Research Article Some Definition of Hartley-Hilbert and...

6
Research Article Some Definition of Hartley-Hilbert and Fourier-Hilbert Transforms in a Quotient Space of Boehmians S. K. Q. Al-Omari Department of Applied Sciences, Faculty of Engineering Technology, Al-Balqa’ Applied University, Amman 11134, Jordan Correspondence should be addressed to S. K. Q. Al-Omari; [email protected] Received 20 May 2014; Accepted 16 August 2014; Published 6 November 2014 Academic Editor: Tepper L Gill Copyright © 2014 S. K. Q. Al-Omari. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We investigate the Hartley-Hilbert and Fourier-Hilbert transforms on a quotient space of Boehmians. e investigated transforms are well-defined and linear mappings in the space of Boehmians. Further properties are also obtained. 1. Introduction e Hilbert transform of a function () via the Hartley transform is defined in [1, 2] as () hh () = hh () () = 1 0 (() o h () cos () + () e h () sin ()) , (1) where () e h and () o h are, respectively, the even and odd components of the Hartley transform () h given as [3] () h () = ∫ −∞ () cas () := () e h () + () o h () , (2) where cas() = cos() + sin(). Let () be a casual function; that is, () = 0, for >0, and then () o h () and () e h () are related by a Hilbert transform pair as [3] () o h () = 1 −∞ () e h () , () e h () = 1 −∞ () o h () . (3) e Hilbert transform of () via the Fourier transform is defined by () fh () = fh () () = 1 0 (() i f () cos () − () r f () sin ()) , (4) where () r f () and () i f () are, respectively, the real and imaginary components of the Fourier transform given as () f () = ∫ −∞ () := () r f () − () i f () . (5) e Hartley transform is extended to Boehmians in [4] and to strong Boehmians in [5]. e Hartley-Hilbert and Fourier-Hilbert transforms were discussed in various spaces of distributions and spaces of Boehmians in [1, 6]. In this paper, aim at investigating the Hartley-Hilbert transform on the context of Boehmians. Investigating the later transform is analogous. 2. Spaces of Quotients (Spaces of Boehmians) One of the most youngest generalizations of functions and more particularly of distributions is the theory of Boehmians. e idea of the construction of Boehmians was initiated by the concept of regular operators [7]. Regular operators form Hindawi Publishing Corporation Journal of Mathematics Volume 2014, Article ID 790161, 5 pages http://dx.doi.org/10.1155/2014/790161

Transcript of Research Article Some Definition of Hartley-Hilbert and...

Page 1: Research Article Some Definition of Hartley-Hilbert and ...downloads.hindawi.com/journals/jmath/2014/790161.pdf · andtostrongBoehmiansin[]. e Hartley-Hilbert and Fourier-Hilbert

Research ArticleSome Definition of Hartley-Hilbert and Fourier-HilbertTransforms in a Quotient Space of Boehmians

S K Q Al-Omari

Department of Applied Sciences Faculty of Engineering Technology Al-Balqarsquo Applied University Amman 11134 Jordan

Correspondence should be addressed to S K Q Al-Omari skqalomarifetedujo

Received 20 May 2014 Accepted 16 August 2014 Published 6 November 2014

Academic Editor Tepper L Gill

Copyright copy 2014 S K Q Al-Omari This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

We investigate the Hartley-Hilbert and Fourier-Hilbert transforms on a quotient space of Boehmians The investigated transformsare well-defined and linear mappings in the space of Boehmians Further properties are also obtained

1 Introduction

The Hilbert transform of a function 119891(119910) via the Hartleytransform is defined in [1 2] as

(119891)hh

(119910)

= hh (119891) (119910)

=1

120587intinfin

0

((119891)o

h(119909) cos (119909119910) + (119891)

e

h(119909) sin (119909119910)) 119889119909

(1)

where (119891)eh and (119891)oh are respectively the even and oddcomponents of the Hartley transform (119891)h given as [3]

(119891)h(119909) = int

infin

minusinfin

119891 (119910) cas (119909119910) 119889119910 = (119891)e

h(119909) + (119891)

o

h(119909)

(2)

where cas(119909119910) = cos(119909119910) + sin(119909119910)Let 119891(119910) be a casual function that is 119891(119910) = 0 for

119910 gt 0 and then (119891)oh(119909) and (119891)eh(119909) are related by a Hilberttransform pair as [3]

(119891)o

h(119909) =

1

120587intinfin

minusinfin

(119891)e

h(119910)

119909 minus 119910119889119910

(119891)e

h(119909) =

1

120587intinfin

minusinfin

(119891)o

h(119910)

119909 minus 119910119889119910

(3)

The Hilbert transform of 119891(119910) via the Fourier transformis defined by

(119891)fh

(119910)

= fh (119891) (119910)

=1

120587intinfin

0

((119891)i

f(119909) cos (119909119910) minus (119891)

r

f(119909) sin (119909119910)) 119889119909

(4)

where (119891)rf (119909) and (119891)if(119909) are respectively the real andimaginary components of the Fourier transform given as

(119891)f(119909) = int

infin

minusinfin

119891 (119910) 119890minus119894119909119910119889119910 = (119891)r

f(119909) minus 119894 (119891)

i

f(119909) (5)

The Hartley transform is extended to Boehmians in [4]and to strong Boehmians in [5] The Hartley-Hilbert andFourier-Hilbert transforms were discussed in various spacesof distributions and spaces of Boehmians in [1 6]

In this paper 119894 aim at investigating the Hartley-Hilberttransform on the context of Boehmians Investigating thelater transform is analogous

2 Spaces of Quotients (Spaces of Boehmians)

One of the most youngest generalizations of functions andmore particularly of distributions is the theory of BoehmiansThe idea of the construction of Boehmians was initiated bythe concept of regular operators [7] Regular operators form

Hindawi Publishing CorporationJournal of MathematicsVolume 2014 Article ID 790161 5 pageshttpdxdoiorg1011552014790161

2 Journal of Mathematics

a subalgebra of the field of Mikusinski operators and theyinclude only such functions whose support is bounded fromthe left In a concrete case the space of Boehmians contains allregular operators all distributions and some objects whichare neither operators nor distributions

The construction of Boehmians is similar to the construc-tion of the field of quotients and in some cases it gives justthe field of quotients On the other hand the constructionis possible where there are zero divisors such as space C(the space of continuous functions) with the operations ofpointwise additions and convolution

A number of integral transforms have been extended toBoehmian spaces in the recent past by many authors suchas Roopkumar in [8 9] Mikusinski and Zayed in [10] Al-Omari and Kilicman in [1 6 11] Karunakaran and Vembu[12] Karunakaran and Roopkumar [13] Al-Omari et al in[14] and many others

For abstract construction of Boehmian spaces we refer to[14ndash16]

By ⊛ denote the Mellin-type convolution product of firstkind defined by [8]

(120601 ⊛ 120595) (119905) = intinfin

0

119911minus1120601 (119905119911minus1) 119892 (119911) 119889119911 (6)

Properties of ⊛ are presented as follows [8]

(i) (120601 ⊛ 120595) (119905) = (120595 ⊛ 120601) (119905)(ii) ((120601 + 120595) ⊛ 120593) (119905) = (120601 ⊛ 120593) (119905) + (120595 ⊛ 120593) (119905)(iii) (120572120601 ⊛ 120595) (119905) = 120572 (120595 ⊛ 120601) (119905) 120572 is complex number(iv) ((120601 ⊛ 120595) ⊛ 120593) (119905) = (120601 ⊛ (120595 ⊛ 120593)) (119905)

By lowast we denote the convolution product defined by

(120601 lowast 120595) (119910) = intinfin

0

119911minus1120601 (119910119911minus1) 120595 (119911) 119889119911 (7)

By 120599(R+) denote the space of test functions of bounded

supports defined on R+that vanish more rapidly than every

power of 119909 as 119909 rarr infin Denote by 1205991the subset of 120599(R

+)

defined by

1205991= 120593 isin 120599 (R

+) intinfin

0

120593 (119909) 119889119909 = 1 (8)

Let Δ be the set of delta sequences satisfying the followingproperties

(1) 120575119899 isin 120599(R

+)

(2) intinfin0

120575119899(119909) 119889119909 = 1 119899 isin N

(3) intinfin0

1003816100381610038161003816120575119899 (119909)1003816100381610038161003816 119889119909 lt infin 119899 isin N

(4) supp 120575119899(119909) sube [119886 119887

119899] 0 lt 119886

119899lt 119887119899and 119886119899 119887119899

rarr 0 as119899 rarr infin where

supp 120575119899(119909) = 119909 isin R

+ 120575119899(119909) = 0 forall119899 isin N (9)

Now we establish the following theorem

Theorem 1 Let 120601 120595 isin 120599(R+) then one has (120601 ⊛ 120595)

hh(119910) =

(120601hh lowast 120595) (119910)

