621minus 1198862) gt 119898

1119886211988611 (13)

is satisfied Taking1198671into account we consider the equation

1198863= 11988632Vlowast2(1198982+ Vlowast2) which corresponds to 119871

3in Figure 1

It is clear that if 1198863lt 11988632Vlowast2(1198982+ Vlowast2) the intersection

point (Vlowast1 Vlowast2) always lies in 119871

3 Let

1198672 11988631198982lt (11988632minus 1198863) Vlowast

2 (14)

Suppose that1198671and119867

2hold We take 119906

3as a parameter and

consider the following system

1198861minus 119886111199061minus119886121199062

1198981+ 1199061

= 0

minus 1198862+119886211199061

1198981+ 1199061

minus 119886221199062minus119886231199063

1198982+ 1199062

= 0

minus 1198863+119886321199062

1198982+ 1199062

minus 119886331199063= 0

(15)

When the parameter 1199063is sufficiently small the first two

equations in (15) can be approximated by (12) Moreover

by continuously increasing the value of 1199063 1198713goes up and

meanwhile the intersection point between 1198711and 119871

2also

goes up However 1198713goes up faster than 119871

2 while 119871

1keeps

still In other words there exists a critical value 1199063such

that the intersection point lies in 1198713 which implies that

there is a unique positive solution 119864lowast(119906lowast1 119906lowast

2 119906lowast

3) to (15) or

equivalently (1)ndash(3)

Lemma 7 Assume that1198672and 119866

2hold and then the positive

steady state119864lowast of system (1)ndash(3) is locally asymptotically stable

Proof We get the local stability of 119864lowast by performing alinearization and analyzing the corresponding characteristicequation Similarly as in [22] let 0 lt 120583

1lt 1205832lt 1205833lt

be the eigenvalues of minusΔ on Ω with the homogeneousNeumann boundary condition Let 119864(120583

119894) be the eigenspace

corresponding to 120583119894in 1198621(Ω) for 119894 = 1 2 3 Let

X = u = (1199061 1199062 1199063) isin [119862

1(Ω)]3

120597120578u = 0 119909 isin 120597Ω (16)

120593119894119895 119895 = 1 dim119864(120583

119894) be an orthonormal basis of 119864(120583

119894)

and X119894119895= 119888 sdot 120593

119894119895| 119888 isin 119877

3 Then

X119894=

dim119864(120583119894)

119895=1

X119894119895 X =

infin

119894=1

X119894 (17)

Let 119863 = diag(1198631 1198632 1198633) and k = (V

1 V2 V3) V119894=

119906119894minus 119906lowast

119894 (119894 = 1 2 3) Then the linearization of (1)

is k119905= 119871k = 119863Δk + Fk(Elowast)k Fk(Elowast)k = 119888

119894119895

where 119888119894119894

= 119887119894119894V119894 119894 = 1 2 3 119888

12= 11988712V2 11988823

=

11988723V3 11988821= 11988721intΩint119905

minusinfinV1(119904 119910)119870

1(119909 119910 119905 minus 119904)119889119904 119889119910 and 119888

32=

11988732intΩint119905

minusinfinV2(119904 119910)119870

2(119909 119910 119905 minus 119904)119889119904 119889119910 The coefficients 119887

119894119895are

defined as follows

11988711= minus11988611119906lowast

1+11988612119906lowast

1119906lowast

2

(1198981+ 119906lowast1)2

11988712= minus

11988612119906lowast

1

1198981+ 119906lowast1

11988713= 0

11988721=119886211198981119906lowast

2

(1198981+ 119906lowast1)2

11988722= minus11988622119906lowast

2+11988623119906lowast

2119906lowast

3

(1198982+ 119906lowast2)2 119887

23= minus

11988623119906lowast

2

1198982+ 119906lowast2

11988731= 0 119887

32=119886321198982119906lowast

3

(1198982+ 119906lowast2)2 119887

33= minus11988633119906lowast

3

(18)

SinceX119894is invariant under the operator 119871 for each 119894 ge 1 then

the operator 119871 on X119894is k119905= 119871k = 119863120583

119894k + Fk(Elowast)k Let V119894 =

119888119894119890120582119905(119894 = 1 2 3) and we can get the characteristic equation

Abstract and Applied Analysis 5

120593119894(120582) = 120582

3+ 1198601198941205822+ 119861119894120582 + 119862

119894= 0 where 119860

119894 119861119894 and 119862

119894are

defined as follows

119860119894= (1198891+ 1198892+ 1198893) 120583119894minus 11988711minus 11988722minus 11988733

119861119894= (11988911198892+ 11988921198893+ 11988931198891) 1205832

119894

+ [1198893(minus11988711minus 11988722) + 1198891(minus11988733minus 11988722)

+1198892(minus11988711minus 11988733)] 120583119894

+ 1198871111988722+ 1198871111988733+ 1198872211988733

minus 1198871211988721int

infin

0

1198961(119904) 119890minus120582119904119889119904 minus 119887

2311988732int

infin

0

1198962(119904) 119890minus120582119904119889119904

119862119894= 1198891119889211988931205833

119894+ [minus1198873311988911198892minus 1198871111988921198893minus 1198872211988911198893] 1205832

119894

+ [11988711119887221198893+ 11988711119887331198892+ 11988722119887331198891+ 11988722119887331198891

minus 11988931198871211988721int

infin

0

1198961(119904) 119890minus120582119904119889119904

minus11988911198872311988732int

infin

0

1198962(119904) 119890minus120582119904119889119904] 120583119894

+ [minus119887111198872211988733+ 119887121198872111988733int

infin

0

1198961(119904) 119890minus120582119904119889119904

+119887111198872311988732int

infin

0

1198962(119904) 119890minus120582119904119889119904]

(19)

It is easy to see that 11988712 11988723 11988733lt 0 and 119887

21 11988732gt 0 It

follows from assumption 1198661and 119866

2that 119886

11lt 0 119886

22lt 0

So 119860119894gt 0 119861

119894gt 0 119862

119894gt 0 and 119860

119894119861119894minus 119862119894gt 0 for 119894 ge 1

from the direct calculation According to the Routh-Hurwitzcriterion the three roots 120582

1198941 1205821198942 1205821198943

of 120593119894(120582) = 0 all have

negative real partsBy continuity of the roots with respect to 120583

119894and Routh-

Hurwitz criterion we can conclude that there exists a positiveconstant 120576 such that

Re 1205821198941 Re 120582

1198942 Re 120582

1198943 le minus120576 119894 ge 1 (20)

Consequently the spectrum of 119871 consisting only of eigen-values lies in Re 120582 le minus120576 It is easy to see that Elowast islocally asymptotically stable and follows fromTheorem 511of [23]

Theorem 8 Assume that

11986731198861(11988621minus 1198862)

11989811198862

gt 11988611gt11988612119906lowast

2

11989821

(21)

1198672and 119866

2hold and the positive steady state 119864lowast of system (1)ndash

(3) with nontrivial initial function is globally asymptoticallystable

Proof It is easy to see that the equations in (1) can be rewrittenas

1205971199061

120597119905minus 1198891Δ1199061= 1199061[ minus 11988611(1199061minus 119906lowast

1)

minus11988612(1199062minus 119906lowast

2)

1198981+ 1199061

+11988612119906lowast

2(1199061minus 119906lowast

1)

(1198981+ 1199061) (1198981+ 119906lowast1)]

1205971199062

120597119905minus 1198892Δ1199062= 1199062[intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus 119906

lowast

1)

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)119889119904 119889119910

minus 11988622(1199062minus 119906lowast

2) minus11988623(1199063minus 119906lowast

3)

1198982+ 1199062

+11988623119906lowast

3(1199062minus 119906lowast

2)

(1198982+ 1199062) (1198982+ 119906lowast2)]

1205971199063

120597119905minus 1198893Δ1199063= 1199063[intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus 119906

lowast

2)

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)119889119904 119889119910

minus11988633(1199063minus 119906lowast

3) ]

(22)

Define

119881 (119905) = 120572intΩ

(1199061minus 119906lowast

1minus 119906lowast

1ln 1199061119906lowast1

)119889119909

+ intΩ

(1199062minus 119906lowast

2minus 119906lowast

2ln 1199062119906lowast2

)119889119909

+ 120573intΩ

(1199062minus 119906lowast

3minus 119906lowast

3ln1199063

119906lowast3

)119889119909

(23)

where 120572 and 120573 are positive constants to be determinedCalculating the derivatives 119881(119905) along the positive solutionto the system (1)ndash(3) yields

1198811015840(119905) = Φ

1(119905) + Φ

2(119905) (24)

where

Φ1(119905) = minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

6 Abstract and Applied Analysis

Φ2(119905) = minusint

Ω

120572[11988611minus

11988612119906lowast

2

(1198981+ 1199061) (1198981+ 119906lowast1)] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

[11988622minus

11988623119906lowast

3

(1198982+ 1199062) (1198982+ 119906lowast2)] (1199062minus 119906lowast

2)2

119889119909

minus intΩ

11988633120573(1199063minus 119906lowast

3)2

119889119909

minus intΩ

11988623(1199063minus 119906lowast

3) (1199062minus 119906lowast

2)

1198982+ 1199062

119889119909

minus intΩ

12057211988612(1199062minus 119906lowast

2) (1199061minus 119906lowast

1)

1198981+ 1199061

119889119909

+∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus 119906

lowast

1) (1199062(119905 119909) minus 119906

lowast

2)

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)

119889119904 119889119910 119889119909

+ 120573∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus 119906

lowast

2) (1199063(119905 119909) minus 119906

lowast

3)

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)

119889119904 119889119910 119889119909

(25)

Applying the inequality 119886119887 le 1205981198862 + (14120598)1198872 we derive from(25) that

Φ2(119905) le minusint

Ω

120572[11988611minus

11988612119906lowast

2

(1198981+ 1199061) (1198981+ 119906lowast1)] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

11988633120573(1199063minus 119906lowast

3)2

119889119909

minus intΩ

[11988622minus

11988623119906lowast

3

(1198982+ 1199062) (1198982+ 119906lowast2)] (1199062minus 119906lowast

2)2

119889119909

+ intΩ

12057211988612

1198981+ 1199061

[1205981(1199061minus 119906lowast

1)2

+1

41205981

(1199062minus 119906lowast

2)2

] 119889119909

+ intΩ

11988623

1198982+ 1199062

[1

41205982

(1199062minus 119906lowast

2)2

+ 1205982(1199063minus 119906lowast

3)2

] 119889119909

+∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)

times [1205983(1199061(119904 119910) minus 119906

lowast

1)2

+1

41205983

(1199062(119905 119909) minus 119906

lowast

2)2

] 119889119904 119889119910 119889119909

+∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321205731198982

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)

times [1

41205984

(1199062(119904 119910) minus 119906

lowast

2)2

+1205984(1199063(119905 119909) minus 119906

lowast

3)2

] 119889119904 119889119910 119889119909

(26)

According to the property of the Kernel functions119870119894(119909 119910 119905)

(119894 = 1 2) we know that

Φ2(119905) le minusint

Ω

[12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

[11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

] (1199062minus 119906lowast

2)2

119889119909

minus intΩ

[11988633120573 minus

119886231205982

1198982

minus119886321205731205984

1198982

] (1199063minus 119906lowast

3)2

119889119909

+119886211205983

1198981

∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119910 119889119909

+11988632120573

411989821205984

∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119910 119889119909

(27)

Define a new Lyapunov functional as follows

119864 (119905) = 119881 (119905)

+119886211205983

1198981

∬Ω

int

+infin

0

int

119905

119905minus119903

1198701(119909 119910 119903)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119903 119889119910 119889119909

+11988632120573

411989821205984

∬Ω

int

+infin

0

int

119905

119905minus119903

1198702(119909 119910 119903)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119903 119889119910 119889119909

(28)

Abstract and Applied Analysis 7

It is derived from (27) and (28) that

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

minus [12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

minus119886211205983

1198981

]intΩ

(1199061minus 119906lowast

1)2

119889119909

minus [11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

]intΩ

(1199062minus 119906lowast

2)2

119889119909

minus [11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

]intΩ

(1199063minus 119906lowast

3)2

119889119909

(29)

Since (1199061 1199062 1199063) is the unique positive solution of system (1)

Using Proposition 5 there exists a constant119862which does notdepend on119909 isin Ω or 119905 ge 0 such that 119906

119894(sdot 119905)infinle 119862 (119894 = 1 2 3)

for 119905 ge 0 By Theorem 1198602in [24] we have

1003817100381710038171003817119906119894 (sdot 119905)10038171003817100381710038171198622120572(Ω) le 119862 forall119905 ge 1 (30)

Assume that

1198661 119886111198982

1gt 11988612119906lowast

2

1198662 119886221198982

2gt 11988623119906lowast

3+21198862311988632

11988633

+211988612119886211198982

2

1198861111989821minus 11988612119906lowast2

(31)

and denote

1198971= 12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

minus119886211205983

1198981

1198972= 11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

1198973= 11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

(32)

Then (29) is transformed into

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

minus

3

sum

119894=1

119897119894intΩ

(119906119894minus 119906lowast

119894)2

119889119909

(33)

If we choose

120572 =11988621

11988612

120573 =11988623

11988632

1205981= 1205983=119886111198982

1minus 11988612119906lowast

2

4119898111988612

1205982= 1205984=119898211988633

411988632

(34)

then 119897119894gt 0 (119894 = 1 2 3) Therefore we have

1198641015840(119905) le minus

3

sum

119894=1

119897119894intΩ

(119906119894minus 119906lowast

119894)2

119889119909 (35)

FromProposition 6 we can see that the solution of system(1) and (3) is bounded and so are the derivatives of (119906

119894minus 119906lowast

119894)

(119894 = 1 2 3) by the equations in (1) Applying Lemma 1 weobtain that

lim119905rarrinfin

intΩ

(119906119894minus 119906lowast

119894) 119889119909 = 0 (119894 = 1 2 3) (36)

Recomputing 1198641015840(119905) gives

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

le minus119888intΩ

(1003816100381610038161003816nabla1199061

10038161003816100381610038162

+1003816100381610038161003816nabla1199062

10038161003816100381610038162

+1003816100381610038161003816nabla1199063

10038161003816100381610038162

) 119889119909 = minus119892 (119905)

(37)

where 119888 = min1205721198891119906lowast

11198722

1 1198892119906lowast

21198722

2 1205731198893119906lowast

311987223 Using (30)

and (1) we obtain that the derivative of 119892(119905) is bounded in[1 +infin) From Lemma 1 we conclude that 119892(119905) rarr 0 as 119905 rarrinfin Therefore

lim119905rarrinfin

intΩ

(1003816100381610038161003816nabla1199061

10038161003816100381610038162

+1003816100381610038161003816nabla1199062

10038161003816100381610038162

+1003816100381610038161003816nabla1199063

10038161003816100381610038162

) 119889119909 = 0 (38)

Applying the Poincare inequality

intΩ

120582|119906 minus 119906|2119889119909 le int

Ω

|nabla119906|2119889119909 (39)

leads to

lim119905rarrinfin

intΩ

(119906119894minus 119906119894)2

119889119909 = 0 (119894 = 1 2 3) (40)

where 119906119894= (1|Ω|) int

Ω119906119894119889119909 and 120582 is the smallest positive

eigenvalue ofminusΔwith the homogeneousNeumann conditionTherefore

|Ω| (1199061 (119905) minus 119906lowast

1)2

= intΩ

(1199061(119905) minus 119906

lowast

1)2

119889119909

= intΩ

(1199061(119905) minus 119906

1(119905 119909) + 119906

1(119905 119909) minus 119906

lowast

1)2

119889119909

le 2intΩ

(1199061(119905) minus 119906

1(119905 119909))

2

119889119909

+ 2intΩ

(1199061(119905 119909) minus 119906

lowast

1)2

119889119909

(41)

8 Abstract and Applied Analysis

So we have 1199061(119905) rarr 119906

lowast

1as 119905 rarr infin Similarly 119906

2(119905) rarr 119906

lowast

2

and 1199063(119905) rarr 119906

lowast

3as 119905 rarr infin According to (30) there exists

a subsequence 119905119898 and non-negative functions 119908

119894isin 1198622(Ω)

such thatlim119898rarrinfin

1003817100381710038171003817119906119894 (sdot 119905119898) minus 119908119894 (sdot)10038171003817100381710038171198622(Ω) = 0 (119894 = 1 2 3) (42)

Applying (40) and noting that 119906119894(119905) rarr 119906

lowast

119894 we then have119908

119894=

119906lowast

119894 (119894 = 1 2 3) That is

lim119898rarrinfin

1003817100381710038171003817119906119894 (sdot 119905119898) minus 119906lowast

119894

10038171003817100381710038171198622(Ω) = 0 (119894 = 1 2 3) (43)

Furthermore the local stability ofElowast combiningwith (43)gives the following global stability

Theorem 9 Assume that

11986751198861(11988621minus 1198862)

11989811198862

gt 11988611gt11988612Vlowast2

11989821

(44)

1198674and 119866

4hold and then the semi-trivial steady state 119864

2

of system (1)ndash(3) with non-trivial initial functions is globallyasymptotically stable

Proof It is obvious that system (1)ndash(3) always has two non-negative equilibria (119906

1 1199062 1199063) as follows 119864

0= (0 0 0) and

1198641= (119886111988611 0 0) If 119867

1and 119867

4are satisfied system (1) has

the other semitrivial solution denoted by 1198642(Vlowast1 Vlowast2 0) where

1198674 11988631198982gt (11988632minus 1198863) Vlowast

2 (45)

We consider the stability of 1198642under condition 119867

1and

1198674 Equation (1) can be rewritten as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus Vlowast

1) minus11988612(1199062minus Vlowast2)

1198981+ 1199061

+11988612Vlowast2(1199061minus Vlowast1)

(1198981+ 1199061) (1198981+ Vlowast1)]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus Vlowast

1)

(1198981+ 1199061(119904 119910)) (119898

1+ Vlowast1)119889119904 119889119910

minus11988622(1199062minus Vlowast

2) minus

119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus Vlowast

2)

(1198982+ 1199062(119904 119910)) (119898

2+ Vlowast2)119889119904 119889119910

minus119886331199063]

(46)

Similar to the argument ofTheorem 8 we have 1199061(119909 119905) rarr Vlowast

1

and 1199062(119909 119905) rarr Vlowast

2as 119905 rarr infin uniformly on Ω provided that

the following additional condition holds

1198663 119886111198982

1gt 11988612Vlowast

2

1198664 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821minus 11988612Vlowast2

(47)

Next we consider the asymptotic behavior of 1199063(119905 119909) Let

120579 =1198863minus (11988632minus 1198863) Vlowast2

2120575 120575 =

100381610038161003816100381611988632 minus 11988631003816100381610038161003816

(48)

Then there exists 1199051gt 0 such that

Vlowast

2minus 120579 lt 119906

2(119905 119909) lt V

lowast

2+ 120579 forall119905 gt 119905

1 119909 isin Ω (49)

Consider the following two systems

1199083119905minus 1198893Δ1199083= 1199083[minus1198863+11988632(Vlowast2+ 120579)

1198982+ Vlowast2+ 120579

minus 119886331199083]

(119905 119909) isin [1199051 +infin) times Ω

1205971199083

120597]= 0 (119905 119909) isin [119905

1 +infin) times 120597Ω

1199083= 1199063 (119905 119909) isin (minusinfin 119905

1] times Ω

1198823119905minus 1198893Δ1198823= 1198823[minus1198863+11988632(Vlowast2minus 120579)

1198982+ Vlowast2minus 120579

minus 11988633V3]

(119905 119909) isin [1199051 +infin) times Ω

1205971198823

120597]= 0 (119905 119909) isin [119905

1 +infin) times 120597Ω

1198823= 1199063 (119905 119909) isin (minusinfin 119905

1] times Ω

(50)

Combining comparison principle with (50) we obtain that

1198823(119905 119909) le 119906

3(119905 119909) le 119908

3(119905 119909) forall119905 gt 119905

1 119909 isin Ω (51)

By Lemma 4 we obtain

0 = lim119905rarrinfin

1198823(119905 119909) le inf 119906

3(119905 119909) le sup 119906

3(119905 119909)

le lim119905rarrinfin

1199083(119905 119909) = 0 forall119909 isin Ω

(52)

which implies that lim119905rarrinfin

1199063(119905 119909) = 0 uniformly onΩ

Theorem 10 Suppose that1198665and119866

6hold and then the semi-

trivial steady state 1198641of system (1)ndash(3) with non-trivial initial

functions is globally asymptotically stable

Abstract and Applied Analysis 9

Proof We study the stability of the semi-trivial solution 1198641=

(1 0 0) Similarly the equations in (1) can be written as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus 1) minus

119886121199062

1198981+ 1199061

]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[minus1198862+ intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus

1)

(1198981+ 1199061(119904 119910)) (119898

1+ 1)119889119904 119889119910

+119886211

1198981+ 1

minus 119886221199062minus119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[minus1198863+ intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321199062(119904 119910)

1198982+ 1199062(119904 119910)

119889119904 119889119910 minus 119886331199063]

(53)

Define

119881 (119905) = 120572intΩ

[1199061minus 1minus 1log 11990611

] 119889119909 + intΩ

1199062119889119909

+ 120573intΩ

1199063119889119909

(54)

Calculating the derivative of 119881(119905) along 1198641 we get from (54)

that

1198811015840(119905) le minusint

Ω

[120572(11988611minus119886121205981

1198981

)] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

412059821198982

minus11988621

411989811205983

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062+ 11988631199063] 119889119909

+119886211205983

1198981

intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times (1199061(119904 119910) minus

1)2

119889119904 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times 1199062

2(119904 119910) 119889119904 119889119910 119889119909

(55)

Define119864 (119905) = 119881 (119905)

+119886211205983

1198981

∬Ω

int

+infin

0

int

119905

119905minus119903

1198701(119909 119910 119903)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119903 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

+infin

0

int

119905

119905minus119903

1198702(119909 119910 119903)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119903 119889119910 119889119909

(56)

It is easy to see that

1198641015840(119905) le minus120572119889

11intΩ

1003816100381610038161003816nabla119906110038161003816100381610038162

11990621

119889119909

minus intΩ

[120572(11988611minus119886121205981

1198981

) minus119886211205983

1198981

] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632

411989821205984

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

minus119886321205731205984

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062minus 11988631205731199063] 119889119909

(57)

Assume that1198665 1198861(11988621minus 1198862) lt 119898

1119886211988611

1198666 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821

(58)

Let

1198971= 12057211988611minus120572119886121205981

1198981

minus119886211205983

1198981

1198972= 11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

1198973= 11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

(59)

Choose

120572 =11988621

11988612

120573 =11988623

11988632

1205981= 1205983=119886111198981

411988612

1205982= 1205984=119898211988633

411988632

(60)

Then we get 119897119894gt 0 (119894 = 1 2 3) Therefore we have

lim119905rarrinfin

1199061(119905 119909) =

1 (61)

uniformly onΩ

10 Abstract and Applied Analysis

tx

u1

02

46

8

01

23

40

1

2

3

4

(a)

02

46

8

01

23

40

1

2

3

4

t

x

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 2 Global stability of the positive equilibrium 119864lowast with an initial condition (1206011 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

Next we consider the asymptotic behavior of 1199062(119905 119909) and

1199063(119905 119909) For any 119879 gt 0 integrating (57) over [0 119879] yields

119864 (119879) + 1205721198891

10038171003817100381710038171003817100381710038171003817

10038161003816100381610038161003816100381610038161003816

nabla1199061

1199061

10038161003816100381610038161003816100381610038161003816

10038171003817100381710038171003817100381710038171003817

2

2

+ 1198971

100381710038171003817100381710038161003816100381610038161199061 minus 1

100381610038161003816100381610038171003817100381710038172

2

+ 1198972

100381710038171003817100381710038161003816100381610038161199062100381610038161003816100381610038171003817100381710038172

2+ 1198973

100381710038171003817100381710038161003816100381610038161199063100381610038161003816100381610038171003817100381710038172

2le 119864 (0)

(62)

where |119906119894|2

2= int119879

0intΩ1199062

119894119889119909 119889119905 It implies that |119906

119894|2le 119862119894(119894 =

2 3) for the constant 119862119894which is independent of 119879 Now we

consider the boundedness of |nabla1199062|2and |nabla119906

3|2 From the

Greenrsquos identity we obtain

1198892int

119879

0

intΩ

1003816100381610038161003816nabla1199062 (119905 119909)10038161003816100381610038162

119889119909 119889119905

= minus1198892int

119879

0

intΩ

1199062(119905 119909) Δ119906

2(119905 119909) 119889119909 119889119905

= minusint

119879

0

intΩ

1199062

1205971199062

120597119905119889119909 119889119905 minus 119886

2int

119879

0

intΩ

1199062

2119889119909 119889119905

minus 11988622int

119879

0

intΩ

1199063

2119889119909 119889119905 minus 119886

23int

119879

0

intΩ

1199062

21199063

1198982+ 1199063

119889119909 119889119905

+ 11988621int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

times 1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

(63)

Note that

int

119879

0

intΩ

1199062(119905 119909)

1205971199062(119905 119909)

120597119905119889119909 119889119905

= int

119879

0

intΩ

1

2

1205971199062

2

120597119905119889119905 119889119909

=1

2intΩ

1199062

2(119879 119909) 119889119909 minus

1

2intΩ

1199062

2(0 119909) 119889119909 le 119872

2

2|Ω|

int

119879

0

intΩ

1199062

21199063119889119909 119889119905 le 119872

3int

119879

0

intΩ

1199062

2119889119909 119889119905

Abstract and Applied Analysis 11

02

46

8

01

23

40

1

2

3

4

tx

u1

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 3 Global stability of the positive equilibrium 1198642with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

int

119879

0

intΩ

1199063

2119889119909 119889119905 le 119872

2int

119879

0

intΩ

1199062

2119889119909 119889119905

int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

le int

119879

0

intΩ

1199062

2(119905 119909) 119889119909 119889119905

(64)

Thus we get |nabla1199062|2le 1198624 In a similar way we have

|nabla1199063|2le 1198625 Here 119862

4and 119862

5are independent of 119879

It is easy to see that 1199062(119905 119909) 119906

3(119905 119909) isin 119871

2((0infin)

11988212(Ω)) These imply that

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)100381710038171003817100381711988212(Ω) = 0 119894 = 2 3 (65)

From the Sobolev compact embedding theorem we know

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)1003817100381710038171003817119862(Ω) = 0 119894 = 2 3 (66)

In the end we show that the trivial solution 1198640is an

unstable equilibrium Similarly to the local stability to 119864lowast wecan get the characteristic equation of 119864

0as

(120582 + 1205831198941198631minus 1198861) (120582 + 120583

1198941198632+ 1198862) (120582 + 120583

1198941198633+ 1198863) = 0 (67)

If 119894 = 1 then 1205831= 0 It is easy to see that this equation admits

a positive solution 120582 = 1198861 According to Theorem 51 in [23]

we have the following result

Theorem 11 The trivial equilibrium 1198640is an unstable equilib-

rium of system (1)ndash(3)

4 Numerical Illustrations

In this section we performnumerical simulations to illustratethe theoretical results given in Section 3

12 Abstract and Applied Analysis

u1

02

46

8

01

23

40

1

2

3

4

tx

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 4 Global stability of the positive equilibrium 1198641with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos119909 27 + 05 sin119909)

In the following we always take Ω = [0 120587] 119870119894(119909 119910 119905) =

119866119894(119909 119910 119905)119896

119894(119905) where 119896

119894(119905) = (1120591

lowast)119890minus119905120591lowast

(119894 = 1 2) and

1198661(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988921198992

119905 cos 119899119909 cos 119899119910

1198662(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988931198992

119905 cos 119899119909 cos 119899119910

(68)

However it is difficult for us to simulate our results directlybecause of the nonlocal term Similar to [25] the equationsin (1) can be rewritten as follows

1205971199061

120597119905minus 1198891Δ1199061= 1199061(1198861minus 119886111199061minus119886121199062

1198981+ 1199061

)

1205971199062

120597119905minus 1198892Δ1199062= 1199062(minus1198862+ 11988621V1minus 119886221199062minus119886231199063

1198982+ 1199063

)

1205971199063

120597119905minus 1198893Δ1199063= 1199063(minus1198863+ 11988632V2minus 119886331199063)

120597V1

120597119905minus 1198892ΔV1=1

120591lowast(

1199061

1198981+ 1199061

minus V1)

120597V2

120597119905minus 1198893ΔV2=1

120591lowast(

1199062

1198982+ 1199062

minus V2)

(69)

where

V119894= int

120587

0

int

119905

minusinfin

119866119894(119909 119910 119905 minus 119904)

1

120591lowast119890minus(119905minus119904)120591

lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(70)

Each component is considered with homogeneous Neumannboundary conditions and the initial condition of V

119894is

V119894(0 119909) = int

120587

0

int

0

minusinfin

119866119894(119909 119910 minus119904)

1

120591lowast119890119904120591lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(71)

Abstract and Applied Analysis 13

In the following examples we fix some coefficients andassume that 119889

1= 1198892= 1198893= 1 119886

1= 3 119886

12= 1 119898

1= 1198982=

1 1198862= 1 119886

22= 12 119886

23= 1 119886

33= 12 and 120591lowast = 1 The

asymptotic behaviors of system (1)ndash(3) are shownby choosingdifferent coefficients 119886

11 11988621 1198863 and 119886

32

Example 12 Let 11988611= 539 119886

21= 8113 119886

3= 113 and

11988632= 14Then it is easy to see that the system admits a unique

positive equilibrium 119864lowast(12 112 112) By Theorem 8 we

see that the positive solution (1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of

system (1)ndash(3) converges to 119864lowast as 119905 rarr infin See Figure 2

Example 13 Let 11988611

= 6 11988621

= 12 1198863= 14 and

11988632= 1 Clearly 119867

2does not hold Hence the positive

steady state is not feasible System (1) admits two semi-trivial steady state 119864

2(04732 02372 0) and 119864

1(12 0 0)

According to Theorem 9 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

2

as 119905 rarr infin See Figure 3

Example 14 Let 11988611= 6 119886

21= 2 119886

3= 14 and 119886

32= 1

Clearly1198671does not hold Hence 119864lowast and 119864

2are not feasible

System (1) has a unique semi-trivial steady state 1198641(12 0 0)

According to Theorem 10 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

1

as 119905 rarr infin See Figure 4

5 Discussion

In this paper we incorporate nonlocal delay into a three-species food chain model with Michaelis-Menten functionalresponse to represent a delay due to the gestation of the preda-tor The conditions under which the spatial homogeneousequilibria are asymptotically stable are given by using theLyapunov functional

We now summarize the ecological meanings of ourtheoretical results Firstly the positive equilibrium 119864

lowast ofsystem (1)ndash(3) exists under the high birth rate of the prey(1198861) and low death rates (119886

2and 119886

3) of predator and top

predator 119864lowast is globally stable if the intraspecific competition11988611is neither too big nor too small and the maximum harvest

rates 11988612 11988623

are small enough Secondly the semi-trivialequilibrium 119864

2of system (1)ndash(3) exists if the birth rate of the

prey (1198861) is high death rate of predator 119886

2is low and the death

rate (1198863) exceeds the conversion rate from predator to top

predator (11988632) 1198642is globally stable if the maximum harvest

rates 11988612 11988623are small and the intra-specific competition 119886

11

is neither too big nor too small Thirdly system (1)ndash(3) hasonly one semi-trivial equilibrium 119864

1when the death rate (119886

2)

exceeds the conversion rate from prey to predator (11988621) 1198641

is globally stable if intra-specific competitions (11988611 11988622 and

11988633) are strong Finally 119864

0is unstable and the non-stability of

trivial equilibrium tells us that not all of the populations goto extinction Furthermore our main results imply that thenonlocal delay is harmless for stabilities of all non-negativesteady states of system (1)ndash(3)

