Research Article Pressure-Transient Behavior in a...

8
Research Article Pressure-Transient Behavior in a Multilayered Polymer Flooding Reservoir Jianping Xu 1,2 and Daolun Li 3,4 1 Xi’an Petroleum University, Xi’an, Shanxi 710065, China 2 PetroChina Dagang Oilfield Company, Tianjin 300280, China 3 HeFei University of Technology, Hefei, China 4 University of Science and Technology of China, Hefei, China Correspondence should be addressed to Jianping Xu; [email protected] Received 7 May 2015; Accepted 18 May 2015 Academic Editor: Yves Grohens Copyright © 2015 J. Xu and D. Li. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A new well-test model is presented for unsteady flow in multizone with crossflow layers in non-Newtonian polymer flooding reservoir by utilizing the supposition of semipermeable wall and combining it with the first approximation of layered stable flow rates, and the effects of wellbore storage and skin were considered in this model and proposed the analytical solutions in Laplace space for the cases of infinite-acting and bounded systems. Finally, the stable layer flow rates are provided for commingled system and crossflow system in late-time radial flow periods. 1. Introduction Many reservoirs are formed from layers of different physical properties because of the different geological deposition ro- tary loops. Among them, if these layers do not communicate in terms of fluid flow through the formation but may be pro- duced by the same wellbore, these types of reservoir are called commingled systems; if there exits fluid that connects between these layers, they are referred to as crossflow systems. e pressure-transient behavior depends on the comprehensive properties of these multilayers. For the unstable flow of Newtonian fluids in a multilay- ered reservoir, Russell et al. [1, 2] studied pressure behavior of single-phase fluid in two layers with formation crossflow and derived the conclusion that it is similar to the flow behavior of the two layers without formation crossflow in early time. Raghavan et al. [3] studied the problem of well test in a mul- tilayered reservoir. Bourdet [4] established using steady state approximation to the presentation interlayer flow model. Gao and Deans [5] studied the behavior of multilayered reservoir with formation crossflow. Ehlig-Economides [6] has system- atically established the combination of commingled system and crossflow system unsteady flow models and provided the rule of the pressure and flow for each layer. Bidaux et al. [7], using layered pressure and flow data, conducted a study on the theory and practical application of multilayered reservoir. For the unsteady flow of non-Newtonian fluids in a mul- tilayered reservoir, van Poollen and Jargon [8] studied non- Newtonian power-law fluid unsteady flow in porous media and showed that the transient pressure response character- istics are different from that of Newtonian fluid. Ikoku and Ramey [9] studied non-Newtonian power-law fluid unsteady flow characteristics in porous medium, and the consideration of wellbore storage and skin effect is obtained in homo- geneous infinite reservoir model in Laplace space solution. Lund and Ikoku [10, 11] proposed non-Newtonian power-law fluid (polymer solution) and Newtonian fluid (oil) composite model of transient well-test analysis method. Xu et al. [12] proposed the infinite reservoir Laplace space spherical transient pressure solution and discussed the characteristics of wellbore pressure at early times and later times. e above research result is to solve the problem of single layer. Escobar et al. [13] presented equations to estimate permeability, non- Newtonian bank radius, and skin factor for the well test data in reservoirs with non-Newtonian power-law fluids. Hindawi Publishing Corporation Journal of Chemistry Volume 2015, Article ID 875068, 7 pages http://dx.doi.org/10.1155/2015/875068

Transcript of Research Article Pressure-Transient Behavior in a...

Page 1: Research Article Pressure-Transient Behavior in a ...downloads.hindawi.com/journals/jchem/2015/875068.pdf · Pressure-Transient Behavior in a Multilayered Polymer Flooding Reservoir

Research ArticlePressure-Transient Behavior in a Multilayered PolymerFlooding Reservoir

Jianping Xu12 and Daolun Li34

1Xirsquoan Petroleum University Xirsquoan Shanxi 710065 China2PetroChina Dagang Oilfield Company Tianjin 300280 China3HeFei University of Technology Hefei China4University of Science and Technology of China Hefei China

Correspondence should be addressed to Jianping Xu xujpingpetrochinacomcn

Received 7 May 2015 Accepted 18 May 2015

Academic Editor Yves Grohens

Copyright copy 2015 J Xu and D LiThis is an open access article distributed under theCreativeCommonsAttribution License whichpermits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

A new well-test model is presented for unsteady flow in multizone with crossflow layers in non-Newtonian polymer floodingreservoir by utilizing the supposition of semipermeable wall and combining it with the first approximation of layered stable flowrates and the effects of wellbore storage and skin were considered in this model and proposed the analytical solutions in Laplacespace for the cases of infinite-acting and bounded systems Finally the stable layer flow rates are provided for commingled systemand crossflow system in late-time radial flow periods

1 Introduction

Many reservoirs are formed from layers of different physicalproperties because of the different geological deposition ro-tary loops Among them if these layers do not communicatein terms of fluid flow through the formation but may be pro-duced by the samewellbore these types of reservoir are calledcommingled systems if there exits fluid that connects betweenthese layers they are referred to as crossflow systems Thepressure-transient behavior depends on the comprehensiveproperties of these multilayers

For the unstable flow of Newtonian fluids in a multilay-ered reservoir Russell et al [1 2] studied pressure behavior ofsingle-phase fluid in two layers with formation crossflow andderived the conclusion that it is similar to the flow behaviorof the two layers without formation crossflow in early timeRaghavan et al [3] studied the problem of well test in a mul-tilayered reservoir Bourdet [4] established using steady stateapproximation to the presentation interlayer flowmodel Gaoand Deans [5] studied the behavior of multilayered reservoirwith formation crossflow Ehlig-Economides [6] has system-atically established the combination of commingled systemand crossflow system unsteady flow models and provided

the rule of the pressure and flow for each layer Bidauxet al [7] using layered pressure and flow data conducted astudy on the theory and practical application of multilayeredreservoir

For the unsteady flow of non-Newtonian fluids in a mul-tilayered reservoir van Poollen and Jargon [8] studied non-Newtonian power-law fluid unsteady flow in porous mediaand showed that the transient pressure response character-istics are different from that of Newtonian fluid Ikoku andRamey [9] studied non-Newtonian power-law fluid unsteadyflow characteristics in porousmedium and the considerationof wellbore storage and skin effect is obtained in homo-geneous infinite reservoir model in Laplace space solutionLund and Ikoku [10 11] proposed non-Newtonian power-lawfluid (polymer solution) and Newtonian fluid (oil) compositemodel of transient well-test analysis method Xu et al[12] proposed the infinite reservoir Laplace space sphericaltransient pressure solution and discussed the characteristicsof wellbore pressure at early times and later times The aboveresearch result is to solve the problem of single layer Escobaret al [13] presented equations to estimate permeability non-Newtonian bank radius and skin factor for the well testdata in reservoirs with non-Newtonian power-law fluids

Hindawi Publishing CorporationJournal of ChemistryVolume 2015 Article ID 875068 7 pageshttpdxdoiorg1011552015875068

2 Journal of Chemistry

q1 S1 k1 1205931 h1

q2 S2 k2 1205932 h2

q3 S3 k3 1205933 h3

q4 S4 k4 1205934 h4

qt

1

2

1

2

3

4 1205823 = 0

1205822

1205823

Zone Layer

1205821 = 0

Figure 1 Sketch of a multilayer reservoir

Martinez et al [14] studied the transient pressure behaviorsfor a Bingham type fluid and the influence of the minimumpressure gradient Escobar et al [15 16] studied transientpressure analysis for non-Newtonian fluids in naturally frac-tured formations modelled as double-porosity model They[17] extended TDS technique to injection and fall-off testsof non-Newtonian pseudoplastic fluids van den Hoek et al[18] presented a simple and practical methodology to inferthe in situ polymer rheology from PFO (Pressure Fall-Off)tests To the problem ofmultilayered Yu et al [19] establisheda well testing model for polymer flooding and presented anumerical well testing interpretation technique to evaluateformation in crossflow double-layer reservoirs

This paper presents a well-test model and the analyticalsolution for non-Newtonian polymer-flooding unsteady flowin multizone with crossflow layers and laid the foundationtheory of field test data interpretation

2 The Model Description

The reservoir model for the 119873-layered system is shown inFigure 1 Each layer is assumed to be homogeneous andisotropic with injected polymer non-Newtonian power-lawfluids

A symmetrically located well penetrates all the layers andeach layer has a skin of arbitrary value S

119894 wellbore storage

coefficient 119862 is assumed to be constant and crossflow mayoccur in the reservoir between any two adjacent layers

Assuming that the fluid is slightly compressible the com-pression coefficient is constant the permeability porosityand thickness of each layer can be different respectively119862119905119895 119896119895B119895 ℎ119895to distinguish between layer pairs with forma-

tion crossflow with and noncommunicating layers and thereservoir is divided into 119873119885 (leN) zones Between any twoadjacent zones there is no formation crossflow Gravity andcapillary forces can be neglected Assuming weak formationcrossflow the flow is about interlayer pressure difference andhas nothing to do with the shear rate crossflow coefficient120594119895 on behalf of interlayer communicating ability Formation

crossflow is modeled as in the semipermeable-wall model of

Deans and Gao [7] which assumes that all resistance to verti-cal flow is concentrated in thewall (layer top bottom)Hencethe pressure difference between adjacent layers depends ononly radial position and time and flow within the layers isstrictly horizontal and assuming that each layer has the sameinitial pressure

The flow in each layer 119895 (119895 = 1 2 119873) is governed bythe following equation

119896119895ℎ119895nabla sdot (

1120583119895

nabla119875119895) = 120601

119895ℎ119895119862119905119895

120597119875119895

120597119905+ 120594119895minus1 (119875119895 minus119875

119895minus1)

minus 120594119895(119875119895+1 minus119875

119895)

(1)

where 120594119895is given by

120594119895=

22 [Δℎ119895119896V119895] + 119909

119895+1 + 119909119895

119895 = 1 119873 (2)

where 1205940 = 120594119899

= 0 Δℎ119895and 119896V119895 are thickness and vertical

permeability of a nonperforated zone between layers 119895 and119895 + 1 and 119909

119895= ℎ119895119896119911119895 where 119896

119911119895is the vertical permeability

for layer 119895 that is the resistance to flow per unit length at the119895th layer interface If there is no nonperforated zone betweenlayers 119895 and 119895 + 1 then the flow resistance on behalf of a 119895

layer interface unit length If on the 119895 layer and the 119895 + 1 layerbut perforated belt then (Δℎ)

119895is zero If there is no formation

crossflow between layers 119895 and 119895 + 1 then 120594119895is zero

The sand surface flow of each layer as a function of time

119902119895 (119905) =

minus2120587119896119895ℎ119895

120583119895

119903119908

120597119875119895

120597119903

1003816100381610038161003816100381610038161003816100381610038161003816119903119908

(3)

Assume that polymer solution viscosity and shear rate ofpower-law relations [4] are as follows

120583119894= 119867]119894

119899minus1 (4)

where119867 is a constant and ]119894and 119899 respectively represent the

shear rate and power-law index when 119899 tends to one fluidshowed a Newtonian fluid properties

Because of the flow in each layer 119895 changing over timethe crossflow rate is much smaller than stable flow rate so theflow rate 119902

119894can be replaced by steady flow rate to calculate the

shear rate

]119894=

119863119902119894119904

119903ℎ119894(119870119894120601119894)05 (119894 = 1 119873) (5)

where 119863 is a constant and layer stable flow rate 119902119894119904can be

obtained by the late-time in unsteady flowWith the viscosity of polymer solution into (1) for the

shear rate representation for radial flow under cylindricalcoordinate dimensionless forms are obtained by finishingafter

120581119895(

1205972119875119895119863

1205971199031198632 +

119899

119903119863

120597119875119895119863

120597119903119863

)

= 120596119895119903119863

1minus119899 120597119875119895119863

120597119905119863

minus 119903119863

1minus119899120582119895minus1 (119875119895119863 minus119875

119895minus1119863)

+ 119903119863

1minus119899120582119895(119875119895+1119863 minus119875

119895119863)

(6)

Journal of Chemistry 3

The boundary condition at the well is given by the fol-lowing equations which account for both skin and wellborestorage

119875119908119863

= 119875119895119863

(1 119905119863) minus 119904119895

120597119875119895119863

120597119903119863

100381610038161003816100381610038161003816100381610038161003816119903119863=1

1 = 119862119863

119889119875119908119863

119889119905119863

minus

119873

sum

119895=1120581119895

120597119875119895119863

120597119903119863

100381610038161003816100381610038161003816100381610038161003816119903119863=1

(7)

For infinite-outer-boundary condition

119875119895119863

(119903119863 119905119863) 997888rarr 0 (119903

119863997888rarr infin) (8)

For no-flow outer-boundary condition

120597119875119895119863

120597119903119863

= 0 (119903119863

= 119903119890119863

) (9)

For initial condition

119875119895119863

(119903119863 0) = 0 (10)

For dimensionless layer flow rates

119902119895119863

(119905119863) =

119902119895

119902= minus 120581119895

120597119875119895119863

120597119903119863

100381610038161003816100381610038161003816100381610038161003816119903119863=1

(11)

where the dimensionless variables are defined by the follow-ing

119875119895119863

=002120587

119902

119873

sum

119895=1

[

[

119896119895

(1+119899)2ℎ119895

119899(119863119902119895119904)1minus119899

1198671199031199081minus119899120601119895

(1minus119899)2]

]

(119875119895minus1198750) (12)

119905119863

= 001sum119873

119895=1 (120581119895(1+119899)2

ℎ119895

119899(119863119902119895119904)1minus119899

120601119895

(1minus119899)2)

119867sum119873

119895=1 120601119895ℎ1198951198621199051198951199031199083minus119899

119905 (13)

120581119895=

119896119895

(1+119899)2ℎ119895

119899120601119895

(119899minus1)2(119863119902119895119904)1minus119899

sum119873

119895=1 119896119895(1+119899)2

ℎ119895

119899120601119895

(119899minus1)2(119863119902119895119904)1minus119899 (14)

120596119895=

120601119895ℎ119895119862119905119895

sum119873

119895=1 120601119895ℎ119895119862119905119895 (15)

120582119895=

119867119903119908

3minus119899120594119895

sum119873

119895=1 119896119895(1+119899)2

ℎ119895

119899120601119895

(119899minus1)2(119863119902119895119904)1minus119899 (16)

119862119863

=119862

21205871199031199082 sum119873

119895=1 120601119895ℎ119895119862119905119895 (17)

119903119863

=119903

119903119908

(18)

119903119890119863

=119903119890

119903119908

(19)

3 The Solution of the Model

The above equation is given by Laplace transform on timeSet

119897 =2

3 minus 119899

119898 =1 minus 119899

3 minus 119899

(20)

The basic control equation solution is as follows

119875119895119863

=

119873

sum

119896=1119903119863

(1minus119899)2[119860119895

119896119870119898

(119897120590119896119903119863

(3minus119899)2)

+119861119895

119896119868119898

(119897120590119896119903119863

(3minus119899)2)]

(21)

where the subscript on119860 indexes the layer and the superscriptindexes 120590119860 and119861 are respectively the first and the two classof 119898 order modified Bessel function 119896

1198951205902 is eigenvalue of

real symmetric three diagonal positive definitematrices [1198861015840119895119896]

where

1198861015840

119895119896= minus120582

119895minus1 119896 = 119895 minus 1 119895 gt 1 120596119895119911 minus 120582119895minus1 minus120582

119895 119896 = 119895

minus 120582119895 119896 = 119895 + 1 119895 lt119873 0 119896 = 119895 minus 1 119895 or 119895 + 1

(22)

According to the boundary conditions a function relation-ship between 119860

119895

119896 and 119861119895

119896 is as follows

1198602119896=

minus1198861111988612

1198601119896= 12057221198961198601119896

1198603119896=

minus (119886211198601119896+ 119886221198602

119896)

11988623= 12057231198961198601119896

119860119873

119896=

minus (119886119873minus1119873minus2119860119873minus2

119896+ 119886119873minus1119873minus1119860119873minus1

119896)

