Research Article Product of the Generalized...

6
Research Article Product of the Generalized -Subgroups Dilek Bayrak and Sultan Yamak Department of Mathematics, Namik Kemal University, 59000 Tekirda˘ g, Turkey Correspondence should be addressed to Dilek Bayrak; [email protected] Received 6 July 2015; Accepted 8 February 2016 Academic Editor: Ali Jaballah Copyright Β© 2016 D. Bayrak and S. Yamak. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We introduce the notion of (, )-product of -subsets. We give a necessary and sufficient condition for (, )--subgroup of a product of groups to be (, )-product of (, )--subgroups. 1. Introduction Starting from 1980, by the concept of quasi-coincidence of a fuzzy point with a fuzzy set given by Pu and Liu [1], the generalized subalgebraic structures of algebraic structures have been investigated again. Using the concept mentioned above, Bhakat and Das [2, 3] gave the definition of (, )- fuzzy subgroup, where , are any two of {∈, , ∈ ∨, ∈ ∧} with ΜΈ =∈∧. e (∈, ∈ ∨)-fuzzy subgroup is an important and useful generalization of fuzzy subgroups that were laid by Rosenfeld in [4]. Aο¬…er this, many other researchers used the idea of the generalized fuzzy sets that give several charac- terization results in different branches of algebra (see [5–10]). In recent years, many researchers make generalizations which are referred to as (, )-fuzzy substructures and (∈ ,∈ ∨ )- fuzzy substructures on this topic (see [11–15]). Identifying the subgroups of a Cartesian product of groups plays an essential role in studying group theory. Many important results on characterization of Cartesian product of subgroups, fuzzy subgroups, and -fuzzy subgroups exist in literature. Chon obtained a necessary and sufficient condition for a fuzzy subgroup of a Cartesian product of groups to be product of fuzzy subgroups under minimum operation [16]. Later, some necessary and sufficient conditions for a -subgroup of a Cartesian product of groups to be a - product of -subgroups were given by Yamak et al. [17]. A subgroup of a Cartesian product of groups is characterized by subgroups in the same study. Consequently, it seems to be interesting to extend this study to generalized -subgroups. In this paper, we introduce the notion of the (, )-product of -subsets and investigate some properties of the (, )- product of -subgroups. Also, we give a necessary and sufficient condition for (, )--subgroup of a Cartesian product of groups to be a product of (, )--subgroups. 2. Preliminaries In this section, we start by giving some known definitions and notations. roughout this paper, unless otherwise stated, always stands for any given group with a multiplicative binary operation, an identity and denote a complete lattice with top and bottom elements 1, 0, respectively. An -subset of is any function from into , which is introduced by Goguen [18] as a generalization of the notion of Zadeh’s fuzzy subset [19]. e class of -subsets of will be denoted by (, ). In particular, if = [0, 1], then it is appropriate to replace -subset with fuzzy subset. In this case the set of all fuzzy subsets of is denoted by (). Let and be -subsets of . We say that is contained in if () ≀ () for every ∈ and is denoted by ≀. en ≀ is a partial ordering on the set (, ). Definition 1 (see [20]). An -subset of is called an - subgroup of if, for all , ∈ , the following conditions hold: (G1) () ∧ () ≀ (). (G2) () ≀ ( βˆ’1 ). In particular, when = [0, 1], an -subgroup of is referred to as a fuzzy subgroup of . Hindawi Publishing Corporation Journal of Mathematics Volume 2016, Article ID 4918948, 5 pages http://dx.doi.org/10.1155/2016/4918948

Transcript of Research Article Product of the Generalized...

Page 1: Research Article Product of the Generalized -Subgroupsdownloads.hindawi.com/journals/jmath/2016/4918948.pdftype of fuzzy normal subgroups and fuzzy cosets, Journal of Intelligent and

Research ArticleProduct of the Generalized 𝐿-Subgroups

Dilek Bayrak and Sultan Yamak

Department of Mathematics, Namik Kemal University, 59000 Tekirdag, Turkey

Correspondence should be addressed to Dilek Bayrak; [email protected]

Received 6 July 2015; Accepted 8 February 2016

Academic Editor: Ali Jaballah

Copyright Β© 2016 D. Bayrak and S. Yamak. This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properlycited.

We introduce the notion of (πœ†, πœ‡)-product of 𝐿-subsets. We give a necessary and sufficient condition for (πœ†, πœ‡)-𝐿-subgroup of aproduct of groups to be (πœ†, πœ‡)-product of (πœ†, πœ‡)-𝐿-subgroups.

1. Introduction

Starting from 1980, by the concept of quasi-coincidence ofa fuzzy point with a fuzzy set given by Pu and Liu [1], thegeneralized subalgebraic structures of algebraic structureshave been investigated again. Using the concept mentionedabove, Bhakat and Das [2, 3] gave the definition of (𝛼, 𝛽)-fuzzy subgroup, where 𝛼, 𝛽 are any two of {∈, π‘ž, βˆˆβˆ¨π‘ž, ∈ βˆ§π‘ž}with 𝛼 =βˆˆβˆ§π‘ž. The (∈, βˆˆβˆ¨π‘ž)-fuzzy subgroup is an importantand useful generalization of fuzzy subgroups that were laidby Rosenfeld in [4]. After this, many other researchers usedthe idea of the generalized fuzzy sets that give several charac-terization results in different branches of algebra (see [5–10]).In recent years,many researchersmake generalizationswhichare referred to as (πœ†, πœ‡)-fuzzy substructures and (βˆˆπœ†, βˆˆπœ†βˆ¨π‘žπœ‡)-fuzzy substructures on this topic (see [11–15]).