There are still many interesting and challenging problemswith respect to system (1)ndash(3) for example the permanence

and stability of periodic solution or almost periodic solutionThese problems are clearly worthy for further investigations

Acknowledgments

This work is partially supported by PRC Grants NSFC11102076 and 11071209 andNSF of theHigher Education Insti-tutions of Jiangsu Province (12KJD110002 and 12KJD110008)

References

[1] R Xu and M A J Chaplain ldquoPersistence and global stabilityin a delayed predator-prey system with Michaelis-Menten typefunctional responserdquo Applied Mathematics and Computationvol 130 no 2-3 pp 441ndash455 2002

[2] H F Huo andW T Li ldquoPeriodic solution of a delayed predator-prey system with Michaelis-Menten type functional responserdquoJournal of Computational and AppliedMathematics vol 166 no2 pp 453ndash463 2004

[3] Z Lin and M Pedersen ldquoStability in a diffusive food-chainmodel with Michaelis-Menten functional responserdquo NonlinearAnalysis Theory Methods amp Applications vol 57 no 3 pp 421ndash433 2004

[4] B X Dai N Zhang and J Z Zou ldquoPermanence for theMichaelis-Menten type discrete three-species ratio-dependentfood chain model with delayrdquo Journal of Mathematical Analysisand Applications vol 324 no 1 pp 728ndash738 2006

[5] N F Britton ldquoSpatial structures and periodic travelling wavesin an integro-differential reaction-diffusion population modelrdquoSIAM Journal on Applied Mathematics vol 50 no 6 pp 1663ndash1688 1990

[6] S A Gourley and N F Britton ldquoInstability of travelling wavesolutions of a population model with nonlocal effectsrdquo IMAJournal of Applied Mathematics vol 51 no 3 pp 299ndash310 1993

[7] X Zhang and R Xu ldquoTraveling waves of a diffusive predator-prey model with nonlocal delay and stage structurerdquo Journal ofMathematical Analysis and Applications vol 373 no 2 pp 475ndash484 2011

[8] Z C Wang W T Li and S G Ruan ldquoExistence and stability oftraveling wave fronts in reaction advection diffusion equationswith nonlocal delayrdquo Journal of Differential Equations vol 238no 1 pp 153ndash200 2007

[9] S A Gourley and S G Ruan ldquoConvergence and travellingfronts in functional differential equations with nonlocal termsa competition modelrdquo SIAM Journal on Mathematical Analysisvol 35 no 3 pp 806ndash822 2003

[10] X H Lai and T X Yao ldquoExponential stability of impul-sive delayed reaction-diffusion cellular neural networks viaPoincare integral inequalityrdquoAbstract and Applied Analysis vol2013 Article ID 131836 10 pages 2013

[11] R Xu and Z E Ma ldquoGlobal stability of a reaction-diffusionpredator-prey model with a nonlocal delayrdquo Mathematical andComputer Modelling vol 50 no 1-2 pp 194ndash206 2009

[12] Z Li F D Chen and M X He ldquoAsymptotic behavior of thereaction-diffusion model of plankton allelopathy with nonlocaldelaysrdquo Nonlinear Analysis Real World Applications vol 12 no3 pp 1748ndash1758 2011

[13] Y Kuang and H L Smith ldquoGlobal stability in diffusive delayLotka-Volterra systemsrdquoDifferential and Integral Equations vol4 no 1 pp 117ndash128 1991

14 Abstract and Applied Analysis

[14] Z G Lin M Pedersen and L Zhang ldquoA predator-prey systemwith stage-structure for predator and nonlocal delayrdquoNonlinearAnalysis Theory Methods amp Applications vol 72 no 3-4 pp2019ndash2030 2010

[15] R Xu ldquoA reaction-diffusion predator-prey model with stagestructure and nonlocal delayrdquo Applied Mathematics and Com-putation vol 175 no 2 pp 984ndash1006 2006

[16] S S Chen and J P Shi ldquoStability and Hopf bifurcation in adiffusive logistic population model with nonlocal delay effectrdquoJournal of Differential Equations vol 253 no 12 pp 3440ndash34702012

[17] H I Freedman Deterministic Mathematical Models in Popula-tion Ecology vol 57 of Monographs and Textbooks in Pure andAppliedMathematicsMarcelDekker NewYorkNYUSA 1980

[18] P A Abrams and L R Ginzburg ldquoThe nature of predation preydepedent ratio dependent or neitherrdquo Trends in Ecology andEvolution vol 15 no 8 pp 337ndash341 2000

[19] D L DeAngelis R A Goldstein and R V OrsquoNeill ldquoA modelfor trophic iterationrdquo Ecology vol 56 no 4 pp 881ndash892 1975

[20] C V Pao ldquoDynamics of nonlinear parabolic systems with timedelaysrdquo Journal of Mathematical Analysis and Applications vol198 no 3 pp 751ndash779 1996

[21] F Xu Y Hou and Z G Lin ldquoTime delay parabolic system ina predator-prey model with stage structurerdquo Acta MathematicaSinica vol 48 no 6 pp 1121ndash1130 2005 (Chinese)

[22] P Y H Pang and M X Wang ldquoStrategy and stationary patternin a three-species predator-prey modelrdquo Journal of DifferentialEquations vol 200 no 2 pp 245ndash273 2004

[23] D Henry Geometric Theory of Semilinear Parabolic Equationsvol 840 of Lecture Notes in Mathematics Springer New YorkNY USA 1981

[24] K J Brown P C Dunne and R A Gardner ldquoA semilinearparabolic system arising in the theory of superconductivityrdquoJournal of Differential Equations vol 40 no 2 pp 232ndash252 1981

[25] S A Gourley and J W H So ldquoDynamics of a food-limitedpopulation model incorporating nonlocal delays on a finitedomainrdquo Journal of Mathematical Biology vol 44 no 1 pp 49ndash78 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays WenzhenGan, 1 CanrongTian,

4 Abstract and Applied Analysis

L1

L2

L3

025

02

015

01

005

0

0 02 04 06 081

2

Figure 1 Graphs of the equations in (12) 1198713is the boundary

condition (1198863= 11988632V2(1198982+ V2)) and 119871

2corresponds to minus119886

2+

11988621(V1(1198981+ V1)) minus 119886

22V2= 0 while 119871

1corresponds to 119886

1minus 11988611V1minus

11988612V2(1198981+ V1) = 0 Intersection point between 119871

1and 119871

2gives the

positive solution (Vlowast1 Vlowast2) to (12) Parameter values are listed in the

example in Section 4

Let us consider the following equations

1198861minus 11988611V1minus11988612V2

1198981+ V1

= 0

minus 1198862+11988621V1

1198981+ V1

minus 11988622V2= 0

(12)

A direct computation shows that the above equations haveonly one positive solution (Vlowast

1 Vlowast2) if and only if

1198671 1198861(11988621minus 1198862) gt 119898

1119886211988611 (13)

is satisfied Taking1198671into account we consider the equation

1198863= 11988632Vlowast2(1198982+ Vlowast2) which corresponds to 119871

3in Figure 1

It is clear that if 1198863lt 11988632Vlowast2(1198982+ Vlowast2) the intersection

point (Vlowast1 Vlowast2) always lies in 119871

3 Let

1198672 11988631198982lt (11988632minus 1198863) Vlowast

2 (14)

Suppose that1198671and119867

2hold We take 119906

3as a parameter and

consider the following system

1198861minus 119886111199061minus119886121199062

1198981+ 1199061

= 0

minus 1198862+119886211199061

1198981+ 1199061

minus 119886221199062minus119886231199063

1198982+ 1199062

= 0

minus 1198863+119886321199062

1198982+ 1199062

minus 119886331199063= 0

(15)

When the parameter 1199063is sufficiently small the first two

equations in (15) can be approximated by (12) Moreover

by continuously increasing the value of 1199063 1198713goes up and

meanwhile the intersection point between 1198711and 119871

2also

goes up However 1198713goes up faster than 119871

2 while 119871

1keeps

still In other words there exists a critical value 1199063such

that the intersection point lies in 1198713 which implies that

there is a unique positive solution 119864lowast(119906lowast1 119906lowast

2 119906lowast

3) to (15) or

equivalently (1)ndash(3)

Lemma 7 Assume that1198672and 119866

2hold and then the positive

steady state119864lowast of system (1)ndash(3) is locally asymptotically stable

Proof We get the local stability of 119864lowast by performing alinearization and analyzing the corresponding characteristicequation Similarly as in [22] let 0 lt 120583

1lt 1205832lt 1205833lt

be the eigenvalues of minusΔ on Ω with the homogeneousNeumann boundary condition Let 119864(120583

119894) be the eigenspace

corresponding to 120583119894in 1198621(Ω) for 119894 = 1 2 3 Let

X = u = (1199061 1199062 1199063) isin [119862

1(Ω)]3

120597120578u = 0 119909 isin 120597Ω (16)

120593119894119895 119895 = 1 dim119864(120583

119894) be an orthonormal basis of 119864(120583

119894)

and X119894119895= 119888 sdot 120593

119894119895| 119888 isin 119877

3 Then

X119894=

dim119864(120583119894)

119895=1

X119894119895 X =

infin

119894=1

X119894 (17)

Let 119863 = diag(1198631 1198632 1198633) and k = (V

1 V2 V3) V119894=

119906119894minus 119906lowast

119894 (119894 = 1 2 3) Then the linearization of (1)

is k119905= 119871k = 119863Δk + Fk(Elowast)k Fk(Elowast)k = 119888

119894119895

where 119888119894119894

= 119887119894119894V119894 119894 = 1 2 3 119888

12= 11988712V2 11988823

=

11988723V3 11988821= 11988721intΩint119905

minusinfinV1(119904 119910)119870

1(119909 119910 119905 minus 119904)119889119904 119889119910 and 119888

32=

11988732intΩint119905

minusinfinV2(119904 119910)119870

2(119909 119910 119905 minus 119904)119889119904 119889119910 The coefficients 119887

119894119895are

defined as follows

11988711= minus11988611119906lowast

1+11988612119906lowast

1119906lowast

2

(1198981+ 119906lowast1)2

11988712= minus

11988612119906lowast

1

1198981+ 119906lowast1

11988713= 0

11988721=119886211198981119906lowast

2

(1198981+ 119906lowast1)2

11988722= minus11988622119906lowast

2+11988623119906lowast

2119906lowast

3

(1198982+ 119906lowast2)2 119887

23= minus

11988623119906lowast

2

1198982+ 119906lowast2

11988731= 0 119887

32=119886321198982119906lowast

3

(1198982+ 119906lowast2)2 119887

33= minus11988633119906lowast

3

(18)

SinceX119894is invariant under the operator 119871 for each 119894 ge 1 then

the operator 119871 on X119894is k119905= 119871k = 119863120583

119894k + Fk(Elowast)k Let V119894 =

119888119894119890120582119905(119894 = 1 2 3) and we can get the characteristic equation

Abstract and Applied Analysis 5

120593119894(120582) = 120582

3+ 1198601198941205822+ 119861119894120582 + 119862

119894= 0 where 119860

119894 119861119894 and 119862

119894are

defined as follows

119860119894= (1198891+ 1198892+ 1198893) 120583119894minus 11988711minus 11988722minus 11988733

119861119894= (11988911198892+ 11988921198893+ 11988931198891) 1205832

119894

+ [1198893(minus11988711minus 11988722) + 1198891(minus11988733minus 11988722)

+1198892(minus11988711minus 11988733)] 120583119894

+ 1198871111988722+ 1198871111988733+ 1198872211988733

minus 1198871211988721int

infin

0

1198961(119904) 119890minus120582119904119889119904 minus 119887

2311988732int

infin

0

1198962(119904) 119890minus120582119904119889119904

119862119894= 1198891119889211988931205833

119894+ [minus1198873311988911198892minus 1198871111988921198893minus 1198872211988911198893] 1205832

119894

+ [11988711119887221198893+ 11988711119887331198892+ 11988722119887331198891+ 11988722119887331198891

minus 11988931198871211988721int

infin

0

1198961(119904) 119890minus120582119904119889119904

minus11988911198872311988732int

infin

0

1198962(119904) 119890minus120582119904119889119904] 120583119894

+ [minus119887111198872211988733+ 119887121198872111988733int

infin

0

1198961(119904) 119890minus120582119904119889119904

+119887111198872311988732int

infin

0

1198962(119904) 119890minus120582119904119889119904]

(19)

It is easy to see that 11988712 11988723 11988733lt 0 and 119887

21 11988732gt 0 It

follows from assumption 1198661and 119866

2that 119886

11lt 0 119886

22lt 0

So 119860119894gt 0 119861

119894gt 0 119862

119894gt 0 and 119860

119894119861119894minus 119862119894gt 0 for 119894 ge 1

from the direct calculation According to the Routh-Hurwitzcriterion the three roots 120582

1198941 1205821198942 1205821198943

of 120593119894(120582) = 0 all have

negative real partsBy continuity of the roots with respect to 120583

119894and Routh-

Hurwitz criterion we can conclude that there exists a positiveconstant 120576 such that

Re 1205821198941 Re 120582

1198942 Re 120582

1198943 le minus120576 119894 ge 1 (20)

Consequently the spectrum of 119871 consisting only of eigen-values lies in Re 120582 le minus120576 It is easy to see that Elowast islocally asymptotically stable and follows fromTheorem 511of [23]

Theorem 8 Assume that

11986731198861(11988621minus 1198862)

11989811198862

gt 11988611gt11988612119906lowast

2

11989821

(21)

1198672and 119866

2hold and the positive steady state 119864lowast of system (1)ndash

(3) with nontrivial initial function is globally asymptoticallystable

Proof It is easy to see that the equations in (1) can be rewrittenas

1205971199061

120597119905minus 1198891Δ1199061= 1199061[ minus 11988611(1199061minus 119906lowast

1)

minus11988612(1199062minus 119906lowast

2)

1198981+ 1199061

+11988612119906lowast

2(1199061minus 119906lowast

1)

(1198981+ 1199061) (1198981+ 119906lowast1)]

1205971199062

120597119905minus 1198892Δ1199062= 1199062[intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus 119906

lowast

1)

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)119889119904 119889119910

minus 11988622(1199062minus 119906lowast

2) minus11988623(1199063minus 119906lowast

3)

1198982+ 1199062

+11988623119906lowast

3(1199062minus 119906lowast

2)

(1198982+ 1199062) (1198982+ 119906lowast2)]

1205971199063

120597119905minus 1198893Δ1199063= 1199063[intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus 119906

lowast

2)

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)119889119904 119889119910

minus11988633(1199063minus 119906lowast

3) ]

(22)

Define

119881 (119905) = 120572intΩ

(1199061minus 119906lowast

1minus 119906lowast

1ln 1199061119906lowast1

)119889119909

+ intΩ

(1199062minus 119906lowast

2minus 119906lowast

2ln 1199062119906lowast2

)119889119909

+ 120573intΩ

(1199062minus 119906lowast

3minus 119906lowast

3ln1199063

119906lowast3

)119889119909

(23)

where 120572 and 120573 are positive constants to be determinedCalculating the derivatives 119881(119905) along the positive solutionto the system (1)ndash(3) yields

1198811015840(119905) = Φ

1(119905) + Φ

2(119905) (24)

where

Φ1(119905) = minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

6 Abstract and Applied Analysis

Φ2(119905) = minusint

Ω

120572[11988611minus

11988612119906lowast

2

(1198981+ 1199061) (1198981+ 119906lowast1)] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

[11988622minus

11988623119906lowast

3

(1198982+ 1199062) (1198982+ 119906lowast2)] (1199062minus 119906lowast

2)2

119889119909

minus intΩ

11988633120573(1199063minus 119906lowast

3)2

119889119909

minus intΩ

11988623(1199063minus 119906lowast

3) (1199062minus 119906lowast

2)

1198982+ 1199062

119889119909

minus intΩ

12057211988612(1199062minus 119906lowast

2) (1199061minus 119906lowast

1)

1198981+ 1199061

119889119909

+∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus 119906

lowast

1) (1199062(119905 119909) minus 119906

lowast

2)

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)

119889119904 119889119910 119889119909

+ 120573∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus 119906

lowast

2) (1199063(119905 119909) minus 119906

lowast

3)

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)

119889119904 119889119910 119889119909

(25)

Applying the inequality 119886119887 le 1205981198862 + (14120598)1198872 we derive from(25) that

Φ2(119905) le minusint

Ω

120572[11988611minus

11988612119906lowast

2

(1198981+ 1199061) (1198981+ 119906lowast1)] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

11988633120573(1199063minus 119906lowast

3)2

119889119909

minus intΩ

[11988622minus

11988623119906lowast

3

(1198982+ 1199062) (1198982+ 119906lowast2)] (1199062minus 119906lowast

2)2

119889119909

+ intΩ

12057211988612

1198981+ 1199061

[1205981(1199061minus 119906lowast

1)2

+1

41205981

(1199062minus 119906lowast

2)2

] 119889119909

+ intΩ

11988623

1198982+ 1199062

[1

41205982

(1199062minus 119906lowast

2)2

+ 1205982(1199063minus 119906lowast

3)2

] 119889119909

+∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)

times [1205983(1199061(119904 119910) minus 119906

lowast

1)2

+1

41205983

(1199062(119905 119909) minus 119906

lowast

2)2

] 119889119904 119889119910 119889119909

+∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321205731198982

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)

times [1

41205984

(1199062(119904 119910) minus 119906

lowast

2)2

+1205984(1199063(119905 119909) minus 119906

lowast

3)2

] 119889119904 119889119910 119889119909

(26)

According to the property of the Kernel functions119870119894(119909 119910 119905)

(119894 = 1 2) we know that

Φ2(119905) le minusint

Ω

[12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

[11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

] (1199062minus 119906lowast

2)2

119889119909

minus intΩ

[11988633120573 minus

119886231205982

1198982

minus119886321205731205984

1198982

] (1199063minus 119906lowast

3)2

119889119909

+119886211205983

1198981

∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119910 119889119909

+11988632120573

411989821205984

∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119910 119889119909

(27)

Define a new Lyapunov functional as follows

119864 (119905) = 119881 (119905)

+119886211205983

1198981

∬Ω

int

+infin

0

int

119905

119905minus119903

1198701(119909 119910 119903)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119903 119889119910 119889119909

+11988632120573

411989821205984

∬Ω

int

+infin

0

int

119905

119905minus119903

1198702(119909 119910 119903)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119903 119889119910 119889119909

(28)

Abstract and Applied Analysis 7

It is derived from (27) and (28) that

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

minus [12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

minus119886211205983

1198981

]intΩ

(1199061minus 119906lowast

1)2

119889119909

minus [11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

]intΩ

(1199062minus 119906lowast

2)2

119889119909

minus [11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

]intΩ

(1199063minus 119906lowast

3)2

119889119909

(29)

Since (1199061 1199062 1199063) is the unique positive solution of system (1)

Using Proposition 5 there exists a constant119862which does notdepend on119909 isin Ω or 119905 ge 0 such that 119906

119894(sdot 119905)infinle 119862 (119894 = 1 2 3)

for 119905 ge 0 By Theorem 1198602in [24] we have

1003817100381710038171003817119906119894 (sdot 119905)10038171003817100381710038171198622120572(Ω) le 119862 forall119905 ge 1 (30)

Assume that

1198661 119886111198982

1gt 11988612119906lowast

2

1198662 119886221198982

2gt 11988623119906lowast

3+21198862311988632

11988633

+211988612119886211198982

2

1198861111989821minus 11988612119906lowast2

(31)

and denote

1198971= 12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

minus119886211205983

1198981

1198972= 11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

1198973= 11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

(32)

Then (29) is transformed into

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

minus

3

sum

119894=1

119897119894intΩ

(119906119894minus 119906lowast

119894)2

119889119909

(33)

If we choose

120572 =11988621

11988612

120573 =11988623

11988632

1205981= 1205983=119886111198982

1minus 11988612119906lowast

2

4119898111988612

1205982= 1205984=119898211988633

411988632

(34)

then 119897119894gt 0 (119894 = 1 2 3) Therefore we have

1198641015840(119905) le minus

3

sum

119894=1

119897119894intΩ

(119906119894minus 119906lowast

119894)2

119889119909 (35)

FromProposition 6 we can see that the solution of system(1) and (3) is bounded and so are the derivatives of (119906

119894minus 119906lowast

119894)

(119894 = 1 2 3) by the equations in (1) Applying Lemma 1 weobtain that

lim119905rarrinfin

intΩ

(119906119894minus 119906lowast

119894) 119889119909 = 0 (119894 = 1 2 3) (36)

Recomputing 1198641015840(119905) gives

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

le minus119888intΩ

(1003816100381610038161003816nabla1199061

10038161003816100381610038162

+1003816100381610038161003816nabla1199062

10038161003816100381610038162

+1003816100381610038161003816nabla1199063

10038161003816100381610038162

) 119889119909 = minus119892 (119905)

(37)

where 119888 = min1205721198891119906lowast

11198722

1 1198892119906lowast

21198722

2 1205731198893119906lowast

311987223 Using (30)

and (1) we obtain that the derivative of 119892(119905) is bounded in[1 +infin) From Lemma 1 we conclude that 119892(119905) rarr 0 as 119905 rarrinfin Therefore

lim119905rarrinfin

intΩ

(1003816100381610038161003816nabla1199061

10038161003816100381610038162

+1003816100381610038161003816nabla1199062

10038161003816100381610038162

+1003816100381610038161003816nabla1199063

10038161003816100381610038162

) 119889119909 = 0 (38)

Applying the Poincare inequality

intΩ

120582|119906 minus 119906|2119889119909 le int

Ω

|nabla119906|2119889119909 (39)

leads to

lim119905rarrinfin

intΩ

(119906119894minus 119906119894)2

119889119909 = 0 (119894 = 1 2 3) (40)

where 119906119894= (1|Ω|) int

Ω119906119894119889119909 and 120582 is the smallest positive

eigenvalue ofminusΔwith the homogeneousNeumann conditionTherefore

|Ω| (1199061 (119905) minus 119906lowast

1)2

= intΩ

(1199061(119905) minus 119906

lowast

1)2

119889119909

= intΩ

(1199061(119905) minus 119906

1(119905 119909) + 119906

1(119905 119909) minus 119906

lowast

1)2

119889119909

le 2intΩ

(1199061(119905) minus 119906

1(119905 119909))

2

119889119909

+ 2intΩ

(1199061(119905 119909) minus 119906

lowast

1)2

119889119909

(41)

8 Abstract and Applied Analysis

So we have 1199061(119905) rarr 119906

lowast

1as 119905 rarr infin Similarly 119906

2(119905) rarr 119906

lowast

2

and 1199063(119905) rarr 119906

lowast

3as 119905 rarr infin According to (30) there exists

a subsequence 119905119898 and non-negative functions 119908

119894isin 1198622(Ω)

such thatlim119898rarrinfin

1003817100381710038171003817119906119894 (sdot 119905119898) minus 119908119894 (sdot)10038171003817100381710038171198622(Ω) = 0 (119894 = 1 2 3) (42)

Applying (40) and noting that 119906119894(119905) rarr 119906

lowast

119894 we then have119908

119894=

119906lowast

119894 (119894 = 1 2 3) That is

lim119898rarrinfin

1003817100381710038171003817119906119894 (sdot 119905119898) minus 119906lowast

119894

10038171003817100381710038171198622(Ω) = 0 (119894 = 1 2 3) (43)

Furthermore the local stability ofElowast combiningwith (43)gives the following global stability

Theorem 9 Assume that

11986751198861(11988621minus 1198862)

11989811198862

gt 11988611gt11988612Vlowast2

11989821

(44)

1198674and 119866

4hold and then the semi-trivial steady state 119864

2

of system (1)ndash(3) with non-trivial initial functions is globallyasymptotically stable

Proof It is obvious that system (1)ndash(3) always has two non-negative equilibria (119906

1 1199062 1199063) as follows 119864

0= (0 0 0) and

1198641= (119886111988611 0 0) If 119867

1and 119867

4are satisfied system (1) has

the other semitrivial solution denoted by 1198642(Vlowast1 Vlowast2 0) where

1198674 11988631198982gt (11988632minus 1198863) Vlowast

2 (45)

We consider the stability of 1198642under condition 119867

1and

1198674 Equation (1) can be rewritten as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus Vlowast

1) minus11988612(1199062minus Vlowast2)

1198981+ 1199061

+11988612Vlowast2(1199061minus Vlowast1)

(1198981+ 1199061) (1198981+ Vlowast1)]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus Vlowast

1)

(1198981+ 1199061(119904 119910)) (119898

1+ Vlowast1)119889119904 119889119910

minus11988622(1199062minus Vlowast

2) minus

119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus Vlowast

2)

(1198982+ 1199062(119904 119910)) (119898

2+ Vlowast2)119889119904 119889119910

minus119886331199063]

(46)

Similar to the argument ofTheorem 8 we have 1199061(119909 119905) rarr Vlowast

1

and 1199062(119909 119905) rarr Vlowast

2as 119905 rarr infin uniformly on Ω provided that

the following additional condition holds

1198663 119886111198982

1gt 11988612Vlowast

2

1198664 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821minus 11988612Vlowast2

(47)

Next we consider the asymptotic behavior of 1199063(119905 119909) Let

120579 =1198863minus (11988632minus 1198863) Vlowast2

2120575 120575 =

100381610038161003816100381611988632 minus 11988631003816100381610038161003816

(48)

Then there exists 1199051gt 0 such that

Vlowast

2minus 120579 lt 119906

2(119905 119909) lt V

lowast

2+ 120579 forall119905 gt 119905

1 119909 isin Ω (49)

Consider the following two systems

1199083119905minus 1198893Δ1199083= 1199083[minus1198863+11988632(Vlowast2+ 120579)

1198982+ Vlowast2+ 120579

minus 119886331199083]

(119905 119909) isin [1199051 +infin) times Ω

1205971199083

120597]= 0 (119905 119909) isin [119905

1 +infin) times 120597Ω

1199083= 1199063 (119905 119909) isin (minusinfin 119905

1] times Ω

1198823119905minus 1198893Δ1198823= 1198823[minus1198863+11988632(Vlowast2minus 120579)

1198982+ Vlowast2minus 120579

minus 11988633V3]

(119905 119909) isin [1199051 +infin) times Ω

1205971198823

120597]= 0 (119905 119909) isin [119905

1 +infin) times 120597Ω

1198823= 1199063 (119905 119909) isin (minusinfin 119905

1] times Ω

(50)

Combining comparison principle with (50) we obtain that

1198823(119905 119909) le 119906

3(119905 119909) le 119908

3(119905 119909) forall119905 gt 119905

1 119909 isin Ω (51)

By Lemma 4 we obtain

0 = lim119905rarrinfin

1198823(119905 119909) le inf 119906

3(119905 119909) le sup 119906

3(119905 119909)

le lim119905rarrinfin

1199083(119905 119909) = 0 forall119909 isin Ω

(52)

which implies that lim119905rarrinfin

1199063(119905 119909) = 0 uniformly onΩ

Theorem 10 Suppose that1198665and119866

6hold and then the semi-

trivial steady state 1198641of system (1)ndash(3) with non-trivial initial

functions is globally asymptotically stable

Abstract and Applied Analysis 9

Proof We study the stability of the semi-trivial solution 1198641=

(1 0 0) Similarly the equations in (1) can be written as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus 1) minus

119886121199062

1198981+ 1199061

]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[minus1198862+ intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus

1)

(1198981+ 1199061(119904 119910)) (119898

1+ 1)119889119904 119889119910

+119886211

1198981+ 1

minus 119886221199062minus119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[minus1198863+ intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321199062(119904 119910)

1198982+ 1199062(119904 119910)

119889119904 119889119910 minus 119886331199063]

(53)

Define

119881 (119905) = 120572intΩ

[1199061minus 1minus 1log 11990611

] 119889119909 + intΩ

1199062119889119909

+ 120573intΩ

1199063119889119909

(54)

Calculating the derivative of 119881(119905) along 1198641 we get from (54)

that

1198811015840(119905) le minusint

Ω

[120572(11988611minus119886121205981

1198981

)] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

412059821198982

minus11988621

411989811205983

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062+ 11988631199063] 119889119909

+119886211205983

1198981

intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times (1199061(119904 119910) minus

1)2

119889119904 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times 1199062

2(119904 119910) 119889119904 119889119910 119889119909

(55)

Define119864 (119905) = 119881 (119905)

+119886211205983

1198981

∬Ω

int

+infin

0

int

119905

119905minus119903

1198701(119909 119910 119903)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119903 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

+infin

0

int

119905

119905minus119903

1198702(119909 119910 119903)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119903 119889119910 119889119909

(56)

It is easy to see that

1198641015840(119905) le minus120572119889

11intΩ

1003816100381610038161003816nabla119906110038161003816100381610038162

11990621

119889119909

minus intΩ

[120572(11988611minus119886121205981

1198981

) minus119886211205983

1198981

] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632

411989821205984

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

minus119886321205731205984

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062minus 11988631205731199063] 119889119909

(57)

Assume that1198665 1198861(11988621minus 1198862) lt 119898

1119886211988611

1198666 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821

(58)

Let

1198971= 12057211988611minus120572119886121205981

1198981

minus119886211205983

1198981

1198972= 11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

1198973= 11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

(59)

Choose

120572 =11988621

11988612

120573 =11988623

11988632

1205981= 1205983=119886111198981

411988612

1205982= 1205984=119898211988633

411988632

(60)

Then we get 119897119894gt 0 (119894 = 1 2 3) Therefore we have

lim119905rarrinfin

1199061(119905 119909) =

1 (61)

uniformly onΩ

10 Abstract and Applied Analysis

tx

u1

02

46

8

01

23

40

1

2

3

4

(a)

02

46

8

01

23

40

1

2

3

4

t

x

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 2 Global stability of the positive equilibrium 119864lowast with an initial condition (1206011 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

Next we consider the asymptotic behavior of 1199062(119905 119909) and

1199063(119905 119909) For any 119879 gt 0 integrating (57) over [0 119879] yields

119864 (119879) + 1205721198891

10038171003817100381710038171003817100381710038171003817

10038161003816100381610038161003816100381610038161003816

nabla1199061

1199061

10038161003816100381610038161003816100381610038161003816

10038171003817100381710038171003817100381710038171003817

2

2

+ 1198971

100381710038171003817100381710038161003816100381610038161199061 minus 1

100381610038161003816100381610038171003817100381710038172

2

+ 1198972

100381710038171003817100381710038161003816100381610038161199062100381610038161003816100381610038171003817100381710038172

2+ 1198973

100381710038171003817100381710038161003816100381610038161199063100381610038161003816100381610038171003817100381710038172

2le 119864 (0)

(62)

where |119906119894|2

2= int119879

0intΩ1199062

119894119889119909 119889119905 It implies that |119906

119894|2le 119862119894(119894 =

2 3) for the constant 119862119894which is independent of 119879 Now we

consider the boundedness of |nabla1199062|2and |nabla119906

3|2 From the

Greenrsquos identity we obtain

1198892int

119879

0

intΩ

1003816100381610038161003816nabla1199062 (119905 119909)10038161003816100381610038162

119889119909 119889119905

= minus1198892int

119879

0

intΩ

1199062(119905 119909) Δ119906

2(119905 119909) 119889119909 119889119905

= minusint

119879

0

intΩ

1199062

1205971199062

120597119905119889119909 119889119905 minus 119886

2int

119879

0

intΩ

1199062

2119889119909 119889119905

minus 11988622int

119879

0

intΩ

1199063

2119889119909 119889119905 minus 119886

23int

119879

0

intΩ

1199062

21199063

1198982+ 1199063

119889119909 119889119905

+ 11988621int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

times 1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

(63)

Note that

int

119879

0

intΩ

1199062(119905 119909)

1205971199062(119905 119909)