119886119873minus1119873

= 120572119873

1198961198601119896

119861119895

119896= 120572119895

1198961198611119896 (119895 = 1 119873)

(23)

Then1198732 values for120572119895

119896 can be computed directly from theabove recursion formula Let zone 119894 (119894 = 1 119873119885) contain119898119894layer the zone 119894 with a specific layer 119895 dimensionless

pressure

119875119895119863

=

119898119894

sum

119896119894=1119903119863

(1minus119899)2[119860119895

119896119894119870119898

(119897120590119896119894

119903119863

(3minus119899)2)

+119861119895

119896119894119868119898

(119897120590119896119894

119903119863

(3minus119899)2)]

(24)

where each layer index 119896119894 in the sum refers to the same zone

119894 as Layer 119895

4 Journal of Chemistry

Finally the coefficients for each zone can be expressed asmultiples of the coefficients1198601

119896119894 1198611119896119894 of the uppermost layer

in zone 119894 with (12)

119875119895119863

=

119898119894

sum

119896119894=1

119903119863

(1minus119899)2[1198601119896119894120572119895

119896119894119870119898

(119897120590119896119894

119903119863

(3minus119899)2)

+1198611119896119894120572119895

119896119894119868119898

(119897120590119896119894

119903119863

(3minus119899)2)]

(25)

External boundary condition implies the relationshipbetween 1198601

119896119894 and 1198611

119896119894 is as follows

1198611119896119894 = 1198871198961198941198601119896119894 (26)

For infinite-outer-boundary condition

119887119896119894 = 0 (27)

For no-flow outer-boundary conditions

119887119896119894 =

119870119897(119897120590119896119894

119903119890119863

(3minus119899)2)

119868minus119897

(119897120590119896119894

119903119890119863(3minus119899)2)

(28)

According to the boundary conditions the layer 119895 minus 1 andlayer 119895 which in the same zone have the following relations

119898119894

sum

119896119894=11198601119896119894 (120572119895minus1119896119894 119870119898

(119897120590119896119894

) + 119887119896119894119868119898

(119897120590119896119894

)

+ 119904119895minus1120590119896

119894

[(119897120590119896119894

) minus 119887119896119894119868minus119897

(119897120590119896119894

)]

minus 120572119895

119896119894 119870119898

(119897120590119896119894

) + 119887120581119894119868119898

(119897120590119896119894

)

+ 119904119895120590119896119894

[119870119897(119897120590119896119894

) minus 119887120581119894119868minus119897

(119897120590119896119894

)]) = 0

(29)

The layer 119895 minus 1 of zone 119894 minus 1 and the layer 119895 of zone 119894 minus 1 havethe following relations

119898119894minus1

sum

119896119894minus1=1

(1198601119896119894minus1120572119895minus1119896119894minus1 119870119898

(119897120590119896119894minus1

) + 119887119896119894minus1119868119898

(119897120590119896119894minus1

) + 119904119895minus1120590119896

119894minus1[119870119897(119897120590119896119894minus1

) minus 119887119896119894minus1119868minus119897

(119897120590119896119894minus1

)])

minus

119898119894

sum

119896119894=1

(1198601119896119894120572119895

119896119894 119870119898

(119897120590119896119894

) + 119887120581119894119868119898

(119897120590119896119894

) + 119904119895120590119896119894

[119870119897(119897120590119896119894

) minus 119887120581119894119868minus119897

(119897120590119896119894

)]) = 0

(30)

The wellbore pressure is as follows

119875119908119863

=1

(1198621198631199112 + 1119875

119908119863119862119863=0)

(31)

Equation (31) is a general solution and it is by no wellborestorage pressure solution conversion into thewellbore storagepressure solutions Therefore we will solve the 119862

119863= 0 cases

of equationsEquations (29)-(30) are linear equations with coefficient

1198601119896119894 which can be solved by numerical methodThe wellbore

pressure without wellbore storage is given as

119875119908119863119862119863=0 =

119898119894

sum

119896119894=1

(11986011198961198941205721119896119894 119870119898

(119897120590119896119894

) + 119887119896119894119868119898

(119897120590119896119894

)

+ 1199041120590119896119894

[119870119897(119897120590119896119894

) minus 119887119896119894119868minus119897

(119897120590119896119894

)])

(32)

In addition layer flow rate is given as follows

119902119895119863

= (1minus119862119863119875119908119863

1199112)

sdot 120581119895

119898119894

sum

119896119894=1

1198601119896119894120572119895

119896119894120590119896119894

119870119897(119897120590119896119894

) minus 119887119896119894119868minus119897

(119897120590119896119894

)

(33)

Distribution of radial pressure on each layer becomes

119875119895119863

= (1minus119862119863119875119908119863

1199112) 119875119895119863119862119863=0 = (1minus119862

119863119875119908119863

1199112)

sdot

119898119894

sum

119896119894=1

(1198601119896119894120572119895

119896119894 119870119898

(119897120590119896119894

119903119863

(3minus119899)2)

+ 119887119896119894119868119898

(119897120590119896119894

119903119863

(3minus119899)2))

(34)

For the case of double-layer reservoirs with formation cross-flow assume that choosing parameters is as follows

119862119863

= 1 1199041 = 1199042 = 1 120582 = 1119890 minus 5 120581 = 095120596 = 01 and 119899 = 01 03 05 07 09 through the numericalinversion of the Laplace transform of Stehfest [20] Pressureand flow in the real space are obtainedThe wellbore pressurecurve is shown in Figure 1 The wellbore pressure curve isshown in Figure 2 It can be seen that the pressure derivativecurve is unit slope straight line in the early-time namelylinear unit slope represents pure effect of wellbore storagein the medium term the curve is concave interporosityflow transition characteristics in the late stage the pressurederivative curve is approximately straight line up and theslope is related to the power law index The slope is 119898

119871=

(1minus119899)(3minus119899) And it can be seen that the pressure derivativerises and increases with the reduction of power-law index 119899

steepened

Journal of Chemistry 5

108107106105104

103

103

102

102

101

101

100

100

10minus1

10minus1

10minus2

10minus2

CD = 1

s1 = 1s2 = 1

120582 = 1e minus 5120581 = 095

120596 = 01

tD

n

n = [01 03 05 07 09]

PwDdpwD

dln

t D

Figure 2 Dimensionless pressure for two-layer system

00

02

04

06

08

10

10810710610510410310210110010minus110minus2

tD

n

q1D

CD = 1

s1 = 1s2 = 1

120582 = 1e minus 5120581 = 095

120596 = 01

n = [01 03 05 07 09]

Figure 3 Dimensionless flow-rate for the first layer

In Figures 3 and 4 flow curve can be seen for the firstlayer with high quasi capacity coefficient the dimensionlessflow rate increases with the time increasing and finally tendsto be stable flow rate 120581 for the second layer with low quasicapacity coefficient the dimensionless flow rate increaseswith the time increasing In a certain period due to highpermeability layer crossflow pressure tends to be balancedand the crossflow that is more and more weak finally tendsto be stable flow rate 1 minus 120581

4 The Late Stable Flow Model

For both cases stable layer flow-rates were discussed includ-ing (1) without formation crossflow and (2) with formationcrossflow We only discussed the behavior in late time soignore the effect of wellbore storage effect

000

005

010

015

020

10810710610510410310210110010minus2 10minus110minus4 10minus3

tD

n

q2D

CD = 1

s1 = 1s2 = 1

120582 = 1e minus 5120581 = 095

120596 = 01

n = [01 03 05 07 09]

Figure 4 Dimensionless flow-rate for the second layer

(1) Without Formation Crossflow

for the infinite-out-boundary the stable flow rate forlayer 119895 is as follows

119902119895119904

=

119902120581119895

119897120596119895

119898

sum119873

119896=1 120581119896119897120596119896119898 (35)

For the no-flow-boundary the stable flow rate forlayer 119895 is as follows

119902119895119904

=

119902120601119895ℎ119895119862119905119895

sum119873

119895=1 120601119895ℎ119895119862119905119895 (36)

(2) With Formation Crossflow

Regarding the eigenvalues of matrix 1198861015840

119895119896 there is a

value to meet 1205902

= 119911 and the rest is independentof 119911 and 120596

119895and depends only on 1205811 1205812 120581119899 and

1205821 1205822 120582119899 Assume that 12059012= 119911 Stable layer flow

rate through the determinant value can be expressedas

119902119895119904

= 119902120581119895lim119911rarr 0

[

[

det 11986211989511989611

det 119862119895119896

120572119895

11205901 119870119897 (1198971205901)

minus 1198871119868minus119897

(1198971205901)]

]

+ 119902120581119895

119873

sum

119896119894=2lim119911rarr 0

[

det 119862119894119896119896119894119896119894

det 119862119894119896

sdot 120572119895

119896119894120590119896119894

119870119897(119897120590119896) minus 119887119896119894119868minus119897

(119897120590119896)]

(37)

where det119862119895119896 is determinant of matrix 119862

119895119896

6 Journal of Chemistry

The matrix element is as follows

119862119895119896

= 120572119895

119896119870119898

(119897120590119896) + 119887119896119868119898

(119897120590119896)

+ 119904119896120590119896[119870119897(119897120590119896) minus 119887119896119868minus119897

(119897120590119896)]

minus 120572119895+1119896119870119898

(119897120590119896+1) + 119887

119896119868119898

(119897120590119896+1)

+ 119904119896+1120590119896+1 [119870

119897(119897120590119896+1) minus 119887

119896119868minus119897

(119897120590119896+1)]

(38)

Thematrix 119862119895119896119894119894is used in matrix in 119862

119895119896 column 119894

replacement for (0 0 119860 1119911)119879 where superscript

119879 is the vector transpose

5 Conclusions

Establishing the multilayer reservoir well-test model forpolymer flooding gives the formation and wellbore transientpressure and the layer flow-rate finallyThe expressions of latetime stable flow rate in each layer are given

The unsteady well-test model provides theoreticalmethod for polymer flooding well test analysis of multilayerreservoir the experimental data and the theoretical curvefitting can be used to determine the permeability skin factorand effective interlayer vertical permeability and otherimportant parameters

Nomenclature

1198861015840

119895119896 Matrix elements defined in (22)

119860119895

119896 119861119895

119896 Coefficient for 119895th layer 119896th root defined in(23)

1198601119896119894 1198611119896119894 Coefficient for 119895th layer 119896th root in zone 119868

defined in (25)119887119896119894 Coefficient for outer boundary condition

defined in (27) or (28)119862 Wellbore-storage coefficient (cm3kPa)119862119905119895 Total compressibility in layer 119868 (kPaminus1)

119862119895119896 Matrix elements defined in (38)

119863 Constant defined in (5)ℎ119895 Formation thickness in layer 119895 (cm)

119867 Constant defined in (4)119868119898(sdot) 119870119898(sdot) Modified 119898 order Bessel function of the first

and second kindΔℎ119895 Thickness of a nonperforated zone between

layers 119895 and 119895 + 1 (cm)119870119895 Horizontal permeability in layer 119895 120583m2

119870V119895 Vertical permeability of a tight zone betweenLayers 119895 and 119895 minus 1 (120583m2)

119870119911119895 Vertical permeability in Layer 119895 (120583m2)

119897 119898 Constant defined in (20)119898119894 Number of layers in Zone 119894

119899 Power-law index119873 Number of layers in reservoir system119873119885 Number of Zones in reservoir system119875119894 Reservoir pressure in layer 119868 (kPa)

119875119895

119894 Reservoir pressure in layer 119895 in Zone 119894

(kPa)119875119895119863 Dimensionless reservoir pressure in

layer 119895 defined in (12)1198750 Initial reservoir pressure (kPa)

119875119908119863

Dimensionless bottomhole pressure inLaplace space

119875119908119863119862119863=0 Dimensionless bottomhole pressure

without wellbore storage in Laplacespace

119876 Surface production rate (cm3s)119902119895 Flow rate for layer 119895 (cm3s)

119902119895119904 Stable flow rate for layer 119895 (cm3s)

119903 Radial distance (cm)119903119863 Dimensionless radius defined in (18)

119903119890 Reservoir outer radius (cm)

119903119890119863 Dimensionless outer reservoir radius

defined in (19)119903119908 Wellbore radius (cm)

119878119895 Wellbore skin factor for layer 119895

119905 Time (s)Δ119905 Elapsed time after rate change (s)119905119863 Dimensionless time referenced to

producing layer]119894 Shear rate in layer 119868 (sminus1)

120594119895 Crossflow coefficient between layers 119895

and 119895 + 1 defined in (2)119909119895 Resistance to flow per unit length at the

119895th layer interface119885 Laplace space variable 119894

120572119895

119896 Coefficient for layer 119895 Root 119896 definedin (23)

120572119895

119896119894 Coefficient for layer 119895 Root 119896 defined

in Zone 119868 defined in (25)120581119895 Coefficient for layer 119895 defined in (14)

120582119895 Dimensionless semipermeability

between layers 119895 and 119895 + 1 defined in(16)

119872 Dynamic viscosity (mpasdots)Φ119895 Porosity fraction for layer 119895

120596119895 Coefficient for layer 119895 defined in (15)

]119895 Shear rate for layer 119895 defined in (5)

det119862119895119896 Determinant of matrix 119862

119895119896

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The project was supported by the National Key Science andTechnology Project (2011ZX05009-006) the Major StateBasic Research Development Program of China (973 Pro-gram) (no 2011CB707305) and the China ScholarshipCouncil CAS Strategic Priority Research Program(XDB10030402)

Journal of Chemistry 7

References

[1] D G Russell and M Prats ldquoPerformance of layered reser-voirs with crossflowmdashsingle-compressible-fluid caserdquo Society ofPetroleum Engineers Journal vol 2 no 1 pp 53ndash67 1962

[2] D Russell and M Prats ldquoThe practical aspects of interlayercrossflowrdquo Journal of Petroleum Technology vol 14 no 06 pp589ndash594 2013

[3] R Raghavan R Prijambodo and A C Reynolds ldquoWell testanalysis for well producing layered Reservoirs with crossflowrdquoSociety of Petroleum Engineers Journal vol 25 no 3 pp 380ndash396 1985

[4] D Bourdet ldquoPressure behavior of Layered reservoirs withcrossflowrdquo inProceedings of the SPECalifornia RegionalMeetingSPE-13628-MS Bakersfield Calif USA March 1985

[5] C-T Gao and H A Deans ldquoPressure transients and crossflowcaused by diffusivities inmultiplayer reservoirsrdquo SPE FormationEvaluation vol 3 no 2 pp 438ndash448 1988

[6] C A Ehlig-Economides ldquoA new test for determination ofindividual layer properties in a multilayered reservoirrdquo SPEFormation Evaluation vol 2 no 3 pp 261ndash283 1987

[7] P Bidaux T M Whittle P J Coveney and A C GringartenldquoAnalysis of pressure and rate transient data from wells inmultilayered reservoirs theory and applicationrdquo in Proceedingsof the SPE Annual Technical Conference and Exhibition SPE24679 Washington DC USA October 1992

[8] H van Poollen and J Jargon ldquoSteady-state and unsteady-stateflow of Non-Newtonian fluids through porous mediardquo Societyof Petroleum Engineers Journal vol 9 no 1 pp 80ndash88 2013

[9] C U Ikoku and H J Ramey Jr ldquoWellbore storage and skineffects during the transient flow of non-Newtonian power-lawfluids in porous mediardquo Society of Petroleum Engineers Journalvol 20 no 1 pp 25ndash38 1980

[10] O Lund and C U Ikoku ldquoPressure transient behavior of non-newtoniannewtonian fluid composite reservoirsrdquo Society ofPetroleum Engineers Journal vol 21 no 2 pp 271ndash280 1981

[11] R Prijambodo R Raghavan and A C Reynolds Well TestAnalysis for Wells Producing Layered Reservoirs With CrossflowSociety of Petroleum Engineers 1985