Identifying the subgroups of a Cartesian product ofgroups plays an essential role in studying group theory. Manyimportant results on characterization of Cartesian product ofsubgroups, fuzzy subgroups, and𝑇𝐿-fuzzy subgroups exist inliterature. Chon obtained a necessary and sufficient conditionfor a fuzzy subgroup of a Cartesian product of groups tobe product of fuzzy subgroups under minimum operation[16]. Later, some necessary and sufficient conditions for a𝑇𝐿-subgroup of a Cartesian product of groups to be a 𝑇-product of 𝑇𝐿-subgroups were given by Yamak et al. [17]. Asubgroup of a Cartesian product of groups is characterizedby subgroups in the same study. Consequently, it seems to beinteresting to extend this study to generalized 𝐿-subgroups.In this paper, we introduce the notion of the (πœ†, πœ‡)-product

of 𝐿-subsets and investigate some properties of the (πœ†, πœ‡)-product of 𝐿-subgroups. Also, we give a necessary andsufficient condition for (πœ†, πœ‡)-𝐿-subgroup of a Cartesianproduct of groups to be a product of (πœ†, πœ‡)-𝐿-subgroups.

2. Preliminaries

In this section, we start by giving some known definitions andnotations. Throughout this paper, unless otherwise stated, 𝐺always stands for any given groupwith amultiplicative binaryoperation, an identity 𝑒 and 𝐿 denote a complete lattice withtop and bottom elements 1, 0, respectively.

An 𝐿-subset of𝑋 is any function from𝑋 into 𝐿, which isintroduced by Goguen [18] as a generalization of the notionof Zadeh’s fuzzy subset [19]. The class of 𝐿-subsets of 𝑋 willbe denoted by 𝐹(𝑋, 𝐿). In particular, if 𝐿 = [0, 1], then it isappropriate to replace 𝐿-subset with fuzzy subset. In this casethe set of all fuzzy subsets of 𝑋 is denoted by 𝐹(𝑋). Let 𝐴and 𝐡 be 𝐿-subsets of 𝑋. We say that 𝐴 is contained in 𝐡 if𝐴(π‘₯) ≀ 𝐡(π‘₯) for every π‘₯ ∈ 𝑋 and is denoted by 𝐴 ≀ 𝐡. Then≀ is a partial ordering on the set 𝐹(𝑋, 𝐿).

Definition 1 (see [20]). An 𝐿-subset of 𝐺 is called an 𝐿-subgroup of 𝐺 if, for all π‘₯, 𝑦 ∈ 𝐺, the following conditionshold:(G1) 𝐴(π‘₯) ∧ 𝐴(𝑦) ≀ 𝐴(π‘₯𝑦).(G2) 𝐴(π‘₯) ≀ 𝐴(π‘₯βˆ’1).In particular, when 𝐿 = [0, 1], an 𝐿-subgroup of 𝐺 is

referred to as a fuzzy subgroup of 𝐺.

Hindawi Publishing CorporationJournal of MathematicsVolume 2016, Article ID 4918948, 5 pageshttp://dx.doi.org/10.1155/2016/4918948

Page 2: Research Article Product of the Generalized -Subgroupsdownloads.hindawi.com/journals/jmath/2016/4918948.pdftype of fuzzy normal subgroups and fuzzy cosets, Journal of Intelligent and

2 Journal of Mathematics

Definition 2 (see [12]). Let πœ†, πœ‡ ∈ 𝐿 and πœ† < πœ‡. Let 𝐴 be an𝐿-subset of 𝐺. 𝐴 is called (πœ†, πœ‡)-𝐿-subgroup of 𝐺 if, for allπ‘₯, 𝑦 ∈ 𝐺, the following conditions hold:

(i) 𝐴(π‘₯𝑦) ∨ πœ† β‰₯ 𝐴(π‘₯) ∧ 𝐴(𝑦) ∧ πœ‡.

(ii) 𝐴(π‘₯βˆ’1) ∨ πœ† β‰₯ 𝐴(π‘₯) ∧ πœ‡.

Denote by 𝐹𝑆(πœ†, πœ‡, 𝐺, 𝐿) the set of all (πœ†, πœ‡)-𝐿-subgroups of𝐺. When 𝐿 = [0, 1], its counterpart is written as 𝐹𝑆(πœ†, πœ‡, 𝐺).

Unless otherwise stated, 𝐿 always represents any givendistributive lattice.

3. Product of (πœ†,πœ‡)-𝐿-Subgroups

Definition 3 (see [16]). Let 𝐴 𝑖 be an 𝐿-subset of 𝐺𝑖 for each𝑖 = 1, 2, . . . , 𝑛. Then product of 𝐴 𝑖 (𝑖 = 1, 2, . . . , 𝑛) denotedby 𝐴1 Γ— 𝐴2 Γ— β‹… β‹… β‹… Γ— 𝐴𝑛 is defined to be the 𝐿-subset of 𝐺1 ×𝐺2 Γ— β‹… β‹… β‹… Γ— 𝐺𝑛 that satisfies

(𝐴1 Γ— 𝐴2 Γ— β‹… β‹… β‹… Γ— 𝐴𝑛) (π‘₯1, π‘₯2, . . . , π‘₯𝑛)

= 𝐴1 (π‘₯1) ∧ 𝐴2 (π‘₯2) ∧ β‹… β‹… β‹… ∧ 𝐴𝑛 (π‘₯𝑛) .(1)

Example 4. We define the fuzzy subsets𝐴 and 𝐡 ofZ andZ2,respectively, as follows:

𝐴 (π‘₯) ={

{

{

0.5, π‘₯ ∈ 2Z,

0.3, otherwise,

𝐡 (π‘₯) ={

{

{

0.7, π‘₯ = 0,

0.2, π‘₯ = 1.

(2)

We obtain that

𝐴 Γ— 𝐡 (π‘₯) =

{{{{

{{{{

{

0.5, π‘₯ ∈ 2Z Γ— {0} ,

0.3, π‘₯ ∈ Z βˆ’ {2Z} Γ— {0} ,

0.2, otherwise.

(3)

Theorem5. Let𝐺1, 𝐺2, . . . , 𝐺𝑛 be groups and⋁𝑛

𝑖=1πœ†π‘– < β‹€

𝑛

𝑖=1πœ‡π‘–

such that𝐴 𝑖 is (πœ†π‘–, πœ‡π‘–)-𝐿-subgroup of𝐺𝑖 for each 𝑖 = 1, 2, . . . , 𝑛.Then 𝐴1 Γ— 𝐴2 Γ— β‹… β‹… β‹… Γ— 𝐴𝑛 is (⋁

𝑛

𝑖=1πœ†π‘–, ⋀𝑛

𝑖=1πœ‡π‘–)-𝐿-subgroup of

𝐺1 Γ— 𝐺2 Γ— β‹… β‹… β‹… Γ— 𝐺𝑛.