120597119905119889119909 119889119905

= int

119879

0

intΩ

1

2

1205971199062

2

120597119905119889119905 119889119909

=1

2intΩ

1199062

2(119879 119909) 119889119909 minus

1

2intΩ

1199062

2(0 119909) 119889119909 le 119872

2

2|Ω|

int

119879

0

intΩ

1199062

21199063119889119909 119889119905 le 119872

3int

119879

0

intΩ

1199062

2119889119909 119889119905

Abstract and Applied Analysis 11

02

46

8

01

23

40

1

2

3

4

tx

u1

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 3 Global stability of the positive equilibrium 1198642with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

int

119879

0

intΩ

1199063

2119889119909 119889119905 le 119872

2int

119879

0

intΩ

1199062

2119889119909 119889119905

int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

le int

119879

0

intΩ

1199062

2(119905 119909) 119889119909 119889119905

(64)

Thus we get |nabla1199062|2le 1198624 In a similar way we have

|nabla1199063|2le 1198625 Here 119862

4and 119862

5are independent of 119879

It is easy to see that 1199062(119905 119909) 119906

3(119905 119909) isin 119871

2((0infin)

11988212(Ω)) These imply that

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)100381710038171003817100381711988212(Ω) = 0 119894 = 2 3 (65)

From the Sobolev compact embedding theorem we know

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)1003817100381710038171003817119862(Ω) = 0 119894 = 2 3 (66)

In the end we show that the trivial solution 1198640is an

unstable equilibrium Similarly to the local stability to 119864lowast wecan get the characteristic equation of 119864

0as

(120582 + 1205831198941198631minus 1198861) (120582 + 120583

1198941198632+ 1198862) (120582 + 120583

1198941198633+ 1198863) = 0 (67)

If 119894 = 1 then 1205831= 0 It is easy to see that this equation admits

a positive solution 120582 = 1198861 According to Theorem 51 in [23]

we have the following result

Theorem 11 The trivial equilibrium 1198640is an unstable equilib-

rium of system (1)ndash(3)

4 Numerical Illustrations

In this section we performnumerical simulations to illustratethe theoretical results given in Section 3

12 Abstract and Applied Analysis

u1

02

46

8

01

23

40

1

2

3

4

tx

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 4 Global stability of the positive equilibrium 1198641with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos119909 27 + 05 sin119909)

In the following we always take Ω = [0 120587] 119870119894(119909 119910 119905) =

119866119894(119909 119910 119905)119896

119894(119905) where 119896

119894(119905) = (1120591

lowast)119890minus119905120591lowast

(119894 = 1 2) and

1198661(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988921198992

119905 cos 119899119909 cos 119899119910

1198662(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988931198992

119905 cos 119899119909 cos 119899119910

(68)

However it is difficult for us to simulate our results directlybecause of the nonlocal term Similar to [25] the equationsin (1) can be rewritten as follows

1205971199061

120597119905minus 1198891Δ1199061= 1199061(1198861minus 119886111199061minus119886121199062

1198981+ 1199061

)

1205971199062

120597119905minus 1198892Δ1199062= 1199062(minus1198862+ 11988621V1minus 119886221199062minus119886231199063

1198982+ 1199063

)

1205971199063

120597119905minus 1198893Δ1199063= 1199063(minus1198863+ 11988632V2minus 119886331199063)

120597V1

120597119905minus 1198892ΔV1=1

120591lowast(

1199061

1198981+ 1199061

minus V1)

120597V2

120597119905minus 1198893ΔV2=1

120591lowast(

1199062

1198982+ 1199062

minus V2)

(69)

where

V119894= int

120587

0

int

119905

minusinfin

119866119894(119909 119910 119905 minus 119904)

1

120591lowast119890minus(119905minus119904)120591

lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(70)

Each component is considered with homogeneous Neumannboundary conditions and the initial condition of V

119894is

V119894(0 119909) = int

120587

0

int

0

minusinfin

119866119894(119909 119910 minus119904)

1

120591lowast119890119904120591lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(71)

Abstract and Applied Analysis 13

In the following examples we fix some coefficients andassume that 119889

1= 1198892= 1198893= 1 119886

1= 3 119886

12= 1 119898

1= 1198982=

1 1198862= 1 119886

22= 12 119886

23= 1 119886

33= 12 and 120591lowast = 1 The

asymptotic behaviors of system (1)ndash(3) are shownby choosingdifferent coefficients 119886

11 11988621 1198863 and 119886

32

Example 12 Let 11988611= 539 119886

21= 8113 119886

3= 113 and

11988632= 14Then it is easy to see that the system admits a unique

positive equilibrium 119864lowast(12 112 112) By Theorem 8 we

see that the positive solution (1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of

system (1)ndash(3) converges to 119864lowast as 119905 rarr infin See Figure 2

Example 13 Let 11988611

= 6 11988621

= 12 1198863= 14 and

11988632= 1 Clearly 119867

2does not hold Hence the positive

steady state is not feasible System (1) admits two semi-trivial steady state 119864

2(04732 02372 0) and 119864

1(12 0 0)

According to Theorem 9 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

2

as 119905 rarr infin See Figure 3

Example 14 Let 11988611= 6 119886

21= 2 119886

3= 14 and 119886

32= 1

Clearly1198671does not hold Hence 119864lowast and 119864

2are not feasible

System (1) has a unique semi-trivial steady state 1198641(12 0 0)

According to Theorem 10 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

1

as 119905 rarr infin See Figure 4

5 Discussion

In this paper we incorporate nonlocal delay into a three-species food chain model with Michaelis-Menten functionalresponse to represent a delay due to the gestation of the preda-tor The conditions under which the spatial homogeneousequilibria are asymptotically stable are given by using theLyapunov functional

We now summarize the ecological meanings of ourtheoretical results Firstly the positive equilibrium 119864

lowast ofsystem (1)ndash(3) exists under the high birth rate of the prey(1198861) and low death rates (119886

2and 119886

3) of predator and top

predator 119864lowast is globally stable if the intraspecific competition11988611is neither too big nor too small and the maximum harvest

rates 11988612 11988623

are small enough Secondly the semi-trivialequilibrium 119864

2of system (1)ndash(3) exists if the birth rate of the

prey (1198861) is high death rate of predator 119886

2is low and the death

rate (1198863) exceeds the conversion rate from predator to top

predator (11988632) 1198642is globally stable if the maximum harvest

rates 11988612 11988623are small and the intra-specific competition 119886

11

is neither too big nor too small Thirdly system (1)ndash(3) hasonly one semi-trivial equilibrium 119864

1when the death rate (119886

2)

exceeds the conversion rate from prey to predator (11988621) 1198641

is globally stable if intra-specific competitions (11988611 11988622 and

11988633) are strong Finally 119864

0is unstable and the non-stability of

trivial equilibrium tells us that not all of the populations goto extinction Furthermore our main results imply that thenonlocal delay is harmless for stabilities of all non-negativesteady states of system (1)ndash(3)

There are still many interesting and challenging problemswith respect to system (1)ndash(3) for example the permanence

and stability of periodic solution or almost periodic solutionThese problems are clearly worthy for further investigations

Acknowledgments

This work is partially supported by PRC Grants NSFC11102076 and 11071209 andNSF of theHigher Education Insti-tutions of Jiangsu Province (12KJD110002 and 12KJD110008)

References

[1] R Xu and M A J Chaplain ldquoPersistence and global stabilityin a delayed predator-prey system with Michaelis-Menten typefunctional responserdquo Applied Mathematics and Computationvol 130 no 2-3 pp 441ndash455 2002

[2] H F Huo andW T Li ldquoPeriodic solution of a delayed predator-prey system with Michaelis-Menten type functional responserdquoJournal of Computational and AppliedMathematics vol 166 no2 pp 453ndash463 2004

[3] Z Lin and M Pedersen ldquoStability in a diffusive food-chainmodel with Michaelis-Menten functional responserdquo NonlinearAnalysis Theory Methods amp Applications vol 57 no 3 pp 421ndash433 2004

[4] B X Dai N Zhang and J Z Zou ldquoPermanence for theMichaelis-Menten type discrete three-species ratio-dependentfood chain model with delayrdquo Journal of Mathematical Analysisand Applications vol 324 no 1 pp 728ndash738 2006

[5] N F Britton ldquoSpatial structures and periodic travelling wavesin an integro-differential reaction-diffusion population modelrdquoSIAM Journal on Applied Mathematics vol 50 no 6 pp 1663ndash1688 1990

[6] S A Gourley and N F Britton ldquoInstability of travelling wavesolutions of a population model with nonlocal effectsrdquo IMAJournal of Applied Mathematics vol 51 no 3 pp 299ndash310 1993

[7] X Zhang and R Xu ldquoTraveling waves of a diffusive predator-prey model with nonlocal delay and stage structurerdquo Journal ofMathematical Analysis and Applications vol 373 no 2 pp 475ndash484 2011

[8] Z C Wang W T Li and S G Ruan ldquoExistence and stability oftraveling wave fronts in reaction advection diffusion equationswith nonlocal delayrdquo Journal of Differential Equations vol 238no 1 pp 153ndash200 2007

[9] S A Gourley and S G Ruan ldquoConvergence and travellingfronts in functional differential equations with nonlocal termsa competition modelrdquo SIAM Journal on Mathematical Analysisvol 35 no 3 pp 806ndash822 2003

[10] X H Lai and T X Yao ldquoExponential stability of impul-sive delayed reaction-diffusion cellular neural networks viaPoincare integral inequalityrdquoAbstract and Applied Analysis vol2013 Article ID 131836 10 pages 2013

[11] R Xu and Z E Ma ldquoGlobal stability of a reaction-diffusionpredator-prey model with a nonlocal delayrdquo Mathematical andComputer Modelling vol 50 no 1-2 pp 194ndash206 2009

[12] Z Li F D Chen and M X He ldquoAsymptotic behavior of thereaction-diffusion model of plankton allelopathy with nonlocaldelaysrdquo Nonlinear Analysis Real World Applications vol 12 no3 pp 1748ndash1758 2011

[13] Y Kuang and H L Smith ldquoGlobal stability in diffusive delayLotka-Volterra systemsrdquoDifferential and Integral Equations vol4 no 1 pp 117ndash128 1991

14 Abstract and Applied Analysis

[14] Z G Lin M Pedersen and L Zhang ldquoA predator-prey systemwith stage-structure for predator and nonlocal delayrdquoNonlinearAnalysis Theory Methods amp Applications vol 72 no 3-4 pp2019ndash2030 2010

[15] R Xu ldquoA reaction-diffusion predator-prey model with stagestructure and nonlocal delayrdquo Applied Mathematics and Com-putation vol 175 no 2 pp 984ndash1006 2006

[16] S S Chen and J P Shi ldquoStability and Hopf bifurcation in adiffusive logistic population model with nonlocal delay effectrdquoJournal of Differential Equations vol 253 no 12 pp 3440ndash34702012

[17] H I Freedman Deterministic Mathematical Models in Popula-tion Ecology vol 57 of Monographs and Textbooks in Pure andAppliedMathematicsMarcelDekker NewYorkNYUSA 1980

[18] P A Abrams and L R Ginzburg ldquoThe nature of predation preydepedent ratio dependent or neitherrdquo Trends in Ecology andEvolution vol 15 no 8 pp 337ndash341 2000

[19] D L DeAngelis R A Goldstein and R V OrsquoNeill ldquoA modelfor trophic iterationrdquo Ecology vol 56 no 4 pp 881ndash892 1975

[20] C V Pao ldquoDynamics of nonlinear parabolic systems with timedelaysrdquo Journal of Mathematical Analysis and Applications vol198 no 3 pp 751ndash779 1996

[21] F Xu Y Hou and Z G Lin ldquoTime delay parabolic system ina predator-prey model with stage structurerdquo Acta MathematicaSinica vol 48 no 6 pp 1121ndash1130 2005 (Chinese)

[22] P Y H Pang and M X Wang ldquoStrategy and stationary patternin a three-species predator-prey modelrdquo Journal of DifferentialEquations vol 200 no 2 pp 245ndash273 2004

[23] D Henry Geometric Theory of Semilinear Parabolic Equationsvol 840 of Lecture Notes in Mathematics Springer New YorkNY USA 1981

[24] K J Brown P C Dunne and R A Gardner ldquoA semilinearparabolic system arising in the theory of superconductivityrdquoJournal of Differential Equations vol 40 no 2 pp 232ndash252 1981

[25] S A Gourley and J W H So ldquoDynamics of a food-limitedpopulation model incorporating nonlocal delays on a finitedomainrdquo Journal of Mathematical Biology vol 44 no 1 pp 49ndash78 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays WenzhenGan, 1 CanrongTian,

Abstract and Applied Analysis 5

120593119894(120582) = 120582

3+ 1198601198941205822+ 119861119894120582 + 119862

119894= 0 where 119860

119894 119861119894 and 119862

119894are

defined as follows

119860119894= (1198891+ 1198892+ 1198893) 120583119894minus 11988711minus 11988722minus 11988733

119861119894= (11988911198892+ 11988921198893+ 11988931198891) 1205832

119894

+ [1198893(minus11988711minus 11988722) + 1198891(minus11988733minus 11988722)

+1198892(minus11988711minus 11988733)] 120583119894

+ 1198871111988722+ 1198871111988733+ 1198872211988733

minus 1198871211988721int

infin

0

1198961(119904) 119890minus120582119904119889119904 minus 119887

2311988732int

infin

0

1198962(119904) 119890minus120582119904119889119904

119862119894= 1198891119889211988931205833

119894+ [minus1198873311988911198892minus 1198871111988921198893minus 1198872211988911198893] 1205832

119894

+ [11988711119887221198893+ 11988711119887331198892+ 11988722119887331198891+ 11988722119887331198891

minus 11988931198871211988721int

infin

0

1198961(119904) 119890minus120582119904119889119904

minus11988911198872311988732int

infin

0

1198962(119904) 119890minus120582119904119889119904] 120583119894

+ [minus119887111198872211988733+ 119887121198872111988733int

infin

0

1198961(119904) 119890minus120582119904119889119904

+119887111198872311988732int

infin

0

1198962(119904) 119890minus120582119904119889119904]

(19)

It is easy to see that 11988712 11988723 11988733lt 0 and 119887

21 11988732gt 0 It

follows from assumption 1198661and 119866

2that 119886

11lt 0 119886

22lt 0

So 119860119894gt 0 119861

119894gt 0 119862

119894gt 0 and 119860

119894119861119894minus 119862119894gt 0 for 119894 ge 1

from the direct calculation According to the Routh-Hurwitzcriterion the three roots 120582

1198941 1205821198942 1205821198943

of 120593119894(120582) = 0 all have

negative real partsBy continuity of the roots with respect to 120583

119894and Routh-

Hurwitz criterion we can conclude that there exists a positiveconstant 120576 such that

Re 1205821198941 Re 120582

1198942 Re 120582

1198943 le minus120576 119894 ge 1 (20)

Consequently the spectrum of 119871 consisting only of eigen-values lies in Re 120582 le minus120576 It is easy to see that Elowast islocally asymptotically stable and follows fromTheorem 511of [23]

Theorem 8 Assume that

11986731198861(11988621minus 1198862)

11989811198862

gt 11988611gt11988612119906lowast

2

11989821

(21)

1198672and 119866

2hold and the positive steady state 119864lowast of system (1)ndash

(3) with nontrivial initial function is globally asymptoticallystable

Proof It is easy to see that the equations in (1) can be rewrittenas

1205971199061

120597119905minus 1198891Δ1199061= 1199061[ minus 11988611(1199061minus 119906lowast

1)

minus11988612(1199062minus 119906lowast

2)

1198981+ 1199061

+11988612119906lowast

2(1199061minus 119906lowast

1)

(1198981+ 1199061) (1198981+ 119906lowast1)]

1205971199062

120597119905minus 1198892Δ1199062= 1199062[intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus 119906

lowast

1)

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)119889119904 119889119910

minus 11988622(1199062minus 119906lowast

2) minus11988623(1199063minus 119906lowast

3)

1198982+ 1199062

+11988623119906lowast

3(1199062minus 119906lowast

2)

(1198982+ 1199062) (1198982+ 119906lowast2)]

1205971199063

120597119905minus 1198893Δ1199063= 1199063[intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus 119906

lowast

2)

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)119889119904 119889119910

minus11988633(1199063minus 119906lowast

3) ]

(22)

Define

119881 (119905) = 120572intΩ

(1199061minus 119906lowast

1minus 119906lowast

1ln 1199061119906lowast1

)119889119909

+ intΩ

(1199062minus 119906lowast

2minus 119906lowast

2ln 1199062119906lowast2

)119889119909

+ 120573intΩ

(1199062minus 119906lowast

3minus 119906lowast

3ln1199063

119906lowast3

)119889119909

(23)

where 120572 and 120573 are positive constants to be determinedCalculating the derivatives 119881(119905) along the positive solutionto the system (1)ndash(3) yields

1198811015840(119905) = Φ

1(119905) + Φ

2(119905) (24)

where

Φ1(119905) = minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

6 Abstract and Applied Analysis

Φ2(119905) = minusint

Ω

120572[11988611minus

11988612119906lowast

2

(1198981+ 1199061) (1198981+ 119906lowast1)] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

[11988622minus

11988623119906lowast

3

(1198982+ 1199062) (1198982+ 119906lowast2)] (1199062minus 119906lowast

2)2

119889119909

minus intΩ

11988633120573(1199063minus 119906lowast

3)2

119889119909

minus intΩ

11988623(1199063minus 119906lowast

3) (1199062minus 119906lowast

2)

1198982+ 1199062

119889119909

minus intΩ

12057211988612(1199062minus 119906lowast

2) (1199061minus 119906lowast

1)

1198981+ 1199061

119889119909

+∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus 119906

lowast

1) (1199062(119905 119909) minus 119906

lowast

2)

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)

119889119904 119889119910 119889119909

+ 120573∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus 119906

lowast

2) (1199063(119905 119909) minus 119906

lowast

3)

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)

119889119904 119889119910 119889119909

(25)

Applying the inequality 119886119887 le 1205981198862 + (14120598)1198872 we derive from(25) that

Φ2(119905) le minusint

Ω

120572[11988611minus

11988612119906lowast

2

(1198981+ 1199061) (1198981+ 119906lowast1)] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

11988633120573(1199063minus 119906lowast

3)2

119889119909

minus intΩ

[11988622minus

11988623119906lowast

3

(1198982+ 1199062) (1198982+ 119906lowast2)] (1199062minus 119906lowast

2)2

119889119909

+ intΩ

12057211988612

1198981+ 1199061

[1205981(1199061minus 119906lowast

1)2

+1

41205981

(1199062minus 119906lowast

2)2

] 119889119909

+ intΩ

11988623

1198982+ 1199062

[1

41205982

(1199062minus 119906lowast

2)2

+ 1205982(1199063minus 119906lowast

3)2

] 119889119909

+∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)

times [1205983(1199061(119904 119910) minus 119906

lowast

1)2

+1

41205983

(1199062(119905 119909) minus 119906

lowast

2)2

] 119889119904 119889119910 119889119909

+∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321205731198982

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)

times [1

41205984

(1199062(119904 119910) minus 119906

lowast

2)2

+1205984(1199063(119905 119909) minus 119906

lowast

3)2

] 119889119904 119889119910 119889119909

(26)

According to the property of the Kernel functions119870119894(119909 119910 119905)

(119894 = 1 2) we know that

Φ2(119905) le minusint

Ω

[12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

[11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

] (1199062minus 119906lowast

2)2

119889119909

minus intΩ

[11988633120573 minus

119886231205982

1198982

minus119886321205731205984

1198982

] (1199063minus 119906lowast

3)2

119889119909

+119886211205983

1198981

∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119910 119889119909

+11988632120573

411989821205984

∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119910 119889119909

(27)

Define a new Lyapunov functional as follows

119864 (119905) = 119881 (119905)

+119886211205983

1198981

∬Ω

int

+infin

0

int

119905

119905minus119903

1198701(119909 119910 119903)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119903 119889119910 119889119909

+11988632120573

411989821205984

∬Ω

int

+infin

0

int

119905

119905minus119903

1198702(119909 119910 119903)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119903 119889119910 119889119909

(28)

Abstract and Applied Analysis 7

It is derived from (27) and (28) that

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

minus [12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

minus119886211205983

1198981

]intΩ

(1199061minus 119906lowast

1)2

119889119909

minus [11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

]intΩ

(1199062minus 119906lowast

2)2

119889119909

minus [11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

]intΩ

(1199063minus 119906lowast

3)2

119889119909

(29)

Since (1199061 1199062 1199063) is the unique positive solution of system (1)

Using Proposition 5 there exists a constant119862which does notdepend on119909 isin Ω or 119905 ge 0 such that 119906

119894(sdot 119905)infinle 119862 (119894 = 1 2 3)

for 119905 ge 0 By Theorem 1198602in [24] we have

1003817100381710038171003817119906119894 (sdot 119905)10038171003817100381710038171198622120572(Ω) le 119862 forall119905 ge 1 (30)

Assume that

1198661 119886111198982

1gt 11988612119906lowast

2

1198662 119886221198982

2gt 11988623119906lowast

3+21198862311988632

11988633

+211988612119886211198982

2

1198861111989821minus 11988612119906lowast2

(31)

and denote

1198971= 12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

minus119886211205983

1198981

1198972= 11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

1198973= 11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

(32)

Then (29) is transformed into

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

minus

3

sum

119894=1

119897119894intΩ

(119906119894minus 119906lowast

119894)2

119889119909

(33)

If we choose

120572 =11988621

11988612

120573 =11988623

11988632

1205981= 1205983=119886111198982

1minus 11988612119906lowast

2

4119898111988612

1205982= 1205984=119898211988633

411988632

(34)

then 119897119894gt 0 (119894 = 1 2 3) Therefore we have

1198641015840(119905) le minus

3

sum

119894=1

119897119894intΩ

(119906119894minus 119906lowast

119894)2

119889119909 (35)

FromProposition 6 we can see that the solution of system(1) and (3) is bounded and so are the derivatives of (119906

119894minus 119906lowast

119894)

(119894 = 1 2 3) by the equations in (1) Applying Lemma 1 weobtain that

lim119905rarrinfin

intΩ

(119906119894minus 119906lowast

119894) 119889119909 = 0 (119894 = 1 2 3) (36)

Recomputing 1198641015840(119905) gives

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

le minus119888intΩ

(1003816100381610038161003816nabla1199061

10038161003816100381610038162

+1003816100381610038161003816nabla1199062

10038161003816100381610038162

+1003816100381610038161003816nabla1199063

10038161003816100381610038162

) 119889119909 = minus119892 (119905)

(37)

where 119888 = min1205721198891119906lowast

11198722

1 1198892119906lowast

21198722

2 1205731198893119906lowast

311987223 Using (30)

and (1) we obtain that the derivative of 119892(119905) is bounded in[1 +infin) From Lemma 1 we conclude that 119892(119905) rarr 0 as 119905 rarrinfin Therefore

lim119905rarrinfin

intΩ

(1003816100381610038161003816nabla1199061

10038161003816100381610038162

+1003816100381610038161003816nabla1199062

10038161003816100381610038162

+1003816100381610038161003816nabla1199063

10038161003816100381610038162

) 119889119909 = 0 (38)

Applying the Poincare inequality

intΩ

120582|119906 minus 119906|2119889119909 le int

Ω

|nabla119906|2119889119909 (39)

leads to

lim119905rarrinfin

intΩ

(119906119894minus 119906119894)2

119889119909 = 0 (119894 = 1 2 3) (40)

where 119906119894= (1|Ω|) int

Ω119906119894119889119909 and 120582 is the smallest positive

eigenvalue ofminusΔwith the homogeneousNeumann conditionTherefore

|Ω| (1199061 (119905) minus 119906lowast

1)2

= intΩ

(1199061(119905) minus 119906

lowast

1)2

119889119909

= intΩ

(1199061(119905) minus 119906

1(119905 119909) + 119906

1(119905 119909) minus 119906

lowast

1)2

119889119909

le 2intΩ

(1199061(119905) minus 119906

1(119905 119909))

2

119889119909

+ 2intΩ

(1199061(119905 119909) minus 119906

lowast

1)2

119889119909

(41)

8 Abstract and Applied Analysis

So we have 1199061(119905) rarr 119906

lowast

1as 119905 rarr infin Similarly 119906

2(119905) rarr 119906

lowast

2

and 1199063(119905) rarr 119906

lowast

3as 119905 rarr infin According to (30) there exists

a subsequence 119905119898 and non-negative functions 119908

119894isin 1198622(Ω)

such thatlim119898rarrinfin

1003817100381710038171003817119906119894 (sdot 119905119898) minus 119908119894 (sdot)10038171003817100381710038171198622(Ω) = 0 (119894 = 1 2 3) (42)

Applying (40) and noting that 119906119894(119905) rarr 119906

lowast

119894 we then have119908

119894=

119906lowast

119894 (119894 = 1 2 3) That is

lim119898rarrinfin

1003817100381710038171003817119906119894 (sdot 119905119898) minus 119906lowast

119894

10038171003817100381710038171198622(Ω) = 0 (119894 = 1 2 3) (43)

Furthermore the local stability ofElowast combiningwith (43)gives the following global stability

Theorem 9 Assume that

11986751198861(11988621minus 1198862)

11989811198862

gt 11988611gt11988612Vlowast2

11989821

(44)

1198674and 119866

4hold and then the semi-trivial steady state 119864

2

of system (1)ndash(3) with non-trivial initial functions is globallyasymptotically stable

Proof It is obvious that system (1)ndash(3) always has two non-negative equilibria (119906

1 1199062 1199063) as follows 119864

0= (0 0 0) and

1198641= (119886111988611 0 0) If 119867

1and 119867

4are satisfied system (1) has

the other semitrivial solution denoted by 1198642(Vlowast1 Vlowast2 0) where

1198674 11988631198982gt (11988632minus 1198863) Vlowast

2 (45)

We consider the stability of 1198642under condition 119867

1and

1198674 Equation (1) can be rewritten as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus Vlowast

1) minus11988612(1199062minus Vlowast2)

1198981+ 1199061

+11988612Vlowast2(1199061minus Vlowast1)

(1198981+ 1199061) (1198981+ Vlowast1)]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus Vlowast

1)

(1198981+ 1199061(119904 119910)) (119898

1+ Vlowast1)119889119904 119889119910

minus11988622(1199062minus Vlowast

2) minus

119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus Vlowast

2)

(1198982+ 1199062(119904 119910)) (119898

2+ Vlowast2)119889119904 119889119910

minus119886331199063]

(46)

Similar to the argument ofTheorem 8 we have 1199061(119909 119905) rarr Vlowast

1

and 1199062(119909 119905) rarr Vlowast

2as 119905 rarr infin uniformly on Ω provided that

the following additional condition holds

1198663 119886111198982

1gt 11988612Vlowast

2

1198664 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821minus 11988612Vlowast2

(47)

Next we consider the asymptotic behavior of 1199063(119905 119909) Let

120579 =1198863minus (11988632minus 1198863) Vlowast2

2120575 120575 =

100381610038161003816100381611988632 minus 11988631003816100381610038161003816

(48)

Then there exists 1199051gt 0 such that

Vlowast

2minus 120579 lt 119906

2(119905 119909) lt V

lowast

2+ 120579 forall119905 gt 119905

1 119909 isin Ω (49)

Consider the following two systems

1199083119905minus 1198893Δ1199083= 1199083[minus1198863+11988632(Vlowast2+ 120579)

1198982+ Vlowast2+ 120579

minus 119886331199083]

(119905 119909) isin [1199051 +infin) times Ω

1205971199083

120597]= 0 (119905 119909) isin [119905

1 +infin) times 120597Ω

1199083= 1199063 (119905 119909) isin (minusinfin 119905

1] times Ω

1198823119905minus 1198893Δ1198823= 1198823[minus1198863+11988632(Vlowast2minus 120579)

1198982+ Vlowast2minus 120579

minus 11988633V3]

(119905 119909) isin [1199051 +infin) times Ω

1205971198823

120597]= 0 (119905 119909) isin [119905

1 +infin) times 120597Ω

1198823= 1199063 (119905 119909) isin (minusinfin 119905

1] times Ω

(50)

Combining comparison principle with (50) we obtain that

1198823(119905 119909) le 119906

3(119905 119909) le 119908

3(119905 119909) forall119905 gt 119905

1 119909 isin Ω (51)

By Lemma 4 we obtain

0 = lim119905rarrinfin

1198823(119905 119909) le inf 119906

3(119905 119909) le sup 119906

3(119905 119909)

le lim119905rarrinfin

1199083(119905 119909) = 0 forall119909 isin Ω

(52)

which implies that lim119905rarrinfin

1199063(119905 119909) = 0 uniformly onΩ

Theorem 10 Suppose that1198665and119866

6hold and then the semi-

trivial steady state 1198641of system (1)ndash(3) with non-trivial initial

functions is globally asymptotically stable

Abstract and Applied Analysis 9

Proof We study the stability of the semi-trivial solution 1198641=

(1 0 0) Similarly the equations in (1) can be written as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus 1) minus

119886121199062

1198981+ 1199061

]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[minus1198862+ intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus

1)

(1198981+ 1199061(119904 119910)) (119898

1+ 1)119889119904 119889119910

+119886211

1198981+ 1

minus 119886221199062minus119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[minus1198863+ intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321199062(119904 119910)

1198982+ 1199062(119904 119910)

119889119904 119889119910 minus 119886331199063]

(53)

Define

119881 (119905) = 120572intΩ

[1199061minus 1minus 1log 11990611

] 119889119909 + intΩ

1199062119889119909

+ 120573intΩ

1199063119889119909

(54)

Calculating the derivative of 119881(119905) along 1198641 we get from (54)

that

1198811015840(119905) le minusint

Ω

[120572(11988611minus119886121205981

1198981

)] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

412059821198982

minus11988621

411989811205983

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062+ 11988631199063] 119889119909

+119886211205983

1198981

intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times (1199061(119904 119910) minus

1)2

119889119904 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times 1199062

2(119904 119910) 119889119904 119889119910 119889119909

(55)

Define119864 (119905) = 119881 (119905)

+119886211205983

1198981

∬Ω

int

+infin

0

int

119905

119905minus119903

1198701(119909 119910 119903)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119903 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

+infin

0

int

119905

119905minus119903

1198702(119909 119910 119903)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119903 119889119910 119889119909

(56)

It is easy to see that

1198641015840(119905) le minus120572119889

11intΩ

1003816100381610038161003816nabla119906110038161003816100381610038162

11990621

119889119909

minus intΩ

[120572(11988611minus119886121205981

1198981

) minus119886211205983

1198981

] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632

411989821205984

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

minus119886321205731205984

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062minus 11988631205731199063] 119889119909

(57)

Assume that1198665 1198861(11988621minus 1198862) lt 119898

1119886211988611

1198666 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821

(58)

Let

1198971= 12057211988611minus120572119886121205981

1198981

minus119886211205983

1198981

1198972= 11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

1198973= 11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

(59)

Choose

120572 =11988621

11988612

120573 =11988623

11988632

1205981= 1205983=119886111198981

411988612

1205982= 1205984=119898211988633

411988632

(60)

Then we get 119897119894gt 0 (119894 = 1 2 3) Therefore we have

lim119905rarrinfin

1199061(119905 119909) =

1 (61)

uniformly onΩ

10 Abstract and Applied Analysis

tx

u1

02

46

8

01

23

40

1

2

3

4

(a)

02

46

8

01

23

40

1

2

3

4

t

x

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 2 Global stability of the positive equilibrium 119864lowast with an initial condition (1206011 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

Next we consider the asymptotic behavior of 1199062(119905 119909) and

1199063(119905 119909) For any 119879 gt 0 integrating (57) over [0 119879] yields

119864 (119879) + 1205721198891

10038171003817100381710038171003817100381710038171003817

10038161003816100381610038161003816100381610038161003816

nabla1199061

1199061

10038161003816100381610038161003816100381610038161003816

10038171003817100381710038171003817100381710038171003817

2

2

+ 1198971

100381710038171003817100381710038161003816100381610038161199061 minus 1

100381610038161003816100381610038171003817100381710038172

2

+ 1198972

100381710038171003817100381710038161003816100381610038161199062100381610038161003816100381610038171003817100381710038172

