Research Article Some Characterizations of the...

7
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2013, Article ID 761832, 6 pages http://dx.doi.org/10.1155/2013/761832 Research Article Some Characterizations of the Cobb-Douglas and CES Production Functions in Microeconomics Xiaoshu Wang 1 and Yu Fu 2 1 School of Investment and Construction Management, Dongbei University of Finance and Economics, Dalian 116025, China 2 School of Mathematics and Quantitative Economics, Dongbei University of Finance and Economics, Dalian 116025, China Correspondence should be addressed to Yu Fu; [email protected] Received 5 November 2013; Accepted 10 December 2013 Academic Editor: Grzegorz Lukaszewicz Copyright © 2013 X. Wang and Y. Fu. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. It is well known that the study of the shape and the properties of the production possibility frontier is a subject of great interest in economic analysis. Vˆ ılcu (Vˆ ılcu, 2011) proved that the generalized Cobb-Douglas production function has constant return to scale if and only if the corresponding hypersurface is developable. Later on, the authors A. D. Vˆ ılcu and G. E. Vˆ ılcu, 2011 extended this result to the case of CES production function. Both results establish an interesting link between some fundamental notions in the theory of production functions and the differential geometry of hypersurfaces in Euclidean spaces. In this paper, we give some characterizations of minimal generalized Cobb-Douglas and CES production hypersurfaces in Euclidean spaces. 1. Introduction In microeconomics and macroeconomics, the production functions are positive nonconstant functions that specify the output of a firm, an industry, or an entire economy for all combinations of inputs. Almost all economic theories presuppose a production function, either on the firm level or the aggregate level. Hence, the production function is one of the most key concepts of mainstream neoclassical theories. By assuming that the maximum output technologically possible from a given set of inputs is achieved, economists always using a production function in analysis are abstracting from the engineering and managerial problems inherently associated with a particular production process; see [1]. In 1928, Cobb and Douglas [1] introduced a famous two- factor production function, nowadays called Cobb-Douglas production function, in order to describe the distribution of the national income by help of production functions. Two- factor Cobb-Douglas production function is given by = 1− , (1) where denotes the labor input, is the capital input, is the total factor productivity, and is the total production. e Cobb-Douglas (CD) production function is espe- cially notable for being the first time an aggregate or economy-wide production function was developed, esti- mated, and then presented to the profession for analysis. It gave a landmark change in how economists approached macroeconomics. e Cobb-Douglas function has also been applied to many other issues besides production. e generalized form of the Cobb-Douglas production function is written as ( 1 ,..., ) = 1 1 ⋅⋅⋅ , (2) where > 0( = 1,...,), is a positive constant, and 1 ,..., are nonzero constants. In 1961, Arrow et al. [2] introduced another two-input production function given by = ( + (1 − ) ) 1/ , (3) where is the output, the factor productivity, the share parameter, and the primary production factors, = ( − 1)/, and = 1/(1−) the elasticity of substitution. Hence this is called constant elasticity of substitution (CES) production function [3, 4].

Transcript of Research Article Some Characterizations of the...

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2013 Article ID 761832 6 pageshttpdxdoiorg1011552013761832

Research ArticleSome Characterizations of the Cobb-Douglas and CESProduction Functions in Microeconomics

Xiaoshu Wang1 and Yu Fu2

1 School of Investment and Construction Management Dongbei University of Finance and Economics Dalian 116025 China2 School of Mathematics and Quantitative Economics Dongbei University of Finance and Economics Dalian 116025 China

Correspondence should be addressed to Yu Fu yufudufegmailcom

Received 5 November 2013 Accepted 10 December 2013

Academic Editor Grzegorz Lukaszewicz

Copyright copy 2013 X Wang and Y Fu This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

It is well known that the study of the shape and the properties of the production possibility frontier is a subject of great interestin economic analysis Vılcu (Vılcu 2011) proved that the generalized Cobb-Douglas production function has constant return toscale if and only if the corresponding hypersurface is developable Later on the authors A D Vılcu and G E Vılcu 2011 extendedthis result to the case of CES production function Both results establish an interesting link between some fundamental notions inthe theory of production functions and the differential geometry of hypersurfaces in Euclidean spaces In this paper we give somecharacterizations of minimal generalized Cobb-Douglas and CES production hypersurfaces in Euclidean spaces

1 Introduction

In microeconomics and macroeconomics the productionfunctions are positive nonconstant functions that specifythe output of a firm an industry or an entire economy forall combinations of inputs Almost all economic theoriespresuppose a production function either on the firm level orthe aggregate level Hence the production function is one ofthemost key concepts ofmainstreamneoclassical theories Byassuming that the maximum output technologically possiblefrom a given set of inputs is achieved economists alwaysusing a production function in analysis are abstractingfrom the engineering and managerial problems inherentlyassociated with a particular production process see [1]

In 1928 Cobb and Douglas [1] introduced a famous two-factor production function nowadays called Cobb-Douglasproduction function in order to describe the distribution ofthe national income by help of production functions Two-factor Cobb-Douglas production function is given by

119884 = 1198871198711198961198621minus119896

(1)

where 119871 denotes the labor input119862 is the capital input 119887 is thetotal factor productivity and 119884 is the total production

The Cobb-Douglas (CD) production function is espe-cially notable for being the first time an aggregate or

economy-wide production function was developed esti-mated and then presented to the profession for analysisIt gave a landmark change in how economists approachedmacroeconomics The Cobb-Douglas function has also beenapplied to many other issues besides production

The generalized form of the Cobb-Douglas productionfunction is written as

119865 (1199091 119909119899) = 1198601199091205721

1sdot sdot sdot 119909120572119899

119899 (2)

where 119909119894 gt 0 (119894 = 1 119899) 119860 is a positive constant and1205721 120572119899 are nonzero constants

In 1961 Arrow et al [2] introduced another two-inputproduction function given by

119876 = 119887(119886119870119903+ (1 minus 119886) 119871

119903)1119903

(3)

where 119876 is the output 119887 the factor productivity 119886 the shareparameter 119870 and 119871 the primary production factors 119903 = (119904 minus

1)119904 and 119904 = 1(1minus119903) the elasticity of substitution Hence thisis called constant elasticity of substitution (CES) productionfunction [3 4]

2 Abstract and Applied Analysis

The generalized formof CES production function is givenby

119865 (1199091 119909119899) = 119860(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588

(4)

where 119886119894 120574 119860 and 120588 are nonzero constants and 119860 119886119894 gt

0 The CES production functions are of great interest ineconomy because of their invariant characteristic namelythat the elasticity of substitution between the parameters isconstant on their domains

It is easy to see that the CES production function is ageneralization of Cobb-Douglas production function andboth of them are homogeneous production functions

Note that the production function 119865 can be identifiedwith a production hypersurface in the (119899 + 1)-dimensionalEuclidean space E119899+1 through the map 119891 R119899

+rarr R119899+1+

119891 (1199091 119909119899) = (1199091 119909119899 119865 (1199091 119909119899)) (5)

In the case of 119899 inputs we have a hypersurface and an analysisof the generalized CD and CES production functions fromthe point of view of differential geometry

In [5] Vılcu established an interesting link betweensome fundamental notions in the theory of productionfunctions and the differential geometry of hypersurfacesTheauthor proved that the generalizedCobb-Douglas productionfunction has constant return to scale if and only if the cor-responding hypersurface is developable The author jointlywith A D Vılcu further [6] generalized this result to the caseof the generalized CES production function with 119899-inputsFor further study of production hypersurfaces we refer thereader to Chenrsquos series of interesting papers on homogeneousproduction functions quasi-sum production models andhomothetic production functions [7ndash13] and G E Vılcu andA D Vılcursquos paper [14]

The theory of minimal surfaces (hypersurfaces) is veryimportant in the field of differential geometry In this paperwe give further study of the generalized Cobb-Douglas andCES production functions as hypersurfaces in Euclideanspace E119899+1 In particular we give some characterizations ofthe generalized Cobb-Douglas and CES production hyper-surfaces under the minimality condition in Euclidean spaces

2 Some Basic Concepts in Theory ofHypersurfaces

Each production function119865(1199091 119909119899) can be identifiedwitha graph of a nonparametric hypersurface of an Euclidean (119899+

1)-space E119899+1 given by

119891 (1199091 119909119899) = (1199091 119909119899 119865 (1199091 119909119899)) (6)

We recall some basic concepts in the theory of hypersurfacesin Euclidean spaces

Let119872119899 be a hypersurface in an 119899+1-dimension Euclideanspace The Gauss map V is defined by

V 119872119899997888rarr 119878119899sub E119899+1

(7)

whichmaps119872119899 to the unit hypersphere 119878119899 ofE119899+1TheGaussmap is always defined locally that is on a small piece of thehypersurface It can be defined globally if the hypersurface isorientableTheGaussmap is a continuousmap such that V(119901)is a unit normal vector 120585(119901) of119872119899 at point 119901

The differential 119889V of the Gauss map V can be used todefine an extrinsic curvature known as the shape operatoror Weingarten map Since at each point 119901 isin 119872

119899 the tangentspace 119879119901119872 is an inner product space the shape operator 119878119901can be defined as a linear operator on this space by the relation

119892 (119878119901119906 119908) = 119892 (119889V (119906) 119908) (8)

where 119906 119908 isin 119879119901119872 and 119892 is the metric tensor on119872119899

Moreover the second fundamental form ℎ is related to theshape operator 119878119901 by

119892 (119878119901119906 119908) = 119892 (ℎ (119906 119908) 120585 (119901)) (9)

for 119906 119908 isin 119879119901119872It is well known that the determinant of the shape

operator 119878119901 is called the Gauss-Kronecker curvature Denoteit by 119866(119901) When 119899 = 2 the Gauss-Kronecker curvatureis simply called the Gauss curvature which is intrinsicdue to famous Gaussrsquos Theorema Egregium The trace ofthe shape operator 119878119901 is called the mean curvature of thehypersurfaces In contrast to the Gauss curvature the meancurvature is extrinsic which depends on the immersion ofthe hypersurface A hypersurface is calledminimal if itsmeancurvature vanishes identically

Denote the partial derivatives 120597119865120597119909119894 1205972119865120597119909119894119909119895 and

so forth by 119865119894 119865119894119895 and so forth Put

119882 = radic1 +

119899

sum

119894=1

1198652

119894 (10)

Recall some well-known results for a graph of hypersurface(6) in E119899+1 from [7 15 16]

Proposition 1 For a production hypersurface of E119899+1 definedby

119891 (1199091 119909119899) = (1199091 119909119899 119865 (1199091 119909119899)) (11)

One has the following

(1) The unit normal 120585 is given by

120585 =1

119882(minus1198651 minus119865119899 1) (12)