Proof. Let (π‘₯1, π‘₯2, . . . , π‘₯𝑛), (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ 𝐺1×𝐺2Γ—β‹… β‹… ⋅×𝐺𝑛.Then𝐴1 Γ— 𝐴2 Γ— β‹… β‹… β‹… Γ— 𝐴𝑛 ((π‘₯1, π‘₯2, . . . , π‘₯𝑛) β‹… (𝑦1, 𝑦2, . . . , 𝑦𝑛))

∨

𝑛

⋁𝑖=1

πœ†π‘– = 𝐴1 Γ— 𝐴2 Γ— β‹… β‹… β‹…

Γ— 𝐴𝑛 (π‘₯1𝑦1, π‘₯2𝑦2, . . . , π‘₯𝑛𝑦𝑛) ∨ πœ†1 ∨

𝑛

⋁𝑖=1

πœ†π‘–

= (𝐴1 (π‘₯1𝑦1) ∧ 𝐴2 (π‘₯2𝑦2) ∧ β‹… β‹… β‹… ∧ 𝐴𝑛 (π‘₯𝑛𝑦𝑛))

∨

𝑛

⋁𝑖=1

πœ†π‘– β‰₯ (𝐴1 (π‘₯1𝑦1) ∨ πœ†1) ∧ (𝐴2 (π‘₯2𝑦2) ∨ πœ†2)

∧ β‹… β‹… β‹… ∧ (𝐴𝑛 (π‘₯𝑛𝑦𝑛) ∨ πœ†π‘›) β‰₯ 𝐴1 (π‘₯1) ∧ 𝐴1 (𝑦1) ∧ πœ‡1

∧ 𝐴2 (π‘₯2) ∧ 𝐴2 (𝑦2) ∧ πœ‡2 ∧ β‹… β‹… β‹… ∧ 𝐴𝑛 (π‘₯𝑛) ∧ 𝐴𝑛 (𝑦𝑛)

∧ πœ‡π‘› = 𝐴1 Γ— 𝐴2 Γ— β‹… β‹… β‹… Γ— 𝐴𝑛 (π‘₯1, π‘₯2, . . . , π‘₯𝑛) ∧ 𝐴1

Γ— 𝐴2 Γ— β‹… β‹… β‹… Γ— 𝐴𝑛 (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∧

𝑛

⋀𝑖=1

πœ‡π‘–.

(4)

Similarly, it can be shown that

𝐴1 Γ— 𝐴2 Γ— β‹… β‹… β‹… Γ— 𝐴𝑛 ((π‘₯1, π‘₯2, . . . , π‘₯𝑛)βˆ’1) ∨

𝑛

⋁𝑖=1

πœ†π‘–

β‰₯ 𝐴1 Γ— 𝐴2 Γ— β‹… β‹… β‹… Γ— 𝐴𝑛 (π‘₯1, π‘₯2, . . . , π‘₯𝑛) ∧

𝑛

⋀𝑖=1

πœ‡π‘–.

(5)

Corollary 6. If 𝐴1, 𝐴2, . . . , 𝐴𝑛 are (πœ†, πœ‡)-𝐿-subgroups of𝐺1, 𝐺2, . . . , 𝐺𝑛, respectively, then 𝐴1 Γ— 𝐴2 Γ— β‹… β‹… β‹… Γ— 𝐴𝑛 is (πœ†, πœ‡)-𝐿-subgroup of 𝐺1 Γ— 𝐺2 Γ— β‹… β‹… β‹… Γ— 𝐺𝑛.

Theorem 7 (Theorem 2.9, [16]). Let 𝐺1, 𝐺2, . . . , 𝐺𝑛 begroups, let 𝑒1, 𝑒2, . . . , 𝑒𝑛 be identities, respectively, and let𝐴 be a fuzzy subgroup in 𝐺1 Γ— 𝐺2 Γ— β‹… β‹… β‹… Γ— 𝐺𝑛. Then𝐴(𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) β‰₯ 𝐴(π‘₯1, π‘₯2, . . . , π‘₯𝑛) for 𝑖 =1, 2, . . . , π‘˜βˆ’1, π‘˜+1, . . . , 𝑛 if and only if𝐴 = 𝐴1×𝐴2Γ—β‹… β‹… ⋅×𝐴𝑛,where 𝐴1, 𝐴2, . . . , 𝐴𝑛 are fuzzy subgroups of 𝐺1, 𝐺2, . . . , 𝐺𝑛,respectively.

The following example shows that Theorem 7 may not betrue for any (πœ†, πœ‡)-𝐿-subgroup.

Example 8. Consider

𝐴 (π‘₯) =

{{{{{{{

{{{{{{{

{

0.8, π‘₯ = (0, 0) ,

0.7, π‘₯ = (1, 0) ,

0.6, π‘₯ = (0, 1) ,

0.5, π‘₯ = (1, 1) .

(6)

It is easy to see that 𝐴 is (0, 0.5)-fuzzy subgroup of Z2 Γ— Z2.Since 𝐴(1, 0) β‰₯ 𝐴(1, 1) and 𝐴(0, 1) β‰₯ 𝐴(1, 1), 𝐴 satisfies the

Page 3: Research Article Product of the Generalized -Subgroupsdownloads.hindawi.com/journals/jmath/2016/4918948.pdftype of fuzzy normal subgroups and fuzzy cosets, Journal of Intelligent and

Journal of Mathematics 3

condition of Theorem 7, but there do not exist 𝐴1, 𝐴2 fuzzysubgroups of Z2 Γ— Z2 such that 𝐴 = 𝐴1 Γ— 𝐴2.

In fact, suppose that there exist 𝐴1, 𝐴2 ∈ 𝐹𝑆(0, 0.5,Z2 Γ—Z2) such that 𝐴 = 𝐴1 ×𝐴2. Since 𝐴(1, 0) = 0.7 and 𝐴(0, 1) =0.6, we have 𝐴1(1) β‰₯ 0.7 and 𝐴2(1) β‰₯ 0.6. Hence

0.5 = 𝐴1 Γ— 𝐴2 (1, 1) = 𝐴1 (1) ∧ 𝐴2 (1) β‰₯ 0.7 ∧ 0.6

= 0.6,

(7)

a contradiction.