Proof Let 120601 and 120595 be in 120599(R+) then we have

(120601 ⊛ 120595)hh

(119910) = intinfin

0

((120601 ⊛ 120595)o

h(119909) cos (119909119910)

+ (120601 ⊛ 120595)e

h(119909) sin (119909119910)) 119889119909

ie = intinfin

0

(intinfin

0

(120601 ⊛ 120595) (119905) sin (119909119905) 119889119905 cos (119909119910)

+ intinfin

0

(120601 ⊛ 120595) (119905) cos (119909119905) 119889119905

times sin (119909119910)) 119889119909

ie = intinfin

0

(intinfin

0

(intinfin

0

(120601 (119905119911minus1) sin (119909119905) cos (119909119910)

+ 120601 (119905119911minus1) cos (119909119905)

times sin (119909119910)) 119889119905) 119889119909)

times 120595 (119911) 119911minus1119889119911

(10)

By the change of variables 119905119911minus1 = 119908 we get that

(120601 ⊛ 120595)hh

(119910) = intinfin

0

(intinfin

0

(intinfin

0

(120601 (119908) sin (119909119911119908) cos (119909119910)

+ 120601 (119908) cos (119909119911119908)

times sin (119909119910)) 119889119908)119889119909)

times 120595 (119911) 119911 119889119911

ie = intinfin

0

(intinfin

0

(120601oh (119909119911) cos (119909119910)

+120601eh (119909119911) sin (119909119910)) 119889119909)

times 120595 (119911) 119911 119889119911

(11)

Once again by the change of variables 119909119911 = 119903 we get

(120601 ⊛ 120595)hh

(119910) = intinfin

0

119911minus1120601hh (119910119911minus1) 120595 (119911) 119889119911 (12)

This completes the proof of the theorem

Now we establish the following theorem

Theorem 2 Let 120601 120595 and 120579 be test functions in 120599(R+) then

120601 lowast (120595 ⊛ 120579) = (120601 lowast 120595) lowast 120579

Journal of Mathematics 3

Proof Let 119910 gt 0 be given Then from (6) and (7) we have

(120601 lowast (120595 ⊛ 120579)) (119910) = intinfin

0

119911minus1120601 (119910119911minus1) (120595 ⊛ 120579) (119911) 119889119911

ie = intinfin

0

119911minus1120601 (119910119911minus1) (intinfin

0

119905minus1120595 (119911119905minus1) 120579 (119905) 119889119905) 119889119911

ie = intinfin

0

119911minus1120601 (119910119911minus1) (120595 lowast 120579) (119911) 119889119911

(13)

Hence the theorem is completely proved

Theorem 3 Let 120593 120595 isin 1205991 then 120593 ⊛ 120595 = 120595 ⊛ 120593

Proof Proof of this theorem follows from technique similarto that of Theorem 2 Therefore we omit the details

Theorem 4 Let 1206011 1206012

isin 120599(R+) and 120593

1 1205932

isin 1205991 then the

following hold

(1) (1206011+ 1206012) lowast 1205931= 1206011lowast 1205931+ 1206012lowast 1205931

(2) if 120601119899

rarr 120601 isin 120599(R+) as 119899 rarr infin then 120601

119899lowast120593 rarr 120601lowast120593

as 119899 rarr infin

(3) 1206011lowast (1205931⊛ 1205932) = (120601

1lowast 1205931) lowast 1205932

(4) 1206011lowast 1205931isin 120599(R

+)

Proof Proof of (1) and (2) follows from elementary integralcalculus Proof of (3) is already obtained inTheorem 2 Proofof (4) is obvious by the properties of the product (7) Furtherdetails are thus avoided

This completes the proof of the theorem

Theorem 5 Let 120601 isin 120599(R+) and 120575

119899 isin Δ then 120601 lowast 120575

119899rarr 120601

as 119899 rarr infin

Proof Let 119870 be a compact set containing the support of 120601then by Property 2 of delta sequences we have

10038161003816100381610038161003816D119896

119910(120601 lowast 120575

119899minus 120601) (119910)

10038161003816100381610038161003816

le int119870

10038161003816100381610038161003816D119896

119910(119911minus1120601 (119910119911minus1) minus 120601 (119910))

100381610038161003816100381610038161003816100381610038161003816120575119899 (119910)

1003816100381610038161003816 119889119911(14)

Hence (14) goes to zero as 119899 rarr infinHence the theorem is completely proved

The Boehmian spaceB (120599 (1205991 ⊛) lowast Δ) is constructed

The sum of two Boehmians andmultiplication by a scalarcan be defined in a natural way

[119891119899

120596119899] + [

119892119899

120595119899] = [

119891119899lowast 120595119899+ 119892119899lowast 120596119899

120596119899⊛ 120595119899

]

120572 [119891119899

120596119899] = [120572

119891119899

120596119899] = [

120572119891119899

120596119899]

(15)

where 120572 isin C the field of complex numbers

The operation lowast and the differentiation are defined by

[119891119899

120596119899] lowast [

119892119899

120595119899] = [

119891119899lowast 119892119899

120596119899⊛ 120595119899]

D120572 [

119891119899

120596119899] = [

D120572119891119899

120596119899

]

(16)

Similarly the spaceB (120599 (1205991 ⊛) ⊛ Δ) can be proved

The sum of two Boehmians andmultiplication by a scalarcan be defined in a natural way

[119891119899

120596119899] + [

119892119899

120595119899] = [

119891119899⊛ 120595119899+ 119892119899⊛ 120596119899

120596119899⊛ 120595119899

]

120572 [119891119899

120596119899] = [120572

119891119899

120596119899] = [

120572119891119899

120596119899]

(17)

The operation lowast and the differentiation are defined by

[119891119899

120596119899] ⊛ [

119892119899

120595119899] = [

119891119899⊛ 119892119899

120596119899⊛ 120595119899]

D120572 [

119891119899

120596119899] = [

D120572119891119899

120596119899

]

(18)

As next let 120601 isin 120599(R+) then (120601)

hh(119910) isin 120599(R

+)

For some details we by definitions have that10038161003816100381610038161003816D119896

119910(120601)

hh(119910)

10038161003816100381610038161003816

le1

120587intinfin

0

D119896

119910(10038161003816100381610038161003816((120601)

o

h(119909) cos (119909119910) + (120601)

e

h(119909) sin (119909119910))

10038161003816100381610038161003816) 119889119909

le1

120587intinfin

0

100381610038161003816100381610038161199091198961003816100381610038161003816100381610038161003816100381610038161003816(120601)

o

h(119909)

10038161003816100381610038161003816 119889119909 +1

120587intinfin

0

100381610038161003816100381610038161199091198961003816100381610038161003816100381610038161003816100381610038161003816(120601)

e

h(119909)

10038161003816100381610038161003816 119889119909

(19)

But since1

120587intinfin

0

100381610038161003816100381610038161199091198961003816100381610038161003816100381610038161003816100381610038161003816(120601)

o

h(119909)

10038161003816100381610038161003816 119889119909 =1

120587intinfin

0

int119887

119886

10038161003816100381610038161003816119909119896100381610038161003816100381610038161003816100381610038161003816120601 (119910)

1003816100381610038161003816 119889119910 119889119909

997888rarr 0

(20)

for every power of 119909 as 119909 rarr infin where [119886 119887] is a compact setcontaining the support of 120601 similarly we see that

1

120587intinfin

0

100381610038161003816100381610038161199091198961003816100381610038161003816100381610038161003816100381610038161003816(120601)

e

h(119909)

10038161003816100381610038161003816 119889119909 997888rarr 0 (21)

for every power of 119909 as 119909 rarr infin Therefore we get that(120601)

hh(119910) isin 120599(R

+)

3 Hartley-Hilbert Transform of Quotients

Let [120601119899 120575119899] isin B (120599 (120599

1 ⊛) ⊛ Δ) then we define the

extended Hartley-Hilbert transform of [120601119899 120575119899] as

([120601119899

120575119899])

hh

= [

[

(120601119899)hh

120575119899

]

]

(22)

in the quotient spaceB (120599 (1205991 ⊛) lowast Δ)

4 Journal of Mathematics

Theorem 6 The operator ([120601119899 120575119899])

hhis well defined and

linear fromB (120599 (1205991 ⊛) ⊛ Δ) intoB (120599 (120599

1 ⊛) lowast Δ)

Proof We show that ([120601119899 120575119899])

hhis well defined

Let [120595119899 120583119899] = [120585

119899 120598119899] in B (120599 (120599

1 ⊛) ⊛ Δ)

then by the concept of quotients of the spaceB (120599 (120599

1 ⊛) ⊛ Δ) we have

120595119899⊛ 120598119898

= 120585119898

⊛ 120583119899 (23)

Hence by Theorem 1 we get from (23) that

(120595119899)hhlowast 120598119898

= (120585119898)hhlowast 120583119899 (24)

Hence from (24) it follows that

(120595119899)hh

120583119899

sim(120585119899)hh

120598119899

(25)

inB (120599 (1205991 ⊛) lowast Δ)