2+ 1198973

100381710038171003817100381710038161003816100381610038161199063100381610038161003816100381610038171003817100381710038172

2le 119864 (0)

(62)

where |119906119894|2

2= int119879

0intΩ1199062

119894119889119909 119889119905 It implies that |119906

119894|2le 119862119894(119894 =

2 3) for the constant 119862119894which is independent of 119879 Now we

consider the boundedness of |nabla1199062|2and |nabla119906

3|2 From the

Greenrsquos identity we obtain

1198892int

119879

0

intΩ

1003816100381610038161003816nabla1199062 (119905 119909)10038161003816100381610038162

119889119909 119889119905

= minus1198892int

119879

0

intΩ

1199062(119905 119909) Δ119906

2(119905 119909) 119889119909 119889119905

= minusint

119879

0

intΩ

1199062

1205971199062

120597119905119889119909 119889119905 minus 119886

2int

119879

0

intΩ

1199062

2119889119909 119889119905

minus 11988622int

119879

0

intΩ

1199063

2119889119909 119889119905 minus 119886

23int

119879

0

intΩ

1199062

21199063

1198982+ 1199063

119889119909 119889119905

+ 11988621int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

times 1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

(63)

Note that

int

119879

0

intΩ

1199062(119905 119909)

1205971199062(119905 119909)

120597119905119889119909 119889119905

= int

119879

0

intΩ

1

2

1205971199062

2

120597119905119889119905 119889119909

=1

2intΩ

1199062

2(119879 119909) 119889119909 minus

1

2intΩ

1199062

2(0 119909) 119889119909 le 119872

2

2|Ω|

int

119879

0

intΩ

1199062

21199063119889119909 119889119905 le 119872

3int

119879

0

intΩ

1199062

2119889119909 119889119905

Abstract and Applied Analysis 11

02

46

8

01

23

40

1

2

3

4

tx

u1

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 3 Global stability of the positive equilibrium 1198642with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

int

119879

0

intΩ

1199063

2119889119909 119889119905 le 119872

2int

119879

0

intΩ

1199062

2119889119909 119889119905

int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

le int

119879

0

intΩ

1199062

2(119905 119909) 119889119909 119889119905

(64)

Thus we get |nabla1199062|2le 1198624 In a similar way we have

|nabla1199063|2le 1198625 Here 119862

4and 119862

5are independent of 119879

It is easy to see that 1199062(119905 119909) 119906

3(119905 119909) isin 119871

2((0infin)

11988212(Ω)) These imply that

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)100381710038171003817100381711988212(Ω) = 0 119894 = 2 3 (65)

From the Sobolev compact embedding theorem we know

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)1003817100381710038171003817119862(Ω) = 0 119894 = 2 3 (66)

In the end we show that the trivial solution 1198640is an

unstable equilibrium Similarly to the local stability to 119864lowast wecan get the characteristic equation of 119864

0as

(120582 + 1205831198941198631minus 1198861) (120582 + 120583

1198941198632+ 1198862) (120582 + 120583

1198941198633+ 1198863) = 0 (67)

If 119894 = 1 then 1205831= 0 It is easy to see that this equation admits

a positive solution 120582 = 1198861 According to Theorem 51 in [23]

we have the following result

Theorem 11 The trivial equilibrium 1198640is an unstable equilib-

rium of system (1)ndash(3)

4 Numerical Illustrations

In this section we performnumerical simulations to illustratethe theoretical results given in Section 3

12 Abstract and Applied Analysis

u1

02

46

8

01

23

40

1

2

3

4

tx

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 4 Global stability of the positive equilibrium 1198641with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos119909 27 + 05 sin119909)

In the following we always take Ω = [0 120587] 119870119894(119909 119910 119905) =

119866119894(119909 119910 119905)119896

119894(119905) where 119896

119894(119905) = (1120591

lowast)119890minus119905120591lowast

(119894 = 1 2) and

1198661(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988921198992

119905 cos 119899119909 cos 119899119910

1198662(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988931198992

119905 cos 119899119909 cos 119899119910

(68)

However it is difficult for us to simulate our results directlybecause of the nonlocal term Similar to [25] the equationsin (1) can be rewritten as follows

1205971199061

120597119905minus 1198891Δ1199061= 1199061(1198861minus 119886111199061minus119886121199062

1198981+ 1199061

)

1205971199062

120597119905minus 1198892Δ1199062= 1199062(minus1198862+ 11988621V1minus 119886221199062minus119886231199063

1198982+ 1199063

)

1205971199063

120597119905minus 1198893Δ1199063= 1199063(minus1198863+ 11988632V2minus 119886331199063)

120597V1

120597119905minus 1198892ΔV1=1

120591lowast(

1199061

1198981+ 1199061

minus V1)

120597V2

120597119905minus 1198893ΔV2=1

120591lowast(

1199062

1198982+ 1199062

minus V2)

(69)

where

V119894= int

120587

0

int

119905

minusinfin

119866119894(119909 119910 119905 minus 119904)

1

120591lowast119890minus(119905minus119904)120591

lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(70)

Each component is considered with homogeneous Neumannboundary conditions and the initial condition of V

119894is

V119894(0 119909) = int

120587

0

int

0

minusinfin

119866119894(119909 119910 minus119904)

1

120591lowast119890119904120591lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(71)

Abstract and Applied Analysis 13

In the following examples we fix some coefficients andassume that 119889

1= 1198892= 1198893= 1 119886

1= 3 119886

12= 1 119898

1= 1198982=

1 1198862= 1 119886

22= 12 119886

23= 1 119886

33= 12 and 120591lowast = 1 The

asymptotic behaviors of system (1)ndash(3) are shownby choosingdifferent coefficients 119886

11 11988621 1198863 and 119886

32

Example 12 Let 11988611= 539 119886

21= 8113 119886

3= 113 and

11988632= 14Then it is easy to see that the system admits a unique

positive equilibrium 119864lowast(12 112 112) By Theorem 8 we

see that the positive solution (1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of

system (1)ndash(3) converges to 119864lowast as 119905 rarr infin See Figure 2

Example 13 Let 11988611

= 6 11988621

= 12 1198863= 14 and

11988632= 1 Clearly 119867

2does not hold Hence the positive

steady state is not feasible System (1) admits two semi-trivial steady state 119864

2(04732 02372 0) and 119864

1(12 0 0)

According to Theorem 9 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

2

as 119905 rarr infin See Figure 3

Example 14 Let 11988611= 6 119886

21= 2 119886

3= 14 and 119886

32= 1

Clearly1198671does not hold Hence 119864lowast and 119864

2are not feasible

System (1) has a unique semi-trivial steady state 1198641(12 0 0)

According to Theorem 10 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

1

as 119905 rarr infin See Figure 4

5 Discussion

In this paper we incorporate nonlocal delay into a three-species food chain model with Michaelis-Menten functionalresponse to represent a delay due to the gestation of the preda-tor The conditions under which the spatial homogeneousequilibria are asymptotically stable are given by using theLyapunov functional

We now summarize the ecological meanings of ourtheoretical results Firstly the positive equilibrium 119864

lowast ofsystem (1)ndash(3) exists under the high birth rate of the prey(1198861) and low death rates (119886

2and 119886

3) of predator and top

predator 119864lowast is globally stable if the intraspecific competition11988611is neither too big nor too small and the maximum harvest

rates 11988612 11988623

are small enough Secondly the semi-trivialequilibrium 119864

2of system (1)ndash(3) exists if the birth rate of the

prey (1198861) is high death rate of predator 119886

2is low and the death

rate (1198863) exceeds the conversion rate from predator to top

predator (11988632) 1198642is globally stable if the maximum harvest

rates 11988612 11988623are small and the intra-specific competition 119886

11

is neither too big nor too small Thirdly system (1)ndash(3) hasonly one semi-trivial equilibrium 119864

1when the death rate (119886

2)

exceeds the conversion rate from prey to predator (11988621) 1198641

is globally stable if intra-specific competitions (11988611 11988622 and

11988633) are strong Finally 119864

0is unstable and the non-stability of

trivial equilibrium tells us that not all of the populations goto extinction Furthermore our main results imply that thenonlocal delay is harmless for stabilities of all non-negativesteady states of system (1)ndash(3)

There are still many interesting and challenging problemswith respect to system (1)ndash(3) for example the permanence

and stability of periodic solution or almost periodic solutionThese problems are clearly worthy for further investigations

Acknowledgments

This work is partially supported by PRC Grants NSFC11102076 and 11071209 andNSF of theHigher Education Insti-tutions of Jiangsu Province (12KJD110002 and 12KJD110008)

References

[1] R Xu and M A J Chaplain ldquoPersistence and global stabilityin a delayed predator-prey system with Michaelis-Menten typefunctional responserdquo Applied Mathematics and Computationvol 130 no 2-3 pp 441ndash455 2002

[2] H F Huo andW T Li ldquoPeriodic solution of a delayed predator-prey system with Michaelis-Menten type functional responserdquoJournal of Computational and AppliedMathematics vol 166 no2 pp 453ndash463 2004

[3] Z Lin and M Pedersen ldquoStability in a diffusive food-chainmodel with Michaelis-Menten functional responserdquo NonlinearAnalysis Theory Methods amp Applications vol 57 no 3 pp 421ndash433 2004

[4] B X Dai N Zhang and J Z Zou ldquoPermanence for theMichaelis-Menten type discrete three-species ratio-dependentfood chain model with delayrdquo Journal of Mathematical Analysisand Applications vol 324 no 1 pp 728ndash738 2006

[5] N F Britton ldquoSpatial structures and periodic travelling wavesin an integro-differential reaction-diffusion population modelrdquoSIAM Journal on Applied Mathematics vol 50 no 6 pp 1663ndash1688 1990

[6] S A Gourley and N F Britton ldquoInstability of travelling wavesolutions of a population model with nonlocal effectsrdquo IMAJournal of Applied Mathematics vol 51 no 3 pp 299ndash310 1993

[7] X Zhang and R Xu ldquoTraveling waves of a diffusive predator-prey model with nonlocal delay and stage structurerdquo Journal ofMathematical Analysis and Applications vol 373 no 2 pp 475ndash484 2011

[8] Z C Wang W T Li and S G Ruan ldquoExistence and stability oftraveling wave fronts in reaction advection diffusion equationswith nonlocal delayrdquo Journal of Differential Equations vol 238no 1 pp 153ndash200 2007

[9] S A Gourley and S G Ruan ldquoConvergence and travellingfronts in functional differential equations with nonlocal termsa competition modelrdquo SIAM Journal on Mathematical Analysisvol 35 no 3 pp 806ndash822 2003

[10] X H Lai and T X Yao ldquoExponential stability of impul-sive delayed reaction-diffusion cellular neural networks viaPoincare integral inequalityrdquoAbstract and Applied Analysis vol2013 Article ID 131836 10 pages 2013

[11] R Xu and Z E Ma ldquoGlobal stability of a reaction-diffusionpredator-prey model with a nonlocal delayrdquo Mathematical andComputer Modelling vol 50 no 1-2 pp 194ndash206 2009

[12] Z Li F D Chen and M X He ldquoAsymptotic behavior of thereaction-diffusion model of plankton allelopathy with nonlocaldelaysrdquo Nonlinear Analysis Real World Applications vol 12 no3 pp 1748ndash1758 2011

[13] Y Kuang and H L Smith ldquoGlobal stability in diffusive delayLotka-Volterra systemsrdquoDifferential and Integral Equations vol4 no 1 pp 117ndash128 1991

14 Abstract and Applied Analysis

[14] Z G Lin M Pedersen and L Zhang ldquoA predator-prey systemwith stage-structure for predator and nonlocal delayrdquoNonlinearAnalysis Theory Methods amp Applications vol 72 no 3-4 pp2019ndash2030 2010

[15] R Xu ldquoA reaction-diffusion predator-prey model with stagestructure and nonlocal delayrdquo Applied Mathematics and Com-putation vol 175 no 2 pp 984ndash1006 2006

[16] S S Chen and J P Shi ldquoStability and Hopf bifurcation in adiffusive logistic population model with nonlocal delay effectrdquoJournal of Differential Equations vol 253 no 12 pp 3440ndash34702012

[17] H I Freedman Deterministic Mathematical Models in Popula-tion Ecology vol 57 of Monographs and Textbooks in Pure andAppliedMathematicsMarcelDekker NewYorkNYUSA 1980

[18] P A Abrams and L R Ginzburg ldquoThe nature of predation preydepedent ratio dependent or neitherrdquo Trends in Ecology andEvolution vol 15 no 8 pp 337ndash341 2000

[19] D L DeAngelis R A Goldstein and R V OrsquoNeill ldquoA modelfor trophic iterationrdquo Ecology vol 56 no 4 pp 881ndash892 1975

[20] C V Pao ldquoDynamics of nonlinear parabolic systems with timedelaysrdquo Journal of Mathematical Analysis and Applications vol198 no 3 pp 751ndash779 1996

[21] F Xu Y Hou and Z G Lin ldquoTime delay parabolic system ina predator-prey model with stage structurerdquo Acta MathematicaSinica vol 48 no 6 pp 1121ndash1130 2005 (Chinese)

[22] P Y H Pang and M X Wang ldquoStrategy and stationary patternin a three-species predator-prey modelrdquo Journal of DifferentialEquations vol 200 no 2 pp 245ndash273 2004

[23] D Henry Geometric Theory of Semilinear Parabolic Equationsvol 840 of Lecture Notes in Mathematics Springer New YorkNY USA 1981

[24] K J Brown P C Dunne and R A Gardner ldquoA semilinearparabolic system arising in the theory of superconductivityrdquoJournal of Differential Equations vol 40 no 2 pp 232ndash252 1981

[25] S A Gourley and J W H So ldquoDynamics of a food-limitedpopulation model incorporating nonlocal delays on a finitedomainrdquo Journal of Mathematical Biology vol 44 no 1 pp 49ndash78 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays WenzhenGan, 1 CanrongTian,

6 Abstract and Applied Analysis

Φ2(119905) = minusint

Ω

120572[11988611minus

11988612119906lowast

2

(1198981+ 1199061) (1198981+ 119906lowast1)] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

[11988622minus

11988623119906lowast

3

(1198982+ 1199062) (1198982+ 119906lowast2)] (1199062minus 119906lowast

2)2

119889119909

minus intΩ

11988633120573(1199063minus 119906lowast

3)2

119889119909

minus intΩ

11988623(1199063minus 119906lowast

3) (1199062minus 119906lowast

2)

1198982+ 1199062

119889119909

minus intΩ

12057211988612(1199062minus 119906lowast

2) (1199061minus 119906lowast

1)

1198981+ 1199061

119889119909

+∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus 119906

lowast

1) (1199062(119905 119909) minus 119906

lowast

2)

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)

119889119904 119889119910 119889119909

+ 120573∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus 119906

lowast

2) (1199063(119905 119909) minus 119906

lowast

3)

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)

119889119904 119889119910 119889119909

(25)

Applying the inequality 119886119887 le 1205981198862 + (14120598)1198872 we derive from(25) that

Φ2(119905) le minusint

Ω

120572[11988611minus

11988612119906lowast

2

(1198981+ 1199061) (1198981+ 119906lowast1)] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

11988633120573(1199063minus 119906lowast

3)2

119889119909

minus intΩ

[11988622minus

11988623119906lowast

3

(1198982+ 1199062) (1198982+ 119906lowast2)] (1199062minus 119906lowast

2)2

119889119909

+ intΩ

12057211988612

1198981+ 1199061

[1205981(1199061minus 119906lowast

1)2

+1

41205981

(1199062minus 119906lowast

2)2

] 119889119909

+ intΩ

11988623

1198982+ 1199062

[1

41205982

(1199062minus 119906lowast

2)2

+ 1205982(1199063minus 119906lowast

3)2

] 119889119909

+∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981

(1198981+ 1199061(119904 119910)) (119898

1+ 119906lowast1)

times [1205983(1199061(119904 119910) minus 119906

lowast

1)2

+1

41205983

(1199062(119905 119909) minus 119906

lowast

2)2

] 119889119904 119889119910 119889119909

+∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321205731198982

(1198982+ 1199062(119904 119910)) (119898

2+ 119906lowast2)

times [1

41205984

(1199062(119904 119910) minus 119906

lowast

2)2

+1205984(1199063(119905 119909) minus 119906

lowast

3)2

] 119889119904 119889119910 119889119909

(26)

According to the property of the Kernel functions119870119894(119909 119910 119905)

(119894 = 1 2) we know that

Φ2(119905) le minusint

Ω

[12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

] (1199061minus 119906lowast

1)2

119889119909

minus intΩ

[11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

] (1199062minus 119906lowast

2)2

119889119909

minus intΩ

[11988633120573 minus

119886231205982

1198982

minus119886321205731205984

1198982

] (1199063minus 119906lowast

3)2

119889119909

+119886211205983

1198981

∬Ω

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119910 119889119909

+11988632120573

411989821205984

∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119910 119889119909

(27)

Define a new Lyapunov functional as follows

119864 (119905) = 119881 (119905)

+119886211205983

1198981

∬Ω

int

+infin

0

int

119905

119905minus119903

1198701(119909 119910 119903)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119903 119889119910 119889119909

+11988632120573

411989821205984

∬Ω

int

+infin

0

int

119905

119905minus119903

1198702(119909 119910 119903)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119903 119889119910 119889119909

(28)

Abstract and Applied Analysis 7

It is derived from (27) and (28) that

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

minus [12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

minus119886211205983

1198981

]intΩ

(1199061minus 119906lowast

1)2

119889119909

minus [11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

]intΩ

(1199062minus 119906lowast

2)2

119889119909

minus [11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

]intΩ

(1199063minus 119906lowast

3)2

119889119909

(29)

Since (1199061 1199062 1199063) is the unique positive solution of system (1)

Using Proposition 5 there exists a constant119862which does notdepend on119909 isin Ω or 119905 ge 0 such that 119906

119894(sdot 119905)infinle 119862 (119894 = 1 2 3)

for 119905 ge 0 By Theorem 1198602in [24] we have

1003817100381710038171003817119906119894 (sdot 119905)10038171003817100381710038171198622120572(Ω) le 119862 forall119905 ge 1 (30)

Assume that

1198661 119886111198982

1gt 11988612119906lowast

2

1198662 119886221198982

2gt 11988623119906lowast

3+21198862311988632

11988633

+211988612119886211198982

2

1198861111989821minus 11988612119906lowast2

(31)

and denote

1198971= 12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

minus119886211205983

1198981

1198972= 11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

1198973= 11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

(32)

Then (29) is transformed into

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

minus

3

sum

119894=1

119897119894intΩ

(119906119894minus 119906lowast

119894)2

119889119909

(33)

If we choose

120572 =11988621

11988612

120573 =11988623

11988632

1205981= 1205983=119886111198982

1minus 11988612119906lowast

2

4119898111988612

1205982= 1205984=119898211988633

411988632

(34)

then 119897119894gt 0 (119894 = 1 2 3) Therefore we have

1198641015840(119905) le minus

3

sum

119894=1

119897119894intΩ

(119906119894minus 119906lowast

119894)2

119889119909 (35)

FromProposition 6 we can see that the solution of system(1) and (3) is bounded and so are the derivatives of (119906

119894minus 119906lowast

119894)

(119894 = 1 2 3) by the equations in (1) Applying Lemma 1 weobtain that

lim119905rarrinfin

intΩ

(119906119894minus 119906lowast

119894) 119889119909 = 0 (119894 = 1 2 3) (36)

Recomputing 1198641015840(119905) gives

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

le minus119888intΩ

(1003816100381610038161003816nabla1199061

10038161003816100381610038162

+1003816100381610038161003816nabla1199062

10038161003816100381610038162

+1003816100381610038161003816nabla1199063

10038161003816100381610038162

) 119889119909 = minus119892 (119905)

(37)

where 119888 = min1205721198891119906lowast

11198722

1 1198892119906lowast

21198722

2 1205731198893119906lowast

311987223 Using (30)

and (1) we obtain that the derivative of 119892(119905) is bounded in[1 +infin) From Lemma 1 we conclude that 119892(119905) rarr 0 as 119905 rarrinfin Therefore

lim119905rarrinfin

intΩ

(1003816100381610038161003816nabla1199061

10038161003816100381610038162

+1003816100381610038161003816nabla1199062

10038161003816100381610038162

+1003816100381610038161003816nabla1199063

10038161003816100381610038162

) 119889119909 = 0 (38)

Applying the Poincare inequality

intΩ

120582|119906 minus 119906|2119889119909 le int

Ω

|nabla119906|2119889119909 (39)

leads to

lim119905rarrinfin

intΩ

(119906119894minus 119906119894)2

119889119909 = 0 (119894 = 1 2 3) (40)

where 119906119894= (1|Ω|) int

Ω119906119894119889119909 and 120582 is the smallest positive

eigenvalue ofminusΔwith the homogeneousNeumann conditionTherefore

|Ω| (1199061 (119905) minus 119906lowast

1)2

= intΩ

(1199061(119905) minus 119906

lowast

1)2

119889119909

= intΩ

(1199061(119905) minus 119906

1(119905 119909) + 119906

1(119905 119909) minus 119906

lowast

1)2

119889119909

le 2intΩ

(1199061(119905) minus 119906

1(119905 119909))

2

119889119909

+ 2intΩ

(1199061(119905 119909) minus 119906

lowast

1)2

119889119909

(41)

8 Abstract and Applied Analysis

So we have 1199061(119905) rarr 119906

lowast

1as 119905 rarr infin Similarly 119906

2(119905) rarr 119906

lowast

2

and 1199063(119905) rarr 119906

lowast

3as 119905 rarr infin According to (30) there exists

a subsequence 119905119898 and non-negative functions 119908

119894isin 1198622(Ω)

such thatlim119898rarrinfin

1003817100381710038171003817119906119894 (sdot 119905119898) minus 119908119894 (sdot)10038171003817100381710038171198622(Ω) = 0 (119894 = 1 2 3) (42)

Applying (40) and noting that 119906119894(119905) rarr 119906

lowast

119894 we then have119908

119894=

119906lowast

119894 (119894 = 1 2 3) That is

lim119898rarrinfin

1003817100381710038171003817119906119894 (sdot 119905119898) minus 119906lowast

119894

10038171003817100381710038171198622(Ω) = 0 (119894 = 1 2 3) (43)

Furthermore the local stability ofElowast combiningwith (43)gives the following global stability

Theorem 9 Assume that

11986751198861(11988621minus 1198862)

11989811198862

gt 11988611gt11988612Vlowast2

11989821

(44)

1198674and 119866

4hold and then the semi-trivial steady state 119864

2

of system (1)ndash(3) with non-trivial initial functions is globallyasymptotically stable

Proof It is obvious that system (1)ndash(3) always has two non-negative equilibria (119906

1 1199062 1199063) as follows 119864

0= (0 0 0) and

1198641= (119886111988611 0 0) If 119867

1and 119867

4are satisfied system (1) has

the other semitrivial solution denoted by 1198642(Vlowast1 Vlowast2 0) where

1198674 11988631198982gt (11988632minus 1198863) Vlowast

2 (45)

We consider the stability of 1198642under condition 119867

1and

1198674 Equation (1) can be rewritten as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus Vlowast

1) minus11988612(1199062minus Vlowast2)

1198981+ 1199061

+11988612Vlowast2(1199061minus Vlowast1)

(1198981+ 1199061) (1198981+ Vlowast1)]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus Vlowast

1)

(1198981+ 1199061(119904 119910)) (119898

1+ Vlowast1)119889119904 119889119910

minus11988622(1199062minus Vlowast

2) minus

119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus Vlowast

2)

(1198982+ 1199062(119904 119910)) (119898

2+ Vlowast2)119889119904 119889119910

minus119886331199063]

(46)

Similar to the argument ofTheorem 8 we have 1199061(119909 119905) rarr Vlowast

1

and 1199062(119909 119905) rarr Vlowast

2as 119905 rarr infin uniformly on Ω provided that

the following additional condition holds

1198663 119886111198982

1gt 11988612Vlowast

2

1198664 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821minus 11988612Vlowast2

(47)

Next we consider the asymptotic behavior of 1199063(119905 119909) Let

120579 =1198863minus (11988632minus 1198863) Vlowast2

2120575 120575 =

100381610038161003816100381611988632 minus 11988631003816100381610038161003816

(48)

Then there exists 1199051gt 0 such that

Vlowast

2minus 120579 lt 119906

2(119905 119909) lt V

lowast

2+ 120579 forall119905 gt 119905

1 119909 isin Ω (49)

Consider the following two systems

1199083119905minus 1198893Δ1199083= 1199083[minus1198863+11988632(Vlowast2+ 120579)

1198982+ Vlowast2+ 120579

minus 119886331199083]

(119905 119909) isin [1199051 +infin) times Ω

1205971199083

120597]= 0 (119905 119909) isin [119905

1 +infin) times 120597Ω

1199083= 1199063 (119905 119909) isin (minusinfin 119905

1] times Ω

1198823119905minus 1198893Δ1198823= 1198823[minus1198863+11988632(Vlowast2minus 120579)

1198982+ Vlowast2minus 120579

minus 11988633V3]

(119905 119909) isin [1199051 +infin) times Ω

1205971198823

120597]= 0 (119905 119909) isin [119905

1 +infin) times 120597Ω

1198823= 1199063 (119905 119909) isin (minusinfin 119905

1] times Ω

(50)

Combining comparison principle with (50) we obtain that

1198823(119905 119909) le 119906

3(119905 119909) le 119908

3(119905 119909) forall119905 gt 119905

1 119909 isin Ω (51)

By Lemma 4 we obtain

0 = lim119905rarrinfin

1198823(119905 119909) le inf 119906

3(119905 119909) le sup 119906

3(119905 119909)

le lim119905rarrinfin

1199083(119905 119909) = 0 forall119909 isin Ω

(52)

which implies that lim119905rarrinfin

1199063(119905 119909) = 0 uniformly onΩ

Theorem 10 Suppose that1198665and119866

6hold and then the semi-

trivial steady state 1198641of system (1)ndash(3) with non-trivial initial

functions is globally asymptotically stable

Abstract and Applied Analysis 9

Proof We study the stability of the semi-trivial solution 1198641=

(1 0 0) Similarly the equations in (1) can be written as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus 1) minus

119886121199062

1198981+ 1199061

]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[minus1198862+ intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus

1)

(1198981+ 1199061(119904 119910)) (119898

1+ 1)119889119904 119889119910

+119886211

1198981+ 1

minus 119886221199062minus119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[minus1198863+ intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321199062(119904 119910)

1198982+ 1199062(119904 119910)

119889119904 119889119910 minus 119886331199063]

(53)

Define

119881 (119905) = 120572intΩ

[1199061minus 1minus 1log 11990611

] 119889119909 + intΩ

1199062119889119909

+ 120573intΩ

1199063119889119909

(54)

Calculating the derivative of 119881(119905) along 1198641 we get from (54)

that

1198811015840(119905) le minusint

Ω

[120572(11988611minus119886121205981

1198981

)] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

412059821198982

minus11988621

411989811205983

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062+ 11988631199063] 119889119909

+119886211205983

1198981

intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times (1199061(119904 119910) minus

1)2

119889119904 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times 1199062

2(119904 119910) 119889119904 119889119910 119889119909

(55)

Define119864 (119905) = 119881 (119905)

+119886211205983

1198981

∬Ω

int

+infin

0

int

119905

119905minus119903

1198701(119909 119910 119903)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119903 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

+infin

0

int

119905

119905minus119903

1198702(119909 119910 119903)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119903 119889119910 119889119909

(56)

It is easy to see that

1198641015840(119905) le minus120572119889

11intΩ

1003816100381610038161003816nabla119906110038161003816100381610038162

11990621

119889119909

minus intΩ

[120572(11988611minus119886121205981

1198981

) minus119886211205983

1198981

] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632

411989821205984

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

minus119886321205731205984

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062minus 11988631205731199063] 119889119909

(57)

Assume that1198665 1198861(11988621minus 1198862) lt 119898

1119886211988611

1198666 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821

(58)

Let

1198971= 12057211988611minus120572119886121205981

1198981

minus119886211205983

1198981

1198972= 11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

1198973= 11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

(59)

Choose

120572 =11988621

11988612

120573 =11988623

11988632

1205981= 1205983=119886111198981

411988612

1205982= 1205984=119898211988633

411988632

(60)

Then we get 119897119894gt 0 (119894 = 1 2 3) Therefore we have

lim119905rarrinfin

1199061(119905 119909) =

1 (61)

uniformly onΩ

10 Abstract and Applied Analysis

tx

u1

02

46

8

01

23

40

1

2

3

4

(a)

02

46

8

01

23

40

1

2

3

4

t

x

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 2 Global stability of the positive equilibrium 119864lowast with an initial condition (1206011 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

Next we consider the asymptotic behavior of 1199062(119905 119909) and

1199063(119905 119909) For any 119879 gt 0 integrating (57) over [0 119879] yields

119864 (119879) + 1205721198891

10038171003817100381710038171003817100381710038171003817

10038161003816100381610038161003816100381610038161003816

nabla1199061

1199061

10038161003816100381610038161003816100381610038161003816

10038171003817100381710038171003817100381710038171003817

2

2

+ 1198971

100381710038171003817100381710038161003816100381610038161199061 minus 1

100381610038161003816100381610038171003817100381710038172

2

+ 1198972

100381710038171003817100381710038161003816100381610038161199062100381610038161003816100381610038171003817100381710038172

2+ 1198973

100381710038171003817100381710038161003816100381610038161199063100381610038161003816100381610038171003817100381710038172

2le 119864 (0)

(62)

where |119906119894|2

2= int119879

0intΩ1199062

119894119889119909 119889119905 It implies that |119906

119894|2le 119862119894(119894 =

2 3) for the constant 119862119894which is independent of 119879 Now we

consider the boundedness of |nabla1199062|2and |nabla119906

3|2 From the

Greenrsquos identity we obtain

1198892int

119879

0

intΩ

1003816100381610038161003816nabla1199062 (119905 119909)10038161003816100381610038162

119889119909 119889119905

= minus1198892int

119879

0

intΩ

1199062(119905 119909) Δ119906

2(119905 119909) 119889119909 119889119905

= minusint

119879

0

intΩ

1199062

1205971199062

120597119905119889119909 119889119905 minus 119886

2int

119879

0

intΩ

1199062

2119889119909 119889119905

minus 11988622int

119879

0

intΩ

1199063

2119889119909 119889119905 minus 119886

23int

119879

0

intΩ

1199062

21199063

1198982+ 1199063

119889119909 119889119905

+ 11988621int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

times 1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

(63)

Note that

int

119879

0

intΩ

1199062(119905 119909)

1205971199062(119905 119909)

120597119905119889119909 119889119905

= int

119879

0

intΩ

1

2

1205971199062

2

120597119905119889119905 119889119909

=1

2intΩ

1199062

2(119879 119909) 119889119909 minus

1

2intΩ

1199062

2(0 119909) 119889119909 le 119872

2

2|Ω|

int

119879

0

intΩ

1199062

21199063119889119909 119889119905 le 119872

3int

119879

0

intΩ

1199062

2119889119909 119889119905

Abstract and Applied Analysis 11

02

46

8

01

23

40

1

2

3

4

tx

u1

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 3 Global stability of the positive equilibrium 1198642with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

int

119879

0

intΩ

1199063

2119889119909 119889119905 le 119872

2int

119879

0

intΩ

1199062

2119889119909 119889119905

int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

le int

119879

0

intΩ

1199062

2(119905 119909) 119889119909 119889119905

(64)

Thus we get |nabla1199062|2le 1198624 In a similar way we have

|nabla1199063|2le 1198625 Here 119862

4and 119862

5are independent of 119879

It is easy to see that 1199062(119905 119909) 119906

3(119905 119909) isin 119871

2((0infin)