[12] J Xu LWang andK Zhu ldquoPressure behavior for spherical flowin a reservoir of non-Newtonian power-law fluidsrdquo PetroleumScience and Technology vol 21 no 1-2 pp 133ndash143 2003

[13] F-H Escobar J-A Martınez and M Montealegre-MaderoldquoPressure and pressure derivative analysis for a well in aradial composite reservoir with a non-NewtonianNewtonianinterfacerdquo Ciencia Tecnologia y Futuro vol 4 no 2 pp 33ndash422010

[14] J A Martinez F H Escobar and M M Montealegre ldquoVerticalwell pressure and pressure derivative analysis for binghamfluidsin a homogeneous reservoirsrdquo Dyna vol 78 no 166 pp 21ndash282011

[15] F H Escobar A P Zambrano D V Giraldo and J H CantilloldquoPressure and pressure derivative analysis for non-Newtonianpseudoplastic fluids in double-porosity formationsrdquo CTampFmdashCiencia Tecnologıa y Futuro vol 4 no 3 pp 47ndash59 2011

[16] F H Escobar A Martınez and D M Silva ldquoConventionalpressure analysis for naturally-fractured reservoirs with non-Newtonian pseudoplastic fluidsrdquo Fuentes Journal vol 11 no 1pp 27ndash34 2013

[17] F H Escobar J M Ascencio and D F Real ldquoInjection and fall-off tests transient analysis of non-newtonian fluidsrdquo Journal ofEngineering and Applied Sciences vol 8 no 9 pp 703ndash707 2013

[18] P van den Hoek H Mahani T Sorop et al ldquoApplicationof injection fall-off analysis in polymer floodingrdquo in Proceed-ings of the SPE EuropecEAGE Annual Conference Society ofPetroleum Engineers Copenhagen Denmark June 2012

[19] H Y Yu H Guo Y W He et al ldquoNumerical well testing in-terpretation model and applications in crossflow double-layerreservoirs by polymer floodingrdquo The Scientific World Journalvol 2014 Article ID 890874 11 pages 2014

[20] H Stehfest ldquoAlgorithm 368 numerical inversion of Laplacetransforms [D5]rdquo Communications of the ACM vol 13 no 1pp 47ndash49 1970

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 2: Research Article Pressure-Transient Behavior in a ...downloads.hindawi.com/journals/jchem/2015/875068.pdf · Pressure-Transient Behavior in a Multilayered Polymer Flooding Reservoir

2 Journal of Chemistry

q1 S1 k1 1205931 h1

q2 S2 k2 1205932 h2

q3 S3 k3 1205933 h3

q4 S4 k4 1205934 h4

qt

1

2

1

2

3

4 1205823 = 0

1205822

1205823

Zone Layer

1205821 = 0

Figure 1 Sketch of a multilayer reservoir

Martinez et al [14] studied the transient pressure behaviorsfor a Bingham type fluid and the influence of the minimumpressure gradient Escobar et al [15 16] studied transientpressure analysis for non-Newtonian fluids in naturally frac-tured formations modelled as double-porosity model They[17] extended TDS technique to injection and fall-off testsof non-Newtonian pseudoplastic fluids van den Hoek et al[18] presented a simple and practical methodology to inferthe in situ polymer rheology from PFO (Pressure Fall-Off)tests To the problem ofmultilayered Yu et al [19] establisheda well testing model for polymer flooding and presented anumerical well testing interpretation technique to evaluateformation in crossflow double-layer reservoirs

This paper presents a well-test model and the analyticalsolution for non-Newtonian polymer-flooding unsteady flowin multizone with crossflow layers and laid the foundationtheory of field test data interpretation

2 The Model Description

The reservoir model for the 119873-layered system is shown inFigure 1 Each layer is assumed to be homogeneous andisotropic with injected polymer non-Newtonian power-lawfluids

A symmetrically located well penetrates all the layers andeach layer has a skin of arbitrary value S

119894 wellbore storage

coefficient 119862 is assumed to be constant and crossflow mayoccur in the reservoir between any two adjacent layers

Assuming that the fluid is slightly compressible the com-pression coefficient is constant the permeability porosityand thickness of each layer can be different respectively119862119905119895 119896119895B119895 ℎ119895to distinguish between layer pairs with forma-

tion crossflow with and noncommunicating layers and thereservoir is divided into 119873119885 (leN) zones Between any twoadjacent zones there is no formation crossflow Gravity andcapillary forces can be neglected Assuming weak formationcrossflow the flow is about interlayer pressure difference andhas nothing to do with the shear rate crossflow coefficient120594119895 on behalf of interlayer communicating ability Formation

crossflow is modeled as in the semipermeable-wall model of

Deans and Gao [7] which assumes that all resistance to verti-cal flow is concentrated in thewall (layer top bottom)Hencethe pressure difference between adjacent layers depends ononly radial position and time and flow within the layers isstrictly horizontal and assuming that each layer has the sameinitial pressure

The flow in each layer 119895 (119895 = 1 2 119873) is governed bythe following equation

119896119895ℎ119895nabla sdot (

1120583119895

nabla119875119895) = 120601

119895ℎ119895119862119905119895

120597119875119895

120597119905+ 120594119895minus1 (119875119895 minus119875

119895minus1)

minus 120594119895(119875119895+1 minus119875

119895)

(1)

where 120594119895is given by

120594119895=

22 [Δℎ119895119896V119895] + 119909

119895+1 + 119909119895

119895 = 1 119873 (2)

where 1205940 = 120594119899

= 0 Δℎ119895and 119896V119895 are thickness and vertical

permeability of a nonperforated zone between layers 119895 and119895 + 1 and 119909

119895= ℎ119895119896119911119895 where 119896

119911119895is the vertical permeability

for layer 119895 that is the resistance to flow per unit length at the119895th layer interface If there is no nonperforated zone betweenlayers 119895 and 119895 + 1 then the flow resistance on behalf of a 119895

layer interface unit length If on the 119895 layer and the 119895 + 1 layerbut perforated belt then (Δℎ)

119895is zero If there is no formation

crossflow between layers 119895 and 119895 + 1 then 120594119895is zero

The sand surface flow of each layer as a function of time

119902119895 (119905) =

minus2120587119896119895ℎ119895

120583119895

119903119908

120597119875119895

120597119903

1003816100381610038161003816100381610038161003816100381610038161003816119903119908

(3)

Assume that polymer solution viscosity and shear rate ofpower-law relations [4] are as follows

120583119894= 119867]119894

119899minus1 (4)

where119867 is a constant and ]119894and 119899 respectively represent the

shear rate and power-law index when 119899 tends to one fluidshowed a Newtonian fluid properties

Because of the flow in each layer 119895 changing over timethe crossflow rate is much smaller than stable flow rate so theflow rate 119902

119894can be replaced by steady flow rate to calculate the

shear rate

]119894=

119863119902119894119904

119903ℎ119894(119870119894120601119894)05 (119894 = 1 119873) (5)

where 119863 is a constant and layer stable flow rate 119902119894119904can be

obtained by the late-time in unsteady flowWith the viscosity of polymer solution into (1) for the

shear rate representation for radial flow under cylindricalcoordinate dimensionless forms are obtained by finishingafter

120581119895(

1205972119875119895119863

1205971199031198632 +

119899

119903119863

120597119875119895119863

120597119903119863

)

= 120596119895119903119863

1minus119899 120597119875119895119863

120597119905119863

minus 119903119863

1minus119899120582119895minus1 (119875119895119863 minus119875

119895minus1119863)

+ 119903119863

1minus119899120582119895(119875119895+1119863 minus119875

119895119863)

(6)

Journal of Chemistry 3

The boundary condition at the well is given by the fol-lowing equations which account for both skin and wellborestorage

119875119908119863

= 119875119895119863

(1 119905119863) minus 119904119895

120597119875119895119863

120597119903119863

100381610038161003816100381610038161003816100381610038161003816119903119863=1

1 = 119862119863

119889119875119908119863

119889119905119863

minus

119873

sum

119895=1120581119895

120597119875119895119863

120597119903119863

100381610038161003816100381610038161003816100381610038161003816119903119863=1

(7)

For infinite-outer-boundary condition

119875119895119863

(119903119863 119905119863) 997888rarr 0 (119903

119863997888rarr infin) (8)

For no-flow outer-boundary condition

120597119875119895119863

120597119903119863

= 0 (119903119863

= 119903119890119863

) (9)

For initial condition

119875119895119863

(119903119863 0) = 0 (10)

For dimensionless layer flow rates

119902119895119863

(119905119863) =

119902119895

119902= minus 120581119895

120597119875119895119863

120597119903119863

100381610038161003816100381610038161003816100381610038161003816119903119863=1

(11)

where the dimensionless variables are defined by the follow-ing

119875119895119863

=002120587

119902

119873

sum

119895=1

[

[

119896119895

(1+119899)2ℎ119895

119899(119863119902119895119904)1minus119899

1198671199031199081minus119899120601119895

(1minus119899)2]

]

(119875119895minus1198750) (12)

119905119863

= 001sum119873

119895=1 (120581119895(1+119899)2

ℎ119895

119899(119863119902119895119904)1minus119899

120601119895

(1minus119899)2)

119867sum119873

119895=1 120601119895ℎ1198951198621199051198951199031199083minus119899

119905 (13)

120581119895=

119896119895

(1+119899)2ℎ119895

119899120601119895

(119899minus1)2(119863119902119895119904)1minus119899

sum119873

119895=1 119896119895(1+119899)2

ℎ119895

119899120601119895

(119899minus1)2(119863119902119895119904)1minus119899 (14)

120596119895=

120601119895ℎ119895119862119905119895

sum119873

119895=1 120601119895ℎ119895119862119905119895 (15)

120582119895=

119867119903119908

3minus119899120594119895

sum119873

119895=1 119896119895(1+119899)2

ℎ119895

119899120601119895

(119899minus1)2(119863119902119895119904)1minus119899 (16)

119862119863

=119862

21205871199031199082 sum119873

119895=1 120601119895ℎ119895119862119905119895 (17)

119903119863

=119903

119903119908

(18)

119903119890119863

=119903119890

119903119908

(19)

3 The Solution of the Model

The above equation is given by Laplace transform on timeSet

119897 =2

3 minus 119899

119898 =1 minus 119899

3 minus 119899

(20)

The basic control equation solution is as follows

119875119895119863

=

119873

sum

119896=1119903119863

(1minus119899)2[119860119895

119896119870119898

(119897120590119896119903119863

(3minus119899)2)

+119861119895

119896119868119898

(119897120590119896119903119863

(3minus119899)2)]

(21)

where the subscript on119860 indexes the layer and the superscriptindexes 120590119860 and119861 are respectively the first and the two classof 119898 order modified Bessel function 119896

1198951205902 is eigenvalue of

real symmetric three diagonal positive definitematrices [1198861015840119895119896]

where

1198861015840

119895119896= minus120582

119895minus1 119896 = 119895 minus 1 119895 gt 1 120596119895119911 minus 120582119895minus1 minus120582

119895 119896 = 119895

minus 120582119895 119896 = 119895 + 1 119895 lt119873 0 119896 = 119895 minus 1 119895 or 119895 + 1

(22)

According to the boundary conditions a function relation-ship between 119860

119895

119896 and 119861119895

119896 is as follows

1198602119896=

minus1198861111988612

1198601119896= 12057221198961198601119896

1198603119896=

minus (119886211198601119896+ 119886221198602

119896)

11988623= 12057231198961198601119896

119860119873

119896=

minus (119886119873minus1119873minus2119860119873minus2

119896+ 119886119873minus1119873minus1119860119873minus1

119896)

119886119873minus1119873

= 120572119873

1198961198601119896

119861119895

119896= 120572119895

1198961198611119896 (119895 = 1 119873)

(23)

Then1198732 values for120572119895

119896 can be computed directly from theabove recursion formula Let zone 119894 (119894 = 1 119873119885) contain119898119894layer the zone 119894 with a specific layer 119895 dimensionless

pressure

119875119895119863

=

119898119894

sum

119896119894=1119903119863

(1minus119899)2[119860119895

119896119894119870119898

(119897120590119896119894

119903119863

(3minus119899)2)

+119861119895

119896119894119868119898

(119897120590119896119894

119903119863

(3minus119899)2)]

(24)

where each layer index 119896119894 in the sum refers to the same zone

119894 as Layer 119895

4 Journal of Chemistry

Finally the coefficients for each zone can be expressed asmultiples of the coefficients1198601

119896119894 1198611119896119894 of the uppermost layer

in zone 119894 with (12)

119875119895119863

=

119898119894

sum

119896119894=1

119903119863

(1minus119899)2[1198601119896119894120572119895

119896119894119870119898

(119897120590119896119894

119903119863

(3minus119899)2)

+1198611119896119894120572119895

119896119894119868119898

(119897120590119896119894

119903119863

(3minus119899)2)]

(25)

External boundary condition implies the relationshipbetween 1198601

119896119894 and 1198611

119896119894 is as follows

1198611119896119894 = 1198871198961198941198601119896119894 (26)

For infinite-outer-boundary condition

119887119896119894 = 0 (27)

For no-flow outer-boundary conditions

119887119896119894 =

119870119897(119897120590119896119894

119903119890119863

(3minus119899)2)

119868minus119897

(119897120590119896119894

119903119890119863(3minus119899)2)

(28)

According to the boundary conditions the layer 119895 minus 1 andlayer 119895 which in the same zone have the following relations

119898119894

sum

119896119894=11198601119896119894 (120572119895minus1119896119894 119870119898

(119897120590119896119894

) + 119887119896119894119868119898

(119897120590119896119894

)

+ 119904119895minus1120590119896

119894

[(119897120590119896119894

) minus 119887119896119894119868minus119897

(119897120590119896119894

)]

minus 120572119895

119896119894 119870119898

(119897120590119896119894

) + 119887120581119894119868119898

(119897120590119896119894

)

+ 119904119895120590119896119894

[119870119897(119897120590119896119894

) minus 119887120581119894119868minus119897

(119897120590119896119894

)]) = 0

(29)

The layer 119895 minus 1 of zone 119894 minus 1 and the layer 119895 of zone 119894 minus 1 havethe following relations

119898119894minus1

sum

119896119894minus1=1

(1198601119896119894minus1120572119895minus1119896119894minus1 119870119898

(119897120590119896119894minus1

) + 119887119896119894minus1119868119898

(119897120590119896119894minus1

) + 119904119895minus1120590119896

119894minus1[119870119897(119897120590119896119894minus1

) minus 119887119896119894minus1119868minus119897

(119897120590119896119894minus1

)])

minus

119898119894

sum

119896119894=1

(1198601119896119894120572119895

119896119894 119870119898

(119897120590119896119894

) + 119887120581119894119868119898

(119897120590119896119894

) + 119904119895120590119896119894

[119870119897(119897120590119896119894

) minus 119887120581119894119868minus119897

(119897120590119896119894

)]) = 0

(30)

The wellbore pressure is as follows

119875119908119863

=1

(1198621198631199112 + 1119875

119908119863119862119863=0)

(31)

Equation (31) is a general solution and it is by no wellborestorage pressure solution conversion into thewellbore storagepressure solutions Therefore we will solve the 119862

119863= 0 cases

of equationsEquations (29)-(30) are linear equations with coefficient

1198601119896119894 which can be solved by numerical methodThe wellbore

pressure without wellbore storage is given as

119875119908119863119862119863=0 =

119898119894

sum

119896119894=1

(11986011198961198941205721119896119894 119870119898

(119897120590119896119894

) + 119887119896119894119868119898

(119897120590119896119894

)

+ 1199041120590119896119894

[119870119897(119897120590119896119894

) minus 119887119896119894119868minus119897

(119897120590119896119894

)])

(32)

In addition layer flow rate is given as follows

119902119895119863

= (1minus119862119863119875119908119863

1199112)

sdot 120581119895

119898119894

sum

119896119894=1

1198601119896119894120572119895

119896119894120590119896119894

119870119897(119897120590119896119894

) minus 119887119896119894119868minus119897

(119897120590119896119894

)

(33)