Therefore

[

[

(120595119899)hh

120583119899

]

]

= [

[

(120585119899)hh

120598119899

]

]

(26)

inB (120599 (1205991 ⊛) lowast Δ)

That is

([120595119899

120583119899])

hh

= ([120585119899

120598119899])

hh

(27)

To show that ([120601119899 120575119899])

hhis linear let [119891

119899 120598119899]

[119892119899 120591119899] isin B (120599 (120599

1 ⊛) ⊛ Δ) 120581 120578 isin R then

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= ([120581 119891119899

120598119899

] + [120578 119892119899

120591119899

])hh

ie = ([(120581119891119899) ⊛ 120591119899+ (120578119892119899) ⊛ 120598119899

120598119899⊛ 120591119899

])hh

ie = [

[

((120581119891119899) ⊛ 120591119899+ (120578119892119899) ⊛ 120598119899)hh

120598119899⊛ 120591119899

]

]

(28)

Linearity of the classical Hartley-Hilbert transformimplies

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= [

[

120581 (119891119899⊛ 120591119899)hh

+ 120578 (119892119899⊛ 120598119899)hh

120598119899 ⊛ 120591119899

]

]

(29)

Theorem 1 gives

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= [

[

120581 (119891119899)hh

lowast 120591119899 + 120578 (119892

119899)hh

lowast 120598119899

120598119899 ⊛ 120591119899

]

]

(30)

Thus by addition of Boehmians

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= [

[

120581 (119891119899)hh

120598119899

]

]

+ [

[

120578 (119892119899)hh

120591119899

]

]

(31)

Hence

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= 120581[

[

(119891119899)hh

120598119899

]

]

+ 120578[

[

(119892119899)hh

120591119899

]

]

(32)

The proof of the theorem is completed

Theorem 7 The necessary and sufficient condition for[119892119899 120595119899] isin B (120599 (120599

1 ⊛) lowast Δ) to be in the range of

([119892119899 120595119899])

hhis that 119892

119899belongs to range of the classical hh

for every 119899 isin N

Proof Let [119892119899 120595119899] be in the range of ([119892

119899 120595119899])

hh

then of course 119892119899belongs to the range of the classical hh forall119899 isin

NTo establish the converse let119892

119899be in the range of hhforall119899 isin

N Then there is 120601119899isin 120599(R

+) such that hh120601

119899= 119892119899 119899 isin N

Since [119892119899 120595119899] isin B (120599 (120599

1 ⊛) lowast Δ) we get 119892

119899lowast

120595119898

= 119892119898lowast 120595119899 forall119898 119899 isin N

Therefore Theorem 1 yields

hh (120601119899⊛ 120595119898) = hh (120601

119898⊛ 120595119899) forall119898 119899 isin N (33)

where 120601119899isin 120599(R

+) and 120595

119899 isin Δ forall119899 isin N

Thus 120601119899⊛ 120595119898

= 120601119898

⊛ 120595119899 119898 119899 isin N

Hence

[120601119899

120595119899] isin B (120599 (120599

1 ⊛) ⊛ Δ)

([120601119899

120595119899])

hh

= [119892119899

120595119899]

(34)

The theorem is therefore completely proved

Theorem 8 The transform ([120601119899 120595119899])

hhis consistent with

hh 120599(R+) rarr 120599(R

+)

Journal of Mathematics 5

Proof For every 120601 isin 120599(R+) let 120573 isin B (120599 (120599

1 ⊛) ⊛ Δ) be its

representative then we have 120573 = [120601 ⊛ 120595119899 120595119899] forall119899 isin N

120595119899 isin Δ For all 119899 isin N it is clear that 120595

119899 is independent

from the representativeByTheorem 1 we have

(120573)ℎℎ

= ([120601 ⊛ 120595

119899

120595119899

])hh

= [hh (120601 ⊛ 120595

119899)

120595119899

] = [hh120601 lowast 120595

119899

120595119899

]

(35)

which is the representative of hh120601 in the space 120599(R+)

Hence the proof of this theorem is completed

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The author expresses his gratitude to the referees for valuablesuggestions

References

[1] S K Q Al-Omari and A Kılıcman ldquoSome remarks on theextended Hartley-Hilbert and Fourier-Hilbert transforms ofboehmiansrdquo Abstract and Applied Analysis vol 2013 Article ID348701 6 pages 2013

[2] N Sundararajan and Y Srinivas ldquoFourier-Hilbert versusHartley-Hilbert transforms with some geophysical applica-tionsrdquo Journal of Applied Geophysics vol 71 no 4 pp 157ndash1612010

[3] R P Millane ldquoAnalytical properties of the Hartley transformand their implicationsrdquo Proceedings of the IEEE vol 82 no 3pp 413ndash428 1994

[4] S K Al-Omari and A Kılıcman ldquoOn diffraction Fresneltransforms for Boehmiansrdquo Abstract and Applied Analysis vol2011 Article ID 712746 11 pages 2011

[5] S K Al-Omari ldquoHartley transforms on a certain space ofgeneralized functionsrdquo Georgian Mathematical Journal vol 20no 3 pp 415ndash426 2013

[6] S K Q Al-Omari and A Kilicman ldquoOn the generalizedHartley-Hilbert and Fourier-Hilbert transformsrdquo Advances inDifference Equations vol 2012 article 232 2012

[7] T K Boehme ldquoThe support of Mikusinski operatorsrdquo Transac-tions of theAmericanMathematical Society vol 176 pp 319ndash3341973

[8] R Roopkumar ldquoMellin transform for Boehmiansrdquo Bulletin ofthe Institute of Mathematics Academia Sinica New Series vol4 no 1 pp 75ndash96 2009

[9] R Roopkumar ldquoGeneralized Radon transformrdquo Rocky Moun-tain Journal of Mathematics vol 36 no 4 pp 1375ndash1390 2006

[10] P Mikusinski and A Zayed ldquoThe Radon transform of Boehmi-ansrdquo Proceedings of the American Mathematical Society vol 118no 2 pp 561ndash570 1993

[11] S K Al-Omari and A Kilicman ldquoNote on Boehmians forclass of optical Fresnel wavelet transformsrdquo Journal of FunctionSpaces and Applications vol 2021 Article ID 405368 14 pages2012

[12] V Karunakaran and R Vembu ldquoHilbert transform on periodicboehmiansrdquo Houston Journal of Mathematics vol 29 no 2 pp437ndash454 2003

[13] V Karunakaran and R Roopkumar ldquoOperational calculus andFourier transform on Boehmiansrdquo Colloquium Mathematicumvol 102 no 1 pp 21ndash32 2005

[14] S K Al-Omari D Loonker P K Banerji and S L KallaldquoFourier sine (cosine) transform for ultradistributions and theirextensions to tempered and ultraBoehmian spacesrdquo IntegralTransforms and Special Functions vol 19 no 6 pp 453ndash4622008

[15] P Mikusinski ldquoTempered Boehmians and ultradistributionsrdquoProceedings of the American Mathematical Society vol 123 no3 pp 813ndash817 1995

[16] R S Pathak Integral Transforms of Generalized Functions andTheir Applications Gordon and Breach Science AmsterdamThe Netherlands 1997

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Some Definition of Hartley-Hilbert and ...downloads.hindawi.com/journals/jmath/2014/790161.pdf · andtostrongBoehmiansin[]. e Hartley-Hilbert and Fourier-Hilbert

2 Journal of Mathematics

a subalgebra of the field of Mikusinski operators and theyinclude only such functions whose support is bounded fromthe left In a concrete case the space of Boehmians contains allregular operators all distributions and some objects whichare neither operators nor distributions

The construction of Boehmians is similar to the construc-tion of the field of quotients and in some cases it gives justthe field of quotients On the other hand the constructionis possible where there are zero divisors such as space C(the space of continuous functions) with the operations ofpointwise additions and convolution

A number of integral transforms have been extended toBoehmian spaces in the recent past by many authors suchas Roopkumar in [8 9] Mikusinski and Zayed in [10] Al-Omari and Kilicman in [1 6 11] Karunakaran and Vembu[12] Karunakaran and Roopkumar [13] Al-Omari et al in[14] and many others

For abstract construction of Boehmian spaces we refer to[14ndash16]

By ⊛ denote the Mellin-type convolution product of firstkind defined by [8]

(120601 ⊛ 120595) (119905) = intinfin

0

119911minus1120601 (119905119911minus1) 119892 (119911) 119889119911 (6)

Properties of ⊛ are presented as follows [8]

(i) (120601 ⊛ 120595) (119905) = (120595 ⊛ 120601) (119905)(ii) ((120601 + 120595) ⊛ 120593) (119905) = (120601 ⊛ 120593) (119905) + (120595 ⊛ 120593) (119905)(iii) (120572120601 ⊛ 120595) (119905) = 120572 (120595 ⊛ 120601) (119905) 120572 is complex number(iv) ((120601 ⊛ 120595) ⊛ 120593) (119905) = (120601 ⊛ (120595 ⊛ 120593)) (119905)