11988212(Ω)) These imply that

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)100381710038171003817100381711988212(Ω) = 0 119894 = 2 3 (65)

From the Sobolev compact embedding theorem we know

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)1003817100381710038171003817119862(Ω) = 0 119894 = 2 3 (66)

In the end we show that the trivial solution 1198640is an

unstable equilibrium Similarly to the local stability to 119864lowast wecan get the characteristic equation of 119864

0as

(120582 + 1205831198941198631minus 1198861) (120582 + 120583

1198941198632+ 1198862) (120582 + 120583

1198941198633+ 1198863) = 0 (67)

If 119894 = 1 then 1205831= 0 It is easy to see that this equation admits

a positive solution 120582 = 1198861 According to Theorem 51 in [23]

we have the following result

Theorem 11 The trivial equilibrium 1198640is an unstable equilib-

rium of system (1)ndash(3)

4 Numerical Illustrations

In this section we performnumerical simulations to illustratethe theoretical results given in Section 3

12 Abstract and Applied Analysis

u1

02

46

8

01

23

40

1

2

3

4

tx

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 4 Global stability of the positive equilibrium 1198641with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos119909 27 + 05 sin119909)

In the following we always take Ω = [0 120587] 119870119894(119909 119910 119905) =

119866119894(119909 119910 119905)119896

119894(119905) where 119896

119894(119905) = (1120591

lowast)119890minus119905120591lowast

(119894 = 1 2) and

1198661(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988921198992

119905 cos 119899119909 cos 119899119910

1198662(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988931198992

119905 cos 119899119909 cos 119899119910

(68)

However it is difficult for us to simulate our results directlybecause of the nonlocal term Similar to [25] the equationsin (1) can be rewritten as follows

1205971199061

120597119905minus 1198891Δ1199061= 1199061(1198861minus 119886111199061minus119886121199062

1198981+ 1199061

)

1205971199062

120597119905minus 1198892Δ1199062= 1199062(minus1198862+ 11988621V1minus 119886221199062minus119886231199063

1198982+ 1199063

)

1205971199063

120597119905minus 1198893Δ1199063= 1199063(minus1198863+ 11988632V2minus 119886331199063)

120597V1

120597119905minus 1198892ΔV1=1

120591lowast(

1199061

1198981+ 1199061

minus V1)

120597V2

120597119905minus 1198893ΔV2=1

120591lowast(

1199062

1198982+ 1199062

minus V2)

(69)

where

V119894= int

120587

0

int

119905

minusinfin

119866119894(119909 119910 119905 minus 119904)

1

120591lowast119890minus(119905minus119904)120591

lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(70)

Each component is considered with homogeneous Neumannboundary conditions and the initial condition of V

119894is

V119894(0 119909) = int

120587

0

int

0

minusinfin

119866119894(119909 119910 minus119904)

1

120591lowast119890119904120591lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(71)

Abstract and Applied Analysis 13

In the following examples we fix some coefficients andassume that 119889

1= 1198892= 1198893= 1 119886

1= 3 119886

12= 1 119898

1= 1198982=

1 1198862= 1 119886

22= 12 119886

23= 1 119886

33= 12 and 120591lowast = 1 The

asymptotic behaviors of system (1)ndash(3) are shownby choosingdifferent coefficients 119886

11 11988621 1198863 and 119886

32

Example 12 Let 11988611= 539 119886

21= 8113 119886

3= 113 and

11988632= 14Then it is easy to see that the system admits a unique

positive equilibrium 119864lowast(12 112 112) By Theorem 8 we

see that the positive solution (1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of

system (1)ndash(3) converges to 119864lowast as 119905 rarr infin See Figure 2

Example 13 Let 11988611

= 6 11988621

= 12 1198863= 14 and

11988632= 1 Clearly 119867

2does not hold Hence the positive

steady state is not feasible System (1) admits two semi-trivial steady state 119864

2(04732 02372 0) and 119864

1(12 0 0)

According to Theorem 9 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

2

as 119905 rarr infin See Figure 3

Example 14 Let 11988611= 6 119886

21= 2 119886

3= 14 and 119886

32= 1

Clearly1198671does not hold Hence 119864lowast and 119864

2are not feasible

System (1) has a unique semi-trivial steady state 1198641(12 0 0)

According to Theorem 10 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

1

as 119905 rarr infin See Figure 4

5 Discussion

In this paper we incorporate nonlocal delay into a three-species food chain model with Michaelis-Menten functionalresponse to represent a delay due to the gestation of the preda-tor The conditions under which the spatial homogeneousequilibria are asymptotically stable are given by using theLyapunov functional

We now summarize the ecological meanings of ourtheoretical results Firstly the positive equilibrium 119864

lowast ofsystem (1)ndash(3) exists under the high birth rate of the prey(1198861) and low death rates (119886

2and 119886

3) of predator and top

predator 119864lowast is globally stable if the intraspecific competition11988611is neither too big nor too small and the maximum harvest

rates 11988612 11988623

are small enough Secondly the semi-trivialequilibrium 119864

2of system (1)ndash(3) exists if the birth rate of the

prey (1198861) is high death rate of predator 119886

2is low and the death

rate (1198863) exceeds the conversion rate from predator to top

predator (11988632) 1198642is globally stable if the maximum harvest

rates 11988612 11988623are small and the intra-specific competition 119886

11

is neither too big nor too small Thirdly system (1)ndash(3) hasonly one semi-trivial equilibrium 119864

1when the death rate (119886

2)

exceeds the conversion rate from prey to predator (11988621) 1198641

is globally stable if intra-specific competitions (11988611 11988622 and

11988633) are strong Finally 119864

0is unstable and the non-stability of

trivial equilibrium tells us that not all of the populations goto extinction Furthermore our main results imply that thenonlocal delay is harmless for stabilities of all non-negativesteady states of system (1)ndash(3)

There are still many interesting and challenging problemswith respect to system (1)ndash(3) for example the permanence

and stability of periodic solution or almost periodic solutionThese problems are clearly worthy for further investigations

Acknowledgments

This work is partially supported by PRC Grants NSFC11102076 and 11071209 andNSF of theHigher Education Insti-tutions of Jiangsu Province (12KJD110002 and 12KJD110008)

References

[1] R Xu and M A J Chaplain ldquoPersistence and global stabilityin a delayed predator-prey system with Michaelis-Menten typefunctional responserdquo Applied Mathematics and Computationvol 130 no 2-3 pp 441ndash455 2002

[2] H F Huo andW T Li ldquoPeriodic solution of a delayed predator-prey system with Michaelis-Menten type functional responserdquoJournal of Computational and AppliedMathematics vol 166 no2 pp 453ndash463 2004

[3] Z Lin and M Pedersen ldquoStability in a diffusive food-chainmodel with Michaelis-Menten functional responserdquo NonlinearAnalysis Theory Methods amp Applications vol 57 no 3 pp 421ndash433 2004

[4] B X Dai N Zhang and J Z Zou ldquoPermanence for theMichaelis-Menten type discrete three-species ratio-dependentfood chain model with delayrdquo Journal of Mathematical Analysisand Applications vol 324 no 1 pp 728ndash738 2006

[5] N F Britton ldquoSpatial structures and periodic travelling wavesin an integro-differential reaction-diffusion population modelrdquoSIAM Journal on Applied Mathematics vol 50 no 6 pp 1663ndash1688 1990

[6] S A Gourley and N F Britton ldquoInstability of travelling wavesolutions of a population model with nonlocal effectsrdquo IMAJournal of Applied Mathematics vol 51 no 3 pp 299ndash310 1993

[7] X Zhang and R Xu ldquoTraveling waves of a diffusive predator-prey model with nonlocal delay and stage structurerdquo Journal ofMathematical Analysis and Applications vol 373 no 2 pp 475ndash484 2011

[8] Z C Wang W T Li and S G Ruan ldquoExistence and stability oftraveling wave fronts in reaction advection diffusion equationswith nonlocal delayrdquo Journal of Differential Equations vol 238no 1 pp 153ndash200 2007

[9] S A Gourley and S G Ruan ldquoConvergence and travellingfronts in functional differential equations with nonlocal termsa competition modelrdquo SIAM Journal on Mathematical Analysisvol 35 no 3 pp 806ndash822 2003

[10] X H Lai and T X Yao ldquoExponential stability of impul-sive delayed reaction-diffusion cellular neural networks viaPoincare integral inequalityrdquoAbstract and Applied Analysis vol2013 Article ID 131836 10 pages 2013

[11] R Xu and Z E Ma ldquoGlobal stability of a reaction-diffusionpredator-prey model with a nonlocal delayrdquo Mathematical andComputer Modelling vol 50 no 1-2 pp 194ndash206 2009

[12] Z Li F D Chen and M X He ldquoAsymptotic behavior of thereaction-diffusion model of plankton allelopathy with nonlocaldelaysrdquo Nonlinear Analysis Real World Applications vol 12 no3 pp 1748ndash1758 2011

[13] Y Kuang and H L Smith ldquoGlobal stability in diffusive delayLotka-Volterra systemsrdquoDifferential and Integral Equations vol4 no 1 pp 117ndash128 1991

14 Abstract and Applied Analysis

[14] Z G Lin M Pedersen and L Zhang ldquoA predator-prey systemwith stage-structure for predator and nonlocal delayrdquoNonlinearAnalysis Theory Methods amp Applications vol 72 no 3-4 pp2019ndash2030 2010

[15] R Xu ldquoA reaction-diffusion predator-prey model with stagestructure and nonlocal delayrdquo Applied Mathematics and Com-putation vol 175 no 2 pp 984ndash1006 2006

[16] S S Chen and J P Shi ldquoStability and Hopf bifurcation in adiffusive logistic population model with nonlocal delay effectrdquoJournal of Differential Equations vol 253 no 12 pp 3440ndash34702012

[17] H I Freedman Deterministic Mathematical Models in Popula-tion Ecology vol 57 of Monographs and Textbooks in Pure andAppliedMathematicsMarcelDekker NewYorkNYUSA 1980

[18] P A Abrams and L R Ginzburg ldquoThe nature of predation preydepedent ratio dependent or neitherrdquo Trends in Ecology andEvolution vol 15 no 8 pp 337ndash341 2000

[19] D L DeAngelis R A Goldstein and R V OrsquoNeill ldquoA modelfor trophic iterationrdquo Ecology vol 56 no 4 pp 881ndash892 1975

[20] C V Pao ldquoDynamics of nonlinear parabolic systems with timedelaysrdquo Journal of Mathematical Analysis and Applications vol198 no 3 pp 751ndash779 1996

[21] F Xu Y Hou and Z G Lin ldquoTime delay parabolic system ina predator-prey model with stage structurerdquo Acta MathematicaSinica vol 48 no 6 pp 1121ndash1130 2005 (Chinese)

[22] P Y H Pang and M X Wang ldquoStrategy and stationary patternin a three-species predator-prey modelrdquo Journal of DifferentialEquations vol 200 no 2 pp 245ndash273 2004

[23] D Henry Geometric Theory of Semilinear Parabolic Equationsvol 840 of Lecture Notes in Mathematics Springer New YorkNY USA 1981

[24] K J Brown P C Dunne and R A Gardner ldquoA semilinearparabolic system arising in the theory of superconductivityrdquoJournal of Differential Equations vol 40 no 2 pp 232ndash252 1981

[25] S A Gourley and J W H So ldquoDynamics of a food-limitedpopulation model incorporating nonlocal delays on a finitedomainrdquo Journal of Mathematical Biology vol 44 no 1 pp 49ndash78 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays WenzhenGan, 1 CanrongTian,

Abstract and Applied Analysis 7

It is derived from (27) and (28) that

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

minus [12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

minus119886211205983

1198981

]intΩ

(1199061minus 119906lowast

1)2

119889119909

minus [11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

]intΩ

(1199062minus 119906lowast

2)2

119889119909

minus [11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

]intΩ

(1199063minus 119906lowast

3)2

119889119909

(29)

Since (1199061 1199062 1199063) is the unique positive solution of system (1)

Using Proposition 5 there exists a constant119862which does notdepend on119909 isin Ω or 119905 ge 0 such that 119906

119894(sdot 119905)infinle 119862 (119894 = 1 2 3)

for 119905 ge 0 By Theorem 1198602in [24] we have

1003817100381710038171003817119906119894 (sdot 119905)10038171003817100381710038171198622120572(Ω) le 119862 forall119905 ge 1 (30)

Assume that

1198661 119886111198982

1gt 11988612119906lowast

2

1198662 119886221198982

2gt 11988623119906lowast

3+21198862311988632

11988633

+211988612119886211198982

2

1198861111989821minus 11988612119906lowast2

(31)

and denote

1198971= 12057211988611minus12057211988612119906lowast

2

11989821

minus120572119886121205981

1198981

minus119886211205983

1198981

1198972= 11988622minus11988623119906lowast

3

11989822

minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

1198973= 11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

(32)

Then (29) is transformed into

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

minus

3

sum

119894=1

119897119894intΩ

(119906119894minus 119906lowast

119894)2

119889119909

(33)

If we choose

120572 =11988621

11988612

120573 =11988623

11988632

1205981= 1205983=119886111198982

1minus 11988612119906lowast

2

4119898111988612

1205982= 1205984=119898211988633

411988632

(34)

then 119897119894gt 0 (119894 = 1 2 3) Therefore we have

1198641015840(119905) le minus

3

sum

119894=1

119897119894intΩ

(119906119894minus 119906lowast

119894)2

119889119909 (35)

FromProposition 6 we can see that the solution of system(1) and (3) is bounded and so are the derivatives of (119906

119894minus 119906lowast

119894)

(119894 = 1 2 3) by the equations in (1) Applying Lemma 1 weobtain that

lim119905rarrinfin

intΩ

(119906119894minus 119906lowast

119894) 119889119909 = 0 (119894 = 1 2 3) (36)

Recomputing 1198641015840(119905) gives

1198641015840(119905) le minusint

Ω

(1205721198891119906lowast

1

11990621

1003816100381610038161003816nabla119906110038161003816100381610038162

+1198892119906lowast

2

11990622

1003816100381610038161003816nabla119906210038161003816100381610038162

+1205731198893119906lowast

3

11990623

1003816100381610038161003816nabla119906310038161003816100381610038162

)119889119909

le minus119888intΩ

(1003816100381610038161003816nabla1199061

10038161003816100381610038162

+1003816100381610038161003816nabla1199062

10038161003816100381610038162

+1003816100381610038161003816nabla1199063

10038161003816100381610038162

) 119889119909 = minus119892 (119905)

(37)

where 119888 = min1205721198891119906lowast

11198722

1 1198892119906lowast

21198722

2 1205731198893119906lowast

311987223 Using (30)

and (1) we obtain that the derivative of 119892(119905) is bounded in[1 +infin) From Lemma 1 we conclude that 119892(119905) rarr 0 as 119905 rarrinfin Therefore

lim119905rarrinfin

intΩ

(1003816100381610038161003816nabla1199061

10038161003816100381610038162

+1003816100381610038161003816nabla1199062

10038161003816100381610038162

+1003816100381610038161003816nabla1199063

10038161003816100381610038162

) 119889119909 = 0 (38)

Applying the Poincare inequality

intΩ

120582|119906 minus 119906|2119889119909 le int

Ω

|nabla119906|2119889119909 (39)

leads to

lim119905rarrinfin

intΩ

(119906119894minus 119906119894)2

119889119909 = 0 (119894 = 1 2 3) (40)

where 119906119894= (1|Ω|) int

Ω119906119894119889119909 and 120582 is the smallest positive

eigenvalue ofminusΔwith the homogeneousNeumann conditionTherefore

|Ω| (1199061 (119905) minus 119906lowast

1)2

= intΩ

(1199061(119905) minus 119906

lowast

1)2

119889119909

= intΩ

(1199061(119905) minus 119906

1(119905 119909) + 119906

1(119905 119909) minus 119906

lowast

1)2

119889119909

le 2intΩ

(1199061(119905) minus 119906

1(119905 119909))

2

119889119909

+ 2intΩ

(1199061(119905 119909) minus 119906

lowast

1)2

119889119909

(41)

8 Abstract and Applied Analysis

So we have 1199061(119905) rarr 119906

lowast

1as 119905 rarr infin Similarly 119906

2(119905) rarr 119906

lowast

2

and 1199063(119905) rarr 119906

lowast

3as 119905 rarr infin According to (30) there exists

a subsequence 119905119898 and non-negative functions 119908

119894isin 1198622(Ω)

such thatlim119898rarrinfin

1003817100381710038171003817119906119894 (sdot 119905119898) minus 119908119894 (sdot)10038171003817100381710038171198622(Ω) = 0 (119894 = 1 2 3) (42)

Applying (40) and noting that 119906119894(119905) rarr 119906

lowast

119894 we then have119908

119894=

119906lowast

119894 (119894 = 1 2 3) That is

lim119898rarrinfin

1003817100381710038171003817119906119894 (sdot 119905119898) minus 119906lowast

119894

10038171003817100381710038171198622(Ω) = 0 (119894 = 1 2 3) (43)

Furthermore the local stability ofElowast combiningwith (43)gives the following global stability

Theorem 9 Assume that

11986751198861(11988621minus 1198862)

11989811198862

gt 11988611gt11988612Vlowast2

11989821

(44)

1198674and 119866

4hold and then the semi-trivial steady state 119864

2

of system (1)ndash(3) with non-trivial initial functions is globallyasymptotically stable

Proof It is obvious that system (1)ndash(3) always has two non-negative equilibria (119906

1 1199062 1199063) as follows 119864

0= (0 0 0) and

1198641= (119886111988611 0 0) If 119867

1and 119867

4are satisfied system (1) has

the other semitrivial solution denoted by 1198642(Vlowast1 Vlowast2 0) where

1198674 11988631198982gt (11988632minus 1198863) Vlowast

2 (45)

We consider the stability of 1198642under condition 119867

1and

1198674 Equation (1) can be rewritten as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus Vlowast

1) minus11988612(1199062minus Vlowast2)

1198981+ 1199061

+11988612Vlowast2(1199061minus Vlowast1)

(1198981+ 1199061) (1198981+ Vlowast1)]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus Vlowast

1)

(1198981+ 1199061(119904 119910)) (119898

1+ Vlowast1)119889119904 119889119910

minus11988622(1199062minus Vlowast

2) minus

119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus Vlowast

2)

(1198982+ 1199062(119904 119910)) (119898

2+ Vlowast2)119889119904 119889119910

minus119886331199063]

(46)

Similar to the argument ofTheorem 8 we have 1199061(119909 119905) rarr Vlowast

1

and 1199062(119909 119905) rarr Vlowast

2as 119905 rarr infin uniformly on Ω provided that

the following additional condition holds

1198663 119886111198982

1gt 11988612Vlowast

2

1198664 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821minus 11988612Vlowast2

(47)

Next we consider the asymptotic behavior of 1199063(119905 119909) Let

120579 =1198863minus (11988632minus 1198863) Vlowast2

2120575 120575 =

100381610038161003816100381611988632 minus 11988631003816100381610038161003816

(48)

Then there exists 1199051gt 0 such that

Vlowast

2minus 120579 lt 119906

2(119905 119909) lt V

lowast

2+ 120579 forall119905 gt 119905

1 119909 isin Ω (49)

Consider the following two systems

1199083119905minus 1198893Δ1199083= 1199083[minus1198863+11988632(Vlowast2+ 120579)

1198982+ Vlowast2+ 120579

minus 119886331199083]

(119905 119909) isin [1199051 +infin) times Ω

1205971199083

120597]= 0 (119905 119909) isin [119905

1 +infin) times 120597Ω

1199083= 1199063 (119905 119909) isin (minusinfin 119905

1] times Ω

1198823119905minus 1198893Δ1198823= 1198823[minus1198863+11988632(Vlowast2minus 120579)

1198982+ Vlowast2minus 120579

minus 11988633V3]

(119905 119909) isin [1199051 +infin) times Ω

1205971198823

120597]= 0 (119905 119909) isin [119905

1 +infin) times 120597Ω

1198823= 1199063 (119905 119909) isin (minusinfin 119905

1] times Ω

(50)

Combining comparison principle with (50) we obtain that

1198823(119905 119909) le 119906

3(119905 119909) le 119908

3(119905 119909) forall119905 gt 119905

1 119909 isin Ω (51)

By Lemma 4 we obtain

0 = lim119905rarrinfin

1198823(119905 119909) le inf 119906

3(119905 119909) le sup 119906

3(119905 119909)

le lim119905rarrinfin

1199083(119905 119909) = 0 forall119909 isin Ω

(52)

which implies that lim119905rarrinfin

1199063(119905 119909) = 0 uniformly onΩ

Theorem 10 Suppose that1198665and119866

6hold and then the semi-

trivial steady state 1198641of system (1)ndash(3) with non-trivial initial

functions is globally asymptotically stable

Abstract and Applied Analysis 9

Proof We study the stability of the semi-trivial solution 1198641=

(1 0 0) Similarly the equations in (1) can be written as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus 1) minus

119886121199062

1198981+ 1199061

]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[minus1198862+ intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus

1)

(1198981+ 1199061(119904 119910)) (119898

1+ 1)119889119904 119889119910

+119886211

1198981+ 1

minus 119886221199062minus119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[minus1198863+ intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321199062(119904 119910)

1198982+ 1199062(119904 119910)

119889119904 119889119910 minus 119886331199063]

(53)

Define

119881 (119905) = 120572intΩ

[1199061minus 1minus 1log 11990611

] 119889119909 + intΩ

1199062119889119909

+ 120573intΩ

1199063119889119909

(54)

Calculating the derivative of 119881(119905) along 1198641 we get from (54)

that

1198811015840(119905) le minusint

Ω

[120572(11988611minus119886121205981

1198981

)] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

412059821198982

minus11988621

411989811205983

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062+ 11988631199063] 119889119909

+119886211205983

1198981

intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times (1199061(119904 119910) minus

1)2

119889119904 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times 1199062

2(119904 119910) 119889119904 119889119910 119889119909

(55)

Define119864 (119905) = 119881 (119905)

+119886211205983

1198981

∬Ω

int

+infin

0

int

119905

119905minus119903

1198701(119909 119910 119903)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119903 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

+infin

0

int

119905

119905minus119903

1198702(119909 119910 119903)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119903 119889119910 119889119909

(56)

It is easy to see that

1198641015840(119905) le minus120572119889

11intΩ

1003816100381610038161003816nabla119906110038161003816100381610038162

11990621

119889119909

minus intΩ

[120572(11988611minus119886121205981

1198981

) minus119886211205983

1198981

] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632

411989821205984

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

minus119886321205731205984

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062minus 11988631205731199063] 119889119909

(57)

Assume that1198665 1198861(11988621minus 1198862) lt 119898

1119886211988611

1198666 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821

(58)

Let

1198971= 12057211988611minus120572119886121205981

1198981

minus119886211205983

1198981

1198972= 11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

1198973= 11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

(59)

Choose

120572 =11988621

11988612

120573 =11988623

11988632

1205981= 1205983=119886111198981

411988612

1205982= 1205984=119898211988633

411988632

(60)

Then we get 119897119894gt 0 (119894 = 1 2 3) Therefore we have

lim119905rarrinfin

1199061(119905 119909) =

1 (61)

uniformly onΩ

10 Abstract and Applied Analysis

tx

u1

02

46

8

01

23

40

1

2

3

4

(a)

02

46

8

01

23

40

1

2

3

4

t

x

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 2 Global stability of the positive equilibrium 119864lowast with an initial condition (1206011 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

Next we consider the asymptotic behavior of 1199062(119905 119909) and

1199063(119905 119909) For any 119879 gt 0 integrating (57) over [0 119879] yields

119864 (119879) + 1205721198891

10038171003817100381710038171003817100381710038171003817

10038161003816100381610038161003816100381610038161003816

nabla1199061

1199061

10038161003816100381610038161003816100381610038161003816

10038171003817100381710038171003817100381710038171003817

2

2

+ 1198971

100381710038171003817100381710038161003816100381610038161199061 minus 1

100381610038161003816100381610038171003817100381710038172

2

+ 1198972

100381710038171003817100381710038161003816100381610038161199062100381610038161003816100381610038171003817100381710038172

2+ 1198973

100381710038171003817100381710038161003816100381610038161199063100381610038161003816100381610038171003817100381710038172

2le 119864 (0)

(62)

where |119906119894|2

2= int119879

0intΩ1199062

119894119889119909 119889119905 It implies that |119906

119894|2le 119862119894(119894 =

2 3) for the constant 119862119894which is independent of 119879 Now we

consider the boundedness of |nabla1199062|2and |nabla119906

3|2 From the

Greenrsquos identity we obtain

1198892int

119879

0

intΩ

1003816100381610038161003816nabla1199062 (119905 119909)10038161003816100381610038162

119889119909 119889119905

= minus1198892int

119879

0

intΩ

1199062(119905 119909) Δ119906

2(119905 119909) 119889119909 119889119905

= minusint

119879

0

intΩ

1199062

1205971199062

120597119905119889119909 119889119905 minus 119886

2int

119879

0

intΩ

1199062

2119889119909 119889119905

minus 11988622int

119879

0

intΩ

1199063

2119889119909 119889119905 minus 119886

23int

119879

0

intΩ

1199062

21199063

1198982+ 1199063

119889119909 119889119905

+ 11988621int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

times 1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

(63)

Note that

int

119879

0

intΩ

1199062(119905 119909)

1205971199062(119905 119909)

120597119905119889119909 119889119905

= int

119879

0

intΩ

1

2

1205971199062

2

120597119905119889119905 119889119909

=1

2intΩ

1199062

2(119879 119909) 119889119909 minus

1

2intΩ

1199062

2(0 119909) 119889119909 le 119872

2

2|Ω|

int

119879

0

intΩ

1199062

21199063119889119909 119889119905 le 119872

3int

119879

0

intΩ

1199062

2119889119909 119889119905

Abstract and Applied Analysis 11

02

46

8

01

23

40

1

2

3

4

tx

u1

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 3 Global stability of the positive equilibrium 1198642with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

int

119879

0

intΩ

1199063

2119889119909 119889119905 le 119872

2int

119879

0

intΩ

1199062

2119889119909 119889119905

int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

le int

119879

0

intΩ

1199062

2(119905 119909) 119889119909 119889119905

(64)

Thus we get |nabla1199062|2le 1198624 In a similar way we have

|nabla1199063|2le 1198625 Here 119862

4and 119862

5are independent of 119879

It is easy to see that 1199062(119905 119909) 119906

3(119905 119909) isin 119871

2((0infin)

11988212(Ω)) These imply that

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)100381710038171003817100381711988212(Ω) = 0 119894 = 2 3 (65)

From the Sobolev compact embedding theorem we know

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)1003817100381710038171003817119862(Ω) = 0 119894 = 2 3 (66)

In the end we show that the trivial solution 1198640is an

unstable equilibrium Similarly to the local stability to 119864lowast wecan get the characteristic equation of 119864

0as

(120582 + 1205831198941198631minus 1198861) (120582 + 120583

1198941198632+ 1198862) (120582 + 120583

1198941198633+ 1198863) = 0 (67)

If 119894 = 1 then 1205831= 0 It is easy to see that this equation admits

a positive solution 120582 = 1198861 According to Theorem 51 in [23]

we have the following result

Theorem 11 The trivial equilibrium 1198640is an unstable equilib-

rium of system (1)ndash(3)

4 Numerical Illustrations

In this section we performnumerical simulations to illustratethe theoretical results given in Section 3

12 Abstract and Applied Analysis

u1

02

46

8

01

23

40

1

2

3

4

tx

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 4 Global stability of the positive equilibrium 1198641with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos119909 27 + 05 sin119909)

In the following we always take Ω = [0 120587] 119870119894(119909 119910 119905) =

119866119894(119909 119910 119905)119896

119894(119905) where 119896

119894(119905) = (1120591

lowast)119890minus119905120591lowast

(119894 = 1 2) and

1198661(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988921198992

119905 cos 119899119909 cos 119899119910

1198662(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988931198992

119905 cos 119899119909 cos 119899119910

(68)

However it is difficult for us to simulate our results directlybecause of the nonlocal term Similar to [25] the equationsin (1) can be rewritten as follows

1205971199061

120597119905minus 1198891Δ1199061= 1199061(1198861minus 119886111199061minus119886121199062

1198981+ 1199061

)

1205971199062

120597119905minus 1198892Δ1199062= 1199062(minus1198862+ 11988621V1minus 119886221199062minus119886231199063

1198982+ 1199063

)

1205971199063

120597119905minus 1198893Δ1199063= 1199063(minus1198863+ 11988632V2minus 119886331199063)

120597V1

120597119905minus 1198892ΔV1=1

120591lowast(

1199061

1198981+ 1199061

minus V1)

120597V2

120597119905minus 1198893ΔV2=1

120591lowast(

1199062

1198982+ 1199062

minus V2)

(69)

where

V119894= int

120587

0

int

119905

minusinfin

119866119894(119909 119910 119905 minus 119904)

1

120591lowast119890minus(119905minus119904)120591

lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(70)

Each component is considered with homogeneous Neumannboundary conditions and the initial condition of V

119894is

V119894(0 119909) = int

120587

0

int

0

minusinfin

119866119894(119909 119910 minus119904)

1

120591lowast119890119904120591lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(71)

Abstract and Applied Analysis 13

In the following examples we fix some coefficients andassume that 119889

1= 1198892= 1198893= 1 119886

1= 3 119886

12= 1 119898

1= 1198982=

1 1198862= 1 119886

22= 12 119886

23= 1 119886

33= 12 and 120591lowast = 1 The

asymptotic behaviors of system (1)ndash(3) are shownby choosingdifferent coefficients 119886

11 11988621 1198863 and 119886

32

Example 12 Let 11988611= 539 119886

21= 8113 119886

3= 113 and

11988632= 14Then it is easy to see that the system admits a unique

positive equilibrium 119864lowast(12 112 112) By Theorem 8 we

see that the positive solution (1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of

system (1)ndash(3) converges to 119864lowast as 119905 rarr infin See Figure 2

Example 13 Let 11988611

= 6 11988621

= 12 1198863= 14 and

11988632= 1 Clearly 119867

2does not hold Hence the positive

steady state is not feasible System (1) admits two semi-trivial steady state 119864

2(04732 02372 0) and 119864

1(12 0 0)

According to Theorem 9 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

2

as 119905 rarr infin See Figure 3

Example 14 Let 11988611= 6 119886

21= 2 119886

3= 14 and 119886

32= 1

Clearly1198671does not hold Hence 119864lowast and 119864

2are not feasible

System (1) has a unique semi-trivial steady state 1198641(12 0 0)

According to Theorem 10 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

1

as 119905 rarr infin See Figure 4

5 Discussion

In this paper we incorporate nonlocal delay into a three-species food chain model with Michaelis-Menten functionalresponse to represent a delay due to the gestation of the preda-tor The conditions under which the spatial homogeneousequilibria are asymptotically stable are given by using theLyapunov functional

We now summarize the ecological meanings of ourtheoretical results Firstly the positive equilibrium 119864

lowast ofsystem (1)ndash(3) exists under the high birth rate of the prey(1198861) and low death rates (119886

2and 119886

3) of predator and top

predator 119864lowast is globally stable if the intraspecific competition11988611is neither too big nor too small and the maximum harvest

rates 11988612 11988623

are small enough Secondly the semi-trivialequilibrium 119864

2of system (1)ndash(3) exists if the birth rate of the

prey (1198861) is high death rate of predator 119886

2is low and the death

rate (1198863) exceeds the conversion rate from predator to top

predator (11988632) 1198642is globally stable if the maximum harvest

rates 11988612 11988623are small and the intra-specific competition 119886

11

is neither too big nor too small Thirdly system (1)ndash(3) hasonly one semi-trivial equilibrium 119864

1when the death rate (119886

2)

exceeds the conversion rate from prey to predator (11988621) 1198641

is globally stable if intra-specific competitions (11988611 11988622 and

11988633) are strong Finally 119864

0is unstable and the non-stability of

trivial equilibrium tells us that not all of the populations goto extinction Furthermore our main results imply that thenonlocal delay is harmless for stabilities of all non-negativesteady states of system (1)ndash(3)