Definition 9. Let 𝐴 𝑖 be an 𝐿-subset of 𝐺𝑖 for each 𝑖 =1, 2, . . . , 𝑛.Then (πœ†, πœ‡)-product of𝐴 𝑖 (𝑖 = 1, 2, . . . , 𝑛) denotedby 𝐴1Γ—

πœ†

πœ‡π΄2Γ—πœ†

πœ‡β‹… β‹… β‹… Γ—πœ†πœ‡π΄π‘› is defined to be an 𝐿-subset of 𝐺1 Γ—

𝐺2 Γ— β‹… β‹… β‹… Γ— 𝐺𝑛 that satisfies

(𝐴1Γ—πœ†

πœ‡π΄2Γ—πœ†

πœ‡β‹… β‹… β‹… Γ—πœ†

πœ‡π΄π‘›) (π‘₯1, π‘₯2, . . . , π‘₯𝑛)

= (𝐴1 (π‘₯1) ∧ 𝐴2 (π‘₯2) ∧ β‹… β‹… β‹… ∧ 𝐴𝑛 (π‘₯𝑛) ∧ πœ‡) ∨ πœ†

= (

𝑛

⋀𝑖=1

𝐴 𝑖 (π‘₯𝑖) ∧ πœ‡) ∨ πœ†.

(8)

Example 10. We define the fuzzy subsets 𝐴 and 𝐡 of Z andZ2, respectively, as in Example 4. Then (0.4, 0.6)-product of𝐴 and 𝐡 is as follows:

𝐴×0.4

0.6𝐡 (π‘₯) =

{

{

{

0.5, π‘₯ ∈ 2Z Γ— {0} ,

0.4, otherwise.(9)

Lemma 11. Let 𝐺1, 𝐺2, . . . , 𝐺𝑛 be groups. Then we have thefollowing:

(1) If 𝐴 is (πœ†, πœ‡)-𝐿-subgroup of 𝐺1 Γ— 𝐺2Γ—, . . . , 𝐺𝑛 and𝐴 𝑖(π‘₯) = 𝐴(𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯, 𝑒𝑖+1, . . . , 𝑒𝑛) for 𝑖 =

1, 2, . . . , 𝑛, then 𝐴 𝑖 is (πœ†, πœ‡)-𝐿-subgroup of 𝐺𝑖 for all𝑖 = 1, 2, . . . , 𝑛.

(2) If 𝐴 𝑖 is (πœ†, πœ‡)-𝐿-subgroup of 𝐺𝑖 for all 𝑖 = 1, 2, . . . , 𝑛,then 𝐴1Γ—πœ†πœ‡π΄2Γ—

πœ†

πœ‡β‹… β‹… β‹… Γ—πœ†πœ‡π΄π‘› is (πœ†, πœ‡)-𝐿-subgroup of 𝐺1 Γ—

𝐺2Γ—, . . . , 𝐺𝑛.

Proof. (1) Let π‘₯, 𝑦 ∈ 𝐺𝑖. Since 𝐴 ∈ 𝐹𝑆(πœ†, πœ‡, 𝐺1 Γ— 𝐺2Γ—,

. . . , 𝐺𝑛, 𝐿), we have

𝐴 𝑖 (π‘₯) ∧ 𝐴 𝑖 (𝑦) ∧ πœ‡

= 𝐴 (𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯, 𝑒𝑖+1, . . . , 𝑒𝑛)

∧ 𝐴 (𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, 𝑦, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧ πœ‡

≀ 𝐴 (𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯ β‹… 𝑦, 𝑒𝑖+1, . . . , 𝑒𝑛) ∨ πœ†

= 𝐴 𝑖 (π‘₯ β‹… 𝑦) ∨ πœ†.

(10)

Similarly, we can show that 𝐴 𝑖(π‘₯) ∧ πœ‡ ≀ 𝐴 𝑖(π‘₯βˆ’1) ∨ πœ†. Hence,

𝐴 𝑖 ∈ 𝐹𝑆(πœ†, πœ‡, 𝐺𝑖, 𝐿) by Definition 2 for 𝑖 = 1, 2, . . . , 𝑛.

(2) Let (π‘₯1, π‘₯2, . . . , π‘₯𝑛), (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ 𝐺1×𝐺2Γ—, . . . , 𝐺𝑛.Then,

𝐴1Γ—πœ†

πœ‡π΄2Γ—πœ†

πœ‡β‹… β‹… β‹… Γ—πœ†

πœ‡π΄π‘› ((π‘₯1, π‘₯2, . . . , π‘₯𝑛) (𝑦1, 𝑦2, . . . , 𝑦𝑛))

∨ πœ† = 𝐴1Γ—πœ†

πœ‡π΄2Γ—πœ†

πœ‡β‹… β‹… β‹… Γ—πœ†

πœ‡π΄π‘› (π‘₯1𝑦1, π‘₯2𝑦2, . . . , π‘₯𝑛𝑦𝑛)

∨ πœ† = (

𝑛

⋀𝑖=1

𝐴 𝑖 (π‘₯𝑖𝑦𝑖) ∧ πœ‡) ∨ πœ† = ((𝐴1 (π‘₯1𝑦1) ∨ πœ†)

∧ (𝐴2 (π‘₯2𝑦2) ∨ πœ†) ∧ β‹… β‹… β‹… ∧ (𝐴𝑛 (π‘₯𝑛𝑦𝑛) ∨ πœ†) ∧ πœ‡)

∨ πœ† β‰₯ (𝐴1 (π‘₯1) ∧ 𝐴1 (𝑦1) ∧ πœ‡ ∧ 𝐴2 (π‘₯2) ∧ 𝐴2 (𝑦2)

∧ πœ‡ ∧ β‹… β‹… β‹… ∧ 𝐴𝑛 (π‘₯𝑛) ∧ 𝐴𝑛 (𝑦𝑛) ∧ πœ‡) ∨ πœ†

= ((

𝑛

⋀𝑖=1

𝐴 𝑖 (π‘₯𝑖) ∧ πœ‡) ∨ πœ†) ∧ ((

𝑛

⋀𝑖=1

𝐴 𝑖 (𝑦𝑖) ∧ πœ‡)

∨ πœ†) ∧ πœ‡ = 𝐴1Γ—πœ†

πœ‡π΄2Γ—πœ†

πœ‡β‹… β‹… β‹… Γ—πœ†

πœ‡π΄π‘› (π‘₯1, π‘₯2, . . . , π‘₯𝑛)

∧ 𝐴1Γ—πœ†

πœ‡π΄2Γ—πœ†

πœ‡β‹… β‹… β‹… Γ—πœ†

πœ‡π΄π‘› (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∧ πœ‡.