(2) The coefficient 119892119894119895 = 119892(120597120597119909119894 120597120597119909119895) of the metrictensor is given by

119892119894119895 = 120575119894119895 + 119865119894119865119895 (13)

where 120575119894119895 = 1 if 119894 = 119895 otherwise 0(3) The volume element is

119889119881 = radic1198921198941198951198891199091 and sdot sdot sdot and 119889119909119899 (14)

Abstract and Applied Analysis 3

(4) The inverse matrix (119892119894119895) of (119892119894119895) is

119892119894119895= 120575119894119895 minus

119865119894119865119895

1198822 (15)

(5) The matrix of the second fundamental form ℎ is

ℎ119894119895 =

119865119894119895

119882 (16)

(6) The matrix of the shape operator 119878119901 is

119886119895

119894= sum

119896

ℎ119894119896119892119896119895

=1

119882(119865119894119895 minussum

119896

119865119894119896119865119896119865119895

1198822) (17)

(7) The mean curvature119867 is given by

119867 =1

119899119882(sum

119894

119865119894119894 minus1

1198822sum

119894119895

119865119894119865119895119865119894119895) (18)

(8) The Gauss-Kronecker curvature 119866 is

119866 =

det ℎ119894119895det119892119894119895

=

det119865119894119895119882119899+2

(19)

(9) The sectional curvature119870119894119895 of the plane section spannedby 120597120597119909119894 and 120597120597119909119895 is

119870119894119895 =

119865119894119894119865119895119895 minus 1198652

119894119895

1198822 (1 + 1198652

119894+ 1198652

119895)

(20)

(10) The Riemann curvature tensor 119877 satisfies

119892(119877(120597

120597119909119894

120597

120597119909119895

)120597

120597119909119896

120597

120597119909119897

) =

119865119894119897119865119895119896 minus 119865119894119896119865119895119897

1198824 (21)

3 Generalized Cobb-Douglas ProductionHypersurfaces

In this section we give a nonexistence result of minimalgeneralizedCobb-Douglas production hypersurfaces inE119899+1

Theorem 2 There does not exist a minimal generalized Cobb-Douglas production hypersurface in E119899+1

Proof Let 119872 be a generalized Cobb-Douglas productionhypersurface in E119899+1 given by a graph

119891 (1199091 119909119899) = (1199091 119909119899 119865 (1199091 119909119899)) (22)

where 119865 is the generalized Cobb-Douglas production func-tion

119865 (1199091 119909119899) = 1198601199091205721

1sdot sdot sdot 119909120572119899

119899 (23)

Note that the generalizedCobb-Douglas production function(23) is homogeneous of degree ℎ = sum

119899

119894=1120572119894 It follows from

(23) that

119865119894 =120572119894

119909119894

119865 119894 = 1 119899

119865119894119894 =120572119894 (120572119894 minus 1)

1199092

119894

119865 119894 = 1 119899

119865119894119895 =

120572119894120572119895

119909119894119909119895

119865 119894 = 119895 119894 119895 = 1 119899

(24)

By assumption the production hypersurface is minimal thatis119867 = 0 Thus by (18) and (10) we have

(

119899

sum

119894=1

119865119894119894)(1 +

119899

sum

119894=1

1198652

119894) = sum

119894119895

119865119894119865119895119865119894119895 (25)

which reduces to119899

sum

119894=1

119865119894119894 +sum

119894119895

(1198652

119894119865119895119895 minus 119865119894119865119895119865119894119895) = 0 (26)

Note that sum119894119895(1198652

119894119865119895119895 minus 119865119894119865119895119865119894119895) = 0 for 119894 = 119895 Hence (26)

becomes119899

sum

119894=1

119865119894119894 + sum

119894 = 119895

(1198652

119894119865119895119895 minus 119865119894119865119895119865119894119895) = 0 (27)

Substituting (24) into (27) we obtain

119899

sum

119894=1

120572119894 (120572119894 minus 1)

1199092

119894

minus 1198652sum

119894 = 119895

1205722

119894120572119895

1199092

1198941199092

119895

= 0 (28)

Differentiating (28) with respect to 119909119896 one has

minus2120572119896 (120572119896 minus 1)

1199093

119896

minus2120572119896

119909119896

1198652sum

119894 = 119895

1205722

119894120572119895

1199092

1198941199092

119895

+2120572119896

119909119896

1198652

119899

sum

119894=1

120572119894120572119896 + 1205722

119894

1199092

1198941199092

119896

= 0

(29)

which reduces to

120572119896 minus 1

1199092

119896

+ 1198652sum

119894 = 119895

1205722

119894120572119895

1199092

1198941199092

119895

minus 1198652

119899

sum

119894=1

120572119894120572119896 + 1205722

119894

1199092

1198941199092

119896

= 0 (30)

Substituting (28) into (30) we have

120572119896 minus 1

1199092

119896

+

119899

sum

119894=1

120572119894 (120572119894 minus 1)

1199092

119894

minus 1198652

119899

sum

119894=1

120572119894120572119896 + 1205722

119894

1199092

1198941199092

119896

= 0 (31)

Moreover differentiating (31) with respect to 119909119897 (119897 = 119896) we get

minus2120572119897 (120572119897 minus 1)

1199093

119897

+2120572119897120572119896 + 2120572

2

119897

1199093

1198971199092

119896

1198652minus

2120572119897

119909119897

1198652

119899

sum

119894=1

120572119894120572119896 + 1205722

119894

1199092

1198941199092

119896

= 0

(32)

4 Abstract and Applied Analysis

Combining (32) with (31) gives

120572119897 minus 1

1199092

119897

minus120572119896 + 120572119897

1199092

1198971199092

119896

1198652+

120572119896 minus 1

1199092

119896

+

119899

sum

119894=1

120572119894 (120572119894 minus 1)

1199092

119894

= 0 (33)

Differentiating (33) with respect to 119909119897 again one has

(120572119896 + 120572119897) (120572119897 minus 1)

1199093

1198971199092

119896

1198652+

(120572119897 minus 1) (1205721 + 1)

1199093

119897

= 0 (34)

which yields either 120572119897 = 1 (119897 = 119896) or

(120572119896 + 120572119897) 1198652= (120572119897 + 1) 119909

2

119896 (35)

Since 119865 is defined by (23) with nonzero constants 120572119894 for 119894 =

1 119899 it follows that (35) is impossible Hence we have 120572119897 =1

Without loss of generality we may choose 119896 = 1 In thiscase 120572119897 = 1 for 119897 = 1 reduces to

1205722 = sdot sdot sdot = 120572119899 = 1 (36)

Therefore (33) becomes

minus1205721 + 1

1199092

11199092

119897

1198652+

1205722

1minus 1

1199092

1

= 0 (37)

The above equation implies that either 1205721 = minus1 or

1198652= (1205721 minus 1) 119909

2

119897 (38)

It is easy to see that the latter case is impossible At thismoment we obtain the function 119865 as follows

119865 (1199091 119909119899) = 119860119909minus1

11199092 sdot sdot sdot 119909119899 (39)

Consider (31) for 119896 = 1 which turns into

1

1199092

1

minus1198652

1199092

119896

(1

1199092

2

+ sdot sdot sdot +1

1199092119899

) = 0 (40)

Substituting (39) into (40) we have

11986021199092

2sdot sdot sdot 1199092

119899(

1

1199092

2

+ sdot sdot sdot +1

1199092119899

) = 1199092

119896 (41)

In view of (41) by comparing the degrees of the left and theright of the equality we have 119899 = 3 Hence (41) becomes

1198602(1199092

2+ 1199092

3) = 1199092

119896 119896 = 2 3 (42)

which is impossible since 119860 = 0Therefore there is not a minimal generalized Cobb-

Douglas production hypersurface in E119899+1This completes theproof of Theorem 2

4 Generalized CES Production Hypersurfaces

In economics goods that are completely substitutable witheach other are called perfect substitutes They may becharacterized as goods having a constant marginal rate ofsubstitution Mathematically a production function is calleda perfect substitute if it is of the form

119865 (1199091 119909119899) =

119899

sum

119894=1

119886119894119909119894 (43)

for some nonzero constants 1198861 119886119899In the following we deal with the case of minimal

generalized CES production hypersurfaces in E119899+1

Theorem 3 An 119899-factor generalized CES production hyper-surface in E119899+1 is minimal if and only if the generalized CESproduction function is a perfect substitute

Proof Assume that 119872 is a generalized CES productionhypersurface in E119899+1 given by a graph

119891 (1199091 119909119899) = (1199091 119909119899 119865 (1199091 119909119899)) (44)

where 119865 is the generalized CES production function

119865 (1199091 119909119899) = 119860(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588

(45)

with 119860 119886119894 gt 0 and 119909119894 gt 0 The generalized CES productionfunction (45) is homogeneous of degree 120574 By assumptionthat the production hypersurface is minimal from (18) theminimality condition is equivalent to

(

119899

sum

119894=1

119865119894119894)(1 +

119899

sum

119894=1

1198652

119894) = sum

119894119895

119865119894119865119895119865119894119895 (46)

We define another minimal production hypersurface as

119891 (1205821199091 120582119909119899) = (1205821199091 120582119909119899 119865 (1205821199091 120582119909119899))

120582 isin R+

(47)

Since the CES production function is homogeneous of degree120574 we conclude that the hypersurface given by

119891 (1199091 119909119899) = (1199091 119909119899 120582120574minus1

119865 (1199091 119909119899)) (48)

is also minimal In this case the minimality condition (46)becomes

(

119899

sum

119894=1

119865119894119894)(1205822minus2120574

+

119899

sum

119894=1

1198652

119894) = sum

119894119895

119865119894119865119895119865119894119895 (49)

Comparing (49) with (46) we obtain that either 120574 = 1 or 120574 = 1

and119899

sum

119894=1

119865119894119894 = 0 (50)

sum

119894119895

119865119894119865119895119865119894119895 = 0 (51)

Abstract and Applied Analysis 5

Moreover it follows from (45) that

119865119894 = 119860120574119886120588

119894119909120588minus1

119894(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus1

(52)

119865119894119894 = 119860120574119886120588

119894119909120588minus2

119894((120588 minus 1) sum

119896 = 119894

119886120588

119896119909120588

119896+ (120574 minus 1) 119886

120588

119894119909120588

119894)

times(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus2

(53)

119865119894119895 = 119860120574 (120574 minus 120588) 119886120588

119894119886120588

119895119909120588minus1

119894119909120588minus1

119895(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus2

119894 = 119895

(54)

We divide it into two cases

Case A (120574 = 1) Substituting (52) and (54) into (51) we get

11986031205743(120574 minus 120588)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

3120574120588minus4

timessum

119894119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0

(55)

If 120588 = 120574 then the above equation reduces to

sum

119894119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0 (56)

which is equivalent to

(

119899

sum

119894=1

1198862120588

1198941199092120588minus2

119894)