There are still many interesting and challenging problemswith respect to system (1)ndash(3) for example the permanence

and stability of periodic solution or almost periodic solutionThese problems are clearly worthy for further investigations

Acknowledgments

This work is partially supported by PRC Grants NSFC11102076 and 11071209 andNSF of theHigher Education Insti-tutions of Jiangsu Province (12KJD110002 and 12KJD110008)

References

[1] R Xu and M A J Chaplain ldquoPersistence and global stabilityin a delayed predator-prey system with Michaelis-Menten typefunctional responserdquo Applied Mathematics and Computationvol 130 no 2-3 pp 441ndash455 2002

[2] H F Huo andW T Li ldquoPeriodic solution of a delayed predator-prey system with Michaelis-Menten type functional responserdquoJournal of Computational and AppliedMathematics vol 166 no2 pp 453ndash463 2004

[3] Z Lin and M Pedersen ldquoStability in a diffusive food-chainmodel with Michaelis-Menten functional responserdquo NonlinearAnalysis Theory Methods amp Applications vol 57 no 3 pp 421ndash433 2004

[4] B X Dai N Zhang and J Z Zou ldquoPermanence for theMichaelis-Menten type discrete three-species ratio-dependentfood chain model with delayrdquo Journal of Mathematical Analysisand Applications vol 324 no 1 pp 728ndash738 2006

[5] N F Britton ldquoSpatial structures and periodic travelling wavesin an integro-differential reaction-diffusion population modelrdquoSIAM Journal on Applied Mathematics vol 50 no 6 pp 1663ndash1688 1990

[6] S A Gourley and N F Britton ldquoInstability of travelling wavesolutions of a population model with nonlocal effectsrdquo IMAJournal of Applied Mathematics vol 51 no 3 pp 299ndash310 1993

[7] X Zhang and R Xu ldquoTraveling waves of a diffusive predator-prey model with nonlocal delay and stage structurerdquo Journal ofMathematical Analysis and Applications vol 373 no 2 pp 475ndash484 2011

[8] Z C Wang W T Li and S G Ruan ldquoExistence and stability oftraveling wave fronts in reaction advection diffusion equationswith nonlocal delayrdquo Journal of Differential Equations vol 238no 1 pp 153ndash200 2007

[9] S A Gourley and S G Ruan ldquoConvergence and travellingfronts in functional differential equations with nonlocal termsa competition modelrdquo SIAM Journal on Mathematical Analysisvol 35 no 3 pp 806ndash822 2003

[10] X H Lai and T X Yao ldquoExponential stability of impul-sive delayed reaction-diffusion cellular neural networks viaPoincare integral inequalityrdquoAbstract and Applied Analysis vol2013 Article ID 131836 10 pages 2013

[11] R Xu and Z E Ma ldquoGlobal stability of a reaction-diffusionpredator-prey model with a nonlocal delayrdquo Mathematical andComputer Modelling vol 50 no 1-2 pp 194ndash206 2009

[12] Z Li F D Chen and M X He ldquoAsymptotic behavior of thereaction-diffusion model of plankton allelopathy with nonlocaldelaysrdquo Nonlinear Analysis Real World Applications vol 12 no3 pp 1748ndash1758 2011

[13] Y Kuang and H L Smith ldquoGlobal stability in diffusive delayLotka-Volterra systemsrdquoDifferential and Integral Equations vol4 no 1 pp 117ndash128 1991

14 Abstract and Applied Analysis

[14] Z G Lin M Pedersen and L Zhang ldquoA predator-prey systemwith stage-structure for predator and nonlocal delayrdquoNonlinearAnalysis Theory Methods amp Applications vol 72 no 3-4 pp2019ndash2030 2010

[15] R Xu ldquoA reaction-diffusion predator-prey model with stagestructure and nonlocal delayrdquo Applied Mathematics and Com-putation vol 175 no 2 pp 984ndash1006 2006

[16] S S Chen and J P Shi ldquoStability and Hopf bifurcation in adiffusive logistic population model with nonlocal delay effectrdquoJournal of Differential Equations vol 253 no 12 pp 3440ndash34702012

[17] H I Freedman Deterministic Mathematical Models in Popula-tion Ecology vol 57 of Monographs and Textbooks in Pure andAppliedMathematicsMarcelDekker NewYorkNYUSA 1980

[18] P A Abrams and L R Ginzburg ldquoThe nature of predation preydepedent ratio dependent or neitherrdquo Trends in Ecology andEvolution vol 15 no 8 pp 337ndash341 2000

[19] D L DeAngelis R A Goldstein and R V OrsquoNeill ldquoA modelfor trophic iterationrdquo Ecology vol 56 no 4 pp 881ndash892 1975

[20] C V Pao ldquoDynamics of nonlinear parabolic systems with timedelaysrdquo Journal of Mathematical Analysis and Applications vol198 no 3 pp 751ndash779 1996

[21] F Xu Y Hou and Z G Lin ldquoTime delay parabolic system ina predator-prey model with stage structurerdquo Acta MathematicaSinica vol 48 no 6 pp 1121ndash1130 2005 (Chinese)

[22] P Y H Pang and M X Wang ldquoStrategy and stationary patternin a three-species predator-prey modelrdquo Journal of DifferentialEquations vol 200 no 2 pp 245ndash273 2004

[23] D Henry Geometric Theory of Semilinear Parabolic Equationsvol 840 of Lecture Notes in Mathematics Springer New YorkNY USA 1981

[24] K J Brown P C Dunne and R A Gardner ldquoA semilinearparabolic system arising in the theory of superconductivityrdquoJournal of Differential Equations vol 40 no 2 pp 232ndash252 1981

[25] S A Gourley and J W H So ldquoDynamics of a food-limitedpopulation model incorporating nonlocal delays on a finitedomainrdquo Journal of Mathematical Biology vol 44 no 1 pp 49ndash78 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays WenzhenGan, 1 CanrongTian,

8 Abstract and Applied Analysis

So we have 1199061(119905) rarr 119906

lowast

1as 119905 rarr infin Similarly 119906

2(119905) rarr 119906

lowast

2

and 1199063(119905) rarr 119906

lowast

3as 119905 rarr infin According to (30) there exists

a subsequence 119905119898 and non-negative functions 119908

119894isin 1198622(Ω)

such thatlim119898rarrinfin

1003817100381710038171003817119906119894 (sdot 119905119898) minus 119908119894 (sdot)10038171003817100381710038171198622(Ω) = 0 (119894 = 1 2 3) (42)

Applying (40) and noting that 119906119894(119905) rarr 119906

lowast

119894 we then have119908

119894=

119906lowast

119894 (119894 = 1 2 3) That is

lim119898rarrinfin

1003817100381710038171003817119906119894 (sdot 119905119898) minus 119906lowast

119894

10038171003817100381710038171198622(Ω) = 0 (119894 = 1 2 3) (43)

Furthermore the local stability ofElowast combiningwith (43)gives the following global stability

Theorem 9 Assume that

11986751198861(11988621minus 1198862)

11989811198862

gt 11988611gt11988612Vlowast2

11989821

(44)

1198674and 119866

4hold and then the semi-trivial steady state 119864

2

of system (1)ndash(3) with non-trivial initial functions is globallyasymptotically stable

Proof It is obvious that system (1)ndash(3) always has two non-negative equilibria (119906

1 1199062 1199063) as follows 119864

0= (0 0 0) and

1198641= (119886111988611 0 0) If 119867

1and 119867

4are satisfied system (1) has

the other semitrivial solution denoted by 1198642(Vlowast1 Vlowast2 0) where

1198674 11988631198982gt (11988632minus 1198863) Vlowast

2 (45)

We consider the stability of 1198642under condition 119867

1and

1198674 Equation (1) can be rewritten as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus Vlowast

1) minus11988612(1199062minus Vlowast2)

1198981+ 1199061

+11988612Vlowast2(1199061minus Vlowast1)

(1198981+ 1199061) (1198981+ Vlowast1)]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus Vlowast

1)

(1198981+ 1199061(119904 119910)) (119898

1+ Vlowast1)119889119904 119889119910

minus11988622(1199062minus Vlowast

2) minus

119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321198982(1199062(119904 119910) minus Vlowast

2)

(1198982+ 1199062(119904 119910)) (119898

2+ Vlowast2)119889119904 119889119910

minus119886331199063]

(46)

Similar to the argument ofTheorem 8 we have 1199061(119909 119905) rarr Vlowast

1

and 1199062(119909 119905) rarr Vlowast

2as 119905 rarr infin uniformly on Ω provided that

the following additional condition holds

1198663 119886111198982

1gt 11988612Vlowast

2

1198664 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821minus 11988612Vlowast2

(47)

Next we consider the asymptotic behavior of 1199063(119905 119909) Let

120579 =1198863minus (11988632minus 1198863) Vlowast2

2120575 120575 =

100381610038161003816100381611988632 minus 11988631003816100381610038161003816

(48)

Then there exists 1199051gt 0 such that

Vlowast

2minus 120579 lt 119906

2(119905 119909) lt V

lowast

2+ 120579 forall119905 gt 119905

1 119909 isin Ω (49)

Consider the following two systems

1199083119905minus 1198893Δ1199083= 1199083[minus1198863+11988632(Vlowast2+ 120579)

1198982+ Vlowast2+ 120579

minus 119886331199083]

(119905 119909) isin [1199051 +infin) times Ω

1205971199083

120597]= 0 (119905 119909) isin [119905

1 +infin) times 120597Ω

1199083= 1199063 (119905 119909) isin (minusinfin 119905

1] times Ω

1198823119905minus 1198893Δ1198823= 1198823[minus1198863+11988632(Vlowast2minus 120579)

1198982+ Vlowast2minus 120579

minus 11988633V3]

(119905 119909) isin [1199051 +infin) times Ω

1205971198823

120597]= 0 (119905 119909) isin [119905

1 +infin) times 120597Ω

1198823= 1199063 (119905 119909) isin (minusinfin 119905

1] times Ω

(50)

Combining comparison principle with (50) we obtain that

1198823(119905 119909) le 119906

3(119905 119909) le 119908

3(119905 119909) forall119905 gt 119905

1 119909 isin Ω (51)

By Lemma 4 we obtain

0 = lim119905rarrinfin

1198823(119905 119909) le inf 119906

3(119905 119909) le sup 119906

3(119905 119909)

le lim119905rarrinfin

1199083(119905 119909) = 0 forall119909 isin Ω

(52)

which implies that lim119905rarrinfin

1199063(119905 119909) = 0 uniformly onΩ

Theorem 10 Suppose that1198665and119866

6hold and then the semi-

trivial steady state 1198641of system (1)ndash(3) with non-trivial initial

functions is globally asymptotically stable

Abstract and Applied Analysis 9

Proof We study the stability of the semi-trivial solution 1198641=

(1 0 0) Similarly the equations in (1) can be written as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus 1) minus

119886121199062

1198981+ 1199061

]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[minus1198862+ intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus

1)

(1198981+ 1199061(119904 119910)) (119898

1+ 1)119889119904 119889119910

+119886211

1198981+ 1

minus 119886221199062minus119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[minus1198863+ intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321199062(119904 119910)

1198982+ 1199062(119904 119910)

119889119904 119889119910 minus 119886331199063]

(53)

Define

119881 (119905) = 120572intΩ

[1199061minus 1minus 1log 11990611

] 119889119909 + intΩ

1199062119889119909

+ 120573intΩ

1199063119889119909

(54)

Calculating the derivative of 119881(119905) along 1198641 we get from (54)

that

1198811015840(119905) le minusint

Ω

[120572(11988611minus119886121205981

1198981

)] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

412059821198982

minus11988621

411989811205983

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062+ 11988631199063] 119889119909

+119886211205983

1198981

intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times (1199061(119904 119910) minus

1)2

119889119904 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times 1199062

2(119904 119910) 119889119904 119889119910 119889119909

(55)

Define119864 (119905) = 119881 (119905)

+119886211205983

1198981

∬Ω

int

+infin

0

int

119905

119905minus119903

1198701(119909 119910 119903)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119903 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

+infin

0

int

119905

119905minus119903

1198702(119909 119910 119903)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119903 119889119910 119889119909

(56)

It is easy to see that

1198641015840(119905) le minus120572119889

11intΩ

1003816100381610038161003816nabla119906110038161003816100381610038162

11990621

119889119909

minus intΩ

[120572(11988611minus119886121205981

1198981

) minus119886211205983

1198981

] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632

411989821205984

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

minus119886321205731205984

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062minus 11988631205731199063] 119889119909

(57)

Assume that1198665 1198861(11988621minus 1198862) lt 119898

1119886211988611

1198666 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821

(58)

Let

1198971= 12057211988611minus120572119886121205981

1198981

minus119886211205983

1198981

1198972= 11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

1198973= 11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

(59)

Choose

120572 =11988621

11988612

120573 =11988623

11988632

1205981= 1205983=119886111198981

411988612

1205982= 1205984=119898211988633

411988632

(60)

Then we get 119897119894gt 0 (119894 = 1 2 3) Therefore we have

lim119905rarrinfin

1199061(119905 119909) =

1 (61)

uniformly onΩ

10 Abstract and Applied Analysis

tx

u1

02

46

8

01

23

40

1

2

3

4

(a)

02

46

8

01

23

40

1

2

3

4

t

x

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 2 Global stability of the positive equilibrium 119864lowast with an initial condition (1206011 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

Next we consider the asymptotic behavior of 1199062(119905 119909) and

1199063(119905 119909) For any 119879 gt 0 integrating (57) over [0 119879] yields

119864 (119879) + 1205721198891

10038171003817100381710038171003817100381710038171003817

10038161003816100381610038161003816100381610038161003816

nabla1199061

1199061

10038161003816100381610038161003816100381610038161003816

10038171003817100381710038171003817100381710038171003817

2

2

+ 1198971

100381710038171003817100381710038161003816100381610038161199061 minus 1

100381610038161003816100381610038171003817100381710038172

2

+ 1198972

100381710038171003817100381710038161003816100381610038161199062100381610038161003816100381610038171003817100381710038172

2+ 1198973

100381710038171003817100381710038161003816100381610038161199063100381610038161003816100381610038171003817100381710038172

2le 119864 (0)

(62)

where |119906119894|2

2= int119879

0intΩ1199062

119894119889119909 119889119905 It implies that |119906

119894|2le 119862119894(119894 =

2 3) for the constant 119862119894which is independent of 119879 Now we

consider the boundedness of |nabla1199062|2and |nabla119906

3|2 From the

Greenrsquos identity we obtain

1198892int

119879

0

intΩ

1003816100381610038161003816nabla1199062 (119905 119909)10038161003816100381610038162

119889119909 119889119905

= minus1198892int

119879

0

intΩ

1199062(119905 119909) Δ119906

2(119905 119909) 119889119909 119889119905

= minusint

119879

0

intΩ

1199062

1205971199062

120597119905119889119909 119889119905 minus 119886

2int

119879

0

intΩ

1199062

2119889119909 119889119905

minus 11988622int

119879

0

intΩ

1199063

2119889119909 119889119905 minus 119886

23int

119879

0

intΩ

1199062

21199063

1198982+ 1199063

119889119909 119889119905

+ 11988621int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

times 1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

(63)

Note that

int

119879

0

intΩ

1199062(119905 119909)

1205971199062(119905 119909)

120597119905119889119909 119889119905

= int

119879

0

intΩ

1

2

1205971199062

2

120597119905119889119905 119889119909

=1

2intΩ

1199062

2(119879 119909) 119889119909 minus

1

2intΩ

1199062

2(0 119909) 119889119909 le 119872

2

2|Ω|

int

119879

0

intΩ

1199062

21199063119889119909 119889119905 le 119872

3int

119879

0

intΩ

1199062

2119889119909 119889119905

Abstract and Applied Analysis 11

02

46

8

01

23

40

1

2

3

4

tx

u1

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 3 Global stability of the positive equilibrium 1198642with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

int

119879

0

intΩ

1199063

2119889119909 119889119905 le 119872

2int

119879

0

intΩ

1199062

2119889119909 119889119905

int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

le int

119879

0

intΩ

1199062

2(119905 119909) 119889119909 119889119905

(64)

Thus we get |nabla1199062|2le 1198624 In a similar way we have

|nabla1199063|2le 1198625 Here 119862

4and 119862

5are independent of 119879

It is easy to see that 1199062(119905 119909) 119906

3(119905 119909) isin 119871

2((0infin)

11988212(Ω)) These imply that

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)100381710038171003817100381711988212(Ω) = 0 119894 = 2 3 (65)

From the Sobolev compact embedding theorem we know

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)1003817100381710038171003817119862(Ω) = 0 119894 = 2 3 (66)

In the end we show that the trivial solution 1198640is an

unstable equilibrium Similarly to the local stability to 119864lowast wecan get the characteristic equation of 119864

0as

(120582 + 1205831198941198631minus 1198861) (120582 + 120583

1198941198632+ 1198862) (120582 + 120583

1198941198633+ 1198863) = 0 (67)

If 119894 = 1 then 1205831= 0 It is easy to see that this equation admits

a positive solution 120582 = 1198861 According to Theorem 51 in [23]

we have the following result

Theorem 11 The trivial equilibrium 1198640is an unstable equilib-

rium of system (1)ndash(3)

4 Numerical Illustrations

In this section we performnumerical simulations to illustratethe theoretical results given in Section 3

12 Abstract and Applied Analysis

u1

02

46

8

01

23

40

1

2

3

4

tx

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 4 Global stability of the positive equilibrium 1198641with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos119909 27 + 05 sin119909)

In the following we always take Ω = [0 120587] 119870119894(119909 119910 119905) =

119866119894(119909 119910 119905)119896

119894(119905) where 119896

119894(119905) = (1120591

lowast)119890minus119905120591lowast

(119894 = 1 2) and

1198661(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988921198992

119905 cos 119899119909 cos 119899119910

1198662(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988931198992

119905 cos 119899119909 cos 119899119910

(68)

However it is difficult for us to simulate our results directlybecause of the nonlocal term Similar to [25] the equationsin (1) can be rewritten as follows

1205971199061

120597119905minus 1198891Δ1199061= 1199061(1198861minus 119886111199061minus119886121199062

1198981+ 1199061

)

1205971199062

120597119905minus 1198892Δ1199062= 1199062(minus1198862+ 11988621V1minus 119886221199062minus119886231199063

1198982+ 1199063

)

1205971199063

120597119905minus 1198893Δ1199063= 1199063(minus1198863+ 11988632V2minus 119886331199063)

120597V1

120597119905minus 1198892ΔV1=1

120591lowast(

1199061

1198981+ 1199061

minus V1)

120597V2

120597119905minus 1198893ΔV2=1

120591lowast(

1199062

1198982+ 1199062

minus V2)

(69)

where

V119894= int

120587

0

int

119905

minusinfin

119866119894(119909 119910 119905 minus 119904)

1

120591lowast119890minus(119905minus119904)120591

lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(70)

Each component is considered with homogeneous Neumannboundary conditions and the initial condition of V

119894is

V119894(0 119909) = int

120587

0

int

0

minusinfin

119866119894(119909 119910 minus119904)

1

120591lowast119890119904120591lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(71)

Abstract and Applied Analysis 13

In the following examples we fix some coefficients andassume that 119889

1= 1198892= 1198893= 1 119886

1= 3 119886

12= 1 119898

1= 1198982=

1 1198862= 1 119886

22= 12 119886

23= 1 119886

33= 12 and 120591lowast = 1 The

asymptotic behaviors of system (1)ndash(3) are shownby choosingdifferent coefficients 119886

11 11988621 1198863 and 119886

32

Example 12 Let 11988611= 539 119886

21= 8113 119886

3= 113 and

11988632= 14Then it is easy to see that the system admits a unique

positive equilibrium 119864lowast(12 112 112) By Theorem 8 we

see that the positive solution (1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of

system (1)ndash(3) converges to 119864lowast as 119905 rarr infin See Figure 2

Example 13 Let 11988611

= 6 11988621

= 12 1198863= 14 and

11988632= 1 Clearly 119867

2does not hold Hence the positive

steady state is not feasible System (1) admits two semi-trivial steady state 119864

2(04732 02372 0) and 119864

1(12 0 0)

According to Theorem 9 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

2

as 119905 rarr infin See Figure 3

Example 14 Let 11988611= 6 119886

21= 2 119886

3= 14 and 119886

32= 1

Clearly1198671does not hold Hence 119864lowast and 119864

2are not feasible

System (1) has a unique semi-trivial steady state 1198641(12 0 0)

According to Theorem 10 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

1

as 119905 rarr infin See Figure 4

5 Discussion

In this paper we incorporate nonlocal delay into a three-species food chain model with Michaelis-Menten functionalresponse to represent a delay due to the gestation of the preda-tor The conditions under which the spatial homogeneousequilibria are asymptotically stable are given by using theLyapunov functional

We now summarize the ecological meanings of ourtheoretical results Firstly the positive equilibrium 119864

lowast ofsystem (1)ndash(3) exists under the high birth rate of the prey(1198861) and low death rates (119886

2and 119886

3) of predator and top

predator 119864lowast is globally stable if the intraspecific competition11988611is neither too big nor too small and the maximum harvest

rates 11988612 11988623

are small enough Secondly the semi-trivialequilibrium 119864

2of system (1)ndash(3) exists if the birth rate of the

prey (1198861) is high death rate of predator 119886

2is low and the death

rate (1198863) exceeds the conversion rate from predator to top

predator (11988632) 1198642is globally stable if the maximum harvest

rates 11988612 11988623are small and the intra-specific competition 119886

11

is neither too big nor too small Thirdly system (1)ndash(3) hasonly one semi-trivial equilibrium 119864

1when the death rate (119886

2)

exceeds the conversion rate from prey to predator (11988621) 1198641

is globally stable if intra-specific competitions (11988611 11988622 and

11988633) are strong Finally 119864

0is unstable and the non-stability of

trivial equilibrium tells us that not all of the populations goto extinction Furthermore our main results imply that thenonlocal delay is harmless for stabilities of all non-negativesteady states of system (1)ndash(3)

There are still many interesting and challenging problemswith respect to system (1)ndash(3) for example the permanence

and stability of periodic solution or almost periodic solutionThese problems are clearly worthy for further investigations

Acknowledgments

This work is partially supported by PRC Grants NSFC11102076 and 11071209 andNSF of theHigher Education Insti-tutions of Jiangsu Province (12KJD110002 and 12KJD110008)

References

[1] R Xu and M A J Chaplain ldquoPersistence and global stabilityin a delayed predator-prey system with Michaelis-Menten typefunctional responserdquo Applied Mathematics and Computationvol 130 no 2-3 pp 441ndash455 2002

[2] H F Huo andW T Li ldquoPeriodic solution of a delayed predator-prey system with Michaelis-Menten type functional responserdquoJournal of Computational and AppliedMathematics vol 166 no2 pp 453ndash463 2004

[3] Z Lin and M Pedersen ldquoStability in a diffusive food-chainmodel with Michaelis-Menten functional responserdquo NonlinearAnalysis Theory Methods amp Applications vol 57 no 3 pp 421ndash433 2004

[4] B X Dai N Zhang and J Z Zou ldquoPermanence for theMichaelis-Menten type discrete three-species ratio-dependentfood chain model with delayrdquo Journal of Mathematical Analysisand Applications vol 324 no 1 pp 728ndash738 2006

[5] N F Britton ldquoSpatial structures and periodic travelling wavesin an integro-differential reaction-diffusion population modelrdquoSIAM Journal on Applied Mathematics vol 50 no 6 pp 1663ndash1688 1990

[6] S A Gourley and N F Britton ldquoInstability of travelling wavesolutions of a population model with nonlocal effectsrdquo IMAJournal of Applied Mathematics vol 51 no 3 pp 299ndash310 1993

[7] X Zhang and R Xu ldquoTraveling waves of a diffusive predator-prey model with nonlocal delay and stage structurerdquo Journal ofMathematical Analysis and Applications vol 373 no 2 pp 475ndash484 2011

[8] Z C Wang W T Li and S G Ruan ldquoExistence and stability oftraveling wave fronts in reaction advection diffusion equationswith nonlocal delayrdquo Journal of Differential Equations vol 238no 1 pp 153ndash200 2007

[9] S A Gourley and S G Ruan ldquoConvergence and travellingfronts in functional differential equations with nonlocal termsa competition modelrdquo SIAM Journal on Mathematical Analysisvol 35 no 3 pp 806ndash822 2003

[10] X H Lai and T X Yao ldquoExponential stability of impul-sive delayed reaction-diffusion cellular neural networks viaPoincare integral inequalityrdquoAbstract and Applied Analysis vol2013 Article ID 131836 10 pages 2013

[11] R Xu and Z E Ma ldquoGlobal stability of a reaction-diffusionpredator-prey model with a nonlocal delayrdquo Mathematical andComputer Modelling vol 50 no 1-2 pp 194ndash206 2009

[12] Z Li F D Chen and M X He ldquoAsymptotic behavior of thereaction-diffusion model of plankton allelopathy with nonlocaldelaysrdquo Nonlinear Analysis Real World Applications vol 12 no3 pp 1748ndash1758 2011

[13] Y Kuang and H L Smith ldquoGlobal stability in diffusive delayLotka-Volterra systemsrdquoDifferential and Integral Equations vol4 no 1 pp 117ndash128 1991

14 Abstract and Applied Analysis

[14] Z G Lin M Pedersen and L Zhang ldquoA predator-prey systemwith stage-structure for predator and nonlocal delayrdquoNonlinearAnalysis Theory Methods amp Applications vol 72 no 3-4 pp2019ndash2030 2010

[15] R Xu ldquoA reaction-diffusion predator-prey model with stagestructure and nonlocal delayrdquo Applied Mathematics and Com-putation vol 175 no 2 pp 984ndash1006 2006

[16] S S Chen and J P Shi ldquoStability and Hopf bifurcation in adiffusive logistic population model with nonlocal delay effectrdquoJournal of Differential Equations vol 253 no 12 pp 3440ndash34702012

[17] H I Freedman Deterministic Mathematical Models in Popula-tion Ecology vol 57 of Monographs and Textbooks in Pure andAppliedMathematicsMarcelDekker NewYorkNYUSA 1980

[18] P A Abrams and L R Ginzburg ldquoThe nature of predation preydepedent ratio dependent or neitherrdquo Trends in Ecology andEvolution vol 15 no 8 pp 337ndash341 2000

[19] D L DeAngelis R A Goldstein and R V OrsquoNeill ldquoA modelfor trophic iterationrdquo Ecology vol 56 no 4 pp 881ndash892 1975

[20] C V Pao ldquoDynamics of nonlinear parabolic systems with timedelaysrdquo Journal of Mathematical Analysis and Applications vol198 no 3 pp 751ndash779 1996

[21] F Xu Y Hou and Z G Lin ldquoTime delay parabolic system ina predator-prey model with stage structurerdquo Acta MathematicaSinica vol 48 no 6 pp 1121ndash1130 2005 (Chinese)

[22] P Y H Pang and M X Wang ldquoStrategy and stationary patternin a three-species predator-prey modelrdquo Journal of DifferentialEquations vol 200 no 2 pp 245ndash273 2004

[23] D Henry Geometric Theory of Semilinear Parabolic Equationsvol 840 of Lecture Notes in Mathematics Springer New YorkNY USA 1981

[24] K J Brown P C Dunne and R A Gardner ldquoA semilinearparabolic system arising in the theory of superconductivityrdquoJournal of Differential Equations vol 40 no 2 pp 232ndash252 1981

[25] S A Gourley and J W H So ldquoDynamics of a food-limitedpopulation model incorporating nonlocal delays on a finitedomainrdquo Journal of Mathematical Biology vol 44 no 1 pp 49ndash78 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays WenzhenGan, 1 CanrongTian,

Abstract and Applied Analysis 9

Proof We study the stability of the semi-trivial solution 1198641=

(1 0 0) Similarly the equations in (1) can be written as

1205971199061

120597119905minus 1198891Δ1199061= 1199061[minus11988611(1199061minus 1) minus

119886121199062

1198981+ 1199061

]

1205971199062

120597119905minus 1198892Δ1199062

= 1199062[minus1198862+ intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times119886211198981(1199061(119904 119910) minus

1)

(1198981+ 1199061(119904 119910)) (119898

1+ 1)119889119904 119889119910

+119886211

1198981+ 1

minus 119886221199062minus119886231199063

1198982+ 1199062

]

1205971199063

120597119905minus 1198893Δ1199063

= 1199063[minus1198863+ intΩ

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times119886321199062(119904 119910)

1198982+ 1199062(119904 119910)

119889119904 119889119910 minus 119886331199063]

(53)

Define

119881 (119905) = 120572intΩ

[1199061minus 1minus 1log 11990611

] 119889119909 + intΩ

1199062119889119909

+ 120573intΩ

1199063119889119909

(54)

Calculating the derivative of 119881(119905) along 1198641 we get from (54)

that

1198811015840(119905) le minusint

Ω

[120572(11988611minus119886121205981

1198981

)] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

412059821198982

minus11988621

411989811205983

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062+ 11988631199063] 119889119909

+119886211205983

1198981

intΩ

int

119905

minusinfin

1198701(119909 119910 119905 minus 119904)

times (1199061(119904 119910) minus

1)2

119889119904 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

119905

minusinfin

1198702(119909 119910 119905 minus 119904)

times 1199062

2(119904 119910) 119889119904 119889119910 119889119909

(55)

Define119864 (119905) = 119881 (119905)

+119886211205983

1198981

∬Ω

int

+infin

0

int

119905

119905minus119903

1198701(119909 119910 119903)

times (1199061(119904 119910) minus 119906

lowast

1)2

119889119904 119889119903 119889119910 119889119909

+11988632120573

412059841198982

∬Ω

int

+infin

0

int

119905

119905minus119903

1198702(119909 119910 119903)

times (1199062(119904 119910) minus 119906

lowast

2)2

119889119904 119889119903 119889119910 119889119909

(56)

It is easy to see that

1198641015840(119905) le minus120572119889

11intΩ

1003816100381610038161003816nabla119906110038161003816100381610038162

11990621

119889119909

minus intΩ

[120572(11988611minus119886121205981

1198981

) minus119886211205983

1198981

] (1199061minus 1)2

119889119909

+ intΩ

[11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632

411989821205984

] 1199062

2119889119909

+ intΩ

[12057311988633minus119886231205982

1198982

minus119886321205731205984

1198982

] 1199062

3119889119909

minus intΩ

[(1198862minus119886211

1198981+ 1

)1199062minus 11988631205731199063] 119889119909

(57)

Assume that1198665 1198861(11988621minus 1198862) lt 119898

1119886211988611

1198666 119886221198982

2gt1198862311988632

11988633

+211988612119886211198982

2

1198861111989821

(58)

Let

1198971= 12057211988611minus120572119886121205981

1198981

minus119886211205983

1198981

1198972= 11988622minus12057211988612

411989811205981

minus11988623

411989821205982

minus11988621

411989811205983

minus11988632120573

411989821205984

1198973= 11988633120573 minus

119886231205982

1198982

minus120573119886321205984

1198982

(59)

Choose

120572 =11988621

11988612

120573 =11988623

11988632

1205981= 1205983=119886111198981

411988612

1205982= 1205984=119898211988633

411988632

(60)

Then we get 119897119894gt 0 (119894 = 1 2 3) Therefore we have

lim119905rarrinfin

1199061(119905 119909) =

1 (61)

uniformly onΩ

10 Abstract and Applied Analysis

tx

u1

02

46

8

01

23

40

1

2

3

4

(a)

02

46

8

01

23

40

1

2

3

4

t

x

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 2 Global stability of the positive equilibrium 119864lowast with an initial condition (1206011 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

Next we consider the asymptotic behavior of 1199062(119905 119909) and

1199063(119905 119909) For any 119879 gt 0 integrating (57) over [0 119879] yields