(11)

Similarly, we can show that

𝐴1Γ—πœ†

πœ‡π΄2Γ—πœ†

πœ‡β‹… β‹… β‹… Γ—πœ†

πœ‡π΄π‘› ((π‘₯1, π‘₯2, . . . , π‘₯𝑛)

βˆ’1) ∨ πœ†

β‰₯ 𝐴1Γ—πœ†

πœ‡π΄2Γ—πœ†

πœ‡β‹… β‹… β‹… Γ—πœ†

πœ‡π΄π‘› (π‘₯1, π‘₯2, . . . , π‘₯𝑛) ∧ πœ‡.

(12)

Hence, 𝐴1Γ—πœ†

πœ‡π΄2Γ—πœ†

πœ‡β‹… β‹… β‹… Γ—πœ†πœ‡π΄π‘› is (πœ†, πœ‡)-𝐿-subgroup of 𝐺1 Γ—

𝐺2Γ—, . . . , 𝐺𝑛.

Theorem 12. Let 𝐺1, 𝐺2, . . . , 𝐺𝑛 be groups and 𝐴 ∈ 𝐹𝑆(πœ†, πœ‡,𝐺1×𝐺2Γ—β‹… β‹… ⋅×𝐺𝑛, 𝐿).Then (𝐴(𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧𝐴(π‘₯1, π‘₯2, . . . , π‘₯π‘–βˆ’1, 𝑒𝑖, π‘₯𝑖+1, . . . , π‘₯𝑛)βˆ§πœ‡) βˆ¨πœ† = 𝐴(π‘₯1, π‘₯2, . . . , π‘₯𝑛)

for 𝑖 = 1, 2, . . . , 𝑛 if and only if𝐴 = 𝐴1Γ—πœ†πœ‡π΄2Γ—πœ†

πœ‡β‹… β‹… β‹… Γ—πœ†πœ‡π΄π‘›, where

𝐴 𝑖(π‘₯) = 𝐴(𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯, 𝑒𝑖+1, . . . , 𝑒𝑛).

Proof. Suppose that (𝐴(𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛)∧ 𝐴(π‘₯1,π‘₯2, . . . , π‘₯π‘–βˆ’1, 𝑒𝑖, π‘₯𝑖+1, . . . , π‘₯𝑛) ∧ πœ‡) ∨ πœ† = 𝐴(π‘₯1, π‘₯2, . . . , π‘₯𝑛) for𝑖 = 1, 2, . . . , 𝑛. Now, for any (π‘₯1, π‘₯2, . . . , π‘₯𝑛) ∈ 𝐺1×𝐺2Γ—β‹… β‹… ⋅×𝐺𝑛,we have

𝐴 (π‘₯1, π‘₯2, . . . , π‘₯𝑛) = (𝐴 (π‘₯1, 𝑒2, . . . , 𝑒𝑛)

∧ 𝐴 (𝑒1, π‘₯2, . . . , π‘₯𝑛) ∧ πœ‡) ∨ πœ†

= (𝐴1 (π‘₯1)

∧ ((𝐴 (𝑒1, π‘₯2, . . . , 𝑒𝑛) ∧ 𝐴 (𝑒1, 𝑒2, π‘₯3, . . . , π‘₯𝑛) ∧ πœ‡)

∨ πœ†) ∧ πœ‡) ∨ πœ†

Page 4: Research Article Product of the Generalized -Subgroupsdownloads.hindawi.com/journals/jmath/2016/4918948.pdftype of fuzzy normal subgroups and fuzzy cosets, Journal of Intelligent and

4 Journal of Mathematics

= (𝐴1 (π‘₯1) ∧ 𝐴2 (π‘₯2) ∧ 𝐴 (𝑒1, 𝑒2, π‘₯3, . . . , π‘₯𝑛) ∧ πœ‡)

∨ πœ†

...

= (𝐴1 (π‘₯1) ∧ 𝐴2 (π‘₯2) ∧ β‹… β‹… β‹… ∧ 𝐴 (𝑒1, 𝑒2, . . . , π‘₯𝑛) ∧ πœ‡)

∨ πœ†

= 𝐴1Γ—πœ†

πœ‡π΄2Γ—πœ†

πœ‡β‹… β‹… β‹… Γ—πœ†

πœ‡π΄π‘› (π‘₯1, π‘₯2, . . . , π‘₯𝑛) .

(13)

Hence we obtain that 𝐴 = 𝐴1Γ—πœ†

πœ‡π΄2Γ—πœ†

πœ‡β‹… β‹… β‹… Γ—πœ†πœ‡π΄π‘›. Conversely,

assume that 𝐴 = 𝐴1Γ—πœ†

πœ‡π΄2Γ—πœ†

πœ‡β‹… β‹… β‹… Γ—πœ†πœ‡π΄π‘›. Then, we obtain

𝐴 (π‘₯1, π‘₯2, . . . , π‘₯𝑛) = 𝐴1Γ—πœ†

πœ‡π΄2Γ—πœ†

πœ‡

β‹… β‹… β‹… Γ—πœ†

πœ‡π΄π‘› (π‘₯1, π‘₯2, . . . , π‘₯𝑛)

= (𝐴 (π‘₯1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴 (𝑒1, π‘₯2, . . . , 𝑒𝑛) ∧ β‹… β‹… β‹…

∧ 𝐴 (𝑒1, 𝑒2, . . . , π‘₯𝑛) ∧ πœ‡) ∨ πœ†

≀ (𝐴 (π‘₯1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴 (𝑒1, π‘₯2, . . . , 𝑒𝑛) ∧ β‹… β‹… β‹…

∧ (𝐴 (𝑒1, 𝑒2, . . . , π‘₯π‘›βˆ’1, π‘₯𝑛) ∨ πœ†) ∧ πœ‡) ∨ πœ†

= (𝐴 (π‘₯1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴 (𝑒1, π‘₯2, . . . , 𝑒𝑛) ∧ β‹… β‹… β‹…

∧ 𝐴 (𝑒1, 𝑒2, . . . , π‘₯π‘›βˆ’1, π‘₯𝑛) ∧ πœ‡) ∨ πœ†

...