Distribution of radial pressure on each layer becomes

119875119895119863

= (1minus119862119863119875119908119863

1199112) 119875119895119863119862119863=0 = (1minus119862

119863119875119908119863

1199112)

sdot

119898119894

sum

119896119894=1

(1198601119896119894120572119895

119896119894 119870119898

(119897120590119896119894

119903119863

(3minus119899)2)

+ 119887119896119894119868119898

(119897120590119896119894

119903119863

(3minus119899)2))

(34)

For the case of double-layer reservoirs with formation cross-flow assume that choosing parameters is as follows

119862119863

= 1 1199041 = 1199042 = 1 120582 = 1119890 minus 5 120581 = 095120596 = 01 and 119899 = 01 03 05 07 09 through the numericalinversion of the Laplace transform of Stehfest [20] Pressureand flow in the real space are obtainedThe wellbore pressurecurve is shown in Figure 1 The wellbore pressure curve isshown in Figure 2 It can be seen that the pressure derivativecurve is unit slope straight line in the early-time namelylinear unit slope represents pure effect of wellbore storagein the medium term the curve is concave interporosityflow transition characteristics in the late stage the pressurederivative curve is approximately straight line up and theslope is related to the power law index The slope is 119898

119871=

(1minus119899)(3minus119899) And it can be seen that the pressure derivativerises and increases with the reduction of power-law index 119899

steepened

Journal of Chemistry 5

108107106105104

103

103

102

102

101

101

100

100

10minus1

10minus1

10minus2

10minus2

CD = 1

s1 = 1s2 = 1

120582 = 1e minus 5120581 = 095

120596 = 01

tD

n

n = [01 03 05 07 09]

PwDdpwD

dln

t D

Figure 2 Dimensionless pressure for two-layer system

00

02

04

06

08

10

10810710610510410310210110010minus110minus2

tD

n

q1D

CD = 1

s1 = 1s2 = 1

120582 = 1e minus 5120581 = 095

120596 = 01

n = [01 03 05 07 09]

Figure 3 Dimensionless flow-rate for the first layer

In Figures 3 and 4 flow curve can be seen for the firstlayer with high quasi capacity coefficient the dimensionlessflow rate increases with the time increasing and finally tendsto be stable flow rate 120581 for the second layer with low quasicapacity coefficient the dimensionless flow rate increaseswith the time increasing In a certain period due to highpermeability layer crossflow pressure tends to be balancedand the crossflow that is more and more weak finally tendsto be stable flow rate 1 minus 120581

4 The Late Stable Flow Model

For both cases stable layer flow-rates were discussed includ-ing (1) without formation crossflow and (2) with formationcrossflow We only discussed the behavior in late time soignore the effect of wellbore storage effect

000

005

010

015

020

10810710610510410310210110010minus2 10minus110minus4 10minus3

tD

n

q2D

CD = 1

s1 = 1s2 = 1

120582 = 1e minus 5120581 = 095

120596 = 01

n = [01 03 05 07 09]

Figure 4 Dimensionless flow-rate for the second layer

(1) Without Formation Crossflow

for the infinite-out-boundary the stable flow rate forlayer 119895 is as follows

119902119895119904

=

119902120581119895

119897120596119895

119898

sum119873

119896=1 120581119896119897120596119896119898 (35)

For the no-flow-boundary the stable flow rate forlayer 119895 is as follows

119902119895119904

=

119902120601119895ℎ119895119862119905119895

sum119873

119895=1 120601119895ℎ119895119862119905119895 (36)

(2) With Formation Crossflow

Regarding the eigenvalues of matrix 1198861015840

119895119896 there is a

value to meet 1205902

= 119911 and the rest is independentof 119911 and 120596

119895and depends only on 1205811 1205812 120581119899 and

1205821 1205822 120582119899 Assume that 12059012= 119911 Stable layer flow

rate through the determinant value can be expressedas

119902119895119904

= 119902120581119895lim119911rarr 0

[

[

det 11986211989511989611

det 119862119895119896

120572119895

11205901 119870119897 (1198971205901)

minus 1198871119868minus119897

(1198971205901)]

]

+ 119902120581119895

119873

sum

119896119894=2lim119911rarr 0

[

det 119862119894119896119896119894119896119894

det 119862119894119896

sdot 120572119895

119896119894120590119896119894

119870119897(119897120590119896) minus 119887119896119894119868minus119897

(119897120590119896)]

(37)

where det119862119895119896 is determinant of matrix 119862

119895119896

6 Journal of Chemistry

The matrix element is as follows

119862119895119896

= 120572119895

119896119870119898

(119897120590119896) + 119887119896119868119898

(119897120590119896)

+ 119904119896120590119896[119870119897(119897120590119896) minus 119887119896119868minus119897

(119897120590119896)]

minus 120572119895+1119896119870119898

(119897120590119896+1) + 119887

119896119868119898

(119897120590119896+1)

+ 119904119896+1120590119896+1 [119870

119897(119897120590119896+1) minus 119887

119896119868minus119897

(119897120590119896+1)]

(38)

Thematrix 119862119895119896119894119894is used in matrix in 119862

119895119896 column 119894

replacement for (0 0 119860 1119911)119879 where superscript

119879 is the vector transpose

5 Conclusions

Establishing the multilayer reservoir well-test model forpolymer flooding gives the formation and wellbore transientpressure and the layer flow-rate finallyThe expressions of latetime stable flow rate in each layer are given

The unsteady well-test model provides theoreticalmethod for polymer flooding well test analysis of multilayerreservoir the experimental data and the theoretical curvefitting can be used to determine the permeability skin factorand effective interlayer vertical permeability and otherimportant parameters

Nomenclature

1198861015840

119895119896 Matrix elements defined in (22)

119860119895

119896 119861119895

119896 Coefficient for 119895th layer 119896th root defined in(23)

1198601119896119894 1198611119896119894 Coefficient for 119895th layer 119896th root in zone 119868

defined in (25)119887119896119894 Coefficient for outer boundary condition

defined in (27) or (28)119862 Wellbore-storage coefficient (cm3kPa)119862119905119895 Total compressibility in layer 119868 (kPaminus1)

119862119895119896 Matrix elements defined in (38)

119863 Constant defined in (5)ℎ119895 Formation thickness in layer 119895 (cm)

119867 Constant defined in (4)119868119898(sdot) 119870119898(sdot) Modified 119898 order Bessel function of the first

and second kindΔℎ119895 Thickness of a nonperforated zone between

layers 119895 and 119895 + 1 (cm)119870119895 Horizontal permeability in layer 119895 120583m2

119870V119895 Vertical permeability of a tight zone betweenLayers 119895 and 119895 minus 1 (120583m2)

119870119911119895 Vertical permeability in Layer 119895 (120583m2)

119897 119898 Constant defined in (20)119898119894 Number of layers in Zone 119894

119899 Power-law index119873 Number of layers in reservoir system119873119885 Number of Zones in reservoir system119875119894 Reservoir pressure in layer 119868 (kPa)

119875119895

119894 Reservoir pressure in layer 119895 in Zone 119894

(kPa)119875119895119863 Dimensionless reservoir pressure in

layer 119895 defined in (12)1198750 Initial reservoir pressure (kPa)

119875119908119863

Dimensionless bottomhole pressure inLaplace space

119875119908119863119862119863=0 Dimensionless bottomhole pressure

without wellbore storage in Laplacespace

119876 Surface production rate (cm3s)119902119895 Flow rate for layer 119895 (cm3s)

119902119895119904 Stable flow rate for layer 119895 (cm3s)

119903 Radial distance (cm)119903119863 Dimensionless radius defined in (18)

119903119890 Reservoir outer radius (cm)

119903119890119863 Dimensionless outer reservoir radius

defined in (19)119903119908 Wellbore radius (cm)

119878119895 Wellbore skin factor for layer 119895

119905 Time (s)Δ119905 Elapsed time after rate change (s)119905119863 Dimensionless time referenced to

producing layer]119894 Shear rate in layer 119868 (sminus1)

120594119895 Crossflow coefficient between layers 119895

and 119895 + 1 defined in (2)119909119895 Resistance to flow per unit length at the

119895th layer interface119885 Laplace space variable 119894

120572119895

119896 Coefficient for layer 119895 Root 119896 definedin (23)

120572119895

119896119894 Coefficient for layer 119895 Root 119896 defined

in Zone 119868 defined in (25)120581119895 Coefficient for layer 119895 defined in (14)

120582119895 Dimensionless semipermeability

between layers 119895 and 119895 + 1 defined in(16)

119872 Dynamic viscosity (mpasdots)Φ119895 Porosity fraction for layer 119895

120596119895 Coefficient for layer 119895 defined in (15)

]119895 Shear rate for layer 119895 defined in (5)

det119862119895119896 Determinant of matrix 119862

119895119896

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The project was supported by the National Key Science andTechnology Project (2011ZX05009-006) the Major StateBasic Research Development Program of China (973 Pro-gram) (no 2011CB707305) and the China ScholarshipCouncil CAS Strategic Priority Research Program(XDB10030402)

Journal of Chemistry 7

References

[1] D G Russell and M Prats ldquoPerformance of layered reser-voirs with crossflowmdashsingle-compressible-fluid caserdquo Society ofPetroleum Engineers Journal vol 2 no 1 pp 53ndash67 1962

[2] D Russell and M Prats ldquoThe practical aspects of interlayercrossflowrdquo Journal of Petroleum Technology vol 14 no 06 pp589ndash594 2013

[3] R Raghavan R Prijambodo and A C Reynolds ldquoWell testanalysis for well producing layered Reservoirs with crossflowrdquoSociety of Petroleum Engineers Journal vol 25 no 3 pp 380ndash396 1985

[4] D Bourdet ldquoPressure behavior of Layered reservoirs withcrossflowrdquo inProceedings of the SPECalifornia RegionalMeetingSPE-13628-MS Bakersfield Calif USA March 1985

[5] C-T Gao and H A Deans ldquoPressure transients and crossflowcaused by diffusivities inmultiplayer reservoirsrdquo SPE FormationEvaluation vol 3 no 2 pp 438ndash448 1988

[6] C A Ehlig-Economides ldquoA new test for determination ofindividual layer properties in a multilayered reservoirrdquo SPEFormation Evaluation vol 2 no 3 pp 261ndash283 1987

[7] P Bidaux T M Whittle P J Coveney and A C GringartenldquoAnalysis of pressure and rate transient data from wells inmultilayered reservoirs theory and applicationrdquo in Proceedingsof the SPE Annual Technical Conference and Exhibition SPE24679 Washington DC USA October 1992

[8] H van Poollen and J Jargon ldquoSteady-state and unsteady-stateflow of Non-Newtonian fluids through porous mediardquo Societyof Petroleum Engineers Journal vol 9 no 1 pp 80ndash88 2013

[9] C U Ikoku and H J Ramey Jr ldquoWellbore storage and skineffects during the transient flow of non-Newtonian power-lawfluids in porous mediardquo Society of Petroleum Engineers Journalvol 20 no 1 pp 25ndash38 1980

[10] O Lund and C U Ikoku ldquoPressure transient behavior of non-newtoniannewtonian fluid composite reservoirsrdquo Society ofPetroleum Engineers Journal vol 21 no 2 pp 271ndash280 1981

[11] R Prijambodo R Raghavan and A C Reynolds Well TestAnalysis for Wells Producing Layered Reservoirs With CrossflowSociety of Petroleum Engineers 1985

[12] J Xu LWang andK Zhu ldquoPressure behavior for spherical flowin a reservoir of non-Newtonian power-law fluidsrdquo PetroleumScience and Technology vol 21 no 1-2 pp 133ndash143 2003

[13] F-H Escobar J-A Martınez and M Montealegre-MaderoldquoPressure and pressure derivative analysis for a well in aradial composite reservoir with a non-NewtonianNewtonianinterfacerdquo Ciencia Tecnologia y Futuro vol 4 no 2 pp 33ndash422010

[14] J A Martinez F H Escobar and M M Montealegre ldquoVerticalwell pressure and pressure derivative analysis for binghamfluidsin a homogeneous reservoirsrdquo Dyna vol 78 no 166 pp 21ndash282011

[15] F H Escobar A P Zambrano D V Giraldo and J H CantilloldquoPressure and pressure derivative analysis for non-Newtonianpseudoplastic fluids in double-porosity formationsrdquo CTampFmdashCiencia Tecnologıa y Futuro vol 4 no 3 pp 47ndash59 2011

[16] F H Escobar A Martınez and D M Silva ldquoConventionalpressure analysis for naturally-fractured reservoirs with non-Newtonian pseudoplastic fluidsrdquo Fuentes Journal vol 11 no 1pp 27ndash34 2013

[17] F H Escobar J M Ascencio and D F Real ldquoInjection and fall-off tests transient analysis of non-newtonian fluidsrdquo Journal ofEngineering and Applied Sciences vol 8 no 9 pp 703ndash707 2013

[18] P van den Hoek H Mahani T Sorop et al ldquoApplicationof injection fall-off analysis in polymer floodingrdquo in Proceed-ings of the SPE EuropecEAGE Annual Conference Society ofPetroleum Engineers Copenhagen Denmark June 2012

[19] H Y Yu H Guo Y W He et al ldquoNumerical well testing in-terpretation model and applications in crossflow double-layerreservoirs by polymer floodingrdquo The Scientific World Journalvol 2014 Article ID 890874 11 pages 2014

[20] H Stehfest ldquoAlgorithm 368 numerical inversion of Laplacetransforms [D5]rdquo Communications of the ACM vol 13 no 1pp 47ndash49 1970

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 3: Research Article Pressure-Transient Behavior in a ...downloads.hindawi.com/journals/jchem/2015/875068.pdf · Pressure-Transient Behavior in a Multilayered Polymer Flooding Reservoir

Journal of Chemistry 3

The boundary condition at the well is given by the fol-lowing equations which account for both skin and wellborestorage

119875119908119863

= 119875119895119863

(1 119905119863) minus 119904119895

120597119875119895119863

120597119903119863

100381610038161003816100381610038161003816100381610038161003816119903119863=1

1 = 119862119863

119889119875119908119863

119889119905119863

minus

119873

sum

119895=1120581119895

120597119875119895119863

120597119903119863

100381610038161003816100381610038161003816100381610038161003816119903119863=1

(7)

For infinite-outer-boundary condition

119875119895119863

(119903119863 119905119863) 997888rarr 0 (119903

119863997888rarr infin) (8)

For no-flow outer-boundary condition

120597119875119895119863

120597119903119863

= 0 (119903119863

= 119903119890119863

) (9)

For initial condition

119875119895119863

(119903119863 0) = 0 (10)

For dimensionless layer flow rates

119902119895119863

(119905119863) =

119902119895

119902= minus 120581119895

120597119875119895119863

120597119903119863

100381610038161003816100381610038161003816100381610038161003816119903119863=1

(11)

where the dimensionless variables are defined by the follow-ing

119875119895119863

=002120587

119902

119873

sum

119895=1

[

[

119896119895

(1+119899)2ℎ119895

119899(119863119902119895119904)1minus119899

1198671199031199081minus119899120601119895

(1minus119899)2]

]

(119875119895minus1198750) (12)

119905119863

= 001sum119873

119895=1 (120581119895(1+119899)2

ℎ119895

119899(119863119902119895119904)1minus119899

120601119895

(1minus119899)2)

119867sum119873

119895=1 120601119895ℎ1198951198621199051198951199031199083minus119899

119905 (13)

120581119895=

119896119895

(1+119899)2ℎ119895

119899120601119895

(119899minus1)2(119863119902119895119904)1minus119899

sum119873

119895=1 119896119895(1+119899)2

ℎ119895

119899120601119895

(119899minus1)2(119863119902119895119904)1minus119899 (14)

120596119895=

120601119895ℎ119895119862119905119895

sum119873

119895=1 120601119895ℎ119895119862119905119895 (15)

120582119895=

119867119903119908

3minus119899120594119895

sum119873

119895=1 119896119895(1+119899)2

ℎ119895

119899120601119895

(119899minus1)2(119863119902119895119904)1minus119899 (16)