2

= 0 (57)

Hence119899

sum

119894=1

1198862120588

1198941199092120588minus2

119894= 0 (58)

Since 120588 = 1 this case is impossibleTherefore we conclude that 120588 = 120574 Substituting (53) into

(50) we have

119860120574 (120574 minus 1)(

119899

sum

119894=1

119886120588

119894119909120588minus2

119894)

times (

119899

sum

119894=1

119886120588

119894119909120588

119894)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus2

= 0

(59)

Noting 120574 = 1 it is easy to see that (59) is impossible

Case B (120574 = 1) We note that the minimality conditionreduces to

119899

sum

119894=1

119865119894119894 + sum

119894 = 119895

(1198652

119894119865119895119895 minus 119865119894119865119895119865119894119895) = 0 (60)

Substituting (52)ndash(54) into (60) we have

119860 (120588 minus 1)(sum

119896 = 119894

119886120588

119896119909120588

119896)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

1120588minus2

(

119899

sum

119894=1

119886120588

119894119909120588minus2

119894)

+ 1198603(120588 minus 1)(sum

119896 = 119894

119886120588

119896119909120588

119896)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

3120588minus4

times sum

119894 = 119895

(1198862120588

119894119886120588

1198951199092120588minus2

119894119909120588minus2

119895)

minus 1198603(1 minus 120588)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

3120588minus4

times sum

119894 = 119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0

(61)

Note that120588 = 1 fulfills (61) Hence in this case the generalizedCES production function 119865 is a perfect substitute

In the following we will show that the case 120588 = 1 isimpossible In fact if 120588 = 1 (61) reduces to

(sum

119896 = 119894

119886120588

119896119909120588

119896)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

2minus2120588

(

119899

sum

119894=1

119886120588

119894119909120588minus2

119894)

+ 1198602(sum

119896 = 119894

119886120588

119896119909120588

119896) sum

119894 = 119895

(1198862120588

119894119886120588

1198951199092120588minus2

119894119909120588minus2

119895)

+ 1198602sum

119894 = 119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0

(62)

Since 119909119894 gt 0 and 119886119894 gt 0 for 119894 = 1 119899 it follows that the leftof equality (62) is positive Therefore it is a contradiction

Conversely it is easy to verify that if the generalized CESproduction function is a perfect substitute then the 119899-factorgeneralized CES production hypersurface in E119899+1 is minimalThis completes the proof of Theorem 3

Remark 4 Remark that Chen proved in [7] a more generalresult for 2-factor ℎ-homogeneous production function is aperfect substitute if and only if the production surface is aminimal surface

Acknowledgments

The authors would like to thank the referees for theirvery valuable comments and suggestions to improve thispaper This work is supported by the Mathematical TianyuanYouth Fund of China (no 11326068) the general FinancialGrant from the China Postdoctoral Science Foundation (no2012M510818) and theGeneral Project for Scientific Researchof Liaoning Educational Committee (no W2012186)

References

[1] C W Cobb and P H Douglas ldquoA theory of productionrdquoAmerican Economic Review vol 18 pp 139ndash165 1928

6 Abstract and Applied Analysis

[2] K J Arrow H B Chenery B S Minhas and R M SolowldquoCapital-labor substitution and economic efficiencyrdquo Review ofEconomics and Statistics vol 43 no 3 pp 225ndash250 1961

[3] L Losonczi ldquoProduction functions having the CES propertyrdquoAcademiae Paedagogicae Nyıregyhaziensis vol 26 no 1 pp 113ndash125 2010

[4] D McFadden ldquoConstant elasticity of substitution productionfunctionsrdquo Review of Economic Studies vol 30 no 2 pp 73ndash831963

[5] G E Vılcu ldquoA geometric perspective on the generalized Cobb-Douglas production functionsrdquo Applied Mathematics Lettersvol 24 no 5 pp 777ndash783 2011

[6] A D Vılcu and G E Vılcu ldquoOn some geometric properties ofthe generalized CES production functionsrdquo Applied Mathemat-ics and Computation vol 218 no 1 pp 124ndash129 2011

[7] B-Y Chen ldquoOn some geometric properties of ℎ-homogeneousproduction functions in microeconomicsrdquo Kragujevac Journalof Mathematics vol 35 no 3 pp 343ndash357 2011

[8] B-Y Chen ldquoOn some geometric properties of quasi-sumproduction modelsrdquo Journal of Mathematical Analysis andApplications vol 392 no 2 pp 192ndash199 2012

[9] B-Y Chen ldquoA note on homogeneous production modelsrdquoKragujevac Journal ofMathematics vol 36 no 1 pp 41ndash43 2012

[10] B-Y Chen ldquoGeometry of quasi-sum production functions withconstant elasticity of substitution propertyrdquo Journal of AdvancedMathematical Studies vol 5 no 2 pp 90ndash97 2012

[11] B-Y Chen ldquoClassification of homothetic functions with con-stant elasticity of substitution and its geometric applicationsrdquoInternational Electronic Journal of Geometry vol 5 no 2 pp67ndash78 2012

[12] B-Y Chen ldquoSolutions to homogeneousMongemdashAmpere equa-tions of homothetic functions and their applications to produc-tion models in economicsrdquo Journal of Mathematical Analysisand Applications vol 411 no 1 pp 223ndash229 2014

[13] B-Y Chen and G E Vılcu ldquoGeometric classifications ofhomogeneous production functionsrdquo Applied Mathematics andComputation vol 225 pp 345ndash351 2013

[14] A D Vilcu and G E Vilcu ldquoOn homogeneous productionfunctions with proportional marginal rate of substitutionrdquoMathematical Problems in Engineering vol 2013 Article ID732643 5 pages 2013

[15] B-Y Chen Pseudo-Riemannian Geometry 120575-Invariants andApplications World Scientific Hackensack NJ USA 2011

[16] B-y Chen Geometry of Submanifolds Marcel Dekker NewYork NY USA 1973

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

2 Abstract and Applied Analysis

The generalized formof CES production function is givenby

119865 (1199091 119909119899) = 119860(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588

(4)

where 119886119894 120574 119860 and 120588 are nonzero constants and 119860 119886119894 gt

0 The CES production functions are of great interest ineconomy because of their invariant characteristic namelythat the elasticity of substitution between the parameters isconstant on their domains

It is easy to see that the CES production function is ageneralization of Cobb-Douglas production function andboth of them are homogeneous production functions

Note that the production function 119865 can be identifiedwith a production hypersurface in the (119899 + 1)-dimensionalEuclidean space E119899+1 through the map 119891 R119899

+rarr R119899+1+

119891 (1199091 119909119899) = (1199091 119909119899 119865 (1199091 119909119899)) (5)

In the case of 119899 inputs we have a hypersurface and an analysisof the generalized CD and CES production functions fromthe point of view of differential geometry

In [5] Vılcu established an interesting link betweensome fundamental notions in the theory of productionfunctions and the differential geometry of hypersurfacesTheauthor proved that the generalizedCobb-Douglas productionfunction has constant return to scale if and only if the cor-responding hypersurface is developable The author jointlywith A D Vılcu further [6] generalized this result to the caseof the generalized CES production function with 119899-inputsFor further study of production hypersurfaces we refer thereader to Chenrsquos series of interesting papers on homogeneousproduction functions quasi-sum production models andhomothetic production functions [7ndash13] and G E Vılcu andA D Vılcursquos paper [14]

The theory of minimal surfaces (hypersurfaces) is veryimportant in the field of differential geometry In this paperwe give further study of the generalized Cobb-Douglas andCES production functions as hypersurfaces in Euclideanspace E119899+1 In particular we give some characterizations ofthe generalized Cobb-Douglas and CES production hyper-surfaces under the minimality condition in Euclidean spaces

2 Some Basic Concepts in Theory ofHypersurfaces

Each production function119865(1199091 119909119899) can be identifiedwitha graph of a nonparametric hypersurface of an Euclidean (119899+

1)-space E119899+1 given by

119891 (1199091 119909119899) = (1199091 119909119899 119865 (1199091 119909119899)) (6)

We recall some basic concepts in the theory of hypersurfacesin Euclidean spaces

Let119872119899 be a hypersurface in an 119899+1-dimension Euclideanspace The Gauss map V is defined by

V 119872119899997888rarr 119878119899sub E119899+1

(7)

whichmaps119872119899 to the unit hypersphere 119878119899 ofE119899+1TheGaussmap is always defined locally that is on a small piece of thehypersurface It can be defined globally if the hypersurface isorientableTheGaussmap is a continuousmap such that V(119901)is a unit normal vector 120585(119901) of119872119899 at point 119901

The differential 119889V of the Gauss map V can be used todefine an extrinsic curvature known as the shape operatoror Weingarten map Since at each point 119901 isin 119872

119899 the tangentspace 119879119901119872 is an inner product space the shape operator 119878119901can be defined as a linear operator on this space by the relation

119892 (119878119901119906 119908) = 119892 (119889V (119906) 119908) (8)

where 119906 119908 isin 119879119901119872 and 119892 is the metric tensor on119872119899

Moreover the second fundamental form ℎ is related to theshape operator 119878119901 by

119892 (119878119901119906 119908) = 119892 (ℎ (119906 119908) 120585 (119901)) (9)

for 119906 119908 isin 119879119901119872It is well known that the determinant of the shape

operator 119878119901 is called the Gauss-Kronecker curvature Denoteit by 119866(119901) When 119899 = 2 the Gauss-Kronecker curvatureis simply called the Gauss curvature which is intrinsicdue to famous Gaussrsquos Theorema Egregium The trace ofthe shape operator 119878119901 is called the mean curvature of thehypersurfaces In contrast to the Gauss curvature the meancurvature is extrinsic which depends on the immersion ofthe hypersurface A hypersurface is calledminimal if itsmeancurvature vanishes identically

Denote the partial derivatives 120597119865120597119909119894 1205972119865120597119909119894119909119895 and

so forth by 119865119894 119865119894119895 and so forth Put

119882 = radic1 +

119899

sum

119894=1

1198652

119894 (10)

Recall some well-known results for a graph of hypersurface(6) in E119899+1 from [7 15 16]

Proposition 1 For a production hypersurface of E119899+1 definedby

119891 (1199091 119909119899) = (1199091 119909119899 119865 (1199091 119909119899)) (11)

One has the following

(1) The unit normal 120585 is given by

120585 =1

119882(minus1198651 minus119865119899 1) (12)

(2) The coefficient 119892119894119895 = 119892(120597120597119909119894 120597120597119909119895) of the metrictensor is given by

119892119894119895 = 120575119894119895 + 119865119894119865119895 (13)

where 120575119894119895 = 1 if 119894 = 119895 otherwise 0(3) The volume element is