≀ (𝐴 (π‘₯1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴 (𝑒1, π‘₯2, . . . , π‘₯𝑛) ∧ πœ‡) ∨ πœ†.

(14)

On the other hand, (𝐴(π‘₯1, 𝑒2, . . . , 𝑒𝑛)∧𝐴(𝑒1, π‘₯2, . . . , π‘₯𝑛)βˆ§πœ‡)βˆ¨πœ† ≀ 𝐴(π‘₯1, π‘₯2, . . . , π‘₯𝑛) ∨ πœ†.

Since 𝐴(π‘₯1, π‘₯2, . . . , π‘₯𝑛) β‰₯ πœ†, (𝐴(π‘₯1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴(𝑒1, π‘₯2,. . . , π‘₯𝑛) ∧ πœ‡) ∨ πœ† ≀ 𝐴(π‘₯1, π‘₯2, . . . , π‘₯𝑛).

Hence, 𝐴(π‘₯1, π‘₯2, . . . , π‘₯𝑛) = (𝐴(π‘₯1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴(𝑒1, π‘₯2,. . . , π‘₯𝑛) ∧ πœ‡) ∨ πœ†.

Similarly, we get (𝐴(𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧𝐴(π‘₯1, π‘₯2, . . . , π‘₯π‘–βˆ’1, 𝑒𝑖, π‘₯𝑖+1, . . . , π‘₯𝑛)βˆ§πœ‡)∨ πœ† = 𝐴(π‘₯1, π‘₯2, . . . , π‘₯𝑛)

for 𝑖 = 2, 3, . . . , 𝑛.

Lemma 13. Let 𝐺1, 𝐺2, . . . , 𝐺𝑛 be groups, let 𝑒1, 𝑒2, . . . , 𝑒𝑛 beidentities of𝐺1, 𝐺2, . . . , 𝐺𝑛, respectively, and𝐴 ∈ 𝐹𝑆(πœ†, πœ‡, 𝐺1 ×𝐺2 Γ— β‹… β‹… β‹… Γ— 𝐺𝑛). If (𝐴(𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧ πœ‡) ∨ πœ† β‰₯𝐴(π‘₯1, π‘₯2, . . . , π‘₯𝑛) for 𝑖 = 1, 2, . . . , π‘˜ βˆ’ 1, π‘˜ + 1, . . . , 𝑛,then (𝐴(𝑒1, 𝑒2, . . . , π‘’π‘˜βˆ’1, π‘₯π‘˜, π‘’π‘˜+1, . . . , 𝑒𝑛) ∧ πœ‡) ∨ πœ† β‰₯ 𝐴(π‘₯1,

π‘₯2, . . . , π‘₯𝑛).

Proof. By Definition 2, we observe that

(𝐴 (𝑒1, 𝑒2, . . . , π‘’π‘˜βˆ’1, π‘₯π‘˜, π‘’π‘˜+1, . . . , 𝑒𝑛) ∧ πœ‡) ∨ πœ†

= (𝐴 ((π‘₯1, π‘₯2, . . . , π‘₯𝑛)

β‹… (π‘₯βˆ’1

1, π‘₯βˆ’1

2, . . . , π‘₯

βˆ’1

π‘˜βˆ’1, π‘’π‘˜, π‘₯βˆ’1

π‘˜+1, . . . , π‘₯

βˆ’1

𝑛)) ∧ πœ‡) ∨ πœ†

= (𝐴 ((π‘₯1, π‘₯2, . . . , π‘₯𝑛)

β‹… (π‘₯βˆ’1

1, π‘₯βˆ’1

2, . . . , π‘₯

βˆ’1

π‘˜βˆ’1, π‘’π‘˜, π‘₯βˆ’1

π‘˜+1, . . . , π‘₯

βˆ’1

𝑛)) ∨ πœ†) ∧ πœ‡

β‰₯ (𝐴 (π‘₯1, π‘₯2, . . . , π‘₯𝑛)

∧ 𝐴 (π‘₯βˆ’1

1, π‘₯βˆ’1

2, . . . , π‘₯

βˆ’1

π‘˜βˆ’1, π‘’π‘˜, π‘₯βˆ’1

π‘˜+1, . . . , π‘₯

βˆ’1

𝑛) ∧ πœ‡) ∨ πœ†

= (𝐴 (π‘₯1, π‘₯2, . . . , π‘₯𝑛) ∨ πœ†)

∧ (𝐴 (π‘₯βˆ’1

1, π‘₯βˆ’1

2, . . . , π‘₯

βˆ’1

π‘˜βˆ’1, π‘’π‘˜, π‘₯βˆ’1

π‘˜+1, . . . , π‘₯

βˆ’1

𝑛) ∨ πœ†)

∧ πœ‡

β‰₯ ((𝐴 (π‘₯1, π‘₯2, . . . , π‘₯𝑛) ∨ πœ†)

∧ 𝐴 (π‘₯1, π‘₯2, . . . , π‘₯π‘˜βˆ’1, π‘’π‘˜, π‘₯π‘˜+1, . . . , π‘₯𝑛) ∧ πœ‡) ∨ πœ†

= (𝐴 (π‘₯1, π‘₯2, . . . , π‘₯𝑛) ∨ πœ†)