119862119863

=119862

21205871199031199082 sum119873

119895=1 120601119895ℎ119895119862119905119895 (17)

119903119863

=119903

119903119908

(18)

119903119890119863

=119903119890

119903119908

(19)

3 The Solution of the Model

The above equation is given by Laplace transform on timeSet

119897 =2

3 minus 119899

119898 =1 minus 119899

3 minus 119899

(20)

The basic control equation solution is as follows

119875119895119863

=

119873

sum

119896=1119903119863

(1minus119899)2[119860119895

119896119870119898

(119897120590119896119903119863

(3minus119899)2)

+119861119895

119896119868119898

(119897120590119896119903119863

(3minus119899)2)]

(21)

where the subscript on119860 indexes the layer and the superscriptindexes 120590119860 and119861 are respectively the first and the two classof 119898 order modified Bessel function 119896

1198951205902 is eigenvalue of

real symmetric three diagonal positive definitematrices [1198861015840119895119896]

where

1198861015840

119895119896= minus120582

119895minus1 119896 = 119895 minus 1 119895 gt 1 120596119895119911 minus 120582119895minus1 minus120582

119895 119896 = 119895

minus 120582119895 119896 = 119895 + 1 119895 lt119873 0 119896 = 119895 minus 1 119895 or 119895 + 1

(22)

According to the boundary conditions a function relation-ship between 119860

119895

119896 and 119861119895

119896 is as follows

1198602119896=

minus1198861111988612

1198601119896= 12057221198961198601119896

1198603119896=

minus (119886211198601119896+ 119886221198602

119896)

11988623= 12057231198961198601119896

119860119873

119896=

minus (119886119873minus1119873minus2119860119873minus2

119896+ 119886119873minus1119873minus1119860119873minus1

119896)

119886119873minus1119873

= 120572119873

1198961198601119896

119861119895

119896= 120572119895

1198961198611119896 (119895 = 1 119873)

(23)

Then1198732 values for120572119895

119896 can be computed directly from theabove recursion formula Let zone 119894 (119894 = 1 119873119885) contain119898119894layer the zone 119894 with a specific layer 119895 dimensionless

pressure

119875119895119863

=

119898119894

sum

119896119894=1119903119863

(1minus119899)2[119860119895

119896119894119870119898

(119897120590119896119894

119903119863

(3minus119899)2)

+119861119895

119896119894119868119898

(119897120590119896119894

119903119863

(3minus119899)2)]

(24)

where each layer index 119896119894 in the sum refers to the same zone

119894 as Layer 119895

4 Journal of Chemistry

Finally the coefficients for each zone can be expressed asmultiples of the coefficients1198601

119896119894 1198611119896119894 of the uppermost layer

in zone 119894 with (12)

119875119895119863

=

119898119894

sum

119896119894=1

119903119863

(1minus119899)2[1198601119896119894120572119895

119896119894119870119898

(119897120590119896119894

119903119863

(3minus119899)2)

+1198611119896119894120572119895

119896119894119868119898

(119897120590119896119894

119903119863

(3minus119899)2)]

(25)

External boundary condition implies the relationshipbetween 1198601

119896119894 and 1198611

119896119894 is as follows

1198611119896119894 = 1198871198961198941198601119896119894 (26)

For infinite-outer-boundary condition

119887119896119894 = 0 (27)

For no-flow outer-boundary conditions

119887119896119894 =

119870119897(119897120590119896119894

119903119890119863

(3minus119899)2)

119868minus119897

(119897120590119896119894

119903119890119863(3minus119899)2)

(28)

According to the boundary conditions the layer 119895 minus 1 andlayer 119895 which in the same zone have the following relations

119898119894

sum

119896119894=11198601119896119894 (120572119895minus1119896119894 119870119898

(119897120590119896119894

) + 119887119896119894119868119898

(119897120590119896119894

)

+ 119904119895minus1120590119896

119894

[(119897120590119896119894

) minus 119887119896119894119868minus119897

(119897120590119896119894

)]

minus 120572119895

119896119894 119870119898

(119897120590119896119894

) + 119887120581119894119868119898

(119897120590119896119894

)

+ 119904119895120590119896119894

[119870119897(119897120590119896119894

) minus 119887120581119894119868minus119897

(119897120590119896119894

)]) = 0

(29)

The layer 119895 minus 1 of zone 119894 minus 1 and the layer 119895 of zone 119894 minus 1 havethe following relations

119898119894minus1

sum

119896119894minus1=1

(1198601119896119894minus1120572119895minus1119896119894minus1 119870119898

(119897120590119896119894minus1

) + 119887119896119894minus1119868119898

(119897120590119896119894minus1

) + 119904119895minus1120590119896

119894minus1[119870119897(119897120590119896119894minus1

) minus 119887119896119894minus1119868minus119897

(119897120590119896119894minus1

)])

minus

119898119894

sum

119896119894=1

(1198601119896119894120572119895

119896119894 119870119898

(119897120590119896119894

) + 119887120581119894119868119898

(119897120590119896119894

) + 119904119895120590119896119894

[119870119897(119897120590119896119894

) minus 119887120581119894119868minus119897

(119897120590119896119894

)]) = 0

(30)

The wellbore pressure is as follows

119875119908119863

=1

(1198621198631199112 + 1119875

119908119863119862119863=0)

(31)

Equation (31) is a general solution and it is by no wellborestorage pressure solution conversion into thewellbore storagepressure solutions Therefore we will solve the 119862

119863= 0 cases

of equationsEquations (29)-(30) are linear equations with coefficient

1198601119896119894 which can be solved by numerical methodThe wellbore

pressure without wellbore storage is given as

119875119908119863119862119863=0 =

119898119894

sum

119896119894=1

(11986011198961198941205721119896119894 119870119898

(119897120590119896119894

) + 119887119896119894119868119898

(119897120590119896119894

)

+ 1199041120590119896119894

[119870119897(119897120590119896119894

) minus 119887119896119894119868minus119897

(119897120590119896119894

)])

(32)

In addition layer flow rate is given as follows

119902119895119863

= (1minus119862119863119875119908119863

1199112)

sdot 120581119895

119898119894

sum

119896119894=1

1198601119896119894120572119895

119896119894120590119896119894

119870119897(119897120590119896119894

) minus 119887119896119894119868minus119897

(119897120590119896119894

)

(33)

Distribution of radial pressure on each layer becomes

119875119895119863

= (1minus119862119863119875119908119863

1199112) 119875119895119863119862119863=0 = (1minus119862

119863119875119908119863

1199112)

sdot

119898119894

sum

119896119894=1

(1198601119896119894120572119895

119896119894 119870119898

(119897120590119896119894

119903119863

(3minus119899)2)

+ 119887119896119894119868119898

(119897120590119896119894

119903119863

(3minus119899)2))

(34)

For the case of double-layer reservoirs with formation cross-flow assume that choosing parameters is as follows

119862119863

= 1 1199041 = 1199042 = 1 120582 = 1119890 minus 5 120581 = 095120596 = 01 and 119899 = 01 03 05 07 09 through the numericalinversion of the Laplace transform of Stehfest [20] Pressureand flow in the real space are obtainedThe wellbore pressurecurve is shown in Figure 1 The wellbore pressure curve isshown in Figure 2 It can be seen that the pressure derivativecurve is unit slope straight line in the early-time namelylinear unit slope represents pure effect of wellbore storagein the medium term the curve is concave interporosityflow transition characteristics in the late stage the pressurederivative curve is approximately straight line up and theslope is related to the power law index The slope is 119898

119871=

(1minus119899)(3minus119899) And it can be seen that the pressure derivativerises and increases with the reduction of power-law index 119899

steepened

Journal of Chemistry 5

108107106105104

103

103

102

102

101

101

100

100

10minus1

10minus1

10minus2

10minus2

CD = 1

s1 = 1s2 = 1

120582 = 1e minus 5120581 = 095

120596 = 01

tD

n

n = [01 03 05 07 09]

PwDdpwD

dln

t D

Figure 2 Dimensionless pressure for two-layer system

00

02

04

06

08

10

10810710610510410310210110010minus110minus2

tD

n

q1D

CD = 1

s1 = 1s2 = 1

120582 = 1e minus 5120581 = 095

120596 = 01

n = [01 03 05 07 09]

Figure 3 Dimensionless flow-rate for the first layer

In Figures 3 and 4 flow curve can be seen for the firstlayer with high quasi capacity coefficient the dimensionlessflow rate increases with the time increasing and finally tendsto be stable flow rate 120581 for the second layer with low quasicapacity coefficient the dimensionless flow rate increaseswith the time increasing In a certain period due to highpermeability layer crossflow pressure tends to be balancedand the crossflow that is more and more weak finally tendsto be stable flow rate 1 minus 120581

4 The Late Stable Flow Model

For both cases stable layer flow-rates were discussed includ-ing (1) without formation crossflow and (2) with formationcrossflow We only discussed the behavior in late time soignore the effect of wellbore storage effect

000

005

010

015

020

10810710610510410310210110010minus2 10minus110minus4 10minus3

tD

n

q2D

CD = 1

s1 = 1s2 = 1

120582 = 1e minus 5120581 = 095

120596 = 01

n = [01 03 05 07 09]

Figure 4 Dimensionless flow-rate for the second layer

(1) Without Formation Crossflow

for the infinite-out-boundary the stable flow rate forlayer 119895 is as follows

119902119895119904

=

119902120581119895

119897120596119895

119898

sum119873

119896=1 120581119896119897120596119896119898 (35)

For the no-flow-boundary the stable flow rate forlayer 119895 is as follows

119902119895119904

=

119902120601119895ℎ119895119862119905119895

sum119873

119895=1 120601119895ℎ119895119862119905119895 (36)

(2) With Formation Crossflow

Regarding the eigenvalues of matrix 1198861015840

119895119896 there is a

value to meet 1205902

= 119911 and the rest is independentof 119911 and 120596

119895and depends only on 1205811 1205812 120581119899 and

1205821 1205822 120582119899 Assume that 12059012= 119911 Stable layer flow

rate through the determinant value can be expressedas

119902119895119904

= 119902120581119895lim119911rarr 0

[

[

det 11986211989511989611

det 119862119895119896

120572119895

11205901 119870119897 (1198971205901)

minus 1198871119868minus119897

(1198971205901)]

]

+ 119902120581119895

119873

sum

119896119894=2lim119911rarr 0

[

det 119862119894119896119896119894119896119894

det 119862119894119896

sdot 120572119895

119896119894120590119896119894

119870119897(119897120590119896) minus 119887119896119894119868minus119897

(119897120590119896)]

(37)

where det119862119895119896 is determinant of matrix 119862

119895119896

6 Journal of Chemistry

The matrix element is as follows

119862119895119896

= 120572119895

119896119870119898

(119897120590119896) + 119887119896119868119898

(119897120590119896)

+ 119904119896120590119896[119870119897(119897120590119896) minus 119887119896119868minus119897

(119897120590119896)]

minus 120572119895+1119896119870119898

(119897120590119896+1) + 119887

119896119868119898

(119897120590119896+1)

+ 119904119896+1120590119896+1 [119870

119897(119897120590119896+1) minus 119887

119896119868minus119897

(119897120590119896+1)]

(38)

Thematrix 119862119895119896119894119894is used in matrix in 119862

119895119896 column 119894

replacement for (0 0 119860 1119911)119879 where superscript

119879 is the vector transpose

5 Conclusions

Establishing the multilayer reservoir well-test model forpolymer flooding gives the formation and wellbore transientpressure and the layer flow-rate finallyThe expressions of latetime stable flow rate in each layer are given

The unsteady well-test model provides theoreticalmethod for polymer flooding well test analysis of multilayerreservoir the experimental data and the theoretical curvefitting can be used to determine the permeability skin factorand effective interlayer vertical permeability and otherimportant parameters

Nomenclature

1198861015840

119895119896 Matrix elements defined in (22)

119860119895

119896 119861119895

119896 Coefficient for 119895th layer 119896th root defined in(23)

1198601119896119894 1198611119896119894 Coefficient for 119895th layer 119896th root in zone 119868

defined in (25)119887119896119894 Coefficient for outer boundary condition

defined in (27) or (28)119862 Wellbore-storage coefficient (cm3kPa)119862119905119895 Total compressibility in layer 119868 (kPaminus1)

119862119895119896 Matrix elements defined in (38)

119863 Constant defined in (5)ℎ119895 Formation thickness in layer 119895 (cm)

119867 Constant defined in (4)119868119898(sdot) 119870119898(sdot) Modified 119898 order Bessel function of the first

and second kindΔℎ119895 Thickness of a nonperforated zone between

layers 119895 and 119895 + 1 (cm)119870119895 Horizontal permeability in layer 119895 120583m2

119870V119895 Vertical permeability of a tight zone betweenLayers 119895 and 119895 minus 1 (120583m2)

119870119911119895 Vertical permeability in Layer 119895 (120583m2)

119897 119898 Constant defined in (20)119898119894 Number of layers in Zone 119894

119899 Power-law index119873 Number of layers in reservoir system119873119885 Number of Zones in reservoir system119875119894 Reservoir pressure in layer 119868 (kPa)

119875119895

119894 Reservoir pressure in layer 119895 in Zone 119894

(kPa)119875119895119863 Dimensionless reservoir pressure in

layer 119895 defined in (12)1198750 Initial reservoir pressure (kPa)

119875119908119863

Dimensionless bottomhole pressure inLaplace space

119875119908119863119862119863=0 Dimensionless bottomhole pressure

without wellbore storage in Laplacespace

119876 Surface production rate (cm3s)119902119895 Flow rate for layer 119895 (cm3s)

119902119895119904 Stable flow rate for layer 119895 (cm3s)

119903 Radial distance (cm)119903119863 Dimensionless radius defined in (18)

119903119890 Reservoir outer radius (cm)

119903119890119863 Dimensionless outer reservoir radius

defined in (19)119903119908 Wellbore radius (cm)

119878119895 Wellbore skin factor for layer 119895

119905 Time (s)Δ119905 Elapsed time after rate change (s)119905119863 Dimensionless time referenced to

producing layer]119894 Shear rate in layer 119868 (sminus1)

120594119895 Crossflow coefficient between layers 119895

and 119895 + 1 defined in (2)119909119895 Resistance to flow per unit length at the

119895th layer interface119885 Laplace space variable 119894

120572119895

119896 Coefficient for layer 119895 Root 119896 definedin (23)

120572119895

119896119894 Coefficient for layer 119895 Root 119896 defined

in Zone 119868 defined in (25)120581119895 Coefficient for layer 119895 defined in (14)

120582119895 Dimensionless semipermeability

between layers 119895 and 119895 + 1 defined in(16)

119872 Dynamic viscosity (mpasdots)Φ119895 Porosity fraction for layer 119895

120596119895 Coefficient for layer 119895 defined in (15)

]119895 Shear rate for layer 119895 defined in (5)

det119862119895119896 Determinant of matrix 119862

119895119896

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The project was supported by the National Key Science andTechnology Project (2011ZX05009-006) the Major StateBasic Research Development Program of China (973 Pro-gram) (no 2011CB707305) and the China ScholarshipCouncil CAS Strategic Priority Research Program(XDB10030402)

Journal of Chemistry 7

References

[1] D G Russell and M Prats ldquoPerformance of layered reser-voirs with crossflowmdashsingle-compressible-fluid caserdquo Society ofPetroleum Engineers Journal vol 2 no 1 pp 53ndash67 1962

[2] D Russell and M Prats ldquoThe practical aspects of interlayercrossflowrdquo Journal of Petroleum Technology vol 14 no 06 pp589ndash594 2013

[3] R Raghavan R Prijambodo and A C Reynolds ldquoWell testanalysis for well producing layered Reservoirs with crossflowrdquoSociety of Petroleum Engineers Journal vol 25 no 3 pp 380ndash396 1985

[4] D Bourdet ldquoPressure behavior of Layered reservoirs withcrossflowrdquo inProceedings of the SPECalifornia RegionalMeetingSPE-13628-MS Bakersfield Calif USA March 1985