By lowast we denote the convolution product defined by

(120601 lowast 120595) (119910) = intinfin

0

119911minus1120601 (119910119911minus1) 120595 (119911) 119889119911 (7)

By 120599(R+) denote the space of test functions of bounded

supports defined on R+that vanish more rapidly than every

power of 119909 as 119909 rarr infin Denote by 1205991the subset of 120599(R

+)

defined by

1205991= 120593 isin 120599 (R

+) intinfin

0

120593 (119909) 119889119909 = 1 (8)

Let Δ be the set of delta sequences satisfying the followingproperties

(1) 120575119899 isin 120599(R

+)

(2) intinfin0

120575119899(119909) 119889119909 = 1 119899 isin N

(3) intinfin0

1003816100381610038161003816120575119899 (119909)1003816100381610038161003816 119889119909 lt infin 119899 isin N

(4) supp 120575119899(119909) sube [119886 119887

119899] 0 lt 119886

119899lt 119887119899and 119886119899 119887119899

rarr 0 as119899 rarr infin where

supp 120575119899(119909) = 119909 isin R

+ 120575119899(119909) = 0 forall119899 isin N (9)

Now we establish the following theorem

Theorem 1 Let 120601 120595 isin 120599(R+) then one has (120601 ⊛ 120595)

hh(119910) =

(120601hh lowast 120595) (119910)

Proof Let 120601 and 120595 be in 120599(R+) then we have

(120601 ⊛ 120595)hh

(119910) = intinfin

0

((120601 ⊛ 120595)o

h(119909) cos (119909119910)

+ (120601 ⊛ 120595)e

h(119909) sin (119909119910)) 119889119909

ie = intinfin

0

(intinfin

0

(120601 ⊛ 120595) (119905) sin (119909119905) 119889119905 cos (119909119910)

+ intinfin

0

(120601 ⊛ 120595) (119905) cos (119909119905) 119889119905

times sin (119909119910)) 119889119909

ie = intinfin

0

(intinfin

0

(intinfin

0

(120601 (119905119911minus1) sin (119909119905) cos (119909119910)

+ 120601 (119905119911minus1) cos (119909119905)

times sin (119909119910)) 119889119905) 119889119909)

times 120595 (119911) 119911minus1119889119911

(10)

By the change of variables 119905119911minus1 = 119908 we get that

(120601 ⊛ 120595)hh

(119910) = intinfin

0

(intinfin

0

(intinfin

0

(120601 (119908) sin (119909119911119908) cos (119909119910)

+ 120601 (119908) cos (119909119911119908)

times sin (119909119910)) 119889119908)119889119909)

times 120595 (119911) 119911 119889119911

ie = intinfin

0

(intinfin

0

(120601oh (119909119911) cos (119909119910)

+120601eh (119909119911) sin (119909119910)) 119889119909)

times 120595 (119911) 119911 119889119911

(11)

Once again by the change of variables 119909119911 = 119903 we get

(120601 ⊛ 120595)hh

(119910) = intinfin

0

119911minus1120601hh (119910119911minus1) 120595 (119911) 119889119911 (12)

This completes the proof of the theorem

Now we establish the following theorem

Theorem 2 Let 120601 120595 and 120579 be test functions in 120599(R+) then

120601 lowast (120595 ⊛ 120579) = (120601 lowast 120595) lowast 120579

Journal of Mathematics 3

Proof Let 119910 gt 0 be given Then from (6) and (7) we have

(120601 lowast (120595 ⊛ 120579)) (119910) = intinfin

0

119911minus1120601 (119910119911minus1) (120595 ⊛ 120579) (119911) 119889119911

ie = intinfin

0

119911minus1120601 (119910119911minus1) (intinfin

0

119905minus1120595 (119911119905minus1) 120579 (119905) 119889119905) 119889119911

ie = intinfin

0

119911minus1120601 (119910119911minus1) (120595 lowast 120579) (119911) 119889119911

(13)

Hence the theorem is completely proved

Theorem 3 Let 120593 120595 isin 1205991 then 120593 ⊛ 120595 = 120595 ⊛ 120593

Proof Proof of this theorem follows from technique similarto that of Theorem 2 Therefore we omit the details

Theorem 4 Let 1206011 1206012

isin 120599(R+) and 120593

1 1205932

isin 1205991 then the

following hold

(1) (1206011+ 1206012) lowast 1205931= 1206011lowast 1205931+ 1206012lowast 1205931

(2) if 120601119899

rarr 120601 isin 120599(R+) as 119899 rarr infin then 120601

119899lowast120593 rarr 120601lowast120593

as 119899 rarr infin

(3) 1206011lowast (1205931⊛ 1205932) = (120601

1lowast 1205931) lowast 1205932

(4) 1206011lowast 1205931isin 120599(R

+)

Proof Proof of (1) and (2) follows from elementary integralcalculus Proof of (3) is already obtained inTheorem 2 Proofof (4) is obvious by the properties of the product (7) Furtherdetails are thus avoided

This completes the proof of the theorem

Theorem 5 Let 120601 isin 120599(R+) and 120575

119899 isin Δ then 120601 lowast 120575

119899rarr 120601

as 119899 rarr infin

Proof Let 119870 be a compact set containing the support of 120601then by Property 2 of delta sequences we have

10038161003816100381610038161003816D119896

119910(120601 lowast 120575

119899minus 120601) (119910)

10038161003816100381610038161003816

le int119870

10038161003816100381610038161003816D119896

119910(119911minus1120601 (119910119911minus1) minus 120601 (119910))

100381610038161003816100381610038161003816100381610038161003816120575119899 (119910)

1003816100381610038161003816 119889119911(14)

Hence (14) goes to zero as 119899 rarr infinHence the theorem is completely proved

The Boehmian spaceB (120599 (1205991 ⊛) lowast Δ) is constructed

The sum of two Boehmians andmultiplication by a scalarcan be defined in a natural way

[119891119899

120596119899] + [

119892119899

120595119899] = [

119891119899lowast 120595119899+ 119892119899lowast 120596119899

120596119899⊛ 120595119899

]

120572 [119891119899

120596119899] = [120572

119891119899

120596119899] = [

120572119891119899

120596119899]

(15)

where 120572 isin C the field of complex numbers

The operation lowast and the differentiation are defined by

[119891119899

120596119899] lowast [

119892119899

120595119899] = [

119891119899lowast 119892119899

120596119899⊛ 120595119899]

D120572 [

119891119899

120596119899] = [

D120572119891119899

120596119899

]

(16)

Similarly the spaceB (120599 (1205991 ⊛) ⊛ Δ) can be proved

The sum of two Boehmians andmultiplication by a scalarcan be defined in a natural way

[119891119899

120596119899] + [

119892119899

120595119899] = [

119891119899⊛ 120595119899+ 119892119899⊛ 120596119899

120596119899⊛ 120595119899

]

120572 [119891119899

120596119899] = [120572

119891119899

120596119899] = [

120572119891119899

120596119899]

(17)

The operation lowast and the differentiation are defined by

[119891119899

120596119899] ⊛ [

119892119899

120595119899] = [

119891119899⊛ 119892119899

120596119899⊛ 120595119899]

D120572 [

119891119899

120596119899] = [

D120572119891119899

120596119899

]

(18)

As next let 120601 isin 120599(R+) then (120601)

hh(119910) isin 120599(R

+)

For some details we by definitions have that10038161003816100381610038161003816D119896

119910(120601)

hh(119910)

10038161003816100381610038161003816

le1

120587intinfin

0

D119896

119910(10038161003816100381610038161003816((120601)

o

h(119909) cos (119909119910) + (120601)

e

h(119909) sin (119909119910))

10038161003816100381610038161003816) 119889119909

le1

120587intinfin

0

100381610038161003816100381610038161199091198961003816100381610038161003816100381610038161003816100381610038161003816(120601)

o

h(119909)

10038161003816100381610038161003816 119889119909 +1

120587intinfin

0

100381610038161003816100381610038161199091198961003816100381610038161003816100381610038161003816100381610038161003816(120601)

e

h(119909)

10038161003816100381610038161003816 119889119909

(19)

But since1

120587intinfin

0

100381610038161003816100381610038161199091198961003816100381610038161003816100381610038161003816100381610038161003816(120601)

o

h(119909)

10038161003816100381610038161003816 119889119909 =1

120587intinfin

0

int119887

119886

10038161003816100381610038161003816119909119896100381610038161003816100381610038161003816100381610038161003816120601 (119910)

1003816100381610038161003816 119889119910 119889119909

997888rarr 0

(20)

for every power of 119909 as 119909 rarr infin where [119886 119887] is a compact setcontaining the support of 120601 similarly we see that

1

120587intinfin

0

100381610038161003816100381610038161199091198961003816100381610038161003816100381610038161003816100381610038161003816(120601)

e

h(119909)