∧ (𝐴 (π‘₯1, π‘₯2, . . . , π‘₯π‘˜βˆ’1, π‘’π‘˜, π‘₯π‘˜+1, . . . , π‘₯𝑛) ∨ πœ†) ∧ πœ‡

β‰₯ ((𝐴 (π‘₯1, π‘₯2, . . . , π‘₯𝑛) ∨ πœ†)

∧ (𝐴 (𝑒1, . . . , π‘’π‘˜βˆ’2, π‘₯π‘˜βˆ’1, π‘’π‘˜, . . . , 𝑒𝑛)

∧ 𝐴 (π‘₯1, . . . , π‘’π‘˜βˆ’1, π‘’π‘˜, π‘₯π‘˜+1, . . . , π‘₯𝑛) ∧ πœ‡)) ∨ πœ†

= (𝐴 (π‘₯1, π‘₯2, . . . , π‘₯𝑛) ∨ πœ†)

∧ (𝐴 (π‘₯1, . . . , π‘’π‘˜βˆ’1, π‘’π‘˜, π‘₯π‘˜+1, . . . , π‘₯𝑛) ∧ πœ‡) ∨ πœ†

...

β‰₯ 𝐴 (π‘₯1, π‘₯2, . . . , π‘₯𝑛) ∨ πœ†

β‰₯ 𝐴 (π‘₯1, π‘₯2, . . . , π‘₯𝑛) .

(15)

Lemma 14. Let 𝐺1, 𝐺2, . . . , 𝐺𝑛 be groups and 𝐴 ∈ 𝐹𝑆(0,

πœ‡, 𝐺1×𝐺2Γ—β‹… β‹… ⋅×𝐺𝑛, 𝐿).Then𝐴(𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛)∧𝐴(π‘₯1, π‘₯2, . . . , π‘₯π‘–βˆ’1, 𝑒𝑖, π‘₯𝑖+1, . . . , π‘₯𝑛) ∧ πœ‡ = 𝐴(π‘₯1, π‘₯2, . . . , π‘₯𝑛) for𝑖 = 1, 2, . . . , 𝑛 if and only if 𝐴(𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) βˆ§πœ‡ β‰₯ 𝐴(π‘₯1, π‘₯2, . . . , π‘₯𝑛) for 𝑖 = 1, 2, . . . , π‘˜ βˆ’ 1, π‘˜ + 1, . . . , 𝑛.

Proof. Now assume that 𝐴(𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧𝐴(π‘₯1, π‘₯2, . . . , π‘₯π‘–βˆ’1, 𝑒𝑖, π‘₯𝑖+1, . . . , π‘₯𝑛) ∧ πœ‡ = 𝐴(π‘₯1, π‘₯2, . . . , π‘₯𝑛) for𝑖 = 1, 2, . . . , 𝑛. Next, for any (π‘₯1, π‘₯2, . . . , π‘₯𝑛) ∈ 𝐺1×𝐺2Γ—β‹… β‹… ⋅×𝐺𝑛,we have

𝐴 (π‘₯1, π‘₯2, . . . , π‘₯𝑛)

= 𝐴 (𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛)

∧ 𝐴 (π‘₯1, π‘₯2, . . . , π‘₯π‘–βˆ’1, 𝑒𝑖, π‘₯𝑖+1, . . . , π‘₯𝑛) ∧ πœ‡

≀ 𝐴 (𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧ πœ‡.

(16)

Conversely, assume that 𝐴(𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) βˆ§πœ‡ β‰₯ 𝐴(π‘₯1, π‘₯2, . . . , π‘₯𝑛) for 𝑖 = 1, 2, . . . , π‘˜ βˆ’ 1, π‘˜ + 1, . . . , 𝑛. By

Page 5: Research Article Product of the Generalized -Subgroupsdownloads.hindawi.com/journals/jmath/2016/4918948.pdftype of fuzzy normal subgroups and fuzzy cosets, Journal of Intelligent and

Journal of Mathematics 5

Definition 2 and Lemma 11, we obtain that

𝐴 (π‘₯1, π‘₯2, . . . , π‘₯𝑛) = 𝐴 (π‘₯1, π‘₯2, . . . , π‘₯𝑛)

∧ 𝐴 (π‘₯1, π‘₯2, . . . , π‘₯𝑛) ∧ β‹… β‹… β‹… ∧ 𝐴 (π‘₯1, π‘₯2, . . . , π‘₯𝑛)

≀ 𝐴 (π‘₯1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴 (𝑒1, π‘₯2, . . . , 𝑒𝑛) ∧ β‹… β‹… β‹…

∧ 𝐴 (𝑒1, 𝑒2, . . . , π‘₯𝑛) ∧ πœ‡

≀ 𝐴 (π‘₯1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴 (𝑒1, π‘₯2, . . . , 𝑒𝑛) ∧ β‹… β‹… β‹…

∧ 𝐴 (𝑒1, 𝑒2, . . . , π‘₯π‘›βˆ’1, π‘₯𝑛) ∧ πœ‡

...

≀ 𝐴 (π‘₯1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴 (𝑒1, π‘₯2, . . . , π‘₯𝑛) ∧ πœ‡

≀ 𝐴 (π‘₯1, π‘₯2, . . . , π‘₯𝑛) .

(17)

Hence, 𝐴(π‘₯1, π‘₯2, . . . , π‘₯𝑛) = 𝐴(π‘₯1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴(𝑒1, π‘₯2, . . . ,π‘₯𝑛) ∧ πœ‡. Similarly, we get 𝐴(𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧𝐴(π‘₯1, π‘₯2, . . . , π‘₯π‘–βˆ’1, 𝑒𝑖, π‘₯𝑖+1, . . . , π‘₯𝑛) = 𝐴(π‘₯1, π‘₯2, . . . , π‘₯𝑛) for 𝑖 =2, 3, . . . , 𝑛.

As a consequence of Theorem 12 and Lemma 14, we havethe following corollary.