[5] C-T Gao and H A Deans ldquoPressure transients and crossflowcaused by diffusivities inmultiplayer reservoirsrdquo SPE FormationEvaluation vol 3 no 2 pp 438ndash448 1988

[6] C A Ehlig-Economides ldquoA new test for determination ofindividual layer properties in a multilayered reservoirrdquo SPEFormation Evaluation vol 2 no 3 pp 261ndash283 1987

[7] P Bidaux T M Whittle P J Coveney and A C GringartenldquoAnalysis of pressure and rate transient data from wells inmultilayered reservoirs theory and applicationrdquo in Proceedingsof the SPE Annual Technical Conference and Exhibition SPE24679 Washington DC USA October 1992

[8] H van Poollen and J Jargon ldquoSteady-state and unsteady-stateflow of Non-Newtonian fluids through porous mediardquo Societyof Petroleum Engineers Journal vol 9 no 1 pp 80ndash88 2013

[9] C U Ikoku and H J Ramey Jr ldquoWellbore storage and skineffects during the transient flow of non-Newtonian power-lawfluids in porous mediardquo Society of Petroleum Engineers Journalvol 20 no 1 pp 25ndash38 1980

[10] O Lund and C U Ikoku ldquoPressure transient behavior of non-newtoniannewtonian fluid composite reservoirsrdquo Society ofPetroleum Engineers Journal vol 21 no 2 pp 271ndash280 1981

[11] R Prijambodo R Raghavan and A C Reynolds Well TestAnalysis for Wells Producing Layered Reservoirs With CrossflowSociety of Petroleum Engineers 1985

[12] J Xu LWang andK Zhu ldquoPressure behavior for spherical flowin a reservoir of non-Newtonian power-law fluidsrdquo PetroleumScience and Technology vol 21 no 1-2 pp 133ndash143 2003

[13] F-H Escobar J-A Martınez and M Montealegre-MaderoldquoPressure and pressure derivative analysis for a well in aradial composite reservoir with a non-NewtonianNewtonianinterfacerdquo Ciencia Tecnologia y Futuro vol 4 no 2 pp 33ndash422010

[14] J A Martinez F H Escobar and M M Montealegre ldquoVerticalwell pressure and pressure derivative analysis for binghamfluidsin a homogeneous reservoirsrdquo Dyna vol 78 no 166 pp 21ndash282011

[15] F H Escobar A P Zambrano D V Giraldo and J H CantilloldquoPressure and pressure derivative analysis for non-Newtonianpseudoplastic fluids in double-porosity formationsrdquo CTampFmdashCiencia Tecnologıa y Futuro vol 4 no 3 pp 47ndash59 2011

[16] F H Escobar A Martınez and D M Silva ldquoConventionalpressure analysis for naturally-fractured reservoirs with non-Newtonian pseudoplastic fluidsrdquo Fuentes Journal vol 11 no 1pp 27ndash34 2013

[17] F H Escobar J M Ascencio and D F Real ldquoInjection and fall-off tests transient analysis of non-newtonian fluidsrdquo Journal ofEngineering and Applied Sciences vol 8 no 9 pp 703ndash707 2013

[18] P van den Hoek H Mahani T Sorop et al ldquoApplicationof injection fall-off analysis in polymer floodingrdquo in Proceed-ings of the SPE EuropecEAGE Annual Conference Society ofPetroleum Engineers Copenhagen Denmark June 2012

[19] H Y Yu H Guo Y W He et al ldquoNumerical well testing in-terpretation model and applications in crossflow double-layerreservoirs by polymer floodingrdquo The Scientific World Journalvol 2014 Article ID 890874 11 pages 2014

[20] H Stehfest ldquoAlgorithm 368 numerical inversion of Laplacetransforms [D5]rdquo Communications of the ACM vol 13 no 1pp 47ndash49 1970

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 4: Research Article Pressure-Transient Behavior in a ...downloads.hindawi.com/journals/jchem/2015/875068.pdf · Pressure-Transient Behavior in a Multilayered Polymer Flooding Reservoir

4 Journal of Chemistry

Finally the coefficients for each zone can be expressed asmultiples of the coefficients1198601

119896119894 1198611119896119894 of the uppermost layer

in zone 119894 with (12)

119875119895119863

=

119898119894

sum

119896119894=1

119903119863

(1minus119899)2[1198601119896119894120572119895

119896119894119870119898

(119897120590119896119894

119903119863

(3minus119899)2)

+1198611119896119894120572119895

119896119894119868119898

(119897120590119896119894

119903119863

(3minus119899)2)]

(25)

External boundary condition implies the relationshipbetween 1198601

119896119894 and 1198611

119896119894 is as follows

1198611119896119894 = 1198871198961198941198601119896119894 (26)

For infinite-outer-boundary condition

119887119896119894 = 0 (27)

For no-flow outer-boundary conditions

119887119896119894 =

119870119897(119897120590119896119894

119903119890119863

(3minus119899)2)

119868minus119897

(119897120590119896119894

119903119890119863(3minus119899)2)

(28)

According to the boundary conditions the layer 119895 minus 1 andlayer 119895 which in the same zone have the following relations

119898119894

sum

119896119894=11198601119896119894 (120572119895minus1119896119894 119870119898

(119897120590119896119894

) + 119887119896119894119868119898

(119897120590119896119894

)

+ 119904119895minus1120590119896

119894

[(119897120590119896119894

) minus 119887119896119894119868minus119897

(119897120590119896119894

)]

minus 120572119895

119896119894 119870119898

(119897120590119896119894

) + 119887120581119894119868119898

(119897120590119896119894

)

+ 119904119895120590119896119894

[119870119897(119897120590119896119894

) minus 119887120581119894119868minus119897

(119897120590119896119894

)]) = 0

(29)

The layer 119895 minus 1 of zone 119894 minus 1 and the layer 119895 of zone 119894 minus 1 havethe following relations

119898119894minus1

sum

119896119894minus1=1

(1198601119896119894minus1120572119895minus1119896119894minus1 119870119898

(119897120590119896119894minus1

) + 119887119896119894minus1119868119898

(119897120590119896119894minus1

) + 119904119895minus1120590119896

119894minus1[119870119897(119897120590119896119894minus1

) minus 119887119896119894minus1119868minus119897

(119897120590119896119894minus1

)])

minus

119898119894

sum

119896119894=1

(1198601119896119894120572119895

119896119894 119870119898

(119897120590119896119894

) + 119887120581119894119868119898

(119897120590119896119894

) + 119904119895120590119896119894

[119870119897(119897120590119896119894

) minus 119887120581119894119868minus119897

(119897120590119896119894

)]) = 0

(30)

The wellbore pressure is as follows

119875119908119863

=1

(1198621198631199112 + 1119875

119908119863119862119863=0)

(31)

Equation (31) is a general solution and it is by no wellborestorage pressure solution conversion into thewellbore storagepressure solutions Therefore we will solve the 119862

119863= 0 cases

of equationsEquations (29)-(30) are linear equations with coefficient

1198601119896119894 which can be solved by numerical methodThe wellbore

pressure without wellbore storage is given as

119875119908119863119862119863=0 =

119898119894

sum

119896119894=1

(11986011198961198941205721119896119894 119870119898

(119897120590119896119894

) + 119887119896119894119868119898

(119897120590119896119894

)

+ 1199041120590119896119894

[119870119897(119897120590119896119894

) minus 119887119896119894119868minus119897

(119897120590119896119894

)])

(32)

In addition layer flow rate is given as follows

119902119895119863

= (1minus119862119863119875119908119863

1199112)

sdot 120581119895

119898119894

sum

119896119894=1

1198601119896119894120572119895

119896119894120590119896119894

119870119897(119897120590119896119894

) minus 119887119896119894119868minus119897

(119897120590119896119894

)

(33)

Distribution of radial pressure on each layer becomes

119875119895119863

= (1minus119862119863119875119908119863

1199112) 119875119895119863119862119863=0 = (1minus119862

119863119875119908119863

1199112)

sdot

119898119894

sum

119896119894=1

(1198601119896119894120572119895

119896119894 119870119898

(119897120590119896119894

119903119863

(3minus119899)2)

+ 119887119896119894119868119898

(119897120590119896119894

119903119863

(3minus119899)2))

(34)

For the case of double-layer reservoirs with formation cross-flow assume that choosing parameters is as follows

119862119863

= 1 1199041 = 1199042 = 1 120582 = 1119890 minus 5 120581 = 095120596 = 01 and 119899 = 01 03 05 07 09 through the numericalinversion of the Laplace transform of Stehfest [20] Pressureand flow in the real space are obtainedThe wellbore pressurecurve is shown in Figure 1 The wellbore pressure curve isshown in Figure 2 It can be seen that the pressure derivativecurve is unit slope straight line in the early-time namelylinear unit slope represents pure effect of wellbore storagein the medium term the curve is concave interporosityflow transition characteristics in the late stage the pressurederivative curve is approximately straight line up and theslope is related to the power law index The slope is 119898

119871=

(1minus119899)(3minus119899) And it can be seen that the pressure derivativerises and increases with the reduction of power-law index 119899

steepened

Journal of Chemistry 5

108107106105104

103

103

102

102

101

101

100

100

10minus1

10minus1

10minus2

10minus2

CD = 1

s1 = 1s2 = 1

120582 = 1e minus 5120581 = 095

120596 = 01

tD

n

n = [01 03 05 07 09]

PwDdpwD

dln

t D

Figure 2 Dimensionless pressure for two-layer system

00

02

04

06

08

10

10810710610510410310210110010minus110minus2

tD

n

q1D

CD = 1

s1 = 1s2 = 1

120582 = 1e minus 5120581 = 095

120596 = 01

n = [01 03 05 07 09]

Figure 3 Dimensionless flow-rate for the first layer

In Figures 3 and 4 flow curve can be seen for the firstlayer with high quasi capacity coefficient the dimensionlessflow rate increases with the time increasing and finally tendsto be stable flow rate 120581 for the second layer with low quasicapacity coefficient the dimensionless flow rate increaseswith the time increasing In a certain period due to highpermeability layer crossflow pressure tends to be balancedand the crossflow that is more and more weak finally tendsto be stable flow rate 1 minus 120581

4 The Late Stable Flow Model

For both cases stable layer flow-rates were discussed includ-ing (1) without formation crossflow and (2) with formationcrossflow We only discussed the behavior in late time soignore the effect of wellbore storage effect

000

005

010

015

020

10810710610510410310210110010minus2 10minus110minus4 10minus3

tD

n

q2D

CD = 1

s1 = 1s2 = 1

120582 = 1e minus 5120581 = 095

120596 = 01

n = [01 03 05 07 09]

Figure 4 Dimensionless flow-rate for the second layer

(1) Without Formation Crossflow

for the infinite-out-boundary the stable flow rate forlayer 119895 is as follows

119902119895119904

=

119902120581119895

119897120596119895

119898

sum119873

119896=1 120581119896119897120596119896119898 (35)

For the no-flow-boundary the stable flow rate forlayer 119895 is as follows

119902119895119904

=

119902120601119895ℎ119895119862119905119895

sum119873

119895=1 120601119895ℎ119895119862119905119895 (36)

(2) With Formation Crossflow

Regarding the eigenvalues of matrix 1198861015840

119895119896 there is a

value to meet 1205902

= 119911 and the rest is independentof 119911 and 120596

119895and depends only on 1205811 1205812 120581119899 and

1205821 1205822 120582119899 Assume that 12059012= 119911 Stable layer flow

rate through the determinant value can be expressedas

119902119895119904

= 119902120581119895lim119911rarr 0

[

[

det 11986211989511989611

det 119862119895119896

120572119895

11205901 119870119897 (1198971205901)

minus 1198871119868minus119897

(1198971205901)]

]

+ 119902120581119895

119873

sum

119896119894=2lim119911rarr 0

[

det 119862119894119896119896119894119896119894

det 119862119894119896

sdot 120572119895

119896119894120590119896119894

119870119897(119897120590119896) minus 119887119896119894119868minus119897

(119897120590119896)]

(37)

where det119862119895119896 is determinant of matrix 119862

119895119896

6 Journal of Chemistry

The matrix element is as follows

119862119895119896

= 120572119895

119896119870119898

(119897120590119896) + 119887119896119868119898

(119897120590119896)

+ 119904119896120590119896[119870119897(119897120590119896) minus 119887119896119868minus119897

(119897120590119896)]

minus 120572119895+1119896119870119898

(119897120590119896+1) + 119887

119896119868119898

(119897120590119896+1)

+ 119904119896+1120590119896+1 [119870

119897(119897120590119896+1) minus 119887

119896119868minus119897

(119897120590119896+1)]

(38)

Thematrix 119862119895119896119894119894is used in matrix in 119862

119895119896 column 119894

replacement for (0 0 119860 1119911)119879 where superscript

119879 is the vector transpose

5 Conclusions

Establishing the multilayer reservoir well-test model forpolymer flooding gives the formation and wellbore transientpressure and the layer flow-rate finallyThe expressions of latetime stable flow rate in each layer are given

The unsteady well-test model provides theoreticalmethod for polymer flooding well test analysis of multilayerreservoir the experimental data and the theoretical curvefitting can be used to determine the permeability skin factorand effective interlayer vertical permeability and otherimportant parameters

Nomenclature

1198861015840

119895119896 Matrix elements defined in (22)

119860119895

119896 119861119895

119896 Coefficient for 119895th layer 119896th root defined in(23)

1198601119896119894 1198611119896119894 Coefficient for 119895th layer 119896th root in zone 119868

defined in (25)119887119896119894 Coefficient for outer boundary condition

defined in (27) or (28)119862 Wellbore-storage coefficient (cm3kPa)119862119905119895 Total compressibility in layer 119868 (kPaminus1)

119862119895119896 Matrix elements defined in (38)

119863 Constant defined in (5)ℎ119895 Formation thickness in layer 119895 (cm)

119867 Constant defined in (4)119868119898(sdot) 119870119898(sdot) Modified 119898 order Bessel function of the first

and second kindΔℎ119895 Thickness of a nonperforated zone between

layers 119895 and 119895 + 1 (cm)119870119895 Horizontal permeability in layer 119895 120583m2

119870V119895 Vertical permeability of a tight zone betweenLayers 119895 and 119895 minus 1 (120583m2)

119870119911119895 Vertical permeability in Layer 119895 (120583m2)

119897 119898 Constant defined in (20)119898119894 Number of layers in Zone 119894

119899 Power-law index119873 Number of layers in reservoir system119873119885 Number of Zones in reservoir system119875119894 Reservoir pressure in layer 119868 (kPa)

119875119895

119894 Reservoir pressure in layer 119895 in Zone 119894

(kPa)119875119895119863 Dimensionless reservoir pressure in

layer 119895 defined in (12)1198750 Initial reservoir pressure (kPa)

119875119908119863

Dimensionless bottomhole pressure inLaplace space

119875119908119863119862119863=0 Dimensionless bottomhole pressure

without wellbore storage in Laplacespace

119876 Surface production rate (cm3s)119902119895 Flow rate for layer 119895 (cm3s)

119902119895119904 Stable flow rate for layer 119895 (cm3s)

119903 Radial distance (cm)119903119863 Dimensionless radius defined in (18)

119903119890 Reservoir outer radius (cm)

119903119890119863 Dimensionless outer reservoir radius

defined in (19)119903119908 Wellbore radius (cm)

119878119895 Wellbore skin factor for layer 119895

119905 Time (s)Δ119905 Elapsed time after rate change (s)119905119863 Dimensionless time referenced to

producing layer]119894 Shear rate in layer 119868 (sminus1)

120594119895 Crossflow coefficient between layers 119895

and 119895 + 1 defined in (2)119909119895 Resistance to flow per unit length at the

119895th layer interface119885 Laplace space variable 119894

120572119895

119896 Coefficient for layer 119895 Root 119896 definedin (23)

120572119895

119896119894 Coefficient for layer 119895 Root 119896 defined

in Zone 119868 defined in (25)120581119895 Coefficient for layer 119895 defined in (14)