119889119881 = radic1198921198941198951198891199091 and sdot sdot sdot and 119889119909119899 (14)

Abstract and Applied Analysis 3

(4) The inverse matrix (119892119894119895) of (119892119894119895) is

119892119894119895= 120575119894119895 minus

119865119894119865119895

1198822 (15)

(5) The matrix of the second fundamental form ℎ is

ℎ119894119895 =

119865119894119895

119882 (16)

(6) The matrix of the shape operator 119878119901 is

119886119895

119894= sum

119896

ℎ119894119896119892119896119895

=1

119882(119865119894119895 minussum

119896

119865119894119896119865119896119865119895

1198822) (17)

(7) The mean curvature119867 is given by

119867 =1

119899119882(sum

119894

119865119894119894 minus1

1198822sum

119894119895

119865119894119865119895119865119894119895) (18)

(8) The Gauss-Kronecker curvature 119866 is

119866 =

det ℎ119894119895det119892119894119895

=

det119865119894119895119882119899+2

(19)

(9) The sectional curvature119870119894119895 of the plane section spannedby 120597120597119909119894 and 120597120597119909119895 is

119870119894119895 =

119865119894119894119865119895119895 minus 1198652

119894119895

1198822 (1 + 1198652

119894+ 1198652

119895)

(20)

(10) The Riemann curvature tensor 119877 satisfies

119892(119877(120597

120597119909119894

120597

120597119909119895

)120597

120597119909119896

120597

120597119909119897

) =

119865119894119897119865119895119896 minus 119865119894119896119865119895119897

1198824 (21)

3 Generalized Cobb-Douglas ProductionHypersurfaces

In this section we give a nonexistence result of minimalgeneralizedCobb-Douglas production hypersurfaces inE119899+1

Theorem 2 There does not exist a minimal generalized Cobb-Douglas production hypersurface in E119899+1

Proof Let 119872 be a generalized Cobb-Douglas productionhypersurface in E119899+1 given by a graph

119891 (1199091 119909119899) = (1199091 119909119899 119865 (1199091 119909119899)) (22)

where 119865 is the generalized Cobb-Douglas production func-tion

119865 (1199091 119909119899) = 1198601199091205721

1sdot sdot sdot 119909120572119899

119899 (23)

Note that the generalizedCobb-Douglas production function(23) is homogeneous of degree ℎ = sum

119899

119894=1120572119894 It follows from

(23) that

119865119894 =120572119894

119909119894

119865 119894 = 1 119899

119865119894119894 =120572119894 (120572119894 minus 1)

1199092

119894

119865 119894 = 1 119899

119865119894119895 =

120572119894120572119895

119909119894119909119895

119865 119894 = 119895 119894 119895 = 1 119899

(24)

By assumption the production hypersurface is minimal thatis119867 = 0 Thus by (18) and (10) we have

(

119899

sum

119894=1

119865119894119894)(1 +

119899

sum

119894=1

1198652

119894) = sum

119894119895

119865119894119865119895119865119894119895 (25)

which reduces to119899

sum

119894=1

119865119894119894 +sum

119894119895

(1198652

119894119865119895119895 minus 119865119894119865119895119865119894119895) = 0 (26)

Note that sum119894119895(1198652

119894119865119895119895 minus 119865119894119865119895119865119894119895) = 0 for 119894 = 119895 Hence (26)

becomes119899

sum

119894=1

119865119894119894 + sum

119894 = 119895

(1198652

119894119865119895119895 minus 119865119894119865119895119865119894119895) = 0 (27)

Substituting (24) into (27) we obtain

119899

sum

119894=1

120572119894 (120572119894 minus 1)

1199092

119894

minus 1198652sum

119894 = 119895

1205722

119894120572119895

1199092

1198941199092

119895

= 0 (28)

Differentiating (28) with respect to 119909119896 one has

minus2120572119896 (120572119896 minus 1)

1199093

119896

minus2120572119896

119909119896

1198652sum

119894 = 119895

1205722

119894120572119895

1199092

1198941199092

119895

+2120572119896

119909119896

1198652

119899

sum

119894=1

120572119894120572119896 + 1205722

119894

1199092

1198941199092

119896

= 0

(29)

which reduces to

120572119896 minus 1

1199092

119896

+ 1198652sum

119894 = 119895

1205722

119894120572119895

1199092

1198941199092

119895

minus 1198652

119899

sum

119894=1

120572119894120572119896 + 1205722

119894

1199092

1198941199092

119896

= 0 (30)

Substituting (28) into (30) we have

120572119896 minus 1

1199092

119896

+

119899

sum

119894=1

120572119894 (120572119894 minus 1)

1199092

119894

minus 1198652

119899

sum

119894=1

120572119894120572119896 + 1205722

119894

1199092

1198941199092

119896

= 0 (31)

Moreover differentiating (31) with respect to 119909119897 (119897 = 119896) we get

minus2120572119897 (120572119897 minus 1)

1199093

119897

+2120572119897120572119896 + 2120572

2

119897

1199093

1198971199092

119896

1198652minus

2120572119897

119909119897

1198652

119899

sum

119894=1

120572119894120572119896 + 1205722

119894

1199092

1198941199092

119896

= 0

(32)

4 Abstract and Applied Analysis

Combining (32) with (31) gives

120572119897 minus 1

1199092

119897

minus120572119896 + 120572119897

1199092

1198971199092

119896

1198652+

120572119896 minus 1

1199092

119896

+

119899

sum

119894=1

120572119894 (120572119894 minus 1)

1199092

119894

= 0 (33)

Differentiating (33) with respect to 119909119897 again one has

(120572119896 + 120572119897) (120572119897 minus 1)

1199093

1198971199092

119896

1198652+

(120572119897 minus 1) (1205721 + 1)

1199093

119897

= 0 (34)

which yields either 120572119897 = 1 (119897 = 119896) or

(120572119896 + 120572119897) 1198652= (120572119897 + 1) 119909

2

119896 (35)

Since 119865 is defined by (23) with nonzero constants 120572119894 for 119894 =

1 119899 it follows that (35) is impossible Hence we have 120572119897 =1

Without loss of generality we may choose 119896 = 1 In thiscase 120572119897 = 1 for 119897 = 1 reduces to

1205722 = sdot sdot sdot = 120572119899 = 1 (36)

Therefore (33) becomes

minus1205721 + 1

1199092

11199092

119897

1198652+

1205722

1minus 1

1199092

1

= 0 (37)

The above equation implies that either 1205721 = minus1 or

1198652= (1205721 minus 1) 119909

2

119897 (38)

It is easy to see that the latter case is impossible At thismoment we obtain the function 119865 as follows

119865 (1199091 119909119899) = 119860119909minus1

11199092 sdot sdot sdot 119909119899 (39)

Consider (31) for 119896 = 1 which turns into

1

1199092

1

minus1198652

1199092

119896

(1

1199092

2

+ sdot sdot sdot +1

1199092119899

) = 0 (40)

Substituting (39) into (40) we have

11986021199092

2sdot sdot sdot 1199092

119899(

1

1199092

2

+ sdot sdot sdot +1

1199092119899

) = 1199092

119896 (41)

In view of (41) by comparing the degrees of the left and theright of the equality we have 119899 = 3 Hence (41) becomes

1198602(1199092

2+ 1199092

3) = 1199092

119896 119896 = 2 3 (42)

which is impossible since 119860 = 0Therefore there is not a minimal generalized Cobb-

Douglas production hypersurface in E119899+1This completes theproof of Theorem 2

4 Generalized CES Production Hypersurfaces

In economics goods that are completely substitutable witheach other are called perfect substitutes They may becharacterized as goods having a constant marginal rate ofsubstitution Mathematically a production function is calleda perfect substitute if it is of the form

119865 (1199091 119909119899) =

119899

sum

119894=1

119886119894119909119894 (43)

for some nonzero constants 1198861 119886119899In the following we deal with the case of minimal

generalized CES production hypersurfaces in E119899+1

Theorem 3 An 119899-factor generalized CES production hyper-surface in E119899+1 is minimal if and only if the generalized CESproduction function is a perfect substitute

Proof Assume that 119872 is a generalized CES productionhypersurface in E119899+1 given by a graph

119891 (1199091 119909119899) = (1199091 119909119899 119865 (1199091 119909119899)) (44)

where 119865 is the generalized CES production function

119865 (1199091 119909119899) = 119860(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588

(45)

with 119860 119886119894 gt 0 and 119909119894 gt 0 The generalized CES productionfunction (45) is homogeneous of degree 120574 By assumptionthat the production hypersurface is minimal from (18) theminimality condition is equivalent to

(

119899

sum

119894=1

119865119894119894)(1 +

119899

sum

119894=1

1198652

119894) = sum

119894119895

119865119894119865119895119865119894119895 (46)

We define another minimal production hypersurface as

119891 (1205821199091 120582119909119899) = (1205821199091 120582119909119899 119865 (1205821199091 120582119909119899))

120582 isin R+

(47)

Since the CES production function is homogeneous of degree120574 we conclude that the hypersurface given by

119891 (1199091 119909119899) = (1199091 119909119899 120582120574minus1

119865 (1199091 119909119899)) (48)

is also minimal In this case the minimality condition (46)becomes

(

119899

sum

119894=1

119865119894119894)(1205822minus2120574

+

119899

sum

119894=1

1198652

119894) = sum

119894119895

119865119894119865119895119865119894119895 (49)

Comparing (49) with (46) we obtain that either 120574 = 1 or 120574 = 1

and119899

sum

119894=1

119865119894119894 = 0 (50)

sum

119894119895

119865119894119865119895119865119894119895 = 0 (51)

Abstract and Applied Analysis 5

Moreover it follows from (45) that

119865119894 = 119860120574119886120588

119894119909120588minus1

119894(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus1

(52)

119865119894119894 = 119860120574119886120588

119894119909120588minus2

119894((120588 minus 1) sum

119896 = 119894

119886120588

119896119909120588

119896+ (120574 minus 1) 119886

120588

119894119909120588

119894)

times(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus2

(53)

119865119894119895 = 119860120574 (120574 minus 120588) 119886120588

119894119886120588

119895119909120588minus1

119894119909120588minus1

119895(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus2

119894 = 119895

(54)

We divide it into two cases

Case A (120574 = 1) Substituting (52) and (54) into (51) we get

11986031205743(120574 minus 120588)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

3120574120588minus4

timessum

119894119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0

(55)

If 120588 = 120574 then the above equation reduces to

sum

119894119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0 (56)

which is equivalent to

(

119899

sum

119894=1

1198862120588

1198941199092120588minus2

119894)

2

= 0 (57)

Hence119899

sum

119894=1

1198862120588

1198941199092120588minus2

119894= 0 (58)

Since 120588 = 1 this case is impossibleTherefore we conclude that 120588 = 120574 Substituting (53) into