119864 (119879) + 1205721198891

10038171003817100381710038171003817100381710038171003817

10038161003816100381610038161003816100381610038161003816

nabla1199061

1199061

10038161003816100381610038161003816100381610038161003816

10038171003817100381710038171003817100381710038171003817

2

2

+ 1198971

100381710038171003817100381710038161003816100381610038161199061 minus 1

100381610038161003816100381610038171003817100381710038172

2

+ 1198972

100381710038171003817100381710038161003816100381610038161199062100381610038161003816100381610038171003817100381710038172

2+ 1198973

100381710038171003817100381710038161003816100381610038161199063100381610038161003816100381610038171003817100381710038172

2le 119864 (0)

(62)

where |119906119894|2

2= int119879

0intΩ1199062

119894119889119909 119889119905 It implies that |119906

119894|2le 119862119894(119894 =

2 3) for the constant 119862119894which is independent of 119879 Now we

consider the boundedness of |nabla1199062|2and |nabla119906

3|2 From the

Greenrsquos identity we obtain

1198892int

119879

0

intΩ

1003816100381610038161003816nabla1199062 (119905 119909)10038161003816100381610038162

119889119909 119889119905

= minus1198892int

119879

0

intΩ

1199062(119905 119909) Δ119906

2(119905 119909) 119889119909 119889119905

= minusint

119879

0

intΩ

1199062

1205971199062

120597119905119889119909 119889119905 minus 119886

2int

119879

0

intΩ

1199062

2119889119909 119889119905

minus 11988622int

119879

0

intΩ

1199063

2119889119909 119889119905 minus 119886

23int

119879

0

intΩ

1199062

21199063

1198982+ 1199063

119889119909 119889119905

+ 11988621int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

times 1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

(63)

Note that

int

119879

0

intΩ

1199062(119905 119909)

1205971199062(119905 119909)

120597119905119889119909 119889119905

= int

119879

0

intΩ

1

2

1205971199062

2

120597119905119889119905 119889119909

=1

2intΩ

1199062

2(119879 119909) 119889119909 minus

1

2intΩ

1199062

2(0 119909) 119889119909 le 119872

2

2|Ω|

int

119879

0

intΩ

1199062

21199063119889119909 119889119905 le 119872

3int

119879

0

intΩ

1199062

2119889119909 119889119905

Abstract and Applied Analysis 11

02

46

8

01

23

40

1

2

3

4

tx

u1

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 3 Global stability of the positive equilibrium 1198642with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

int

119879

0

intΩ

1199063

2119889119909 119889119905 le 119872

2int

119879

0

intΩ

1199062

2119889119909 119889119905

int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

le int

119879

0

intΩ

1199062

2(119905 119909) 119889119909 119889119905

(64)

Thus we get |nabla1199062|2le 1198624 In a similar way we have

|nabla1199063|2le 1198625 Here 119862

4and 119862

5are independent of 119879

It is easy to see that 1199062(119905 119909) 119906

3(119905 119909) isin 119871

2((0infin)

11988212(Ω)) These imply that

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)100381710038171003817100381711988212(Ω) = 0 119894 = 2 3 (65)

From the Sobolev compact embedding theorem we know

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)1003817100381710038171003817119862(Ω) = 0 119894 = 2 3 (66)

In the end we show that the trivial solution 1198640is an

unstable equilibrium Similarly to the local stability to 119864lowast wecan get the characteristic equation of 119864

0as

(120582 + 1205831198941198631minus 1198861) (120582 + 120583

1198941198632+ 1198862) (120582 + 120583

1198941198633+ 1198863) = 0 (67)

If 119894 = 1 then 1205831= 0 It is easy to see that this equation admits

a positive solution 120582 = 1198861 According to Theorem 51 in [23]

we have the following result

Theorem 11 The trivial equilibrium 1198640is an unstable equilib-

rium of system (1)ndash(3)

4 Numerical Illustrations

In this section we performnumerical simulations to illustratethe theoretical results given in Section 3

12 Abstract and Applied Analysis

u1

02

46

8

01

23

40

1

2

3

4

tx

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 4 Global stability of the positive equilibrium 1198641with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos119909 27 + 05 sin119909)

In the following we always take Ω = [0 120587] 119870119894(119909 119910 119905) =

119866119894(119909 119910 119905)119896

119894(119905) where 119896

119894(119905) = (1120591

lowast)119890minus119905120591lowast

(119894 = 1 2) and

1198661(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988921198992

119905 cos 119899119909 cos 119899119910

1198662(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988931198992

119905 cos 119899119909 cos 119899119910

(68)

However it is difficult for us to simulate our results directlybecause of the nonlocal term Similar to [25] the equationsin (1) can be rewritten as follows

1205971199061

120597119905minus 1198891Δ1199061= 1199061(1198861minus 119886111199061minus119886121199062

1198981+ 1199061

)

1205971199062

120597119905minus 1198892Δ1199062= 1199062(minus1198862+ 11988621V1minus 119886221199062minus119886231199063

1198982+ 1199063

)

1205971199063

120597119905minus 1198893Δ1199063= 1199063(minus1198863+ 11988632V2minus 119886331199063)

120597V1

120597119905minus 1198892ΔV1=1

120591lowast(

1199061

1198981+ 1199061

minus V1)

120597V2

120597119905minus 1198893ΔV2=1

120591lowast(

1199062

1198982+ 1199062

minus V2)

(69)

where

V119894= int

120587

0

int

119905

minusinfin

119866119894(119909 119910 119905 minus 119904)

1

120591lowast119890minus(119905minus119904)120591

lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(70)

Each component is considered with homogeneous Neumannboundary conditions and the initial condition of V

119894is

V119894(0 119909) = int

120587

0

int

0

minusinfin

119866119894(119909 119910 minus119904)

1

120591lowast119890119904120591lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(71)

Abstract and Applied Analysis 13

In the following examples we fix some coefficients andassume that 119889

1= 1198892= 1198893= 1 119886

1= 3 119886

12= 1 119898

1= 1198982=

1 1198862= 1 119886

22= 12 119886

23= 1 119886

33= 12 and 120591lowast = 1 The

asymptotic behaviors of system (1)ndash(3) are shownby choosingdifferent coefficients 119886

11 11988621 1198863 and 119886

32

Example 12 Let 11988611= 539 119886

21= 8113 119886

3= 113 and

11988632= 14Then it is easy to see that the system admits a unique

positive equilibrium 119864lowast(12 112 112) By Theorem 8 we

see that the positive solution (1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of

system (1)ndash(3) converges to 119864lowast as 119905 rarr infin See Figure 2

Example 13 Let 11988611

= 6 11988621

= 12 1198863= 14 and

11988632= 1 Clearly 119867

2does not hold Hence the positive

steady state is not feasible System (1) admits two semi-trivial steady state 119864

2(04732 02372 0) and 119864

1(12 0 0)

According to Theorem 9 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

2

as 119905 rarr infin See Figure 3

Example 14 Let 11988611= 6 119886

21= 2 119886

3= 14 and 119886

32= 1

Clearly1198671does not hold Hence 119864lowast and 119864

2are not feasible

System (1) has a unique semi-trivial steady state 1198641(12 0 0)

According to Theorem 10 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

1

as 119905 rarr infin See Figure 4

5 Discussion

In this paper we incorporate nonlocal delay into a three-species food chain model with Michaelis-Menten functionalresponse to represent a delay due to the gestation of the preda-tor The conditions under which the spatial homogeneousequilibria are asymptotically stable are given by using theLyapunov functional

We now summarize the ecological meanings of ourtheoretical results Firstly the positive equilibrium 119864

lowast ofsystem (1)ndash(3) exists under the high birth rate of the prey(1198861) and low death rates (119886

2and 119886

3) of predator and top

predator 119864lowast is globally stable if the intraspecific competition11988611is neither too big nor too small and the maximum harvest

rates 11988612 11988623

are small enough Secondly the semi-trivialequilibrium 119864

2of system (1)ndash(3) exists if the birth rate of the

prey (1198861) is high death rate of predator 119886

2is low and the death

rate (1198863) exceeds the conversion rate from predator to top

predator (11988632) 1198642is globally stable if the maximum harvest

rates 11988612 11988623are small and the intra-specific competition 119886

11

is neither too big nor too small Thirdly system (1)ndash(3) hasonly one semi-trivial equilibrium 119864

1when the death rate (119886

2)

exceeds the conversion rate from prey to predator (11988621) 1198641

is globally stable if intra-specific competitions (11988611 11988622 and

11988633) are strong Finally 119864

0is unstable and the non-stability of

trivial equilibrium tells us that not all of the populations goto extinction Furthermore our main results imply that thenonlocal delay is harmless for stabilities of all non-negativesteady states of system (1)ndash(3)

There are still many interesting and challenging problemswith respect to system (1)ndash(3) for example the permanence

and stability of periodic solution or almost periodic solutionThese problems are clearly worthy for further investigations

Acknowledgments

This work is partially supported by PRC Grants NSFC11102076 and 11071209 andNSF of theHigher Education Insti-tutions of Jiangsu Province (12KJD110002 and 12KJD110008)

References

[1] R Xu and M A J Chaplain ldquoPersistence and global stabilityin a delayed predator-prey system with Michaelis-Menten typefunctional responserdquo Applied Mathematics and Computationvol 130 no 2-3 pp 441ndash455 2002

[2] H F Huo andW T Li ldquoPeriodic solution of a delayed predator-prey system with Michaelis-Menten type functional responserdquoJournal of Computational and AppliedMathematics vol 166 no2 pp 453ndash463 2004

[3] Z Lin and M Pedersen ldquoStability in a diffusive food-chainmodel with Michaelis-Menten functional responserdquo NonlinearAnalysis Theory Methods amp Applications vol 57 no 3 pp 421ndash433 2004

[4] B X Dai N Zhang and J Z Zou ldquoPermanence for theMichaelis-Menten type discrete three-species ratio-dependentfood chain model with delayrdquo Journal of Mathematical Analysisand Applications vol 324 no 1 pp 728ndash738 2006

[5] N F Britton ldquoSpatial structures and periodic travelling wavesin an integro-differential reaction-diffusion population modelrdquoSIAM Journal on Applied Mathematics vol 50 no 6 pp 1663ndash1688 1990

[6] S A Gourley and N F Britton ldquoInstability of travelling wavesolutions of a population model with nonlocal effectsrdquo IMAJournal of Applied Mathematics vol 51 no 3 pp 299ndash310 1993

[7] X Zhang and R Xu ldquoTraveling waves of a diffusive predator-prey model with nonlocal delay and stage structurerdquo Journal ofMathematical Analysis and Applications vol 373 no 2 pp 475ndash484 2011

[8] Z C Wang W T Li and S G Ruan ldquoExistence and stability oftraveling wave fronts in reaction advection diffusion equationswith nonlocal delayrdquo Journal of Differential Equations vol 238no 1 pp 153ndash200 2007

[9] S A Gourley and S G Ruan ldquoConvergence and travellingfronts in functional differential equations with nonlocal termsa competition modelrdquo SIAM Journal on Mathematical Analysisvol 35 no 3 pp 806ndash822 2003

[10] X H Lai and T X Yao ldquoExponential stability of impul-sive delayed reaction-diffusion cellular neural networks viaPoincare integral inequalityrdquoAbstract and Applied Analysis vol2013 Article ID 131836 10 pages 2013

[11] R Xu and Z E Ma ldquoGlobal stability of a reaction-diffusionpredator-prey model with a nonlocal delayrdquo Mathematical andComputer Modelling vol 50 no 1-2 pp 194ndash206 2009

[12] Z Li F D Chen and M X He ldquoAsymptotic behavior of thereaction-diffusion model of plankton allelopathy with nonlocaldelaysrdquo Nonlinear Analysis Real World Applications vol 12 no3 pp 1748ndash1758 2011

[13] Y Kuang and H L Smith ldquoGlobal stability in diffusive delayLotka-Volterra systemsrdquoDifferential and Integral Equations vol4 no 1 pp 117ndash128 1991

14 Abstract and Applied Analysis

[14] Z G Lin M Pedersen and L Zhang ldquoA predator-prey systemwith stage-structure for predator and nonlocal delayrdquoNonlinearAnalysis Theory Methods amp Applications vol 72 no 3-4 pp2019ndash2030 2010

[15] R Xu ldquoA reaction-diffusion predator-prey model with stagestructure and nonlocal delayrdquo Applied Mathematics and Com-putation vol 175 no 2 pp 984ndash1006 2006

[16] S S Chen and J P Shi ldquoStability and Hopf bifurcation in adiffusive logistic population model with nonlocal delay effectrdquoJournal of Differential Equations vol 253 no 12 pp 3440ndash34702012

[17] H I Freedman Deterministic Mathematical Models in Popula-tion Ecology vol 57 of Monographs and Textbooks in Pure andAppliedMathematicsMarcelDekker NewYorkNYUSA 1980

[18] P A Abrams and L R Ginzburg ldquoThe nature of predation preydepedent ratio dependent or neitherrdquo Trends in Ecology andEvolution vol 15 no 8 pp 337ndash341 2000

[19] D L DeAngelis R A Goldstein and R V OrsquoNeill ldquoA modelfor trophic iterationrdquo Ecology vol 56 no 4 pp 881ndash892 1975

[20] C V Pao ldquoDynamics of nonlinear parabolic systems with timedelaysrdquo Journal of Mathematical Analysis and Applications vol198 no 3 pp 751ndash779 1996

[21] F Xu Y Hou and Z G Lin ldquoTime delay parabolic system ina predator-prey model with stage structurerdquo Acta MathematicaSinica vol 48 no 6 pp 1121ndash1130 2005 (Chinese)

[22] P Y H Pang and M X Wang ldquoStrategy and stationary patternin a three-species predator-prey modelrdquo Journal of DifferentialEquations vol 200 no 2 pp 245ndash273 2004

[23] D Henry Geometric Theory of Semilinear Parabolic Equationsvol 840 of Lecture Notes in Mathematics Springer New YorkNY USA 1981

[24] K J Brown P C Dunne and R A Gardner ldquoA semilinearparabolic system arising in the theory of superconductivityrdquoJournal of Differential Equations vol 40 no 2 pp 232ndash252 1981

[25] S A Gourley and J W H So ldquoDynamics of a food-limitedpopulation model incorporating nonlocal delays on a finitedomainrdquo Journal of Mathematical Biology vol 44 no 1 pp 49ndash78 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays WenzhenGan, 1 CanrongTian,

10 Abstract and Applied Analysis

tx

u1

02

46

8

01

23

40

1

2

3

4

(a)

02

46

8

01

23

40

1

2

3

4

t

x

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 2 Global stability of the positive equilibrium 119864lowast with an initial condition (1206011 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

Next we consider the asymptotic behavior of 1199062(119905 119909) and

1199063(119905 119909) For any 119879 gt 0 integrating (57) over [0 119879] yields

119864 (119879) + 1205721198891

10038171003817100381710038171003817100381710038171003817

10038161003816100381610038161003816100381610038161003816

nabla1199061

1199061

10038161003816100381610038161003816100381610038161003816

10038171003817100381710038171003817100381710038171003817

2

2

+ 1198971

100381710038171003817100381710038161003816100381610038161199061 minus 1

100381610038161003816100381610038171003817100381710038172

2

+ 1198972

100381710038171003817100381710038161003816100381610038161199062100381610038161003816100381610038171003817100381710038172

2+ 1198973

100381710038171003817100381710038161003816100381610038161199063100381610038161003816100381610038171003817100381710038172

2le 119864 (0)

(62)

where |119906119894|2

2= int119879

0intΩ1199062

119894119889119909 119889119905 It implies that |119906

119894|2le 119862119894(119894 =

2 3) for the constant 119862119894which is independent of 119879 Now we

consider the boundedness of |nabla1199062|2and |nabla119906

3|2 From the

Greenrsquos identity we obtain

1198892int

119879

0

intΩ

1003816100381610038161003816nabla1199062 (119905 119909)10038161003816100381610038162

119889119909 119889119905

= minus1198892int

119879

0

intΩ

1199062(119905 119909) Δ119906

2(119905 119909) 119889119909 119889119905

= minusint

119879

0

intΩ

1199062

1205971199062

120597119905119889119909 119889119905 minus 119886

2int

119879

0

intΩ

1199062

2119889119909 119889119905

minus 11988622int

119879

0

intΩ

1199063

2119889119909 119889119905 minus 119886

23int

119879

0

intΩ

1199062

21199063

1198982+ 1199063

119889119909 119889119905

+ 11988621int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

times 1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

(63)

Note that

int

119879

0

intΩ

1199062(119905 119909)

1205971199062(119905 119909)

120597119905119889119909 119889119905

= int

119879

0

intΩ

1

2

1205971199062

2

120597119905119889119905 119889119909

=1

2intΩ

1199062

2(119879 119909) 119889119909 minus

1

2intΩ

1199062

2(0 119909) 119889119909 le 119872

2

2|Ω|

int

119879

0

intΩ

1199062

21199063119889119909 119889119905 le 119872

3int

119879

0

intΩ

1199062

2119889119909 119889119905

Abstract and Applied Analysis 11

02

46

8

01

23

40

1

2

3

4

tx

u1

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 3 Global stability of the positive equilibrium 1198642with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

int

119879

0

intΩ

1199063

2119889119909 119889119905 le 119872

2int

119879

0

intΩ

1199062

2119889119909 119889119905

int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

le int

119879

0

intΩ

1199062

2(119905 119909) 119889119909 119889119905

(64)

Thus we get |nabla1199062|2le 1198624 In a similar way we have

|nabla1199063|2le 1198625 Here 119862

4and 119862

5are independent of 119879

It is easy to see that 1199062(119905 119909) 119906

3(119905 119909) isin 119871

2((0infin)

11988212(Ω)) These imply that

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)100381710038171003817100381711988212(Ω) = 0 119894 = 2 3 (65)

From the Sobolev compact embedding theorem we know

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)1003817100381710038171003817119862(Ω) = 0 119894 = 2 3 (66)

In the end we show that the trivial solution 1198640is an

unstable equilibrium Similarly to the local stability to 119864lowast wecan get the characteristic equation of 119864

0as

(120582 + 1205831198941198631minus 1198861) (120582 + 120583

1198941198632+ 1198862) (120582 + 120583

1198941198633+ 1198863) = 0 (67)

If 119894 = 1 then 1205831= 0 It is easy to see that this equation admits

a positive solution 120582 = 1198861 According to Theorem 51 in [23]

we have the following result

Theorem 11 The trivial equilibrium 1198640is an unstable equilib-

rium of system (1)ndash(3)

4 Numerical Illustrations

In this section we performnumerical simulations to illustratethe theoretical results given in Section 3

12 Abstract and Applied Analysis

u1

02

46

8

01

23

40

1

2

3

4

tx

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 4 Global stability of the positive equilibrium 1198641with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos119909 27 + 05 sin119909)

In the following we always take Ω = [0 120587] 119870119894(119909 119910 119905) =

119866119894(119909 119910 119905)119896

119894(119905) where 119896

119894(119905) = (1120591

lowast)119890minus119905120591lowast

(119894 = 1 2) and

1198661(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988921198992

119905 cos 119899119909 cos 119899119910

1198662(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988931198992

119905 cos 119899119909 cos 119899119910

(68)

However it is difficult for us to simulate our results directlybecause of the nonlocal term Similar to [25] the equationsin (1) can be rewritten as follows

1205971199061

120597119905minus 1198891Δ1199061= 1199061(1198861minus 119886111199061minus119886121199062

1198981+ 1199061

)

1205971199062

120597119905minus 1198892Δ1199062= 1199062(minus1198862+ 11988621V1minus 119886221199062minus119886231199063

1198982+ 1199063

)

1205971199063

120597119905minus 1198893Δ1199063= 1199063(minus1198863+ 11988632V2minus 119886331199063)

120597V1

120597119905minus 1198892ΔV1=1

120591lowast(

1199061

1198981+ 1199061

minus V1)

120597V2

120597119905minus 1198893ΔV2=1

120591lowast(

1199062

1198982+ 1199062

minus V2)

(69)

where

V119894= int

120587

0

int

119905

minusinfin

119866119894(119909 119910 119905 minus 119904)

1

120591lowast119890minus(119905minus119904)120591

lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(70)

Each component is considered with homogeneous Neumannboundary conditions and the initial condition of V

119894is

V119894(0 119909) = int

120587

0

int

0

minusinfin

119866119894(119909 119910 minus119904)

1

120591lowast119890119904120591lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(71)

Abstract and Applied Analysis 13

In the following examples we fix some coefficients andassume that 119889

1= 1198892= 1198893= 1 119886

1= 3 119886

12= 1 119898

1= 1198982=

1 1198862= 1 119886

22= 12 119886

23= 1 119886

33= 12 and 120591lowast = 1 The

asymptotic behaviors of system (1)ndash(3) are shownby choosingdifferent coefficients 119886

11 11988621 1198863 and 119886

32

Example 12 Let 11988611= 539 119886

21= 8113 119886

3= 113 and

11988632= 14Then it is easy to see that the system admits a unique

positive equilibrium 119864lowast(12 112 112) By Theorem 8 we

see that the positive solution (1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of

system (1)ndash(3) converges to 119864lowast as 119905 rarr infin See Figure 2

Example 13 Let 11988611

= 6 11988621

= 12 1198863= 14 and

11988632= 1 Clearly 119867

2does not hold Hence the positive

steady state is not feasible System (1) admits two semi-trivial steady state 119864

2(04732 02372 0) and 119864

1(12 0 0)

According to Theorem 9 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

2

as 119905 rarr infin See Figure 3

Example 14 Let 11988611= 6 119886

21= 2 119886

3= 14 and 119886

32= 1

Clearly1198671does not hold Hence 119864lowast and 119864

2are not feasible

System (1) has a unique semi-trivial steady state 1198641(12 0 0)

According to Theorem 10 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

1

as 119905 rarr infin See Figure 4

5 Discussion

In this paper we incorporate nonlocal delay into a three-species food chain model with Michaelis-Menten functionalresponse to represent a delay due to the gestation of the preda-tor The conditions under which the spatial homogeneousequilibria are asymptotically stable are given by using theLyapunov functional

We now summarize the ecological meanings of ourtheoretical results Firstly the positive equilibrium 119864

lowast ofsystem (1)ndash(3) exists under the high birth rate of the prey(1198861) and low death rates (119886

2and 119886

3) of predator and top

predator 119864lowast is globally stable if the intraspecific competition11988611is neither too big nor too small and the maximum harvest

rates 11988612 11988623

are small enough Secondly the semi-trivialequilibrium 119864

2of system (1)ndash(3) exists if the birth rate of the

prey (1198861) is high death rate of predator 119886

2is low and the death

rate (1198863) exceeds the conversion rate from predator to top

predator (11988632) 1198642is globally stable if the maximum harvest

rates 11988612 11988623are small and the intra-specific competition 119886

11

is neither too big nor too small Thirdly system (1)ndash(3) hasonly one semi-trivial equilibrium 119864

1when the death rate (119886

2)

exceeds the conversion rate from prey to predator (11988621) 1198641

is globally stable if intra-specific competitions (11988611 11988622 and

11988633) are strong Finally 119864

0is unstable and the non-stability of

trivial equilibrium tells us that not all of the populations goto extinction Furthermore our main results imply that thenonlocal delay is harmless for stabilities of all non-negativesteady states of system (1)ndash(3)

There are still many interesting and challenging problemswith respect to system (1)ndash(3) for example the permanence

and stability of periodic solution or almost periodic solutionThese problems are clearly worthy for further investigations

Acknowledgments

This work is partially supported by PRC Grants NSFC11102076 and 11071209 andNSF of theHigher Education Insti-tutions of Jiangsu Province (12KJD110002 and 12KJD110008)

References

[1] R Xu and M A J Chaplain ldquoPersistence and global stabilityin a delayed predator-prey system with Michaelis-Menten typefunctional responserdquo Applied Mathematics and Computationvol 130 no 2-3 pp 441ndash455 2002

[2] H F Huo andW T Li ldquoPeriodic solution of a delayed predator-prey system with Michaelis-Menten type functional responserdquoJournal of Computational and AppliedMathematics vol 166 no2 pp 453ndash463 2004

[3] Z Lin and M Pedersen ldquoStability in a diffusive food-chainmodel with Michaelis-Menten functional responserdquo NonlinearAnalysis Theory Methods amp Applications vol 57 no 3 pp 421ndash433 2004

[4] B X Dai N Zhang and J Z Zou ldquoPermanence for theMichaelis-Menten type discrete three-species ratio-dependentfood chain model with delayrdquo Journal of Mathematical Analysisand Applications vol 324 no 1 pp 728ndash738 2006

[5] N F Britton ldquoSpatial structures and periodic travelling wavesin an integro-differential reaction-diffusion population modelrdquoSIAM Journal on Applied Mathematics vol 50 no 6 pp 1663ndash1688 1990

[6] S A Gourley and N F Britton ldquoInstability of travelling wavesolutions of a population model with nonlocal effectsrdquo IMAJournal of Applied Mathematics vol 51 no 3 pp 299ndash310 1993

[7] X Zhang and R Xu ldquoTraveling waves of a diffusive predator-prey model with nonlocal delay and stage structurerdquo Journal ofMathematical Analysis and Applications vol 373 no 2 pp 475ndash484 2011

[8] Z C Wang W T Li and S G Ruan ldquoExistence and stability oftraveling wave fronts in reaction advection diffusion equationswith nonlocal delayrdquo Journal of Differential Equations vol 238no 1 pp 153ndash200 2007

[9] S A Gourley and S G Ruan ldquoConvergence and travellingfronts in functional differential equations with nonlocal termsa competition modelrdquo SIAM Journal on Mathematical Analysisvol 35 no 3 pp 806ndash822 2003

[10] X H Lai and T X Yao ldquoExponential stability of impul-sive delayed reaction-diffusion cellular neural networks viaPoincare integral inequalityrdquoAbstract and Applied Analysis vol2013 Article ID 131836 10 pages 2013

[11] R Xu and Z E Ma ldquoGlobal stability of a reaction-diffusionpredator-prey model with a nonlocal delayrdquo Mathematical andComputer Modelling vol 50 no 1-2 pp 194ndash206 2009

[12] Z Li F D Chen and M X He ldquoAsymptotic behavior of thereaction-diffusion model of plankton allelopathy with nonlocaldelaysrdquo Nonlinear Analysis Real World Applications vol 12 no3 pp 1748ndash1758 2011

[13] Y Kuang and H L Smith ldquoGlobal stability in diffusive delayLotka-Volterra systemsrdquoDifferential and Integral Equations vol4 no 1 pp 117ndash128 1991

14 Abstract and Applied Analysis

[14] Z G Lin M Pedersen and L Zhang ldquoA predator-prey systemwith stage-structure for predator and nonlocal delayrdquoNonlinearAnalysis Theory Methods amp Applications vol 72 no 3-4 pp2019ndash2030 2010

[15] R Xu ldquoA reaction-diffusion predator-prey model with stagestructure and nonlocal delayrdquo Applied Mathematics and Com-putation vol 175 no 2 pp 984ndash1006 2006

[16] S S Chen and J P Shi ldquoStability and Hopf bifurcation in adiffusive logistic population model with nonlocal delay effectrdquoJournal of Differential Equations vol 253 no 12 pp 3440ndash34702012

[17] H I Freedman Deterministic Mathematical Models in Popula-tion Ecology vol 57 of Monographs and Textbooks in Pure andAppliedMathematicsMarcelDekker NewYorkNYUSA 1980

[18] P A Abrams and L R Ginzburg ldquoThe nature of predation preydepedent ratio dependent or neitherrdquo Trends in Ecology andEvolution vol 15 no 8 pp 337ndash341 2000

[19] D L DeAngelis R A Goldstein and R V OrsquoNeill ldquoA modelfor trophic iterationrdquo Ecology vol 56 no 4 pp 881ndash892 1975

[20] C V Pao ldquoDynamics of nonlinear parabolic systems with timedelaysrdquo Journal of Mathematical Analysis and Applications vol198 no 3 pp 751ndash779 1996

[21] F Xu Y Hou and Z G Lin ldquoTime delay parabolic system ina predator-prey model with stage structurerdquo Acta MathematicaSinica vol 48 no 6 pp 1121ndash1130 2005 (Chinese)

[22] P Y H Pang and M X Wang ldquoStrategy and stationary patternin a three-species predator-prey modelrdquo Journal of DifferentialEquations vol 200 no 2 pp 245ndash273 2004

[23] D Henry Geometric Theory of Semilinear Parabolic Equationsvol 840 of Lecture Notes in Mathematics Springer New YorkNY USA 1981

[24] K J Brown P C Dunne and R A Gardner ldquoA semilinearparabolic system arising in the theory of superconductivityrdquoJournal of Differential Equations vol 40 no 2 pp 232ndash252 1981

[25] S A Gourley and J W H So ldquoDynamics of a food-limitedpopulation model incorporating nonlocal delays on a finitedomainrdquo Journal of Mathematical Biology vol 44 no 1 pp 49ndash78 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 11: Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays WenzhenGan, 1 CanrongTian,

Abstract and Applied Analysis 11

02

46

8

01

23

40

1

2

3

4

tx

u1

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 3 Global stability of the positive equilibrium 1198642with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos 119909 27 + 05 sin119909)

int

119879

0

intΩ

1199063

2119889119909 119889119905 le 119872

2int

119879

0

intΩ

1199062

2119889119909 119889119905

int

119879

0

∬Ω

int

119905

minusinfin

1199061(119904 119910) 119906

2

2(119905 119909)

1198981+ 1199061(119904 119910)

1198701(119909 119910 119905 minus 119904) 119889119904 119889119910 119889119909 119889119905

le int

119879

0

intΩ

1199062

2(119905 119909) 119889119909 119889119905

(64)

Thus we get |nabla1199062|2le 1198624 In a similar way we have

|nabla1199063|2le 1198625 Here 119862

4and 119862

5are independent of 119879

It is easy to see that 1199062(119905 119909) 119906

3(119905 119909) isin 119871

2((0infin)

11988212(Ω)) These imply that

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)100381710038171003817100381711988212(Ω) = 0 119894 = 2 3 (65)

From the Sobolev compact embedding theorem we know

lim119905rarrinfin

1003817100381710038171003817119906119894 (sdot 119905)1003817100381710038171003817119862(Ω) = 0 119894 = 2 3 (66)

In the end we show that the trivial solution 1198640is an

unstable equilibrium Similarly to the local stability to 119864lowast wecan get the characteristic equation of 119864

0as

(120582 + 1205831198941198631minus 1198861) (120582 + 120583

1198941198632+ 1198862) (120582 + 120583

1198941198633+ 1198863) = 0 (67)

If 119894 = 1 then 1205831= 0 It is easy to see that this equation admits

a positive solution 120582 = 1198861 According to Theorem 51 in [23]

we have the following result

Theorem 11 The trivial equilibrium 1198640is an unstable equilib-

rium of system (1)ndash(3)

4 Numerical Illustrations

In this section we performnumerical simulations to illustratethe theoretical results given in Section 3

12 Abstract and Applied Analysis

u1

02

46

8

01

23

40

1

2

3

4

tx

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 4 Global stability of the positive equilibrium 1198641with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos119909 27 + 05 sin119909)

In the following we always take Ω = [0 120587] 119870119894(119909 119910 119905) =

119866119894(119909 119910 119905)119896

119894(119905) where 119896

119894(119905) = (1120591

lowast)119890minus119905120591lowast

(119894 = 1 2) and

1198661(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988921198992

119905 cos 119899119909 cos 119899119910

1198662(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988931198992

119905 cos 119899119909 cos 119899119910

(68)

However it is difficult for us to simulate our results directlybecause of the nonlocal term Similar to [25] the equationsin (1) can be rewritten as follows

1205971199061

120597119905minus 1198891Δ1199061= 1199061(1198861minus 119886111199061minus119886121199062

1198981+ 1199061

)