Corollary 15. Let 𝐺1, 𝐺2, . . . , 𝐺𝑛 be groups and 𝐴 ∈ 𝐹𝑆(0, πœ‡,𝐺1 ×𝐺2 Γ— β‹… β‹… β‹… ×𝐺𝑛, 𝐿). Then𝐴(𝑒1, 𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) βˆ§πœ‡ β‰₯ 𝐴(π‘₯1, π‘₯2, . . . , π‘₯𝑛) for 𝑖 = 1, 2, . . . , π‘˜ βˆ’ 1, π‘˜ + 1, . . . , 𝑛 if andonly if 𝐴 = 𝐴1Γ—πœ‡π΄2Γ—πœ‡ β‹… β‹… β‹… Γ—πœ‡π΄π‘›, where 𝐴 𝑖(π‘₯) = 𝐴(𝑒1,

𝑒2, . . . , π‘’π‘–βˆ’1, π‘₯, 𝑒𝑖+1, . . . , 𝑒𝑛).

The following example shows that Corollary 15 may notbe true when πœ† = 0.

Example 16. Consider

𝐴 (π‘₯) =

{{{{{{{

{{{{{{{

{

0.4, π‘₯ = (0, 0) ,

0.3, π‘₯ = (1, 0) ,

0.2, π‘₯ = (0, 1) ,

0.1, π‘₯ = (1, 1) .

(18)

𝐴 is (0.2, 0.5)-fuzzy subgroup of Z2 Γ— Z2 and satisfies thenecessary condition of Corollary 15. But there is not any 𝐴1and 𝐴2, (0.2, 0.5)-fuzzy subgroup of Z2 Γ— Z2, which hold𝐴 = 𝐴1Γ—

0.2

0.5𝐴2.

4. Conclusion

In this study, we give a necessary and sufficient condition for(0, πœ‡)-𝐿-subgroup of a Cartesian product of groups to be aproduct of (0, πœ‡)-𝐿-subgroups. The results obtained are notvalid for πœ† = 0, and a counterexample is provided.

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper.

References

[1] P.M. Pu and Y.M. Liu, β€œFuzzy topology. I. Neighborhood struc-ture of a fuzzy point and Moore-Smith convergence,” Journal ofMathematical Analysis and Applications, vol. 76, no. 2, pp. 571–599, 1980.

[2] S. K. Bhakat and P. Das, β€œ(∈, ∈ ∨q)-fuzzy subgroup,” Fuzzy Setsand Systems, vol. 80, no. 3, pp. 359–368, 1996.

[3] S. K. Bhakat and P. Das, β€œOn the definition of a fuzzy subgroup,”Fuzzy Sets and Systems, vol. 51, no. 2, pp. 235–241, 1992.

[4] A. Rosenfeld, β€œFuzzy groups,” Journal of Mathematical Analysisand Applications, vol. 35, pp. 512–517, 1971.

[5] M. Akram, K. H. Dar, and K. P. Shum, β€œInterval-valued (𝛼,𝛽)-fuzzy K-algebras,” Applied Soft Computing Journal, vol. 11, no. 1,pp. 1213–1222, 2011.

[6] M. Akram, B. Davvaz, and K. P. Shum, β€œGeneralized fuzzy LIEideals of LIE algebras,” Fuzzy Systems and Mathematics, vol. 24,no. 4, pp. 48–55, 2010.

[7] M. Akram, β€œGeneralized fuzzy Lie subalgebras,” Journal of Gen-eralized Lie Theory and Applications, vol. 2, no. 4, pp. 261–268,2008.

[8] S. K. Bhakat, β€œ(∈, ∈∨q)-fuzzy normal, quasinormal andmaximalsubgroups,” Fuzzy Sets and Systems, vol. 112, no. 2, pp. 299–312,2000.

[9] M. Shabir, Y. B. Jun, and Y. Nawaz, β€œCharacterizations of regularsemigroups by (𝛼,𝛽)-fuzzy ideals,” Computers & Mathematicswith Applications, vol. 59, no. 1, pp. 161–175, 2010.

[10] X. Yuan, C. Zhang, and Y. Ren, β€œGeneralized fuzzy groups andmany-valued implications,” Fuzzy Sets and Systems, vol. 138, no.1, pp. 205–211, 2003.

[11] S. Abdullah, M. Aslam, T. A. Khan, and M. Naeem, β€œA newtype of fuzzy normal subgroups and fuzzy cosets,” Journal ofIntelligent and Fuzzy Systems, vol. 25, no. 1, pp. 37–47, 2013.

[12] D. Bayrak and S. Yamak, β€œThe lattice of generalized normal L-subgroups,” Journal of Intelligent and Fuzzy Systems, vol. 27, no.3, pp. 1143–1152, 2014.

[13] Y. Feng and P. Corsini, β€œ(πœ†, πœ‡)-Fuzzy ideals of ordered semi-groups,” Annals of Fuzzy Mathematics and Informatics, vol. 4,no. 1, pp. 123–129, 2012.

[14] Y. B. Jun, M. S. Kang, and C. H. Park, β€œFuzzy subgroups basedon fuzzy points,” Communications of the Korean MathematicalSociety, vol. 26, no. 3, pp. 349–371, 2011.

[15] B. Yao, β€œ(πœ†, πœ‡)-Fuzzy normal subgroups, (πœ†, πœ‡)-fuzzy quotientsubgroups,”The Journal of Fuzzy Mathematics, vol. 13, no. 3, pp.695–705, 2005.

[16] I. Chon, β€œFuzzy subgroups as products,” Fuzzy Sets and Systems,vol. 141, no. 3, pp. 505–508, 2004.

[17] S. Yamak, O. KazancΔ±, and D. Bayrak, β€œA solution to an openproblem on the T-product of TL-fuzzy subgroups,” Fuzzy Setsand Systems, vol. 178, pp. 102–106, 2011.

[18] J. A. Goguen, β€œL-fuzzy sets,” Journal of Mathematical Analysisand Applications, vol. 18, pp. 145–174, 1967.

[19] L. A. Zadeh, β€œFuzzy sets,” Information and Computation, vol. 8,pp. 338–353, 1965.

[20] J. N. Mordeson and D. S. Malik, Fuzzy Commutative Algebra,World Scientific, 1998.

Page 6: Research Article Product of the Generalized -Subgroupsdownloads.hindawi.com/journals/jmath/2016/4918948.pdftype of fuzzy normal subgroups and fuzzy cosets, Journal of Intelligent and

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of