(50) we have

119860120574 (120574 minus 1)(

119899

sum

119894=1

119886120588

119894119909120588minus2

119894)

times (

119899

sum

119894=1

119886120588

119894119909120588

119894)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus2

= 0

(59)

Noting 120574 = 1 it is easy to see that (59) is impossible

Case B (120574 = 1) We note that the minimality conditionreduces to

119899

sum

119894=1

119865119894119894 + sum

119894 = 119895

(1198652

119894119865119895119895 minus 119865119894119865119895119865119894119895) = 0 (60)

Substituting (52)ndash(54) into (60) we have

119860 (120588 minus 1)(sum

119896 = 119894

119886120588

119896119909120588

119896)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

1120588minus2

(

119899

sum

119894=1

119886120588

119894119909120588minus2

119894)

+ 1198603(120588 minus 1)(sum

119896 = 119894

119886120588

119896119909120588

119896)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

3120588minus4

times sum

119894 = 119895

(1198862120588

119894119886120588

1198951199092120588minus2

119894119909120588minus2

119895)

minus 1198603(1 minus 120588)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

3120588minus4

times sum

119894 = 119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0

(61)

Note that120588 = 1 fulfills (61) Hence in this case the generalizedCES production function 119865 is a perfect substitute

In the following we will show that the case 120588 = 1 isimpossible In fact if 120588 = 1 (61) reduces to

(sum

119896 = 119894

119886120588

119896119909120588

119896)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

2minus2120588

(

119899

sum

119894=1

119886120588

119894119909120588minus2

119894)

+ 1198602(sum

119896 = 119894

119886120588

119896119909120588

119896) sum

119894 = 119895

(1198862120588

119894119886120588

1198951199092120588minus2

119894119909120588minus2

119895)

+ 1198602sum

119894 = 119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0

(62)

Since 119909119894 gt 0 and 119886119894 gt 0 for 119894 = 1 119899 it follows that the leftof equality (62) is positive Therefore it is a contradiction

Conversely it is easy to verify that if the generalized CESproduction function is a perfect substitute then the 119899-factorgeneralized CES production hypersurface in E119899+1 is minimalThis completes the proof of Theorem 3

Remark 4 Remark that Chen proved in [7] a more generalresult for 2-factor ℎ-homogeneous production function is aperfect substitute if and only if the production surface is aminimal surface

Acknowledgments

The authors would like to thank the referees for theirvery valuable comments and suggestions to improve thispaper This work is supported by the Mathematical TianyuanYouth Fund of China (no 11326068) the general FinancialGrant from the China Postdoctoral Science Foundation (no2012M510818) and theGeneral Project for Scientific Researchof Liaoning Educational Committee (no W2012186)

References

[1] C W Cobb and P H Douglas ldquoA theory of productionrdquoAmerican Economic Review vol 18 pp 139ndash165 1928

6 Abstract and Applied Analysis

[2] K J Arrow H B Chenery B S Minhas and R M SolowldquoCapital-labor substitution and economic efficiencyrdquo Review ofEconomics and Statistics vol 43 no 3 pp 225ndash250 1961

[3] L Losonczi ldquoProduction functions having the CES propertyrdquoAcademiae Paedagogicae Nyıregyhaziensis vol 26 no 1 pp 113ndash125 2010

[4] D McFadden ldquoConstant elasticity of substitution productionfunctionsrdquo Review of Economic Studies vol 30 no 2 pp 73ndash831963

[5] G E Vılcu ldquoA geometric perspective on the generalized Cobb-Douglas production functionsrdquo Applied Mathematics Lettersvol 24 no 5 pp 777ndash783 2011

[6] A D Vılcu and G E Vılcu ldquoOn some geometric properties ofthe generalized CES production functionsrdquo Applied Mathemat-ics and Computation vol 218 no 1 pp 124ndash129 2011

[7] B-Y Chen ldquoOn some geometric properties of ℎ-homogeneousproduction functions in microeconomicsrdquo Kragujevac Journalof Mathematics vol 35 no 3 pp 343ndash357 2011

[8] B-Y Chen ldquoOn some geometric properties of quasi-sumproduction modelsrdquo Journal of Mathematical Analysis andApplications vol 392 no 2 pp 192ndash199 2012

[9] B-Y Chen ldquoA note on homogeneous production modelsrdquoKragujevac Journal ofMathematics vol 36 no 1 pp 41ndash43 2012

[10] B-Y Chen ldquoGeometry of quasi-sum production functions withconstant elasticity of substitution propertyrdquo Journal of AdvancedMathematical Studies vol 5 no 2 pp 90ndash97 2012

[11] B-Y Chen ldquoClassification of homothetic functions with con-stant elasticity of substitution and its geometric applicationsrdquoInternational Electronic Journal of Geometry vol 5 no 2 pp67ndash78 2012

[12] B-Y Chen ldquoSolutions to homogeneousMongemdashAmpere equa-tions of homothetic functions and their applications to produc-tion models in economicsrdquo Journal of Mathematical Analysisand Applications vol 411 no 1 pp 223ndash229 2014

[13] B-Y Chen and G E Vılcu ldquoGeometric classifications ofhomogeneous production functionsrdquo Applied Mathematics andComputation vol 225 pp 345ndash351 2013

[14] A D Vilcu and G E Vilcu ldquoOn homogeneous productionfunctions with proportional marginal rate of substitutionrdquoMathematical Problems in Engineering vol 2013 Article ID732643 5 pages 2013

[15] B-Y Chen Pseudo-Riemannian Geometry 120575-Invariants andApplications World Scientific Hackensack NJ USA 2011

[16] B-y Chen Geometry of Submanifolds Marcel Dekker NewYork NY USA 1973

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 3

(4) The inverse matrix (119892119894119895) of (119892119894119895) is

119892119894119895= 120575119894119895 minus

119865119894119865119895

1198822 (15)

(5) The matrix of the second fundamental form ℎ is

ℎ119894119895 =

119865119894119895

119882 (16)

(6) The matrix of the shape operator 119878119901 is

119886119895

119894= sum

119896

ℎ119894119896119892119896119895

=1

119882(119865119894119895 minussum

119896

119865119894119896119865119896119865119895

1198822) (17)

(7) The mean curvature119867 is given by

119867 =1

119899119882(sum

119894

119865119894119894 minus1

1198822sum

119894119895

119865119894119865119895119865119894119895) (18)

(8) The Gauss-Kronecker curvature 119866 is

119866 =

det ℎ119894119895det119892119894119895

=

det119865119894119895119882119899+2

(19)

(9) The sectional curvature119870119894119895 of the plane section spannedby 120597120597119909119894 and 120597120597119909119895 is

119870119894119895 =

119865119894119894119865119895119895 minus 1198652

119894119895

1198822 (1 + 1198652

119894+ 1198652

119895)

(20)

(10) The Riemann curvature tensor 119877 satisfies

119892(119877(120597

120597119909119894

120597

120597119909119895

)120597

120597119909119896

120597

120597119909119897

) =

119865119894119897119865119895119896 minus 119865119894119896119865119895119897

1198824 (21)

3 Generalized Cobb-Douglas ProductionHypersurfaces

In this section we give a nonexistence result of minimalgeneralizedCobb-Douglas production hypersurfaces inE119899+1

Theorem 2 There does not exist a minimal generalized Cobb-Douglas production hypersurface in E119899+1

Proof Let 119872 be a generalized Cobb-Douglas productionhypersurface in E119899+1 given by a graph

119891 (1199091 119909119899) = (1199091 119909119899 119865 (1199091 119909119899)) (22)

where 119865 is the generalized Cobb-Douglas production func-tion

119865 (1199091 119909119899) = 1198601199091205721

1sdot sdot sdot 119909120572119899

119899 (23)

Note that the generalizedCobb-Douglas production function(23) is homogeneous of degree ℎ = sum

119899

119894=1120572119894 It follows from

(23) that

119865119894 =120572119894

119909119894

119865 119894 = 1 119899

119865119894119894 =120572119894 (120572119894 minus 1)

1199092

119894

119865 119894 = 1 119899

119865119894119895 =

120572119894120572119895

119909119894119909119895

119865 119894 = 119895 119894 119895 = 1 119899

(24)

By assumption the production hypersurface is minimal thatis119867 = 0 Thus by (18) and (10) we have

(

119899

sum

119894=1

119865119894119894)(1 +

119899

sum

119894=1

1198652

119894) = sum

119894119895

119865119894119865119895119865119894119895 (25)

which reduces to119899

sum

119894=1

119865119894119894 +sum

119894119895

(1198652

119894119865119895119895 minus 119865119894119865119895119865119894119895) = 0 (26)

Note that sum119894119895(1198652

119894119865119895119895 minus 119865119894119865119895119865119894119895) = 0 for 119894 = 119895 Hence (26)

becomes119899

sum

119894=1

119865119894119894 + sum

119894 = 119895

(1198652

119894119865119895119895 minus 119865119894119865119895119865119894119895) = 0 (27)

Substituting (24) into (27) we obtain

119899

sum

119894=1

120572119894 (120572119894 minus 1)

1199092

119894

minus 1198652sum

119894 = 119895

1205722

119894120572119895

1199092

1198941199092

119895

= 0 (28)

Differentiating (28) with respect to 119909119896 one has

minus2120572119896 (120572119896 minus 1)

1199093

119896

minus2120572119896

119909119896

1198652sum

119894 = 119895

1205722

119894120572119895

1199092

1198941199092

119895

+2120572119896

119909119896

1198652

119899

sum

119894=1

120572119894120572119896 + 1205722

119894

1199092

1198941199092

119896

= 0

(29)

which reduces to

120572119896 minus 1

1199092

119896

+ 1198652sum

119894 = 119895

1205722

119894120572119895

1199092

1198941199092

119895

minus 1198652

119899

sum

119894=1

120572119894120572119896 + 1205722

119894

1199092

1198941199092

119896

= 0 (30)

Substituting (28) into (30) we have

120572119896 minus 1

1199092

119896

+

119899

sum

119894=1

120572119894 (120572119894 minus 1)

1199092

119894

minus 1198652

119899

sum

119894=1

120572119894120572119896 + 1205722

119894

1199092

1198941199092

119896

= 0 (31)

Moreover differentiating (31) with respect to 119909119897 (119897 = 119896) we get

minus2120572119897 (120572119897 minus 1)

1199093

119897

+2120572119897120572119896 + 2120572

2

119897

1199093

1198971199092

119896

1198652minus

2120572119897

119909119897

1198652

119899

sum

119894=1

120572119894120572119896 + 1205722

119894

1199092

1198941199092

119896

= 0

(32)