10038161003816100381610038161003816 119889119909 997888rarr 0 (21)

for every power of 119909 as 119909 rarr infin Therefore we get that(120601)

hh(119910) isin 120599(R

+)

3 Hartley-Hilbert Transform of Quotients

Let [120601119899 120575119899] isin B (120599 (120599

1 ⊛) ⊛ Δ) then we define the

extended Hartley-Hilbert transform of [120601119899 120575119899] as

([120601119899

120575119899])

hh

= [

[

(120601119899)hh

120575119899

]

]

(22)

in the quotient spaceB (120599 (1205991 ⊛) lowast Δ)

4 Journal of Mathematics

Theorem 6 The operator ([120601119899 120575119899])

hhis well defined and

linear fromB (120599 (1205991 ⊛) ⊛ Δ) intoB (120599 (120599

1 ⊛) lowast Δ)

Proof We show that ([120601119899 120575119899])

hhis well defined

Let [120595119899 120583119899] = [120585

119899 120598119899] in B (120599 (120599

1 ⊛) ⊛ Δ)

then by the concept of quotients of the spaceB (120599 (120599

1 ⊛) ⊛ Δ) we have

120595119899⊛ 120598119898

= 120585119898

⊛ 120583119899 (23)

Hence by Theorem 1 we get from (23) that

(120595119899)hhlowast 120598119898

= (120585119898)hhlowast 120583119899 (24)

Hence from (24) it follows that

(120595119899)hh

120583119899

sim(120585119899)hh

120598119899

(25)

inB (120599 (1205991 ⊛) lowast Δ)

Therefore

[

[

(120595119899)hh

120583119899

]

]

= [

[

(120585119899)hh

120598119899

]

]

(26)

inB (120599 (1205991 ⊛) lowast Δ)

That is

([120595119899

120583119899])

hh

= ([120585119899

120598119899])

hh

(27)

To show that ([120601119899 120575119899])

hhis linear let [119891

119899 120598119899]

[119892119899 120591119899] isin B (120599 (120599

1 ⊛) ⊛ Δ) 120581 120578 isin R then

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= ([120581 119891119899

120598119899

] + [120578 119892119899

120591119899

])hh

ie = ([(120581119891119899) ⊛ 120591119899+ (120578119892119899) ⊛ 120598119899

120598119899⊛ 120591119899

])hh

ie = [

[

((120581119891119899) ⊛ 120591119899+ (120578119892119899) ⊛ 120598119899)hh

120598119899⊛ 120591119899

]

]

(28)

Linearity of the classical Hartley-Hilbert transformimplies

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= [

[

120581 (119891119899⊛ 120591119899)hh

+ 120578 (119892119899⊛ 120598119899)hh

120598119899 ⊛ 120591119899

]

]

(29)

Theorem 1 gives

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= [

[

120581 (119891119899)hh

lowast 120591119899 + 120578 (119892

119899)hh

lowast 120598119899

120598119899 ⊛ 120591119899

]

]

(30)

Thus by addition of Boehmians

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= [

[

120581 (119891119899)hh

120598119899

]

]

+ [

[

120578 (119892119899)hh

120591119899

]

]

(31)

Hence

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= 120581[

[

(119891119899)hh

120598119899

]

]

+ 120578[

[

(119892119899)hh

120591119899

]

]

(32)

The proof of the theorem is completed

Theorem 7 The necessary and sufficient condition for[119892119899 120595119899] isin B (120599 (120599

1 ⊛) lowast Δ) to be in the range of

([119892119899 120595119899])

hhis that 119892

119899belongs to range of the classical hh

for every 119899 isin N

Proof Let [119892119899 120595119899] be in the range of ([119892

119899 120595119899])

hh

then of course 119892119899belongs to the range of the classical hh forall119899 isin

NTo establish the converse let119892

119899be in the range of hhforall119899 isin

N Then there is 120601119899isin 120599(R

+) such that hh120601

119899= 119892119899 119899 isin N

Since [119892119899 120595119899] isin B (120599 (120599

1 ⊛) lowast Δ) we get 119892

119899lowast

120595119898

= 119892119898lowast 120595119899 forall119898 119899 isin N

Therefore Theorem 1 yields

hh (120601119899⊛ 120595119898) = hh (120601

119898⊛ 120595119899) forall119898 119899 isin N (33)

where 120601119899isin 120599(R

+) and 120595

119899 isin Δ forall119899 isin N

Thus 120601119899⊛ 120595119898

= 120601119898

⊛ 120595119899 119898 119899 isin N

Hence

[120601119899

120595119899] isin B (120599 (120599

1 ⊛) ⊛ Δ)

([120601119899

120595119899])

hh

= [119892119899

120595119899]

(34)

The theorem is therefore completely proved

Theorem 8 The transform ([120601119899 120595119899])

hhis consistent with

hh 120599(R+) rarr 120599(R

+)

Journal of Mathematics 5

Proof For every 120601 isin 120599(R+) let 120573 isin B (120599 (120599

1 ⊛) ⊛ Δ) be its

representative then we have 120573 = [120601 ⊛ 120595119899 120595119899] forall119899 isin N

120595119899 isin Δ For all 119899 isin N it is clear that 120595

119899 is independent

from the representativeByTheorem 1 we have

(120573)ℎℎ

= ([120601 ⊛ 120595

119899

120595119899

])hh

= [hh (120601 ⊛ 120595

119899)

120595119899

] = [hh120601 lowast 120595

119899

120595119899

]

(35)

which is the representative of hh120601 in the space 120599(R+)

Hence the proof of this theorem is completed

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The author expresses his gratitude to the referees for valuablesuggestions

References

[1] S K Q Al-Omari and A Kılıcman ldquoSome remarks on theextended Hartley-Hilbert and Fourier-Hilbert transforms ofboehmiansrdquo Abstract and Applied Analysis vol 2013 Article ID348701 6 pages 2013

[2] N Sundararajan and Y Srinivas ldquoFourier-Hilbert versusHartley-Hilbert transforms with some geophysical applica-tionsrdquo Journal of Applied Geophysics vol 71 no 4 pp 157ndash1612010

[3] R P Millane ldquoAnalytical properties of the Hartley transformand their implicationsrdquo Proceedings of the IEEE vol 82 no 3pp 413ndash428 1994

[4] S K Al-Omari and A Kılıcman ldquoOn diffraction Fresneltransforms for Boehmiansrdquo Abstract and Applied Analysis vol2011 Article ID 712746 11 pages 2011

[5] S K Al-Omari ldquoHartley transforms on a certain space ofgeneralized functionsrdquo Georgian Mathematical Journal vol 20no 3 pp 415ndash426 2013

[6] S K Q Al-Omari and A Kilicman ldquoOn the generalizedHartley-Hilbert and Fourier-Hilbert transformsrdquo Advances inDifference Equations vol 2012 article 232 2012

[7] T K Boehme ldquoThe support of Mikusinski operatorsrdquo Transac-tions of theAmericanMathematical Society vol 176 pp 319ndash3341973

[8] R Roopkumar ldquoMellin transform for Boehmiansrdquo Bulletin ofthe Institute of Mathematics Academia Sinica New Series vol4 no 1 pp 75ndash96 2009

[9] R Roopkumar ldquoGeneralized Radon transformrdquo Rocky Moun-tain Journal of Mathematics vol 36 no 4 pp 1375ndash1390 2006

[10] P Mikusinski and A Zayed ldquoThe Radon transform of Boehmi-ansrdquo Proceedings of the American Mathematical Society vol 118no 2 pp 561ndash570 1993

[11] S K Al-Omari and A Kilicman ldquoNote on Boehmians forclass of optical Fresnel wavelet transformsrdquo Journal of FunctionSpaces and Applications vol 2021 Article ID 405368 14 pages2012

[12] V Karunakaran and R Vembu ldquoHilbert transform on periodicboehmiansrdquo Houston Journal of Mathematics vol 29 no 2 pp437ndash454 2003

[13] V Karunakaran and R Roopkumar ldquoOperational calculus andFourier transform on Boehmiansrdquo Colloquium Mathematicumvol 102 no 1 pp 21ndash32 2005

[14] S K Al-Omari D Loonker P K Banerji and S L KallaldquoFourier sine (cosine) transform for ultradistributions and theirextensions to tempered and ultraBoehmian spacesrdquo IntegralTransforms and Special Functions vol 19 no 6 pp 453ndash4622008

[15] P Mikusinski ldquoTempered Boehmians and ultradistributionsrdquoProceedings of the American Mathematical Society vol 123 no3 pp 813ndash817 1995

[16] R S Pathak Integral Transforms of Generalized Functions andTheir Applications Gordon and Breach Science AmsterdamThe Netherlands 1997

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Some Definition of Hartley-Hilbert and ...downloads.hindawi.com/journals/jmath/2014/790161.pdf · andtostrongBoehmiansin[]. e Hartley-Hilbert and Fourier-Hilbert