120582119895 Dimensionless semipermeability

between layers 119895 and 119895 + 1 defined in(16)

119872 Dynamic viscosity (mpasdots)Φ119895 Porosity fraction for layer 119895

120596119895 Coefficient for layer 119895 defined in (15)

]119895 Shear rate for layer 119895 defined in (5)

det119862119895119896 Determinant of matrix 119862

119895119896

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The project was supported by the National Key Science andTechnology Project (2011ZX05009-006) the Major StateBasic Research Development Program of China (973 Pro-gram) (no 2011CB707305) and the China ScholarshipCouncil CAS Strategic Priority Research Program(XDB10030402)

Journal of Chemistry 7

References

[1] D G Russell and M Prats ldquoPerformance of layered reser-voirs with crossflowmdashsingle-compressible-fluid caserdquo Society ofPetroleum Engineers Journal vol 2 no 1 pp 53ndash67 1962

[2] D Russell and M Prats ldquoThe practical aspects of interlayercrossflowrdquo Journal of Petroleum Technology vol 14 no 06 pp589ndash594 2013

[3] R Raghavan R Prijambodo and A C Reynolds ldquoWell testanalysis for well producing layered Reservoirs with crossflowrdquoSociety of Petroleum Engineers Journal vol 25 no 3 pp 380ndash396 1985

[4] D Bourdet ldquoPressure behavior of Layered reservoirs withcrossflowrdquo inProceedings of the SPECalifornia RegionalMeetingSPE-13628-MS Bakersfield Calif USA March 1985

[5] C-T Gao and H A Deans ldquoPressure transients and crossflowcaused by diffusivities inmultiplayer reservoirsrdquo SPE FormationEvaluation vol 3 no 2 pp 438ndash448 1988

[6] C A Ehlig-Economides ldquoA new test for determination ofindividual layer properties in a multilayered reservoirrdquo SPEFormation Evaluation vol 2 no 3 pp 261ndash283 1987

[7] P Bidaux T M Whittle P J Coveney and A C GringartenldquoAnalysis of pressure and rate transient data from wells inmultilayered reservoirs theory and applicationrdquo in Proceedingsof the SPE Annual Technical Conference and Exhibition SPE24679 Washington DC USA October 1992

[8] H van Poollen and J Jargon ldquoSteady-state and unsteady-stateflow of Non-Newtonian fluids through porous mediardquo Societyof Petroleum Engineers Journal vol 9 no 1 pp 80ndash88 2013

[9] C U Ikoku and H J Ramey Jr ldquoWellbore storage and skineffects during the transient flow of non-Newtonian power-lawfluids in porous mediardquo Society of Petroleum Engineers Journalvol 20 no 1 pp 25ndash38 1980

[10] O Lund and C U Ikoku ldquoPressure transient behavior of non-newtoniannewtonian fluid composite reservoirsrdquo Society ofPetroleum Engineers Journal vol 21 no 2 pp 271ndash280 1981

[11] R Prijambodo R Raghavan and A C Reynolds Well TestAnalysis for Wells Producing Layered Reservoirs With CrossflowSociety of Petroleum Engineers 1985

[12] J Xu LWang andK Zhu ldquoPressure behavior for spherical flowin a reservoir of non-Newtonian power-law fluidsrdquo PetroleumScience and Technology vol 21 no 1-2 pp 133ndash143 2003

[13] F-H Escobar J-A Martınez and M Montealegre-MaderoldquoPressure and pressure derivative analysis for a well in aradial composite reservoir with a non-NewtonianNewtonianinterfacerdquo Ciencia Tecnologia y Futuro vol 4 no 2 pp 33ndash422010

[14] J A Martinez F H Escobar and M M Montealegre ldquoVerticalwell pressure and pressure derivative analysis for binghamfluidsin a homogeneous reservoirsrdquo Dyna vol 78 no 166 pp 21ndash282011

[15] F H Escobar A P Zambrano D V Giraldo and J H CantilloldquoPressure and pressure derivative analysis for non-Newtonianpseudoplastic fluids in double-porosity formationsrdquo CTampFmdashCiencia Tecnologıa y Futuro vol 4 no 3 pp 47ndash59 2011

[16] F H Escobar A Martınez and D M Silva ldquoConventionalpressure analysis for naturally-fractured reservoirs with non-Newtonian pseudoplastic fluidsrdquo Fuentes Journal vol 11 no 1pp 27ndash34 2013

[17] F H Escobar J M Ascencio and D F Real ldquoInjection and fall-off tests transient analysis of non-newtonian fluidsrdquo Journal ofEngineering and Applied Sciences vol 8 no 9 pp 703ndash707 2013

[18] P van den Hoek H Mahani T Sorop et al ldquoApplicationof injection fall-off analysis in polymer floodingrdquo in Proceed-ings of the SPE EuropecEAGE Annual Conference Society ofPetroleum Engineers Copenhagen Denmark June 2012

[19] H Y Yu H Guo Y W He et al ldquoNumerical well testing in-terpretation model and applications in crossflow double-layerreservoirs by polymer floodingrdquo The Scientific World Journalvol 2014 Article ID 890874 11 pages 2014

[20] H Stehfest ldquoAlgorithm 368 numerical inversion of Laplacetransforms [D5]rdquo Communications of the ACM vol 13 no 1pp 47ndash49 1970

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 5: Research Article Pressure-Transient Behavior in a ...downloads.hindawi.com/journals/jchem/2015/875068.pdf · Pressure-Transient Behavior in a Multilayered Polymer Flooding Reservoir

Journal of Chemistry 5

108107106105104

103

103

102

102

101

101

100

100

10minus1

10minus1

10minus2

10minus2

CD = 1

s1 = 1s2 = 1

120582 = 1e minus 5120581 = 095

120596 = 01

tD

n

n = [01 03 05 07 09]

PwDdpwD

dln

t D

Figure 2 Dimensionless pressure for two-layer system

00

02

04

06

08

10

10810710610510410310210110010minus110minus2

tD

n

q1D

CD = 1

s1 = 1s2 = 1

120582 = 1e minus 5120581 = 095

120596 = 01

n = [01 03 05 07 09]

Figure 3 Dimensionless flow-rate for the first layer

In Figures 3 and 4 flow curve can be seen for the firstlayer with high quasi capacity coefficient the dimensionlessflow rate increases with the time increasing and finally tendsto be stable flow rate 120581 for the second layer with low quasicapacity coefficient the dimensionless flow rate increaseswith the time increasing In a certain period due to highpermeability layer crossflow pressure tends to be balancedand the crossflow that is more and more weak finally tendsto be stable flow rate 1 minus 120581

4 The Late Stable Flow Model

For both cases stable layer flow-rates were discussed includ-ing (1) without formation crossflow and (2) with formationcrossflow We only discussed the behavior in late time soignore the effect of wellbore storage effect

000

005

010

015

020

10810710610510410310210110010minus2 10minus110minus4 10minus3

tD

n

q2D

CD = 1

s1 = 1s2 = 1

120582 = 1e minus 5120581 = 095

120596 = 01

n = [01 03 05 07 09]

Figure 4 Dimensionless flow-rate for the second layer

(1) Without Formation Crossflow

for the infinite-out-boundary the stable flow rate forlayer 119895 is as follows

119902119895119904

=

119902120581119895

119897120596119895

119898

sum119873

119896=1 120581119896119897120596119896119898 (35)

For the no-flow-boundary the stable flow rate forlayer 119895 is as follows

119902119895119904

=

119902120601119895ℎ119895119862119905119895

sum119873

119895=1 120601119895ℎ119895119862119905119895 (36)

(2) With Formation Crossflow

Regarding the eigenvalues of matrix 1198861015840

119895119896 there is a

value to meet 1205902

= 119911 and the rest is independentof 119911 and 120596

119895and depends only on 1205811 1205812 120581119899 and

1205821 1205822 120582119899 Assume that 12059012= 119911 Stable layer flow

rate through the determinant value can be expressedas

119902119895119904

= 119902120581119895lim119911rarr 0

[

[

det 11986211989511989611

det 119862119895119896

120572119895

11205901 119870119897 (1198971205901)

minus 1198871119868minus119897

(1198971205901)]

]

+ 119902120581119895

119873

sum

119896119894=2lim119911rarr 0

[

det 119862119894119896119896119894119896119894

det 119862119894119896

sdot 120572119895

119896119894120590119896119894

119870119897(119897120590119896) minus 119887119896119894119868minus119897

(119897120590119896)]

(37)

where det119862119895119896 is determinant of matrix 119862

119895119896

6 Journal of Chemistry

The matrix element is as follows

119862119895119896

= 120572119895

119896119870119898

(119897120590119896) + 119887119896119868119898

(119897120590119896)

+ 119904119896120590119896[119870119897(119897120590119896) minus 119887119896119868minus119897

(119897120590119896)]

minus 120572119895+1119896119870119898

(119897120590119896+1) + 119887

119896119868119898

(119897120590119896+1)

+ 119904119896+1120590119896+1 [119870

119897(119897120590119896+1) minus 119887

119896119868minus119897

(119897120590119896+1)]

(38)

Thematrix 119862119895119896119894119894is used in matrix in 119862

119895119896 column 119894

replacement for (0 0 119860 1119911)119879 where superscript

119879 is the vector transpose

5 Conclusions

Establishing the multilayer reservoir well-test model forpolymer flooding gives the formation and wellbore transientpressure and the layer flow-rate finallyThe expressions of latetime stable flow rate in each layer are given

The unsteady well-test model provides theoreticalmethod for polymer flooding well test analysis of multilayerreservoir the experimental data and the theoretical curvefitting can be used to determine the permeability skin factorand effective interlayer vertical permeability and otherimportant parameters

Nomenclature

1198861015840

119895119896 Matrix elements defined in (22)

119860119895

119896 119861119895

119896 Coefficient for 119895th layer 119896th root defined in(23)

1198601119896119894 1198611119896119894 Coefficient for 119895th layer 119896th root in zone 119868

defined in (25)119887119896119894 Coefficient for outer boundary condition

defined in (27) or (28)119862 Wellbore-storage coefficient (cm3kPa)119862119905119895 Total compressibility in layer 119868 (kPaminus1)

119862119895119896 Matrix elements defined in (38)

119863 Constant defined in (5)ℎ119895 Formation thickness in layer 119895 (cm)

119867 Constant defined in (4)119868119898(sdot) 119870119898(sdot) Modified 119898 order Bessel function of the first

and second kindΔℎ119895 Thickness of a nonperforated zone between

layers 119895 and 119895 + 1 (cm)119870119895 Horizontal permeability in layer 119895 120583m2

119870V119895 Vertical permeability of a tight zone betweenLayers 119895 and 119895 minus 1 (120583m2)

119870119911119895 Vertical permeability in Layer 119895 (120583m2)

119897 119898 Constant defined in (20)119898119894 Number of layers in Zone 119894

119899 Power-law index119873 Number of layers in reservoir system119873119885 Number of Zones in reservoir system119875119894 Reservoir pressure in layer 119868 (kPa)

119875119895

119894 Reservoir pressure in layer 119895 in Zone 119894

(kPa)119875119895119863 Dimensionless reservoir pressure in

layer 119895 defined in (12)1198750 Initial reservoir pressure (kPa)

119875119908119863

Dimensionless bottomhole pressure inLaplace space

119875119908119863119862119863=0 Dimensionless bottomhole pressure

without wellbore storage in Laplacespace

119876 Surface production rate (cm3s)119902119895 Flow rate for layer 119895 (cm3s)

119902119895119904 Stable flow rate for layer 119895 (cm3s)

119903 Radial distance (cm)119903119863 Dimensionless radius defined in (18)

119903119890 Reservoir outer radius (cm)

119903119890119863 Dimensionless outer reservoir radius

defined in (19)119903119908 Wellbore radius (cm)

119878119895 Wellbore skin factor for layer 119895

119905 Time (s)Δ119905 Elapsed time after rate change (s)119905119863 Dimensionless time referenced to

producing layer]119894 Shear rate in layer 119868 (sminus1)

120594119895 Crossflow coefficient between layers 119895

and 119895 + 1 defined in (2)119909119895 Resistance to flow per unit length at the

119895th layer interface119885 Laplace space variable 119894

120572119895

119896 Coefficient for layer 119895 Root 119896 definedin (23)

120572119895

119896119894 Coefficient for layer 119895 Root 119896 defined

in Zone 119868 defined in (25)120581119895 Coefficient for layer 119895 defined in (14)

120582119895 Dimensionless semipermeability

between layers 119895 and 119895 + 1 defined in(16)

119872 Dynamic viscosity (mpasdots)Φ119895 Porosity fraction for layer 119895

120596119895 Coefficient for layer 119895 defined in (15)

]119895 Shear rate for layer 119895 defined in (5)

det119862119895119896 Determinant of matrix 119862

119895119896

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The project was supported by the National Key Science andTechnology Project (2011ZX05009-006) the Major StateBasic Research Development Program of China (973 Pro-gram) (no 2011CB707305) and the China ScholarshipCouncil CAS Strategic Priority Research Program(XDB10030402)

Journal of Chemistry 7

References

[1] D G Russell and M Prats ldquoPerformance of layered reser-voirs with crossflowmdashsingle-compressible-fluid caserdquo Society ofPetroleum Engineers Journal vol 2 no 1 pp 53ndash67 1962

[2] D Russell and M Prats ldquoThe practical aspects of interlayercrossflowrdquo Journal of Petroleum Technology vol 14 no 06 pp589ndash594 2013

[3] R Raghavan R Prijambodo and A C Reynolds ldquoWell testanalysis for well producing layered Reservoirs with crossflowrdquoSociety of Petroleum Engineers Journal vol 25 no 3 pp 380ndash396 1985

[4] D Bourdet ldquoPressure behavior of Layered reservoirs withcrossflowrdquo inProceedings of the SPECalifornia RegionalMeetingSPE-13628-MS Bakersfield Calif USA March 1985

[5] C-T Gao and H A Deans ldquoPressure transients and crossflowcaused by diffusivities inmultiplayer reservoirsrdquo SPE FormationEvaluation vol 3 no 2 pp 438ndash448 1988

[6] C A Ehlig-Economides ldquoA new test for determination ofindividual layer properties in a multilayered reservoirrdquo SPEFormation Evaluation vol 2 no 3 pp 261ndash283 1987

[7] P Bidaux T M Whittle P J Coveney and A C GringartenldquoAnalysis of pressure and rate transient data from wells inmultilayered reservoirs theory and applicationrdquo in Proceedingsof the SPE Annual Technical Conference and Exhibition SPE24679 Washington DC USA October 1992

[8] H van Poollen and J Jargon ldquoSteady-state and unsteady-stateflow of Non-Newtonian fluids through porous mediardquo Societyof Petroleum Engineers Journal vol 9 no 1 pp 80ndash88 2013

[9] C U Ikoku and H J Ramey Jr ldquoWellbore storage and skineffects during the transient flow of non-Newtonian power-lawfluids in porous mediardquo Society of Petroleum Engineers Journalvol 20 no 1 pp 25ndash38 1980

[10] O Lund and C U Ikoku ldquoPressure transient behavior of non-newtoniannewtonian fluid composite reservoirsrdquo Society ofPetroleum Engineers Journal vol 21 no 2 pp 271ndash280 1981

[11] R Prijambodo R Raghavan and A C Reynolds Well TestAnalysis for Wells Producing Layered Reservoirs With CrossflowSociety of Petroleum Engineers 1985

[12] J Xu LWang andK Zhu ldquoPressure behavior for spherical flowin a reservoir of non-Newtonian power-law fluidsrdquo PetroleumScience and Technology vol 21 no 1-2 pp 133ndash143 2003

[13] F-H Escobar J-A Martınez and M Montealegre-MaderoldquoPressure and pressure derivative analysis for a well in aradial composite reservoir with a non-NewtonianNewtonianinterfacerdquo Ciencia Tecnologia y Futuro vol 4 no 2 pp 33ndash422010