4 Abstract and Applied Analysis

Combining (32) with (31) gives

120572119897 minus 1

1199092

119897

minus120572119896 + 120572119897

1199092

1198971199092

119896

1198652+

120572119896 minus 1

1199092

119896

+

119899

sum

119894=1

120572119894 (120572119894 minus 1)

1199092

119894

= 0 (33)

Differentiating (33) with respect to 119909119897 again one has

(120572119896 + 120572119897) (120572119897 minus 1)

1199093

1198971199092

119896

1198652+

(120572119897 minus 1) (1205721 + 1)

1199093

119897

= 0 (34)

which yields either 120572119897 = 1 (119897 = 119896) or

(120572119896 + 120572119897) 1198652= (120572119897 + 1) 119909

2

119896 (35)

Since 119865 is defined by (23) with nonzero constants 120572119894 for 119894 =

1 119899 it follows that (35) is impossible Hence we have 120572119897 =1

Without loss of generality we may choose 119896 = 1 In thiscase 120572119897 = 1 for 119897 = 1 reduces to

1205722 = sdot sdot sdot = 120572119899 = 1 (36)

Therefore (33) becomes

minus1205721 + 1

1199092

11199092

119897

1198652+

1205722

1minus 1

1199092

1

= 0 (37)

The above equation implies that either 1205721 = minus1 or

1198652= (1205721 minus 1) 119909

2

119897 (38)

It is easy to see that the latter case is impossible At thismoment we obtain the function 119865 as follows

119865 (1199091 119909119899) = 119860119909minus1

11199092 sdot sdot sdot 119909119899 (39)

Consider (31) for 119896 = 1 which turns into

1

1199092

1

minus1198652

1199092

119896

(1

1199092

2

+ sdot sdot sdot +1

1199092119899

) = 0 (40)

Substituting (39) into (40) we have

11986021199092

2sdot sdot sdot 1199092

119899(

1

1199092

2

+ sdot sdot sdot +1

1199092119899

) = 1199092

119896 (41)

In view of (41) by comparing the degrees of the left and theright of the equality we have 119899 = 3 Hence (41) becomes

1198602(1199092

2+ 1199092

3) = 1199092

119896 119896 = 2 3 (42)

which is impossible since 119860 = 0Therefore there is not a minimal generalized Cobb-

Douglas production hypersurface in E119899+1This completes theproof of Theorem 2

4 Generalized CES Production Hypersurfaces

In economics goods that are completely substitutable witheach other are called perfect substitutes They may becharacterized as goods having a constant marginal rate ofsubstitution Mathematically a production function is calleda perfect substitute if it is of the form

119865 (1199091 119909119899) =

119899

sum

119894=1

119886119894119909119894 (43)

for some nonzero constants 1198861 119886119899In the following we deal with the case of minimal

generalized CES production hypersurfaces in E119899+1

Theorem 3 An 119899-factor generalized CES production hyper-surface in E119899+1 is minimal if and only if the generalized CESproduction function is a perfect substitute

Proof Assume that 119872 is a generalized CES productionhypersurface in E119899+1 given by a graph

119891 (1199091 119909119899) = (1199091 119909119899 119865 (1199091 119909119899)) (44)

where 119865 is the generalized CES production function

119865 (1199091 119909119899) = 119860(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588

(45)

with 119860 119886119894 gt 0 and 119909119894 gt 0 The generalized CES productionfunction (45) is homogeneous of degree 120574 By assumptionthat the production hypersurface is minimal from (18) theminimality condition is equivalent to

(

119899

sum

119894=1

119865119894119894)(1 +

119899

sum

119894=1

1198652

119894) = sum

119894119895

119865119894119865119895119865119894119895 (46)

We define another minimal production hypersurface as

119891 (1205821199091 120582119909119899) = (1205821199091 120582119909119899 119865 (1205821199091 120582119909119899))

120582 isin R+

(47)

Since the CES production function is homogeneous of degree120574 we conclude that the hypersurface given by

119891 (1199091 119909119899) = (1199091 119909119899 120582120574minus1

119865 (1199091 119909119899)) (48)

is also minimal In this case the minimality condition (46)becomes

(

119899

sum

119894=1

119865119894119894)(1205822minus2120574

+

119899

sum

119894=1

1198652

119894) = sum

119894119895

119865119894119865119895119865119894119895 (49)

Comparing (49) with (46) we obtain that either 120574 = 1 or 120574 = 1

and119899

sum

119894=1

119865119894119894 = 0 (50)

sum

119894119895

119865119894119865119895119865119894119895 = 0 (51)

Abstract and Applied Analysis 5

Moreover it follows from (45) that

119865119894 = 119860120574119886120588

119894119909120588minus1

119894(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus1

(52)

119865119894119894 = 119860120574119886120588

119894119909120588minus2

119894((120588 minus 1) sum

119896 = 119894

119886120588

119896119909120588

119896+ (120574 minus 1) 119886

120588

119894119909120588

119894)

times(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus2

(53)

119865119894119895 = 119860120574 (120574 minus 120588) 119886120588

119894119886120588

119895119909120588minus1

119894119909120588minus1

119895(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus2

119894 = 119895

(54)

We divide it into two cases

Case A (120574 = 1) Substituting (52) and (54) into (51) we get

11986031205743(120574 minus 120588)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

3120574120588minus4

timessum

119894119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0

(55)

If 120588 = 120574 then the above equation reduces to

sum

119894119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0 (56)

which is equivalent to

(

119899

sum

119894=1

1198862120588

1198941199092120588minus2

119894)

2

= 0 (57)

Hence119899

sum

119894=1

1198862120588

1198941199092120588minus2

119894= 0 (58)

Since 120588 = 1 this case is impossibleTherefore we conclude that 120588 = 120574 Substituting (53) into

(50) we have

119860120574 (120574 minus 1)(

119899

sum

119894=1

119886120588

119894119909120588minus2

119894)

times (

119899

sum

119894=1

119886120588

119894119909120588

119894)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus2

= 0

(59)

Noting 120574 = 1 it is easy to see that (59) is impossible

Case B (120574 = 1) We note that the minimality conditionreduces to

119899

sum

119894=1

119865119894119894 + sum

119894 = 119895

(1198652

119894119865119895119895 minus 119865119894119865119895119865119894119895) = 0 (60)

Substituting (52)ndash(54) into (60) we have

119860 (120588 minus 1)(sum

119896 = 119894

119886120588

119896119909120588

119896)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

1120588minus2

(

119899

sum

119894=1

119886120588

119894119909120588minus2

119894)

+ 1198603(120588 minus 1)(sum

119896 = 119894

119886120588

119896119909120588

119896)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

3120588minus4

times sum

119894 = 119895

(1198862120588

119894119886120588

1198951199092120588minus2

119894119909120588minus2

119895)

minus 1198603(1 minus 120588)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

3120588minus4

times sum

119894 = 119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0

(61)

Note that120588 = 1 fulfills (61) Hence in this case the generalizedCES production function 119865 is a perfect substitute

In the following we will show that the case 120588 = 1 isimpossible In fact if 120588 = 1 (61) reduces to

(sum

119896 = 119894

119886120588

119896119909120588

119896)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

2minus2120588

(

119899

sum

119894=1

119886120588

119894119909120588minus2

119894)

+ 1198602(sum

119896 = 119894

119886120588

119896119909120588

119896) sum

119894 = 119895

(1198862120588

119894119886120588

1198951199092120588minus2

119894119909120588minus2

119895)

+ 1198602sum

119894 = 119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0

(62)

Since 119909119894 gt 0 and 119886119894 gt 0 for 119894 = 1 119899 it follows that the leftof equality (62) is positive Therefore it is a contradiction

Conversely it is easy to verify that if the generalized CESproduction function is a perfect substitute then the 119899-factorgeneralized CES production hypersurface in E119899+1 is minimalThis completes the proof of Theorem 3

Remark 4 Remark that Chen proved in [7] a more generalresult for 2-factor ℎ-homogeneous production function is aperfect substitute if and only if the production surface is aminimal surface

Acknowledgments

The authors would like to thank the referees for theirvery valuable comments and suggestions to improve thispaper This work is supported by the Mathematical TianyuanYouth Fund of China (no 11326068) the general FinancialGrant from the China Postdoctoral Science Foundation (no2012M510818) and theGeneral Project for Scientific Researchof Liaoning Educational Committee (no W2012186)

References

[1] C W Cobb and P H Douglas ldquoA theory of productionrdquoAmerican Economic Review vol 18 pp 139ndash165 1928

6 Abstract and Applied Analysis

[2] K J Arrow H B Chenery B S Minhas and R M SolowldquoCapital-labor substitution and economic efficiencyrdquo Review ofEconomics and Statistics vol 43 no 3 pp 225ndash250 1961

[3] L Losonczi ldquoProduction functions having the CES propertyrdquoAcademiae Paedagogicae Nyıregyhaziensis vol 26 no 1 pp 113ndash125 2010

[4] D McFadden ldquoConstant elasticity of substitution productionfunctionsrdquo Review of Economic Studies vol 30 no 2 pp 73ndash831963

[5] G E Vılcu ldquoA geometric perspective on the generalized Cobb-Douglas production functionsrdquo Applied Mathematics Lettersvol 24 no 5 pp 777ndash783 2011

[6] A D Vılcu and G E Vılcu ldquoOn some geometric properties ofthe generalized CES production functionsrdquo Applied Mathemat-ics and Computation vol 218 no 1 pp 124ndash129 2011

[7] B-Y Chen ldquoOn some geometric properties of ℎ-homogeneousproduction functions in microeconomicsrdquo Kragujevac Journalof Mathematics vol 35 no 3 pp 343ndash357 2011

[8] B-Y Chen ldquoOn some geometric properties of quasi-sumproduction modelsrdquo Journal of Mathematical Analysis andApplications vol 392 no 2 pp 192ndash199 2012

[9] B-Y Chen ldquoA note on homogeneous production modelsrdquoKragujevac Journal ofMathematics vol 36 no 1 pp 41ndash43 2012

[10] B-Y Chen ldquoGeometry of quasi-sum production functions withconstant elasticity of substitution propertyrdquo Journal of AdvancedMathematical Studies vol 5 no 2 pp 90ndash97 2012

[11] B-Y Chen ldquoClassification of homothetic functions with con-stant elasticity of substitution and its geometric applicationsrdquoInternational Electronic Journal of Geometry vol 5 no 2 pp67ndash78 2012

[12] B-Y Chen ldquoSolutions to homogeneousMongemdashAmpere equa-tions of homothetic functions and their applications to produc-tion models in economicsrdquo Journal of Mathematical Analysisand Applications vol 411 no 1 pp 223ndash229 2014

[13] B-Y Chen and G E Vılcu ldquoGeometric classifications ofhomogeneous production functionsrdquo Applied Mathematics andComputation vol 225 pp 345ndash351 2013