Journal of Mathematics 3

Proof Let 119910 gt 0 be given Then from (6) and (7) we have

(120601 lowast (120595 ⊛ 120579)) (119910) = intinfin

0

119911minus1120601 (119910119911minus1) (120595 ⊛ 120579) (119911) 119889119911

ie = intinfin

0

119911minus1120601 (119910119911minus1) (intinfin

0

119905minus1120595 (119911119905minus1) 120579 (119905) 119889119905) 119889119911

ie = intinfin

0

119911minus1120601 (119910119911minus1) (120595 lowast 120579) (119911) 119889119911

(13)

Hence the theorem is completely proved

Theorem 3 Let 120593 120595 isin 1205991 then 120593 ⊛ 120595 = 120595 ⊛ 120593

Proof Proof of this theorem follows from technique similarto that of Theorem 2 Therefore we omit the details

Theorem 4 Let 1206011 1206012

isin 120599(R+) and 120593

1 1205932

isin 1205991 then the

following hold

(1) (1206011+ 1206012) lowast 1205931= 1206011lowast 1205931+ 1206012lowast 1205931

(2) if 120601119899

rarr 120601 isin 120599(R+) as 119899 rarr infin then 120601

119899lowast120593 rarr 120601lowast120593

as 119899 rarr infin

(3) 1206011lowast (1205931⊛ 1205932) = (120601

1lowast 1205931) lowast 1205932

(4) 1206011lowast 1205931isin 120599(R

+)

Proof Proof of (1) and (2) follows from elementary integralcalculus Proof of (3) is already obtained inTheorem 2 Proofof (4) is obvious by the properties of the product (7) Furtherdetails are thus avoided

This completes the proof of the theorem

Theorem 5 Let 120601 isin 120599(R+) and 120575

119899 isin Δ then 120601 lowast 120575

119899rarr 120601

as 119899 rarr infin

Proof Let 119870 be a compact set containing the support of 120601then by Property 2 of delta sequences we have

10038161003816100381610038161003816D119896

119910(120601 lowast 120575

119899minus 120601) (119910)

10038161003816100381610038161003816

le int119870

10038161003816100381610038161003816D119896

119910(119911minus1120601 (119910119911minus1) minus 120601 (119910))

100381610038161003816100381610038161003816100381610038161003816120575119899 (119910)

1003816100381610038161003816 119889119911(14)

Hence (14) goes to zero as 119899 rarr infinHence the theorem is completely proved

The Boehmian spaceB (120599 (1205991 ⊛) lowast Δ) is constructed

The sum of two Boehmians andmultiplication by a scalarcan be defined in a natural way

[119891119899

120596119899] + [

119892119899

120595119899] = [

119891119899lowast 120595119899+ 119892119899lowast 120596119899

120596119899⊛ 120595119899

]

120572 [119891119899

120596119899] = [120572

119891119899

120596119899] = [

120572119891119899

120596119899]

(15)

where 120572 isin C the field of complex numbers

The operation lowast and the differentiation are defined by

[119891119899

120596119899] lowast [

119892119899

120595119899] = [

119891119899lowast 119892119899

120596119899⊛ 120595119899]

D120572 [

119891119899

120596119899] = [

D120572119891119899

120596119899

]

(16)

Similarly the spaceB (120599 (1205991 ⊛) ⊛ Δ) can be proved

The sum of two Boehmians andmultiplication by a scalarcan be defined in a natural way

[119891119899

120596119899] + [

119892119899

120595119899] = [

119891119899⊛ 120595119899+ 119892119899⊛ 120596119899

120596119899⊛ 120595119899

]

120572 [119891119899

120596119899] = [120572

119891119899

120596119899] = [

120572119891119899

120596119899]

(17)

The operation lowast and the differentiation are defined by

[119891119899

120596119899] ⊛ [

119892119899

120595119899] = [

119891119899⊛ 119892119899

120596119899⊛ 120595119899]

D120572 [

119891119899

120596119899] = [

D120572119891119899

120596119899

]

(18)

As next let 120601 isin 120599(R+) then (120601)

hh(119910) isin 120599(R

+)

For some details we by definitions have that10038161003816100381610038161003816D119896

119910(120601)

hh(119910)

10038161003816100381610038161003816

le1

120587intinfin

0

D119896

119910(10038161003816100381610038161003816((120601)

o

h(119909) cos (119909119910) + (120601)

e

h(119909) sin (119909119910))

10038161003816100381610038161003816) 119889119909

le1

120587intinfin

0

100381610038161003816100381610038161199091198961003816100381610038161003816100381610038161003816100381610038161003816(120601)

o

h(119909)

10038161003816100381610038161003816 119889119909 +1

120587intinfin

0

100381610038161003816100381610038161199091198961003816100381610038161003816100381610038161003816100381610038161003816(120601)

e

h(119909)

10038161003816100381610038161003816 119889119909

(19)

But since1

120587intinfin

0

100381610038161003816100381610038161199091198961003816100381610038161003816100381610038161003816100381610038161003816(120601)

o

h(119909)

10038161003816100381610038161003816 119889119909 =1

120587intinfin

0

int119887

119886

10038161003816100381610038161003816119909119896100381610038161003816100381610038161003816100381610038161003816120601 (119910)

1003816100381610038161003816 119889119910 119889119909

997888rarr 0

(20)

for every power of 119909 as 119909 rarr infin where [119886 119887] is a compact setcontaining the support of 120601 similarly we see that

1

120587intinfin

0

100381610038161003816100381610038161199091198961003816100381610038161003816100381610038161003816100381610038161003816(120601)

e

h(119909)

10038161003816100381610038161003816 119889119909 997888rarr 0 (21)

for every power of 119909 as 119909 rarr infin Therefore we get that(120601)

hh(119910) isin 120599(R

+)

3 Hartley-Hilbert Transform of Quotients

Let [120601119899 120575119899] isin B (120599 (120599

1 ⊛) ⊛ Δ) then we define the

extended Hartley-Hilbert transform of [120601119899 120575119899] as

([120601119899

120575119899])

hh

= [

[

(120601119899)hh

120575119899

]

]

(22)

in the quotient spaceB (120599 (1205991 ⊛) lowast Δ)

4 Journal of Mathematics

Theorem 6 The operator ([120601119899 120575119899])

hhis well defined and

linear fromB (120599 (1205991 ⊛) ⊛ Δ) intoB (120599 (120599

1 ⊛) lowast Δ)

Proof We show that ([120601119899 120575119899])

hhis well defined

Let [120595119899 120583119899] = [120585

119899 120598119899] in B (120599 (120599

1 ⊛) ⊛ Δ)

then by the concept of quotients of the spaceB (120599 (120599

1 ⊛) ⊛ Δ) we have

120595119899⊛ 120598119898

= 120585119898

⊛ 120583119899 (23)

Hence by Theorem 1 we get from (23) that

(120595119899)hhlowast 120598119898

= (120585119898)hhlowast 120583119899 (24)

Hence from (24) it follows that

(120595119899)hh

120583119899

sim(120585119899)hh

120598119899

(25)

inB (120599 (1205991 ⊛) lowast Δ)

Therefore

[

[

(120595119899)hh

120583119899

]

]

= [

[

(120585119899)hh

120598119899

]

]

(26)

inB (120599 (1205991 ⊛) lowast Δ)

That is

([120595119899

120583119899])

hh

= ([120585119899

120598119899])

hh

(27)

To show that ([120601119899 120575119899])

hhis linear let [119891

119899 120598119899]

[119892119899 120591119899] isin B (120599 (120599

1 ⊛) ⊛ Δ) 120581 120578 isin R then

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= ([120581 119891119899

120598119899

] + [120578 119892119899

120591119899

])hh

ie = ([(120581119891119899) ⊛ 120591119899+ (120578119892119899) ⊛ 120598119899

120598119899⊛ 120591119899

])hh

ie = [

[

((120581119891119899) ⊛ 120591119899+ (120578119892119899) ⊛ 120598119899)hh

120598119899⊛ 120591119899

]

]

(28)

Linearity of the classical Hartley-Hilbert transformimplies

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= [

[

120581 (119891119899⊛ 120591119899)hh

+ 120578 (119892119899⊛ 120598119899)hh

120598119899 ⊛ 120591119899

]

]

(29)

Theorem 1 gives

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= [

[

120581 (119891119899)hh

lowast 120591119899 + 120578 (119892

119899)hh

lowast 120598119899

120598119899 ⊛ 120591119899

]

]

(30)

Thus by addition of Boehmians

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= [

[

120581 (119891119899)hh

120598119899

]

]

+ [

[

120578 (119892119899)hh

120591119899

]

]

(31)

Hence

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= 120581[

[

(119891119899)hh

120598119899

]

]

+ 120578[

[

(119892119899)hh

120591119899

]

]

(32)

The proof of the theorem is completed

Theorem 7 The necessary and sufficient condition for[119892119899 120595119899] isin B (120599 (120599