1205971199062

120597119905minus 1198892Δ1199062= 1199062(minus1198862+ 11988621V1minus 119886221199062minus119886231199063

1198982+ 1199063

)

1205971199063

120597119905minus 1198893Δ1199063= 1199063(minus1198863+ 11988632V2minus 119886331199063)

120597V1

120597119905minus 1198892ΔV1=1

120591lowast(

1199061

1198981+ 1199061

minus V1)

120597V2

120597119905minus 1198893ΔV2=1

120591lowast(

1199062

1198982+ 1199062

minus V2)

(69)

where

V119894= int

120587

0

int

119905

minusinfin

119866119894(119909 119910 119905 minus 119904)

1

120591lowast119890minus(119905minus119904)120591

lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(70)

Each component is considered with homogeneous Neumannboundary conditions and the initial condition of V

119894is

V119894(0 119909) = int

120587

0

int

0

minusinfin

119866119894(119909 119910 minus119904)

1

120591lowast119890119904120591lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(71)

Abstract and Applied Analysis 13

In the following examples we fix some coefficients andassume that 119889

1= 1198892= 1198893= 1 119886

1= 3 119886

12= 1 119898

1= 1198982=

1 1198862= 1 119886

22= 12 119886

23= 1 119886

33= 12 and 120591lowast = 1 The

asymptotic behaviors of system (1)ndash(3) are shownby choosingdifferent coefficients 119886

11 11988621 1198863 and 119886

32

Example 12 Let 11988611= 539 119886

21= 8113 119886

3= 113 and

11988632= 14Then it is easy to see that the system admits a unique

positive equilibrium 119864lowast(12 112 112) By Theorem 8 we

see that the positive solution (1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of

system (1)ndash(3) converges to 119864lowast as 119905 rarr infin See Figure 2

Example 13 Let 11988611

= 6 11988621

= 12 1198863= 14 and

11988632= 1 Clearly 119867

2does not hold Hence the positive

steady state is not feasible System (1) admits two semi-trivial steady state 119864

2(04732 02372 0) and 119864

1(12 0 0)

According to Theorem 9 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

2

as 119905 rarr infin See Figure 3

Example 14 Let 11988611= 6 119886

21= 2 119886

3= 14 and 119886

32= 1

Clearly1198671does not hold Hence 119864lowast and 119864

2are not feasible

System (1) has a unique semi-trivial steady state 1198641(12 0 0)

According to Theorem 10 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

1

as 119905 rarr infin See Figure 4

5 Discussion

In this paper we incorporate nonlocal delay into a three-species food chain model with Michaelis-Menten functionalresponse to represent a delay due to the gestation of the preda-tor The conditions under which the spatial homogeneousequilibria are asymptotically stable are given by using theLyapunov functional

We now summarize the ecological meanings of ourtheoretical results Firstly the positive equilibrium 119864

lowast ofsystem (1)ndash(3) exists under the high birth rate of the prey(1198861) and low death rates (119886

2and 119886

3) of predator and top

predator 119864lowast is globally stable if the intraspecific competition11988611is neither too big nor too small and the maximum harvest

rates 11988612 11988623

are small enough Secondly the semi-trivialequilibrium 119864

2of system (1)ndash(3) exists if the birth rate of the

prey (1198861) is high death rate of predator 119886

2is low and the death

rate (1198863) exceeds the conversion rate from predator to top

predator (11988632) 1198642is globally stable if the maximum harvest

rates 11988612 11988623are small and the intra-specific competition 119886

11

is neither too big nor too small Thirdly system (1)ndash(3) hasonly one semi-trivial equilibrium 119864

1when the death rate (119886

2)

exceeds the conversion rate from prey to predator (11988621) 1198641

is globally stable if intra-specific competitions (11988611 11988622 and

11988633) are strong Finally 119864

0is unstable and the non-stability of

trivial equilibrium tells us that not all of the populations goto extinction Furthermore our main results imply that thenonlocal delay is harmless for stabilities of all non-negativesteady states of system (1)ndash(3)

There are still many interesting and challenging problemswith respect to system (1)ndash(3) for example the permanence

and stability of periodic solution or almost periodic solutionThese problems are clearly worthy for further investigations

Acknowledgments

This work is partially supported by PRC Grants NSFC11102076 and 11071209 andNSF of theHigher Education Insti-tutions of Jiangsu Province (12KJD110002 and 12KJD110008)

References

[1] R Xu and M A J Chaplain ldquoPersistence and global stabilityin a delayed predator-prey system with Michaelis-Menten typefunctional responserdquo Applied Mathematics and Computationvol 130 no 2-3 pp 441ndash455 2002

[2] H F Huo andW T Li ldquoPeriodic solution of a delayed predator-prey system with Michaelis-Menten type functional responserdquoJournal of Computational and AppliedMathematics vol 166 no2 pp 453ndash463 2004

[3] Z Lin and M Pedersen ldquoStability in a diffusive food-chainmodel with Michaelis-Menten functional responserdquo NonlinearAnalysis Theory Methods amp Applications vol 57 no 3 pp 421ndash433 2004

[4] B X Dai N Zhang and J Z Zou ldquoPermanence for theMichaelis-Menten type discrete three-species ratio-dependentfood chain model with delayrdquo Journal of Mathematical Analysisand Applications vol 324 no 1 pp 728ndash738 2006

[5] N F Britton ldquoSpatial structures and periodic travelling wavesin an integro-differential reaction-diffusion population modelrdquoSIAM Journal on Applied Mathematics vol 50 no 6 pp 1663ndash1688 1990

[6] S A Gourley and N F Britton ldquoInstability of travelling wavesolutions of a population model with nonlocal effectsrdquo IMAJournal of Applied Mathematics vol 51 no 3 pp 299ndash310 1993

[7] X Zhang and R Xu ldquoTraveling waves of a diffusive predator-prey model with nonlocal delay and stage structurerdquo Journal ofMathematical Analysis and Applications vol 373 no 2 pp 475ndash484 2011

[8] Z C Wang W T Li and S G Ruan ldquoExistence and stability oftraveling wave fronts in reaction advection diffusion equationswith nonlocal delayrdquo Journal of Differential Equations vol 238no 1 pp 153ndash200 2007

[9] S A Gourley and S G Ruan ldquoConvergence and travellingfronts in functional differential equations with nonlocal termsa competition modelrdquo SIAM Journal on Mathematical Analysisvol 35 no 3 pp 806ndash822 2003

[10] X H Lai and T X Yao ldquoExponential stability of impul-sive delayed reaction-diffusion cellular neural networks viaPoincare integral inequalityrdquoAbstract and Applied Analysis vol2013 Article ID 131836 10 pages 2013

[11] R Xu and Z E Ma ldquoGlobal stability of a reaction-diffusionpredator-prey model with a nonlocal delayrdquo Mathematical andComputer Modelling vol 50 no 1-2 pp 194ndash206 2009

[12] Z Li F D Chen and M X He ldquoAsymptotic behavior of thereaction-diffusion model of plankton allelopathy with nonlocaldelaysrdquo Nonlinear Analysis Real World Applications vol 12 no3 pp 1748ndash1758 2011

[13] Y Kuang and H L Smith ldquoGlobal stability in diffusive delayLotka-Volterra systemsrdquoDifferential and Integral Equations vol4 no 1 pp 117ndash128 1991

14 Abstract and Applied Analysis

[14] Z G Lin M Pedersen and L Zhang ldquoA predator-prey systemwith stage-structure for predator and nonlocal delayrdquoNonlinearAnalysis Theory Methods amp Applications vol 72 no 3-4 pp2019ndash2030 2010

[15] R Xu ldquoA reaction-diffusion predator-prey model with stagestructure and nonlocal delayrdquo Applied Mathematics and Com-putation vol 175 no 2 pp 984ndash1006 2006

[16] S S Chen and J P Shi ldquoStability and Hopf bifurcation in adiffusive logistic population model with nonlocal delay effectrdquoJournal of Differential Equations vol 253 no 12 pp 3440ndash34702012

[17] H I Freedman Deterministic Mathematical Models in Popula-tion Ecology vol 57 of Monographs and Textbooks in Pure andAppliedMathematicsMarcelDekker NewYorkNYUSA 1980

[18] P A Abrams and L R Ginzburg ldquoThe nature of predation preydepedent ratio dependent or neitherrdquo Trends in Ecology andEvolution vol 15 no 8 pp 337ndash341 2000

[19] D L DeAngelis R A Goldstein and R V OrsquoNeill ldquoA modelfor trophic iterationrdquo Ecology vol 56 no 4 pp 881ndash892 1975

[20] C V Pao ldquoDynamics of nonlinear parabolic systems with timedelaysrdquo Journal of Mathematical Analysis and Applications vol198 no 3 pp 751ndash779 1996

[21] F Xu Y Hou and Z G Lin ldquoTime delay parabolic system ina predator-prey model with stage structurerdquo Acta MathematicaSinica vol 48 no 6 pp 1121ndash1130 2005 (Chinese)

[22] P Y H Pang and M X Wang ldquoStrategy and stationary patternin a three-species predator-prey modelrdquo Journal of DifferentialEquations vol 200 no 2 pp 245ndash273 2004

[23] D Henry Geometric Theory of Semilinear Parabolic Equationsvol 840 of Lecture Notes in Mathematics Springer New YorkNY USA 1981

[24] K J Brown P C Dunne and R A Gardner ldquoA semilinearparabolic system arising in the theory of superconductivityrdquoJournal of Differential Equations vol 40 no 2 pp 232ndash252 1981

[25] S A Gourley and J W H So ldquoDynamics of a food-limitedpopulation model incorporating nonlocal delays on a finitedomainrdquo Journal of Mathematical Biology vol 44 no 1 pp 49ndash78 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 12: Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays WenzhenGan, 1 CanrongTian,

12 Abstract and Applied Analysis

u1

02

46

8

01

23

40

1

2

3

4

tx

(a)

02

46

8

01

23

40

1

2

3

4

tx

u2

(b)

02

46

8

01

23

40

1

2

3

4

tx

u3

(c)

Figure 4 Global stability of the positive equilibrium 1198641with an initial condition (120601

1 1206012 1206013) = (27 + 05 sin119909 27 + 05 cos119909 27 + 05 sin119909)

In the following we always take Ω = [0 120587] 119870119894(119909 119910 119905) =

119866119894(119909 119910 119905)119896

119894(119905) where 119896

119894(119905) = (1120591

lowast)119890minus119905120591lowast

(119894 = 1 2) and

1198661(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988921198992

119905 cos 119899119909 cos 119899119910

1198662(119909 119910 119905) =

1

120587+2

120587

infin

sum

119899=1

119890minus11988931198992

119905 cos 119899119909 cos 119899119910

(68)

However it is difficult for us to simulate our results directlybecause of the nonlocal term Similar to [25] the equationsin (1) can be rewritten as follows

1205971199061

120597119905minus 1198891Δ1199061= 1199061(1198861minus 119886111199061minus119886121199062

1198981+ 1199061

)

1205971199062

120597119905minus 1198892Δ1199062= 1199062(minus1198862+ 11988621V1minus 119886221199062minus119886231199063

1198982+ 1199063

)

1205971199063

120597119905minus 1198893Δ1199063= 1199063(minus1198863+ 11988632V2minus 119886331199063)

120597V1

120597119905minus 1198892ΔV1=1

120591lowast(

1199061

1198981+ 1199061

minus V1)

120597V2

120597119905minus 1198893ΔV2=1

120591lowast(

1199062

1198982+ 1199062

minus V2)

(69)

where

V119894= int

120587

0

int

119905

minusinfin

119866119894(119909 119910 119905 minus 119904)

1

120591lowast119890minus(119905minus119904)120591

lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(70)

Each component is considered with homogeneous Neumannboundary conditions and the initial condition of V

119894is

V119894(0 119909) = int

120587

0

int

0

minusinfin

119866119894(119909 119910 minus119904)

1

120591lowast119890119904120591lowast 119906119894(119904 119910)

119898119894+ 119906119894(119904 119910)

119889119910 119889119904

119894 = 1 2

(71)

Abstract and Applied Analysis 13

In the following examples we fix some coefficients andassume that 119889

1= 1198892= 1198893= 1 119886

1= 3 119886

12= 1 119898

1= 1198982=

1 1198862= 1 119886

22= 12 119886

23= 1 119886

33= 12 and 120591lowast = 1 The

asymptotic behaviors of system (1)ndash(3) are shownby choosingdifferent coefficients 119886

11 11988621 1198863 and 119886

32

Example 12 Let 11988611= 539 119886

21= 8113 119886

3= 113 and

11988632= 14Then it is easy to see that the system admits a unique

positive equilibrium 119864lowast(12 112 112) By Theorem 8 we

see that the positive solution (1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of

system (1)ndash(3) converges to 119864lowast as 119905 rarr infin See Figure 2

Example 13 Let 11988611

= 6 11988621

= 12 1198863= 14 and

11988632= 1 Clearly 119867

2does not hold Hence the positive

steady state is not feasible System (1) admits two semi-trivial steady state 119864

2(04732 02372 0) and 119864

1(12 0 0)

According to Theorem 9 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

2

as 119905 rarr infin See Figure 3

Example 14 Let 11988611= 6 119886

21= 2 119886

3= 14 and 119886

32= 1

Clearly1198671does not hold Hence 119864lowast and 119864

2are not feasible

System (1) has a unique semi-trivial steady state 1198641(12 0 0)

According to Theorem 10 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

1

as 119905 rarr infin See Figure 4

5 Discussion

In this paper we incorporate nonlocal delay into a three-species food chain model with Michaelis-Menten functionalresponse to represent a delay due to the gestation of the preda-tor The conditions under which the spatial homogeneousequilibria are asymptotically stable are given by using theLyapunov functional

We now summarize the ecological meanings of ourtheoretical results Firstly the positive equilibrium 119864

lowast ofsystem (1)ndash(3) exists under the high birth rate of the prey(1198861) and low death rates (119886

2and 119886

3) of predator and top

predator 119864lowast is globally stable if the intraspecific competition11988611is neither too big nor too small and the maximum harvest

rates 11988612 11988623

are small enough Secondly the semi-trivialequilibrium 119864

2of system (1)ndash(3) exists if the birth rate of the

prey (1198861) is high death rate of predator 119886

2is low and the death

rate (1198863) exceeds the conversion rate from predator to top

predator (11988632) 1198642is globally stable if the maximum harvest

rates 11988612 11988623are small and the intra-specific competition 119886

11

is neither too big nor too small Thirdly system (1)ndash(3) hasonly one semi-trivial equilibrium 119864

1when the death rate (119886

2)

exceeds the conversion rate from prey to predator (11988621) 1198641

is globally stable if intra-specific competitions (11988611 11988622 and

11988633) are strong Finally 119864

0is unstable and the non-stability of

trivial equilibrium tells us that not all of the populations goto extinction Furthermore our main results imply that thenonlocal delay is harmless for stabilities of all non-negativesteady states of system (1)ndash(3)

There are still many interesting and challenging problemswith respect to system (1)ndash(3) for example the permanence

and stability of periodic solution or almost periodic solutionThese problems are clearly worthy for further investigations

Acknowledgments

This work is partially supported by PRC Grants NSFC11102076 and 11071209 andNSF of theHigher Education Insti-tutions of Jiangsu Province (12KJD110002 and 12KJD110008)

References

[1] R Xu and M A J Chaplain ldquoPersistence and global stabilityin a delayed predator-prey system with Michaelis-Menten typefunctional responserdquo Applied Mathematics and Computationvol 130 no 2-3 pp 441ndash455 2002

[2] H F Huo andW T Li ldquoPeriodic solution of a delayed predator-prey system with Michaelis-Menten type functional responserdquoJournal of Computational and AppliedMathematics vol 166 no2 pp 453ndash463 2004

[3] Z Lin and M Pedersen ldquoStability in a diffusive food-chainmodel with Michaelis-Menten functional responserdquo NonlinearAnalysis Theory Methods amp Applications vol 57 no 3 pp 421ndash433 2004

[4] B X Dai N Zhang and J Z Zou ldquoPermanence for theMichaelis-Menten type discrete three-species ratio-dependentfood chain model with delayrdquo Journal of Mathematical Analysisand Applications vol 324 no 1 pp 728ndash738 2006

[5] N F Britton ldquoSpatial structures and periodic travelling wavesin an integro-differential reaction-diffusion population modelrdquoSIAM Journal on Applied Mathematics vol 50 no 6 pp 1663ndash1688 1990

[6] S A Gourley and N F Britton ldquoInstability of travelling wavesolutions of a population model with nonlocal effectsrdquo IMAJournal of Applied Mathematics vol 51 no 3 pp 299ndash310 1993

[7] X Zhang and R Xu ldquoTraveling waves of a diffusive predator-prey model with nonlocal delay and stage structurerdquo Journal ofMathematical Analysis and Applications vol 373 no 2 pp 475ndash484 2011

[8] Z C Wang W T Li and S G Ruan ldquoExistence and stability oftraveling wave fronts in reaction advection diffusion equationswith nonlocal delayrdquo Journal of Differential Equations vol 238no 1 pp 153ndash200 2007

[9] S A Gourley and S G Ruan ldquoConvergence and travellingfronts in functional differential equations with nonlocal termsa competition modelrdquo SIAM Journal on Mathematical Analysisvol 35 no 3 pp 806ndash822 2003

[10] X H Lai and T X Yao ldquoExponential stability of impul-sive delayed reaction-diffusion cellular neural networks viaPoincare integral inequalityrdquoAbstract and Applied Analysis vol2013 Article ID 131836 10 pages 2013

[11] R Xu and Z E Ma ldquoGlobal stability of a reaction-diffusionpredator-prey model with a nonlocal delayrdquo Mathematical andComputer Modelling vol 50 no 1-2 pp 194ndash206 2009

[12] Z Li F D Chen and M X He ldquoAsymptotic behavior of thereaction-diffusion model of plankton allelopathy with nonlocaldelaysrdquo Nonlinear Analysis Real World Applications vol 12 no3 pp 1748ndash1758 2011

[13] Y Kuang and H L Smith ldquoGlobal stability in diffusive delayLotka-Volterra systemsrdquoDifferential and Integral Equations vol4 no 1 pp 117ndash128 1991

14 Abstract and Applied Analysis

[14] Z G Lin M Pedersen and L Zhang ldquoA predator-prey systemwith stage-structure for predator and nonlocal delayrdquoNonlinearAnalysis Theory Methods amp Applications vol 72 no 3-4 pp2019ndash2030 2010

[15] R Xu ldquoA reaction-diffusion predator-prey model with stagestructure and nonlocal delayrdquo Applied Mathematics and Com-putation vol 175 no 2 pp 984ndash1006 2006

[16] S S Chen and J P Shi ldquoStability and Hopf bifurcation in adiffusive logistic population model with nonlocal delay effectrdquoJournal of Differential Equations vol 253 no 12 pp 3440ndash34702012

[17] H I Freedman Deterministic Mathematical Models in Popula-tion Ecology vol 57 of Monographs and Textbooks in Pure andAppliedMathematicsMarcelDekker NewYorkNYUSA 1980

[18] P A Abrams and L R Ginzburg ldquoThe nature of predation preydepedent ratio dependent or neitherrdquo Trends in Ecology andEvolution vol 15 no 8 pp 337ndash341 2000

[19] D L DeAngelis R A Goldstein and R V OrsquoNeill ldquoA modelfor trophic iterationrdquo Ecology vol 56 no 4 pp 881ndash892 1975

[20] C V Pao ldquoDynamics of nonlinear parabolic systems with timedelaysrdquo Journal of Mathematical Analysis and Applications vol198 no 3 pp 751ndash779 1996

[21] F Xu Y Hou and Z G Lin ldquoTime delay parabolic system ina predator-prey model with stage structurerdquo Acta MathematicaSinica vol 48 no 6 pp 1121ndash1130 2005 (Chinese)

[22] P Y H Pang and M X Wang ldquoStrategy and stationary patternin a three-species predator-prey modelrdquo Journal of DifferentialEquations vol 200 no 2 pp 245ndash273 2004

[23] D Henry Geometric Theory of Semilinear Parabolic Equationsvol 840 of Lecture Notes in Mathematics Springer New YorkNY USA 1981

[24] K J Brown P C Dunne and R A Gardner ldquoA semilinearparabolic system arising in the theory of superconductivityrdquoJournal of Differential Equations vol 40 no 2 pp 232ndash252 1981

[25] S A Gourley and J W H So ldquoDynamics of a food-limitedpopulation model incorporating nonlocal delays on a finitedomainrdquo Journal of Mathematical Biology vol 44 no 1 pp 49ndash78 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 13: Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays WenzhenGan, 1 CanrongTian,

Abstract and Applied Analysis 13

In the following examples we fix some coefficients andassume that 119889

1= 1198892= 1198893= 1 119886

1= 3 119886

12= 1 119898

1= 1198982=

1 1198862= 1 119886

22= 12 119886

23= 1 119886

33= 12 and 120591lowast = 1 The

asymptotic behaviors of system (1)ndash(3) are shownby choosingdifferent coefficients 119886

11 11988621 1198863 and 119886

32

Example 12 Let 11988611= 539 119886

21= 8113 119886

3= 113 and

11988632= 14Then it is easy to see that the system admits a unique

positive equilibrium 119864lowast(12 112 112) By Theorem 8 we

see that the positive solution (1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of

system (1)ndash(3) converges to 119864lowast as 119905 rarr infin See Figure 2

Example 13 Let 11988611

= 6 11988621

= 12 1198863= 14 and

11988632= 1 Clearly 119867

2does not hold Hence the positive

steady state is not feasible System (1) admits two semi-trivial steady state 119864

2(04732 02372 0) and 119864

1(12 0 0)

According to Theorem 9 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

2

as 119905 rarr infin See Figure 3

Example 14 Let 11988611= 6 119886

21= 2 119886

3= 14 and 119886

32= 1

Clearly1198671does not hold Hence 119864lowast and 119864

2are not feasible

System (1) has a unique semi-trivial steady state 1198641(12 0 0)

According to Theorem 10 we know that the positive solution(1199061(119905 119909) 119906

2(119905 119909) 119906

3(119905 119909)) of system (1)ndash(3) converges to 119864

1

as 119905 rarr infin See Figure 4

5 Discussion

In this paper we incorporate nonlocal delay into a three-species food chain model with Michaelis-Menten functionalresponse to represent a delay due to the gestation of the preda-tor The conditions under which the spatial homogeneousequilibria are asymptotically stable are given by using theLyapunov functional

We now summarize the ecological meanings of ourtheoretical results Firstly the positive equilibrium 119864

lowast ofsystem (1)ndash(3) exists under the high birth rate of the prey(1198861) and low death rates (119886

2and 119886

3) of predator and top

predator 119864lowast is globally stable if the intraspecific competition11988611is neither too big nor too small and the maximum harvest

rates 11988612 11988623

are small enough Secondly the semi-trivialequilibrium 119864

2of system (1)ndash(3) exists if the birth rate of the

prey (1198861) is high death rate of predator 119886

2is low and the death

rate (1198863) exceeds the conversion rate from predator to top

predator (11988632) 1198642is globally stable if the maximum harvest

rates 11988612 11988623are small and the intra-specific competition 119886

11

is neither too big nor too small Thirdly system (1)ndash(3) hasonly one semi-trivial equilibrium 119864

1when the death rate (119886

2)

exceeds the conversion rate from prey to predator (11988621) 1198641

is globally stable if intra-specific competitions (11988611 11988622 and

11988633) are strong Finally 119864

0is unstable and the non-stability of

trivial equilibrium tells us that not all of the populations goto extinction Furthermore our main results imply that thenonlocal delay is harmless for stabilities of all non-negativesteady states of system (1)ndash(3)

There are still many interesting and challenging problemswith respect to system (1)ndash(3) for example the permanence

and stability of periodic solution or almost periodic solutionThese problems are clearly worthy for further investigations

Acknowledgments

This work is partially supported by PRC Grants NSFC11102076 and 11071209 andNSF of theHigher Education Insti-tutions of Jiangsu Province (12KJD110002 and 12KJD110008)

References

[1] R Xu and M A J Chaplain ldquoPersistence and global stabilityin a delayed predator-prey system with Michaelis-Menten typefunctional responserdquo Applied Mathematics and Computationvol 130 no 2-3 pp 441ndash455 2002

[2] H F Huo andW T Li ldquoPeriodic solution of a delayed predator-prey system with Michaelis-Menten type functional responserdquoJournal of Computational and AppliedMathematics vol 166 no2 pp 453ndash463 2004

[3] Z Lin and M Pedersen ldquoStability in a diffusive food-chainmodel with Michaelis-Menten functional responserdquo NonlinearAnalysis Theory Methods amp Applications vol 57 no 3 pp 421ndash433 2004

[4] B X Dai N Zhang and J Z Zou ldquoPermanence for theMichaelis-Menten type discrete three-species ratio-dependentfood chain model with delayrdquo Journal of Mathematical Analysisand Applications vol 324 no 1 pp 728ndash738 2006

[5] N F Britton ldquoSpatial structures and periodic travelling wavesin an integro-differential reaction-diffusion population modelrdquoSIAM Journal on Applied Mathematics vol 50 no 6 pp 1663ndash1688 1990

[6] S A Gourley and N F Britton ldquoInstability of travelling wavesolutions of a population model with nonlocal effectsrdquo IMAJournal of Applied Mathematics vol 51 no 3 pp 299ndash310 1993

[7] X Zhang and R Xu ldquoTraveling waves of a diffusive predator-prey model with nonlocal delay and stage structurerdquo Journal ofMathematical Analysis and Applications vol 373 no 2 pp 475ndash484 2011

[8] Z C Wang W T Li and S G Ruan ldquoExistence and stability oftraveling wave fronts in reaction advection diffusion equationswith nonlocal delayrdquo Journal of Differential Equations vol 238no 1 pp 153ndash200 2007

[9] S A Gourley and S G Ruan ldquoConvergence and travellingfronts in functional differential equations with nonlocal termsa competition modelrdquo SIAM Journal on Mathematical Analysisvol 35 no 3 pp 806ndash822 2003

[10] X H Lai and T X Yao ldquoExponential stability of impul-sive delayed reaction-diffusion cellular neural networks viaPoincare integral inequalityrdquoAbstract and Applied Analysis vol2013 Article ID 131836 10 pages 2013

[11] R Xu and Z E Ma ldquoGlobal stability of a reaction-diffusionpredator-prey model with a nonlocal delayrdquo Mathematical andComputer Modelling vol 50 no 1-2 pp 194ndash206 2009

[12] Z Li F D Chen and M X He ldquoAsymptotic behavior of thereaction-diffusion model of plankton allelopathy with nonlocaldelaysrdquo Nonlinear Analysis Real World Applications vol 12 no3 pp 1748ndash1758 2011

[13] Y Kuang and H L Smith ldquoGlobal stability in diffusive delayLotka-Volterra systemsrdquoDifferential and Integral Equations vol4 no 1 pp 117ndash128 1991

14 Abstract and Applied Analysis

[14] Z G Lin M Pedersen and L Zhang ldquoA predator-prey systemwith stage-structure for predator and nonlocal delayrdquoNonlinearAnalysis Theory Methods amp Applications vol 72 no 3-4 pp2019ndash2030 2010

[15] R Xu ldquoA reaction-diffusion predator-prey model with stagestructure and nonlocal delayrdquo Applied Mathematics and Com-putation vol 175 no 2 pp 984ndash1006 2006

[16] S S Chen and J P Shi ldquoStability and Hopf bifurcation in adiffusive logistic population model with nonlocal delay effectrdquoJournal of Differential Equations vol 253 no 12 pp 3440ndash34702012

[17] H I Freedman Deterministic Mathematical Models in Popula-tion Ecology vol 57 of Monographs and Textbooks in Pure andAppliedMathematicsMarcelDekker NewYorkNYUSA 1980

[18] P A Abrams and L R Ginzburg ldquoThe nature of predation preydepedent ratio dependent or neitherrdquo Trends in Ecology andEvolution vol 15 no 8 pp 337ndash341 2000

[19] D L DeAngelis R A Goldstein and R V OrsquoNeill ldquoA modelfor trophic iterationrdquo Ecology vol 56 no 4 pp 881ndash892 1975

[20] C V Pao ldquoDynamics of nonlinear parabolic systems with timedelaysrdquo Journal of Mathematical Analysis and Applications vol198 no 3 pp 751ndash779 1996

[21] F Xu Y Hou and Z G Lin ldquoTime delay parabolic system ina predator-prey model with stage structurerdquo Acta MathematicaSinica vol 48 no 6 pp 1121ndash1130 2005 (Chinese)

[22] P Y H Pang and M X Wang ldquoStrategy and stationary patternin a three-species predator-prey modelrdquo Journal of DifferentialEquations vol 200 no 2 pp 245ndash273 2004

[23] D Henry Geometric Theory of Semilinear Parabolic Equationsvol 840 of Lecture Notes in Mathematics Springer New YorkNY USA 1981

[24] K J Brown P C Dunne and R A Gardner ldquoA semilinearparabolic system arising in the theory of superconductivityrdquoJournal of Differential Equations vol 40 no 2 pp 232ndash252 1981

[25] S A Gourley and J W H So ldquoDynamics of a food-limitedpopulation model incorporating nonlocal delays on a finitedomainrdquo Journal of Mathematical Biology vol 44 no 1 pp 49ndash78 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 14: Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays WenzhenGan, 1 CanrongTian,

14 Abstract and Applied Analysis

[14] Z G Lin M Pedersen and L Zhang ldquoA predator-prey systemwith stage-structure for predator and nonlocal delayrdquoNonlinearAnalysis Theory Methods amp Applications vol 72 no 3-4 pp2019ndash2030 2010

[15] R Xu ldquoA reaction-diffusion predator-prey model with stagestructure and nonlocal delayrdquo Applied Mathematics and Com-putation vol 175 no 2 pp 984ndash1006 2006

[16] S S Chen and J P Shi ldquoStability and Hopf bifurcation in adiffusive logistic population model with nonlocal delay effectrdquoJournal of Differential Equations vol 253 no 12 pp 3440ndash34702012

[17] H I Freedman Deterministic Mathematical Models in Popula-tion Ecology vol 57 of Monographs and Textbooks in Pure andAppliedMathematicsMarcelDekker NewYorkNYUSA 1980

[18] P A Abrams and L R Ginzburg ldquoThe nature of predation preydepedent ratio dependent or neitherrdquo Trends in Ecology andEvolution vol 15 no 8 pp 337ndash341 2000

[19] D L DeAngelis R A Goldstein and R V OrsquoNeill ldquoA modelfor trophic iterationrdquo Ecology vol 56 no 4 pp 881ndash892 1975

[20] C V Pao ldquoDynamics of nonlinear parabolic systems with timedelaysrdquo Journal of Mathematical Analysis and Applications vol198 no 3 pp 751ndash779 1996

[21] F Xu Y Hou and Z G Lin ldquoTime delay parabolic system ina predator-prey model with stage structurerdquo Acta MathematicaSinica vol 48 no 6 pp 1121ndash1130 2005 (Chinese)

[22] P Y H Pang and M X Wang ldquoStrategy and stationary patternin a three-species predator-prey modelrdquo Journal of DifferentialEquations vol 200 no 2 pp 245ndash273 2004

[23] D Henry Geometric Theory of Semilinear Parabolic Equationsvol 840 of Lecture Notes in Mathematics Springer New YorkNY USA 1981

[24] K J Brown P C Dunne and R A Gardner ldquoA semilinearparabolic system arising in the theory of superconductivityrdquoJournal of Differential Equations vol 40 no 2 pp 232ndash252 1981

[25] S A Gourley and J W H So ldquoDynamics of a food-limitedpopulation model incorporating nonlocal delays on a finitedomainrdquo Journal of Mathematical Biology vol 44 no 1 pp 49ndash78 2002

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 15: Research Article Stability in a Simple Food Chain System ...Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays WenzhenGan, 1 CanrongTian,

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of