[14] A D Vilcu and G E Vilcu ldquoOn homogeneous productionfunctions with proportional marginal rate of substitutionrdquoMathematical Problems in Engineering vol 2013 Article ID732643 5 pages 2013

[15] B-Y Chen Pseudo-Riemannian Geometry 120575-Invariants andApplications World Scientific Hackensack NJ USA 2011

[16] B-y Chen Geometry of Submanifolds Marcel Dekker NewYork NY USA 1973

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

4 Abstract and Applied Analysis

Combining (32) with (31) gives

120572119897 minus 1

1199092

119897

minus120572119896 + 120572119897

1199092

1198971199092

119896

1198652+

120572119896 minus 1

1199092

119896

+

119899

sum

119894=1

120572119894 (120572119894 minus 1)

1199092

119894

= 0 (33)

Differentiating (33) with respect to 119909119897 again one has

(120572119896 + 120572119897) (120572119897 minus 1)

1199093

1198971199092

119896

1198652+

(120572119897 minus 1) (1205721 + 1)

1199093

119897

= 0 (34)

which yields either 120572119897 = 1 (119897 = 119896) or

(120572119896 + 120572119897) 1198652= (120572119897 + 1) 119909

2

119896 (35)

Since 119865 is defined by (23) with nonzero constants 120572119894 for 119894 =

1 119899 it follows that (35) is impossible Hence we have 120572119897 =1

Without loss of generality we may choose 119896 = 1 In thiscase 120572119897 = 1 for 119897 = 1 reduces to

1205722 = sdot sdot sdot = 120572119899 = 1 (36)

Therefore (33) becomes

minus1205721 + 1

1199092

11199092

119897

1198652+

1205722

1minus 1

1199092

1

= 0 (37)

The above equation implies that either 1205721 = minus1 or

1198652= (1205721 minus 1) 119909

2

119897 (38)

It is easy to see that the latter case is impossible At thismoment we obtain the function 119865 as follows

119865 (1199091 119909119899) = 119860119909minus1

11199092 sdot sdot sdot 119909119899 (39)

Consider (31) for 119896 = 1 which turns into

1

1199092

1

minus1198652

1199092

119896

(1

1199092

2

+ sdot sdot sdot +1

1199092119899

) = 0 (40)

Substituting (39) into (40) we have

11986021199092

2sdot sdot sdot 1199092

119899(

1

1199092

2

+ sdot sdot sdot +1

1199092119899

) = 1199092

119896 (41)

In view of (41) by comparing the degrees of the left and theright of the equality we have 119899 = 3 Hence (41) becomes

1198602(1199092

2+ 1199092

3) = 1199092

119896 119896 = 2 3 (42)

which is impossible since 119860 = 0Therefore there is not a minimal generalized Cobb-

Douglas production hypersurface in E119899+1This completes theproof of Theorem 2

4 Generalized CES Production Hypersurfaces

In economics goods that are completely substitutable witheach other are called perfect substitutes They may becharacterized as goods having a constant marginal rate ofsubstitution Mathematically a production function is calleda perfect substitute if it is of the form

119865 (1199091 119909119899) =

119899

sum

119894=1

119886119894119909119894 (43)

for some nonzero constants 1198861 119886119899In the following we deal with the case of minimal

generalized CES production hypersurfaces in E119899+1

Theorem 3 An 119899-factor generalized CES production hyper-surface in E119899+1 is minimal if and only if the generalized CESproduction function is a perfect substitute

Proof Assume that 119872 is a generalized CES productionhypersurface in E119899+1 given by a graph

119891 (1199091 119909119899) = (1199091 119909119899 119865 (1199091 119909119899)) (44)

where 119865 is the generalized CES production function

119865 (1199091 119909119899) = 119860(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588

(45)

with 119860 119886119894 gt 0 and 119909119894 gt 0 The generalized CES productionfunction (45) is homogeneous of degree 120574 By assumptionthat the production hypersurface is minimal from (18) theminimality condition is equivalent to

(

119899

sum

119894=1

119865119894119894)(1 +

119899

sum

119894=1

1198652

119894) = sum

119894119895

119865119894119865119895119865119894119895 (46)

We define another minimal production hypersurface as

119891 (1205821199091 120582119909119899) = (1205821199091 120582119909119899 119865 (1205821199091 120582119909119899))

120582 isin R+

(47)

Since the CES production function is homogeneous of degree120574 we conclude that the hypersurface given by

119891 (1199091 119909119899) = (1199091 119909119899 120582120574minus1

119865 (1199091 119909119899)) (48)

is also minimal In this case the minimality condition (46)becomes

(

119899

sum

119894=1

119865119894119894)(1205822minus2120574

+

119899

sum

119894=1

1198652

119894) = sum

119894119895

119865119894119865119895119865119894119895 (49)

Comparing (49) with (46) we obtain that either 120574 = 1 or 120574 = 1

and119899

sum

119894=1

119865119894119894 = 0 (50)

sum

119894119895

119865119894119865119895119865119894119895 = 0 (51)

Abstract and Applied Analysis 5

Moreover it follows from (45) that

119865119894 = 119860120574119886120588

119894119909120588minus1

119894(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus1

(52)

119865119894119894 = 119860120574119886120588

119894119909120588minus2

119894((120588 minus 1) sum

119896 = 119894

119886120588

119896119909120588

119896+ (120574 minus 1) 119886

120588

119894119909120588

119894)

times(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus2

(53)

119865119894119895 = 119860120574 (120574 minus 120588) 119886120588

119894119886120588

119895119909120588minus1

119894119909120588minus1

119895(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus2

119894 = 119895

(54)

We divide it into two cases

Case A (120574 = 1) Substituting (52) and (54) into (51) we get

11986031205743(120574 minus 120588)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

3120574120588minus4

timessum

119894119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0

(55)

If 120588 = 120574 then the above equation reduces to

sum

119894119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0 (56)

which is equivalent to

(

119899

sum

119894=1

1198862120588

1198941199092120588minus2

119894)

2

= 0 (57)

Hence119899

sum

119894=1

1198862120588

1198941199092120588minus2

119894= 0 (58)

Since 120588 = 1 this case is impossibleTherefore we conclude that 120588 = 120574 Substituting (53) into

(50) we have

119860120574 (120574 minus 1)(

119899

sum

119894=1

119886120588

119894119909120588minus2

119894)

times (

119899

sum

119894=1

119886120588

119894119909120588

119894)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus2

= 0

(59)

Noting 120574 = 1 it is easy to see that (59) is impossible

Case B (120574 = 1) We note that the minimality conditionreduces to

119899

sum

119894=1

119865119894119894 + sum

119894 = 119895

(1198652

119894119865119895119895 minus 119865119894119865119895119865119894119895) = 0 (60)

Substituting (52)ndash(54) into (60) we have

119860 (120588 minus 1)(sum

119896 = 119894

119886120588

119896119909120588

119896)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

1120588minus2

(

119899

sum

119894=1

119886120588

119894119909120588minus2

119894)

+ 1198603(120588 minus 1)(sum

119896 = 119894

119886120588

119896119909120588

119896)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

3120588minus4

times sum

119894 = 119895

(1198862120588

119894119886120588

1198951199092120588minus2

119894119909120588minus2

119895)

minus 1198603(1 minus 120588)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

3120588minus4

times sum

119894 = 119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0

(61)

Note that120588 = 1 fulfills (61) Hence in this case the generalizedCES production function 119865 is a perfect substitute

In the following we will show that the case 120588 = 1 isimpossible In fact if 120588 = 1 (61) reduces to

(sum

119896 = 119894

119886120588

119896119909120588

119896)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

2minus2120588

(

119899

sum

119894=1

119886120588

119894119909120588minus2

119894)

+ 1198602(sum

119896 = 119894

119886120588

119896119909120588

119896) sum

119894 = 119895

(1198862120588

119894119886120588

1198951199092120588minus2

119894119909120588minus2

119895)

+ 1198602sum

119894 = 119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0

(62)

Since 119909119894 gt 0 and 119886119894 gt 0 for 119894 = 1 119899 it follows that the leftof equality (62) is positive Therefore it is a contradiction

Conversely it is easy to verify that if the generalized CESproduction function is a perfect substitute then the 119899-factorgeneralized CES production hypersurface in E119899+1 is minimalThis completes the proof of Theorem 3

Remark 4 Remark that Chen proved in [7] a more generalresult for 2-factor ℎ-homogeneous production function is aperfect substitute if and only if the production surface is aminimal surface

Acknowledgments

The authors would like to thank the referees for theirvery valuable comments and suggestions to improve thispaper This work is supported by the Mathematical TianyuanYouth Fund of China (no 11326068) the general FinancialGrant from the China Postdoctoral Science Foundation (no2012M510818) and theGeneral Project for Scientific Researchof Liaoning Educational Committee (no W2012186)

References

[1] C W Cobb and P H Douglas ldquoA theory of productionrdquoAmerican Economic Review vol 18 pp 139ndash165 1928

6 Abstract and Applied Analysis

[2] K J Arrow H B Chenery B S Minhas and R M SolowldquoCapital-labor substitution and economic efficiencyrdquo Review ofEconomics and Statistics vol 43 no 3 pp 225ndash250 1961

[3] L Losonczi ldquoProduction functions having the CES propertyrdquoAcademiae Paedagogicae Nyıregyhaziensis vol 26 no 1 pp 113ndash125 2010

[4] D McFadden ldquoConstant elasticity of substitution productionfunctionsrdquo Review of Economic Studies vol 30 no 2 pp 73ndash831963

[5] G E Vılcu ldquoA geometric perspective on the generalized Cobb-Douglas production functionsrdquo Applied Mathematics Lettersvol 24 no 5 pp 777ndash783 2011

[6] A D Vılcu and G E Vılcu ldquoOn some geometric properties ofthe generalized CES production functionsrdquo Applied Mathemat-ics and Computation vol 218 no 1 pp 124ndash129 2011

[7] B-Y Chen ldquoOn some geometric properties of ℎ-homogeneousproduction functions in microeconomicsrdquo Kragujevac Journalof Mathematics vol 35 no 3 pp 343ndash357 2011

[8] B-Y Chen ldquoOn some geometric properties of quasi-sumproduction modelsrdquo Journal of Mathematical Analysis andApplications vol 392 no 2 pp 192ndash199 2012

[9] B-Y Chen ldquoA note on homogeneous production modelsrdquoKragujevac Journal ofMathematics vol 36 no 1 pp 41ndash43 2012

[10] B-Y Chen ldquoGeometry of quasi-sum production functions withconstant elasticity of substitution propertyrdquo Journal of AdvancedMathematical Studies vol 5 no 2 pp 90ndash97 2012

[11] B-Y Chen ldquoClassification of homothetic functions with con-stant elasticity of substitution and its geometric applicationsrdquoInternational Electronic Journal of Geometry vol 5 no 2 pp67ndash78 2012