1 ⊛) lowast Δ) to be in the range of

([119892119899 120595119899])

hhis that 119892

119899belongs to range of the classical hh

for every 119899 isin N

Proof Let [119892119899 120595119899] be in the range of ([119892

119899 120595119899])

hh

then of course 119892119899belongs to the range of the classical hh forall119899 isin

NTo establish the converse let119892

119899be in the range of hhforall119899 isin

N Then there is 120601119899isin 120599(R

+) such that hh120601

119899= 119892119899 119899 isin N

Since [119892119899 120595119899] isin B (120599 (120599

1 ⊛) lowast Δ) we get 119892

119899lowast

120595119898

= 119892119898lowast 120595119899 forall119898 119899 isin N

Therefore Theorem 1 yields

hh (120601119899⊛ 120595119898) = hh (120601

119898⊛ 120595119899) forall119898 119899 isin N (33)

where 120601119899isin 120599(R

+) and 120595

119899 isin Δ forall119899 isin N

Thus 120601119899⊛ 120595119898

= 120601119898

⊛ 120595119899 119898 119899 isin N

Hence

[120601119899

120595119899] isin B (120599 (120599

1 ⊛) ⊛ Δ)

([120601119899

120595119899])

hh

= [119892119899

120595119899]

(34)

The theorem is therefore completely proved

Theorem 8 The transform ([120601119899 120595119899])

hhis consistent with

hh 120599(R+) rarr 120599(R

+)

Journal of Mathematics 5

Proof For every 120601 isin 120599(R+) let 120573 isin B (120599 (120599

1 ⊛) ⊛ Δ) be its

representative then we have 120573 = [120601 ⊛ 120595119899 120595119899] forall119899 isin N

120595119899 isin Δ For all 119899 isin N it is clear that 120595

119899 is independent

from the representativeByTheorem 1 we have

(120573)ℎℎ

= ([120601 ⊛ 120595

119899

120595119899

])hh

= [hh (120601 ⊛ 120595

119899)

120595119899

] = [hh120601 lowast 120595

119899

120595119899

]

(35)

which is the representative of hh120601 in the space 120599(R+)

Hence the proof of this theorem is completed

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The author expresses his gratitude to the referees for valuablesuggestions

References

[1] S K Q Al-Omari and A Kılıcman ldquoSome remarks on theextended Hartley-Hilbert and Fourier-Hilbert transforms ofboehmiansrdquo Abstract and Applied Analysis vol 2013 Article ID348701 6 pages 2013

[2] N Sundararajan and Y Srinivas ldquoFourier-Hilbert versusHartley-Hilbert transforms with some geophysical applica-tionsrdquo Journal of Applied Geophysics vol 71 no 4 pp 157ndash1612010

[3] R P Millane ldquoAnalytical properties of the Hartley transformand their implicationsrdquo Proceedings of the IEEE vol 82 no 3pp 413ndash428 1994

[4] S K Al-Omari and A Kılıcman ldquoOn diffraction Fresneltransforms for Boehmiansrdquo Abstract and Applied Analysis vol2011 Article ID 712746 11 pages 2011

[5] S K Al-Omari ldquoHartley transforms on a certain space ofgeneralized functionsrdquo Georgian Mathematical Journal vol 20no 3 pp 415ndash426 2013

[6] S K Q Al-Omari and A Kilicman ldquoOn the generalizedHartley-Hilbert and Fourier-Hilbert transformsrdquo Advances inDifference Equations vol 2012 article 232 2012

[7] T K Boehme ldquoThe support of Mikusinski operatorsrdquo Transac-tions of theAmericanMathematical Society vol 176 pp 319ndash3341973

[8] R Roopkumar ldquoMellin transform for Boehmiansrdquo Bulletin ofthe Institute of Mathematics Academia Sinica New Series vol4 no 1 pp 75ndash96 2009

[9] R Roopkumar ldquoGeneralized Radon transformrdquo Rocky Moun-tain Journal of Mathematics vol 36 no 4 pp 1375ndash1390 2006

[10] P Mikusinski and A Zayed ldquoThe Radon transform of Boehmi-ansrdquo Proceedings of the American Mathematical Society vol 118no 2 pp 561ndash570 1993

[11] S K Al-Omari and A Kilicman ldquoNote on Boehmians forclass of optical Fresnel wavelet transformsrdquo Journal of FunctionSpaces and Applications vol 2021 Article ID 405368 14 pages2012

[12] V Karunakaran and R Vembu ldquoHilbert transform on periodicboehmiansrdquo Houston Journal of Mathematics vol 29 no 2 pp437ndash454 2003

[13] V Karunakaran and R Roopkumar ldquoOperational calculus andFourier transform on Boehmiansrdquo Colloquium Mathematicumvol 102 no 1 pp 21ndash32 2005

[14] S K Al-Omari D Loonker P K Banerji and S L KallaldquoFourier sine (cosine) transform for ultradistributions and theirextensions to tempered and ultraBoehmian spacesrdquo IntegralTransforms and Special Functions vol 19 no 6 pp 453ndash4622008

[15] P Mikusinski ldquoTempered Boehmians and ultradistributionsrdquoProceedings of the American Mathematical Society vol 123 no3 pp 813ndash817 1995

[16] R S Pathak Integral Transforms of Generalized Functions andTheir Applications Gordon and Breach Science AmsterdamThe Netherlands 1997

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Some Definition of Hartley-Hilbert and ...downloads.hindawi.com/journals/jmath/2014/790161.pdf · andtostrongBoehmiansin[]. e Hartley-Hilbert and Fourier-Hilbert

4 Journal of Mathematics

Theorem 6 The operator ([120601119899 120575119899])

hhis well defined and

linear fromB (120599 (1205991 ⊛) ⊛ Δ) intoB (120599 (120599

1 ⊛) lowast Δ)

Proof We show that ([120601119899 120575119899])

hhis well defined

Let [120595119899 120583119899] = [120585

119899 120598119899] in B (120599 (120599

1 ⊛) ⊛ Δ)

then by the concept of quotients of the spaceB (120599 (120599

1 ⊛) ⊛ Δ) we have

120595119899⊛ 120598119898

= 120585119898

⊛ 120583119899 (23)

Hence by Theorem 1 we get from (23) that

(120595119899)hhlowast 120598119898

= (120585119898)hhlowast 120583119899 (24)

Hence from (24) it follows that

(120595119899)hh

120583119899

sim(120585119899)hh

120598119899

(25)

inB (120599 (1205991 ⊛) lowast Δ)

Therefore

[

[

(120595119899)hh

120583119899

]

]

= [

[

(120585119899)hh

120598119899

]

]

(26)

inB (120599 (1205991 ⊛) lowast Δ)

That is

([120595119899

120583119899])

hh

= ([120585119899

120598119899])

hh

(27)

To show that ([120601119899 120575119899])

hhis linear let [119891

119899 120598119899]

[119892119899 120591119899] isin B (120599 (120599

1 ⊛) ⊛ Δ) 120581 120578 isin R then

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= ([120581 119891119899

120598119899

] + [120578 119892119899

120591119899

])hh

ie = ([(120581119891119899) ⊛ 120591119899+ (120578119892119899) ⊛ 120598119899

120598119899⊛ 120591119899

])hh

ie = [

[

((120581119891119899) ⊛ 120591119899+ (120578119892119899) ⊛ 120598119899)hh

120598119899⊛ 120591119899

]

]

(28)

Linearity of the classical Hartley-Hilbert transformimplies

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= [

[

120581 (119891119899⊛ 120591119899)hh

+ 120578 (119892119899⊛ 120598119899)hh

120598119899 ⊛ 120591119899

]

]

(29)

Theorem 1 gives

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= [

[

120581 (119891119899)hh

lowast 120591119899 + 120578 (119892

119899)hh

lowast 120598119899

120598119899 ⊛ 120591119899

]

]

(30)

Thus by addition of Boehmians

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= [

[

120581 (119891119899)hh

120598119899

]

]

+ [

[

120578 (119892119899)hh

120591119899

]

]

(31)

Hence

(120581[119891119899

120598119899] + 120578 [

119892119899

120591119899])

hh

= 120581[

[

(119891119899)hh

120598119899

]

]

+ 120578[

[

(119892119899)hh

120591119899

]

]

(32)

The proof of the theorem is completed

Theorem 7 The necessary and sufficient condition for[119892119899 120595119899] isin B (120599 (120599

1 ⊛) lowast Δ) to be in the range of

([119892119899 120595119899])

hhis that 119892

119899belongs to range of the classical hh

for every 119899 isin N

Proof Let [119892119899 120595119899] be in the range of ([119892

119899 120595119899])

hh

then of course 119892119899belongs to the range of the classical hh forall119899 isin