[14] J A Martinez F H Escobar and M M Montealegre ldquoVerticalwell pressure and pressure derivative analysis for binghamfluidsin a homogeneous reservoirsrdquo Dyna vol 78 no 166 pp 21ndash282011

[15] F H Escobar A P Zambrano D V Giraldo and J H CantilloldquoPressure and pressure derivative analysis for non-Newtonianpseudoplastic fluids in double-porosity formationsrdquo CTampFmdashCiencia Tecnologıa y Futuro vol 4 no 3 pp 47ndash59 2011

[16] F H Escobar A Martınez and D M Silva ldquoConventionalpressure analysis for naturally-fractured reservoirs with non-Newtonian pseudoplastic fluidsrdquo Fuentes Journal vol 11 no 1pp 27ndash34 2013

[17] F H Escobar J M Ascencio and D F Real ldquoInjection and fall-off tests transient analysis of non-newtonian fluidsrdquo Journal ofEngineering and Applied Sciences vol 8 no 9 pp 703ndash707 2013

[18] P van den Hoek H Mahani T Sorop et al ldquoApplicationof injection fall-off analysis in polymer floodingrdquo in Proceed-ings of the SPE EuropecEAGE Annual Conference Society ofPetroleum Engineers Copenhagen Denmark June 2012

[19] H Y Yu H Guo Y W He et al ldquoNumerical well testing in-terpretation model and applications in crossflow double-layerreservoirs by polymer floodingrdquo The Scientific World Journalvol 2014 Article ID 890874 11 pages 2014

[20] H Stehfest ldquoAlgorithm 368 numerical inversion of Laplacetransforms [D5]rdquo Communications of the ACM vol 13 no 1pp 47ndash49 1970

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 6: Research Article Pressure-Transient Behavior in a ...downloads.hindawi.com/journals/jchem/2015/875068.pdf · Pressure-Transient Behavior in a Multilayered Polymer Flooding Reservoir

6 Journal of Chemistry

The matrix element is as follows

119862119895119896

= 120572119895

119896119870119898

(119897120590119896) + 119887119896119868119898

(119897120590119896)

+ 119904119896120590119896[119870119897(119897120590119896) minus 119887119896119868minus119897

(119897120590119896)]

minus 120572119895+1119896119870119898

(119897120590119896+1) + 119887

119896119868119898

(119897120590119896+1)

+ 119904119896+1120590119896+1 [119870

119897(119897120590119896+1) minus 119887

119896119868minus119897

(119897120590119896+1)]

(38)

Thematrix 119862119895119896119894119894is used in matrix in 119862

119895119896 column 119894

replacement for (0 0 119860 1119911)119879 where superscript

119879 is the vector transpose

5 Conclusions

Establishing the multilayer reservoir well-test model forpolymer flooding gives the formation and wellbore transientpressure and the layer flow-rate finallyThe expressions of latetime stable flow rate in each layer are given

The unsteady well-test model provides theoreticalmethod for polymer flooding well test analysis of multilayerreservoir the experimental data and the theoretical curvefitting can be used to determine the permeability skin factorand effective interlayer vertical permeability and otherimportant parameters

Nomenclature

1198861015840

119895119896 Matrix elements defined in (22)

119860119895

119896 119861119895

119896 Coefficient for 119895th layer 119896th root defined in(23)

1198601119896119894 1198611119896119894 Coefficient for 119895th layer 119896th root in zone 119868

defined in (25)119887119896119894 Coefficient for outer boundary condition

defined in (27) or (28)119862 Wellbore-storage coefficient (cm3kPa)119862119905119895 Total compressibility in layer 119868 (kPaminus1)

119862119895119896 Matrix elements defined in (38)

119863 Constant defined in (5)ℎ119895 Formation thickness in layer 119895 (cm)

119867 Constant defined in (4)119868119898(sdot) 119870119898(sdot) Modified 119898 order Bessel function of the first

and second kindΔℎ119895 Thickness of a nonperforated zone between

layers 119895 and 119895 + 1 (cm)119870119895 Horizontal permeability in layer 119895 120583m2

119870V119895 Vertical permeability of a tight zone betweenLayers 119895 and 119895 minus 1 (120583m2)

119870119911119895 Vertical permeability in Layer 119895 (120583m2)

119897 119898 Constant defined in (20)119898119894 Number of layers in Zone 119894

119899 Power-law index119873 Number of layers in reservoir system119873119885 Number of Zones in reservoir system119875119894 Reservoir pressure in layer 119868 (kPa)

119875119895

119894 Reservoir pressure in layer 119895 in Zone 119894

(kPa)119875119895119863 Dimensionless reservoir pressure in

layer 119895 defined in (12)1198750 Initial reservoir pressure (kPa)

119875119908119863

Dimensionless bottomhole pressure inLaplace space

119875119908119863119862119863=0 Dimensionless bottomhole pressure

without wellbore storage in Laplacespace

119876 Surface production rate (cm3s)119902119895 Flow rate for layer 119895 (cm3s)

119902119895119904 Stable flow rate for layer 119895 (cm3s)

119903 Radial distance (cm)119903119863 Dimensionless radius defined in (18)

119903119890 Reservoir outer radius (cm)

119903119890119863 Dimensionless outer reservoir radius

defined in (19)119903119908 Wellbore radius (cm)

119878119895 Wellbore skin factor for layer 119895

119905 Time (s)Δ119905 Elapsed time after rate change (s)119905119863 Dimensionless time referenced to

producing layer]119894 Shear rate in layer 119868 (sminus1)

120594119895 Crossflow coefficient between layers 119895

and 119895 + 1 defined in (2)119909119895 Resistance to flow per unit length at the

119895th layer interface119885 Laplace space variable 119894

120572119895

119896 Coefficient for layer 119895 Root 119896 definedin (23)

120572119895

119896119894 Coefficient for layer 119895 Root 119896 defined

in Zone 119868 defined in (25)120581119895 Coefficient for layer 119895 defined in (14)

120582119895 Dimensionless semipermeability

between layers 119895 and 119895 + 1 defined in(16)

119872 Dynamic viscosity (mpasdots)Φ119895 Porosity fraction for layer 119895

120596119895 Coefficient for layer 119895 defined in (15)

]119895 Shear rate for layer 119895 defined in (5)

det119862119895119896 Determinant of matrix 119862

119895119896

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The project was supported by the National Key Science andTechnology Project (2011ZX05009-006) the Major StateBasic Research Development Program of China (973 Pro-gram) (no 2011CB707305) and the China ScholarshipCouncil CAS Strategic Priority Research Program(XDB10030402)

Journal of Chemistry 7

References

[1] D G Russell and M Prats ldquoPerformance of layered reser-voirs with crossflowmdashsingle-compressible-fluid caserdquo Society ofPetroleum Engineers Journal vol 2 no 1 pp 53ndash67 1962

[2] D Russell and M Prats ldquoThe practical aspects of interlayercrossflowrdquo Journal of Petroleum Technology vol 14 no 06 pp589ndash594 2013

[3] R Raghavan R Prijambodo and A C Reynolds ldquoWell testanalysis for well producing layered Reservoirs with crossflowrdquoSociety of Petroleum Engineers Journal vol 25 no 3 pp 380ndash396 1985

[4] D Bourdet ldquoPressure behavior of Layered reservoirs withcrossflowrdquo inProceedings of the SPECalifornia RegionalMeetingSPE-13628-MS Bakersfield Calif USA March 1985

[5] C-T Gao and H A Deans ldquoPressure transients and crossflowcaused by diffusivities inmultiplayer reservoirsrdquo SPE FormationEvaluation vol 3 no 2 pp 438ndash448 1988

[6] C A Ehlig-Economides ldquoA new test for determination ofindividual layer properties in a multilayered reservoirrdquo SPEFormation Evaluation vol 2 no 3 pp 261ndash283 1987

[7] P Bidaux T M Whittle P J Coveney and A C GringartenldquoAnalysis of pressure and rate transient data from wells inmultilayered reservoirs theory and applicationrdquo in Proceedingsof the SPE Annual Technical Conference and Exhibition SPE24679 Washington DC USA October 1992

[8] H van Poollen and J Jargon ldquoSteady-state and unsteady-stateflow of Non-Newtonian fluids through porous mediardquo Societyof Petroleum Engineers Journal vol 9 no 1 pp 80ndash88 2013

[9] C U Ikoku and H J Ramey Jr ldquoWellbore storage and skineffects during the transient flow of non-Newtonian power-lawfluids in porous mediardquo Society of Petroleum Engineers Journalvol 20 no 1 pp 25ndash38 1980

[10] O Lund and C U Ikoku ldquoPressure transient behavior of non-newtoniannewtonian fluid composite reservoirsrdquo Society ofPetroleum Engineers Journal vol 21 no 2 pp 271ndash280 1981

[11] R Prijambodo R Raghavan and A C Reynolds Well TestAnalysis for Wells Producing Layered Reservoirs With CrossflowSociety of Petroleum Engineers 1985

[12] J Xu LWang andK Zhu ldquoPressure behavior for spherical flowin a reservoir of non-Newtonian power-law fluidsrdquo PetroleumScience and Technology vol 21 no 1-2 pp 133ndash143 2003

[13] F-H Escobar J-A Martınez and M Montealegre-MaderoldquoPressure and pressure derivative analysis for a well in aradial composite reservoir with a non-NewtonianNewtonianinterfacerdquo Ciencia Tecnologia y Futuro vol 4 no 2 pp 33ndash422010

[14] J A Martinez F H Escobar and M M Montealegre ldquoVerticalwell pressure and pressure derivative analysis for binghamfluidsin a homogeneous reservoirsrdquo Dyna vol 78 no 166 pp 21ndash282011

[15] F H Escobar A P Zambrano D V Giraldo and J H CantilloldquoPressure and pressure derivative analysis for non-Newtonianpseudoplastic fluids in double-porosity formationsrdquo CTampFmdashCiencia Tecnologıa y Futuro vol 4 no 3 pp 47ndash59 2011

[16] F H Escobar A Martınez and D M Silva ldquoConventionalpressure analysis for naturally-fractured reservoirs with non-Newtonian pseudoplastic fluidsrdquo Fuentes Journal vol 11 no 1pp 27ndash34 2013

[17] F H Escobar J M Ascencio and D F Real ldquoInjection and fall-off tests transient analysis of non-newtonian fluidsrdquo Journal ofEngineering and Applied Sciences vol 8 no 9 pp 703ndash707 2013

[18] P van den Hoek H Mahani T Sorop et al ldquoApplicationof injection fall-off analysis in polymer floodingrdquo in Proceed-ings of the SPE EuropecEAGE Annual Conference Society ofPetroleum Engineers Copenhagen Denmark June 2012

[19] H Y Yu H Guo Y W He et al ldquoNumerical well testing in-terpretation model and applications in crossflow double-layerreservoirs by polymer floodingrdquo The Scientific World Journalvol 2014 Article ID 890874 11 pages 2014

[20] H Stehfest ldquoAlgorithm 368 numerical inversion of Laplacetransforms [D5]rdquo Communications of the ACM vol 13 no 1pp 47ndash49 1970

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 7: Research Article Pressure-Transient Behavior in a ...downloads.hindawi.com/journals/jchem/2015/875068.pdf · Pressure-Transient Behavior in a Multilayered Polymer Flooding Reservoir

Journal of Chemistry 7

References

[1] D G Russell and M Prats ldquoPerformance of layered reser-voirs with crossflowmdashsingle-compressible-fluid caserdquo Society ofPetroleum Engineers Journal vol 2 no 1 pp 53ndash67 1962

[2] D Russell and M Prats ldquoThe practical aspects of interlayercrossflowrdquo Journal of Petroleum Technology vol 14 no 06 pp589ndash594 2013

[3] R Raghavan R Prijambodo and A C Reynolds ldquoWell testanalysis for well producing layered Reservoirs with crossflowrdquoSociety of Petroleum Engineers Journal vol 25 no 3 pp 380ndash396 1985

[4] D Bourdet ldquoPressure behavior of Layered reservoirs withcrossflowrdquo inProceedings of the SPECalifornia RegionalMeetingSPE-13628-MS Bakersfield Calif USA March 1985

[5] C-T Gao and H A Deans ldquoPressure transients and crossflowcaused by diffusivities inmultiplayer reservoirsrdquo SPE FormationEvaluation vol 3 no 2 pp 438ndash448 1988

[6] C A Ehlig-Economides ldquoA new test for determination ofindividual layer properties in a multilayered reservoirrdquo SPEFormation Evaluation vol 2 no 3 pp 261ndash283 1987

[7] P Bidaux T M Whittle P J Coveney and A C GringartenldquoAnalysis of pressure and rate transient data from wells inmultilayered reservoirs theory and applicationrdquo in Proceedingsof the SPE Annual Technical Conference and Exhibition SPE24679 Washington DC USA October 1992

[8] H van Poollen and J Jargon ldquoSteady-state and unsteady-stateflow of Non-Newtonian fluids through porous mediardquo Societyof Petroleum Engineers Journal vol 9 no 1 pp 80ndash88 2013

[9] C U Ikoku and H J Ramey Jr ldquoWellbore storage and skineffects during the transient flow of non-Newtonian power-lawfluids in porous mediardquo Society of Petroleum Engineers Journalvol 20 no 1 pp 25ndash38 1980

[10] O Lund and C U Ikoku ldquoPressure transient behavior of non-newtoniannewtonian fluid composite reservoirsrdquo Society ofPetroleum Engineers Journal vol 21 no 2 pp 271ndash280 1981

[11] R Prijambodo R Raghavan and A C Reynolds Well TestAnalysis for Wells Producing Layered Reservoirs With CrossflowSociety of Petroleum Engineers 1985

[12] J Xu LWang andK Zhu ldquoPressure behavior for spherical flowin a reservoir of non-Newtonian power-law fluidsrdquo PetroleumScience and Technology vol 21 no 1-2 pp 133ndash143 2003

[13] F-H Escobar J-A Martınez and M Montealegre-MaderoldquoPressure and pressure derivative analysis for a well in aradial composite reservoir with a non-NewtonianNewtonianinterfacerdquo Ciencia Tecnologia y Futuro vol 4 no 2 pp 33ndash422010

[14] J A Martinez F H Escobar and M M Montealegre ldquoVerticalwell pressure and pressure derivative analysis for binghamfluidsin a homogeneous reservoirsrdquo Dyna vol 78 no 166 pp 21ndash282011

[15] F H Escobar A P Zambrano D V Giraldo and J H CantilloldquoPressure and pressure derivative analysis for non-Newtonianpseudoplastic fluids in double-porosity formationsrdquo CTampFmdashCiencia Tecnologıa y Futuro vol 4 no 3 pp 47ndash59 2011

[16] F H Escobar A Martınez and D M Silva ldquoConventionalpressure analysis for naturally-fractured reservoirs with non-Newtonian pseudoplastic fluidsrdquo Fuentes Journal vol 11 no 1pp 27ndash34 2013

[17] F H Escobar J M Ascencio and D F Real ldquoInjection and fall-off tests transient analysis of non-newtonian fluidsrdquo Journal ofEngineering and Applied Sciences vol 8 no 9 pp 703ndash707 2013

[18] P van den Hoek H Mahani T Sorop et al ldquoApplicationof injection fall-off analysis in polymer floodingrdquo in Proceed-ings of the SPE EuropecEAGE Annual Conference Society ofPetroleum Engineers Copenhagen Denmark June 2012

[19] H Y Yu H Guo Y W He et al ldquoNumerical well testing in-terpretation model and applications in crossflow double-layerreservoirs by polymer floodingrdquo The Scientific World Journalvol 2014 Article ID 890874 11 pages 2014

[20] H Stehfest ldquoAlgorithm 368 numerical inversion of Laplacetransforms [D5]rdquo Communications of the ACM vol 13 no 1pp 47ndash49 1970

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 8: Research Article Pressure-Transient Behavior in a ...downloads.hindawi.com/journals/jchem/2015/875068.pdf · Pressure-Transient Behavior in a Multilayered Polymer Flooding Reservoir

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of