[12] B-Y Chen ldquoSolutions to homogeneousMongemdashAmpere equa-tions of homothetic functions and their applications to produc-tion models in economicsrdquo Journal of Mathematical Analysisand Applications vol 411 no 1 pp 223ndash229 2014

[13] B-Y Chen and G E Vılcu ldquoGeometric classifications ofhomogeneous production functionsrdquo Applied Mathematics andComputation vol 225 pp 345ndash351 2013

[14] A D Vilcu and G E Vilcu ldquoOn homogeneous productionfunctions with proportional marginal rate of substitutionrdquoMathematical Problems in Engineering vol 2013 Article ID732643 5 pages 2013

[15] B-Y Chen Pseudo-Riemannian Geometry 120575-Invariants andApplications World Scientific Hackensack NJ USA 2011

[16] B-y Chen Geometry of Submanifolds Marcel Dekker NewYork NY USA 1973

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 5

Moreover it follows from (45) that

119865119894 = 119860120574119886120588

119894119909120588minus1

119894(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus1

(52)

119865119894119894 = 119860120574119886120588

119894119909120588minus2

119894((120588 minus 1) sum

119896 = 119894

119886120588

119896119909120588

119896+ (120574 minus 1) 119886

120588

119894119909120588

119894)

times(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus2

(53)

119865119894119895 = 119860120574 (120574 minus 120588) 119886120588

119894119886120588

119895119909120588minus1

119894119909120588minus1

119895(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus2

119894 = 119895

(54)

We divide it into two cases

Case A (120574 = 1) Substituting (52) and (54) into (51) we get

11986031205743(120574 minus 120588)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

3120574120588minus4

timessum

119894119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0

(55)

If 120588 = 120574 then the above equation reduces to

sum

119894119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0 (56)

which is equivalent to

(

119899

sum

119894=1

1198862120588

1198941199092120588minus2

119894)

2

= 0 (57)

Hence119899

sum

119894=1

1198862120588

1198941199092120588minus2

119894= 0 (58)

Since 120588 = 1 this case is impossibleTherefore we conclude that 120588 = 120574 Substituting (53) into

(50) we have

119860120574 (120574 minus 1)(

119899

sum

119894=1

119886120588

119894119909120588minus2

119894)

times (

119899

sum

119894=1

119886120588

119894119909120588

119894)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

120574120588minus2

= 0

(59)

Noting 120574 = 1 it is easy to see that (59) is impossible

Case B (120574 = 1) We note that the minimality conditionreduces to

119899

sum

119894=1

119865119894119894 + sum

119894 = 119895

(1198652

119894119865119895119895 minus 119865119894119865119895119865119894119895) = 0 (60)

Substituting (52)ndash(54) into (60) we have

119860 (120588 minus 1)(sum

119896 = 119894

119886120588

119896119909120588

119896)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

1120588minus2

(

119899

sum

119894=1

119886120588

119894119909120588minus2

119894)

+ 1198603(120588 minus 1)(sum

119896 = 119894

119886120588

119896119909120588

119896)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

3120588minus4

times sum

119894 = 119895

(1198862120588

119894119886120588

1198951199092120588minus2

119894119909120588minus2

119895)

minus 1198603(1 minus 120588)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

3120588minus4

times sum

119894 = 119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0

(61)

Note that120588 = 1 fulfills (61) Hence in this case the generalizedCES production function 119865 is a perfect substitute

In the following we will show that the case 120588 = 1 isimpossible In fact if 120588 = 1 (61) reduces to

(sum

119896 = 119894

119886120588

119896119909120588

119896)(

119899

sum

119894=1

119886120588

119894119909120588

119894)

2minus2120588

(

119899

sum

119894=1

119886120588

119894119909120588minus2

119894)

+ 1198602(sum

119896 = 119894

119886120588

119896119909120588

119896) sum

119894 = 119895

(1198862120588

119894119886120588

1198951199092120588minus2

119894119909120588minus2

119895)

+ 1198602sum

119894 = 119895

(1198862120588

1198941198862120588

1198951199092120588minus2

1198941199092120588minus2

119895) = 0

(62)

Since 119909119894 gt 0 and 119886119894 gt 0 for 119894 = 1 119899 it follows that the leftof equality (62) is positive Therefore it is a contradiction

Conversely it is easy to verify that if the generalized CESproduction function is a perfect substitute then the 119899-factorgeneralized CES production hypersurface in E119899+1 is minimalThis completes the proof of Theorem 3

Remark 4 Remark that Chen proved in [7] a more generalresult for 2-factor ℎ-homogeneous production function is aperfect substitute if and only if the production surface is aminimal surface

Acknowledgments

The authors would like to thank the referees for theirvery valuable comments and suggestions to improve thispaper This work is supported by the Mathematical TianyuanYouth Fund of China (no 11326068) the general FinancialGrant from the China Postdoctoral Science Foundation (no2012M510818) and theGeneral Project for Scientific Researchof Liaoning Educational Committee (no W2012186)

References

[1] C W Cobb and P H Douglas ldquoA theory of productionrdquoAmerican Economic Review vol 18 pp 139ndash165 1928

6 Abstract and Applied Analysis

[2] K J Arrow H B Chenery B S Minhas and R M SolowldquoCapital-labor substitution and economic efficiencyrdquo Review ofEconomics and Statistics vol 43 no 3 pp 225ndash250 1961

[3] L Losonczi ldquoProduction functions having the CES propertyrdquoAcademiae Paedagogicae Nyıregyhaziensis vol 26 no 1 pp 113ndash125 2010

[4] D McFadden ldquoConstant elasticity of substitution productionfunctionsrdquo Review of Economic Studies vol 30 no 2 pp 73ndash831963

[5] G E Vılcu ldquoA geometric perspective on the generalized Cobb-Douglas production functionsrdquo Applied Mathematics Lettersvol 24 no 5 pp 777ndash783 2011

[6] A D Vılcu and G E Vılcu ldquoOn some geometric properties ofthe generalized CES production functionsrdquo Applied Mathemat-ics and Computation vol 218 no 1 pp 124ndash129 2011

[7] B-Y Chen ldquoOn some geometric properties of ℎ-homogeneousproduction functions in microeconomicsrdquo Kragujevac Journalof Mathematics vol 35 no 3 pp 343ndash357 2011

[8] B-Y Chen ldquoOn some geometric properties of quasi-sumproduction modelsrdquo Journal of Mathematical Analysis andApplications vol 392 no 2 pp 192ndash199 2012

[9] B-Y Chen ldquoA note on homogeneous production modelsrdquoKragujevac Journal ofMathematics vol 36 no 1 pp 41ndash43 2012

[10] B-Y Chen ldquoGeometry of quasi-sum production functions withconstant elasticity of substitution propertyrdquo Journal of AdvancedMathematical Studies vol 5 no 2 pp 90ndash97 2012

[11] B-Y Chen ldquoClassification of homothetic functions with con-stant elasticity of substitution and its geometric applicationsrdquoInternational Electronic Journal of Geometry vol 5 no 2 pp67ndash78 2012

[12] B-Y Chen ldquoSolutions to homogeneousMongemdashAmpere equa-tions of homothetic functions and their applications to produc-tion models in economicsrdquo Journal of Mathematical Analysisand Applications vol 411 no 1 pp 223ndash229 2014

[13] B-Y Chen and G E Vılcu ldquoGeometric classifications ofhomogeneous production functionsrdquo Applied Mathematics andComputation vol 225 pp 345ndash351 2013

[14] A D Vilcu and G E Vilcu ldquoOn homogeneous productionfunctions with proportional marginal rate of substitutionrdquoMathematical Problems in Engineering vol 2013 Article ID732643 5 pages 2013

[15] B-Y Chen Pseudo-Riemannian Geometry 120575-Invariants andApplications World Scientific Hackensack NJ USA 2011

[16] B-y Chen Geometry of Submanifolds Marcel Dekker NewYork NY USA 1973

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

6 Abstract and Applied Analysis

[2] K J Arrow H B Chenery B S Minhas and R M SolowldquoCapital-labor substitution and economic efficiencyrdquo Review ofEconomics and Statistics vol 43 no 3 pp 225ndash250 1961

[3] L Losonczi ldquoProduction functions having the CES propertyrdquoAcademiae Paedagogicae Nyıregyhaziensis vol 26 no 1 pp 113ndash125 2010

[4] D McFadden ldquoConstant elasticity of substitution productionfunctionsrdquo Review of Economic Studies vol 30 no 2 pp 73ndash831963

[5] G E Vılcu ldquoA geometric perspective on the generalized Cobb-Douglas production functionsrdquo Applied Mathematics Lettersvol 24 no 5 pp 777ndash783 2011

[6] A D Vılcu and G E Vılcu ldquoOn some geometric properties ofthe generalized CES production functionsrdquo Applied Mathemat-ics and Computation vol 218 no 1 pp 124ndash129 2011

[7] B-Y Chen ldquoOn some geometric properties of ℎ-homogeneousproduction functions in microeconomicsrdquo Kragujevac Journalof Mathematics vol 35 no 3 pp 343ndash357 2011

[8] B-Y Chen ldquoOn some geometric properties of quasi-sumproduction modelsrdquo Journal of Mathematical Analysis andApplications vol 392 no 2 pp 192ndash199 2012

[9] B-Y Chen ldquoA note on homogeneous production modelsrdquoKragujevac Journal ofMathematics vol 36 no 1 pp 41ndash43 2012

[10] B-Y Chen ldquoGeometry of quasi-sum production functions withconstant elasticity of substitution propertyrdquo Journal of AdvancedMathematical Studies vol 5 no 2 pp 90ndash97 2012

[11] B-Y Chen ldquoClassification of homothetic functions with con-stant elasticity of substitution and its geometric applicationsrdquoInternational Electronic Journal of Geometry vol 5 no 2 pp67ndash78 2012

[12] B-Y Chen ldquoSolutions to homogeneousMongemdashAmpere equa-tions of homothetic functions and their applications to produc-tion models in economicsrdquo Journal of Mathematical Analysisand Applications vol 411 no 1 pp 223ndash229 2014

[13] B-Y Chen and G E Vılcu ldquoGeometric classifications ofhomogeneous production functionsrdquo Applied Mathematics andComputation vol 225 pp 345ndash351 2013

[14] A D Vilcu and G E Vilcu ldquoOn homogeneous productionfunctions with proportional marginal rate of substitutionrdquoMathematical Problems in Engineering vol 2013 Article ID732643 5 pages 2013

[15] B-Y Chen Pseudo-Riemannian Geometry 120575-Invariants andApplications World Scientific Hackensack NJ USA 2011

[16] B-y Chen Geometry of Submanifolds Marcel Dekker NewYork NY USA 1973

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of