NTo establish the converse let119892

119899be in the range of hhforall119899 isin

N Then there is 120601119899isin 120599(R

+) such that hh120601

119899= 119892119899 119899 isin N

Since [119892119899 120595119899] isin B (120599 (120599

1 ⊛) lowast Δ) we get 119892

119899lowast

120595119898

= 119892119898lowast 120595119899 forall119898 119899 isin N

Therefore Theorem 1 yields

hh (120601119899⊛ 120595119898) = hh (120601

119898⊛ 120595119899) forall119898 119899 isin N (33)

where 120601119899isin 120599(R

+) and 120595

119899 isin Δ forall119899 isin N

Thus 120601119899⊛ 120595119898

= 120601119898

⊛ 120595119899 119898 119899 isin N

Hence

[120601119899

120595119899] isin B (120599 (120599

1 ⊛) ⊛ Δ)

([120601119899

120595119899])

hh

= [119892119899

120595119899]

(34)

The theorem is therefore completely proved

Theorem 8 The transform ([120601119899 120595119899])

hhis consistent with

hh 120599(R+) rarr 120599(R

+)

Journal of Mathematics 5

Proof For every 120601 isin 120599(R+) let 120573 isin B (120599 (120599

1 ⊛) ⊛ Δ) be its

representative then we have 120573 = [120601 ⊛ 120595119899 120595119899] forall119899 isin N

120595119899 isin Δ For all 119899 isin N it is clear that 120595

119899 is independent

from the representativeByTheorem 1 we have

(120573)ℎℎ

= ([120601 ⊛ 120595

119899

120595119899

])hh

= [hh (120601 ⊛ 120595

119899)

120595119899

] = [hh120601 lowast 120595

119899

120595119899

]

(35)

which is the representative of hh120601 in the space 120599(R+)

Hence the proof of this theorem is completed

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The author expresses his gratitude to the referees for valuablesuggestions

References

[1] S K Q Al-Omari and A Kılıcman ldquoSome remarks on theextended Hartley-Hilbert and Fourier-Hilbert transforms ofboehmiansrdquo Abstract and Applied Analysis vol 2013 Article ID348701 6 pages 2013

[2] N Sundararajan and Y Srinivas ldquoFourier-Hilbert versusHartley-Hilbert transforms with some geophysical applica-tionsrdquo Journal of Applied Geophysics vol 71 no 4 pp 157ndash1612010

[3] R P Millane ldquoAnalytical properties of the Hartley transformand their implicationsrdquo Proceedings of the IEEE vol 82 no 3pp 413ndash428 1994

[4] S K Al-Omari and A Kılıcman ldquoOn diffraction Fresneltransforms for Boehmiansrdquo Abstract and Applied Analysis vol2011 Article ID 712746 11 pages 2011

[5] S K Al-Omari ldquoHartley transforms on a certain space ofgeneralized functionsrdquo Georgian Mathematical Journal vol 20no 3 pp 415ndash426 2013

[6] S K Q Al-Omari and A Kilicman ldquoOn the generalizedHartley-Hilbert and Fourier-Hilbert transformsrdquo Advances inDifference Equations vol 2012 article 232 2012

[7] T K Boehme ldquoThe support of Mikusinski operatorsrdquo Transac-tions of theAmericanMathematical Society vol 176 pp 319ndash3341973

[8] R Roopkumar ldquoMellin transform for Boehmiansrdquo Bulletin ofthe Institute of Mathematics Academia Sinica New Series vol4 no 1 pp 75ndash96 2009

[9] R Roopkumar ldquoGeneralized Radon transformrdquo Rocky Moun-tain Journal of Mathematics vol 36 no 4 pp 1375ndash1390 2006

[10] P Mikusinski and A Zayed ldquoThe Radon transform of Boehmi-ansrdquo Proceedings of the American Mathematical Society vol 118no 2 pp 561ndash570 1993

[11] S K Al-Omari and A Kilicman ldquoNote on Boehmians forclass of optical Fresnel wavelet transformsrdquo Journal of FunctionSpaces and Applications vol 2021 Article ID 405368 14 pages2012

[12] V Karunakaran and R Vembu ldquoHilbert transform on periodicboehmiansrdquo Houston Journal of Mathematics vol 29 no 2 pp437ndash454 2003

[13] V Karunakaran and R Roopkumar ldquoOperational calculus andFourier transform on Boehmiansrdquo Colloquium Mathematicumvol 102 no 1 pp 21ndash32 2005

[14] S K Al-Omari D Loonker P K Banerji and S L KallaldquoFourier sine (cosine) transform for ultradistributions and theirextensions to tempered and ultraBoehmian spacesrdquo IntegralTransforms and Special Functions vol 19 no 6 pp 453ndash4622008

[15] P Mikusinski ldquoTempered Boehmians and ultradistributionsrdquoProceedings of the American Mathematical Society vol 123 no3 pp 813ndash817 1995

[16] R S Pathak Integral Transforms of Generalized Functions andTheir Applications Gordon and Breach Science AmsterdamThe Netherlands 1997

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Some Definition of Hartley-Hilbert and ...downloads.hindawi.com/journals/jmath/2014/790161.pdf · andtostrongBoehmiansin[]. e Hartley-Hilbert and Fourier-Hilbert

Journal of Mathematics 5

Proof For every 120601 isin 120599(R+) let 120573 isin B (120599 (120599

1 ⊛) ⊛ Δ) be its

representative then we have 120573 = [120601 ⊛ 120595119899 120595119899] forall119899 isin N

120595119899 isin Δ For all 119899 isin N it is clear that 120595

119899 is independent

from the representativeByTheorem 1 we have

(120573)ℎℎ

= ([120601 ⊛ 120595

119899

120595119899

])hh

= [hh (120601 ⊛ 120595

119899)

120595119899

] = [hh120601 lowast 120595

119899

120595119899

]

(35)

which is the representative of hh120601 in the space 120599(R+)

Hence the proof of this theorem is completed

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The author expresses his gratitude to the referees for valuablesuggestions

References

[1] S K Q Al-Omari and A Kılıcman ldquoSome remarks on theextended Hartley-Hilbert and Fourier-Hilbert transforms ofboehmiansrdquo Abstract and Applied Analysis vol 2013 Article ID348701 6 pages 2013

[2] N Sundararajan and Y Srinivas ldquoFourier-Hilbert versusHartley-Hilbert transforms with some geophysical applica-tionsrdquo Journal of Applied Geophysics vol 71 no 4 pp 157ndash1612010

[3] R P Millane ldquoAnalytical properties of the Hartley transformand their implicationsrdquo Proceedings of the IEEE vol 82 no 3pp 413ndash428 1994

[4] S K Al-Omari and A Kılıcman ldquoOn diffraction Fresneltransforms for Boehmiansrdquo Abstract and Applied Analysis vol2011 Article ID 712746 11 pages 2011

[5] S K Al-Omari ldquoHartley transforms on a certain space ofgeneralized functionsrdquo Georgian Mathematical Journal vol 20no 3 pp 415ndash426 2013

[6] S K Q Al-Omari and A Kilicman ldquoOn the generalizedHartley-Hilbert and Fourier-Hilbert transformsrdquo Advances inDifference Equations vol 2012 article 232 2012

[7] T K Boehme ldquoThe support of Mikusinski operatorsrdquo Transac-tions of theAmericanMathematical Society vol 176 pp 319ndash3341973

[8] R Roopkumar ldquoMellin transform for Boehmiansrdquo Bulletin ofthe Institute of Mathematics Academia Sinica New Series vol4 no 1 pp 75ndash96 2009

[9] R Roopkumar ldquoGeneralized Radon transformrdquo Rocky Moun-tain Journal of Mathematics vol 36 no 4 pp 1375ndash1390 2006

[10] P Mikusinski and A Zayed ldquoThe Radon transform of Boehmi-ansrdquo Proceedings of the American Mathematical Society vol 118no 2 pp 561ndash570 1993

[11] S K Al-Omari and A Kilicman ldquoNote on Boehmians forclass of optical Fresnel wavelet transformsrdquo Journal of FunctionSpaces and Applications vol 2021 Article ID 405368 14 pages2012

[12] V Karunakaran and R Vembu ldquoHilbert transform on periodicboehmiansrdquo Houston Journal of Mathematics vol 29 no 2 pp437ndash454 2003

[13] V Karunakaran and R Roopkumar ldquoOperational calculus andFourier transform on Boehmiansrdquo Colloquium Mathematicumvol 102 no 1 pp 21ndash32 2005

[14] S K Al-Omari D Loonker P K Banerji and S L KallaldquoFourier sine (cosine) transform for ultradistributions and theirextensions to tempered and ultraBoehmian spacesrdquo IntegralTransforms and Special Functions vol 19 no 6 pp 453ndash4622008

[15] P Mikusinski ldquoTempered Boehmians and ultradistributionsrdquoProceedings of the American Mathematical Society vol 123 no3 pp 813ndash817 1995

[16] R S Pathak Integral Transforms of Generalized Functions andTheir Applications Gordon and Breach Science AmsterdamThe Netherlands 1997

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Some Definition of Hartley-Hilbert and ...downloads.hindawi.com/journals/jmath/2014/790161.pdf · andtostrongBoehmiansin[]. e Hartley-Hilbert and Fourier-Hilbert

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of