Research Article Portfolio Strategy of Financial Market with ...Research Article Portfolio Strategy...

10
Research Article Portfolio Strategy of Financial Market with Regime Switching Driven by Geometric Lévy Process Liuwei Zhou and Zhijie Wang College of Information Science and Technology, Donghua University, Shanghai 201620, China Correspondence should be addressed to Liuwei Zhou; [email protected] Received 18 January 2014; Accepted 24 February 2014; Published 25 March 2014 Academic Editor: Zhengguang Wu Copyright © 2014 L. Zhou and Z. Wang. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e problem of a portfolio strategy for financial market with regime switching driven by geometric L´ evy process is investigated in this paper. e considered financial market includes one bond and multiple stocks which has few researches up to now. A new and general Black-Scholes (B-S) model is set up, in which the interest rate of the bond, the rate of return, and the volatility of the stocks vary as the market states switching and the stock prices are driven by geometric L´ evy process. For the general B-S model of the financial market, a portfolio strategy which is determined by a partial differential equation (PDE) of parabolic type is given by using Itˆ o formula. e PDE is an extension of existing result. e solvability of the PDE is researched by making use of variables transformation. An application of the solvability of the PDE on the European options with the final data is given finally. 1. Introduction To make a portfolio strategy is to search for a best allocation of wealth among different assets in markets. Taking the Euro- pean options, for instance, how to distribute the appropriate proportions of each option to maximize total returns at expire time is the core of portfolio strategy problem. ere are two points mentioned among the relevant literatures for portfolio selection problems: setting up a market model that approximates to the real financial market and the way of solving it. Portfolio strategy researches are based on portfolio selection analysis given by Markowitz [1]. Extension of Markowitz’s work to the multiperiod model has given by Li and Ng [2] which derived the analytical optimal portfolio policy. ese previous researches were assuming that the underlying market has only one state or mode. But the real market might have more than one state and could switch among them. en, portfolio policies under regime switching have been widely discussed. In a financial market model, the key process that models the evolution of stock price should be a Brownian motion. Indeed, this can be intuitively justified on the basis of the central limit theorem if one perceives the movement of stocks. e analysis of Øksendal [3] was mainly based on the generalized Black-Scholes model which has two assets () and () as () = ()() and () = ()()+()()(), where () is a Brownian motion. In that case, Øksendal formulated optimal selling decision making as an optimal stopping problem and derived a closed-form solution. e underlying problem may be treated as a free boundary value problem, which was extended to incorporate possible regime switching by Guo and Zhang [4] and Pemy et al. [5] with the switching represented by a two-state Markov chain. e rate of return (t) in the above Black-Scholes models in [4, 5] is a Markov chain which is different from the general one. As an application, Wu and Li [6, 7] have given the strategy of multiperiod mean-variance portfolio selection with regime switching and a stochastic cash flow which depends on the states of a stochastic market following a discrete-time Markov chain. Being put in the Markov jump, Black-Scholes model with regime switching is much closer to the real market. In recent years, L´ evy process as a more general process than Brownian motion has been applied in financial portfolio Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 538041, 9 pages http://dx.doi.org/10.1155/2014/538041

Transcript of Research Article Portfolio Strategy of Financial Market with ...Research Article Portfolio Strategy...

Page 1: Research Article Portfolio Strategy of Financial Market with ...Research Article Portfolio Strategy of Financial Market with Regime Switching Driven by Geometric Lévy Process LiuweiZhouandZhijieWang

Research ArticlePortfolio Strategy of Financial Market with Regime SwitchingDriven by Geometric Leacutevy Process

Liuwei Zhou and Zhijie Wang

College of Information Science and Technology Donghua University Shanghai 201620 China

Correspondence should be addressed to Liuwei Zhou zhouliuweihotmailcom

Received 18 January 2014 Accepted 24 February 2014 Published 25 March 2014

Academic Editor Zhengguang Wu

Copyright copy 2014 L Zhou and Z Wang This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

The problem of a portfolio strategy for financial market with regime switching driven by geometric Levy process is investigatedin this paper The considered financial market includes one bond and multiple stocks which has few researches up to now A newand general Black-Scholes (B-S) model is set up in which the interest rate of the bond the rate of return and the volatility of thestocks vary as the market states switching and the stock prices are driven by geometric Levy process For the general B-S model ofthe financial market a portfolio strategy which is determined by a partial differential equation (PDE) of parabolic type is given byusing Ito formula The PDE is an extension of existing result The solvability of the PDE is researched by making use of variablestransformation An application of the solvability of the PDE on the European options with the final data is given finally

1 Introduction

To make a portfolio strategy is to search for a best allocationof wealth among different assets in markets Taking the Euro-pean options for instance how to distribute the appropriateproportions of each option to maximize total returns atexpire time is the core of portfolio strategy problem Thereare two points mentioned among the relevant literatures forportfolio selection problems setting up a market model thatapproximates to the real financial market and the way ofsolving it

Portfolio strategy researches are based on portfolioselection analysis given by Markowitz [1] Extension ofMarkowitzrsquos work to the multiperiod model has given by Liand Ng [2] which derived the analytical optimal portfoliopolicy These previous researches were assuming that theunderlying market has only one state or mode But the realmarket might have more than one state and could switchamong themThen portfolio policies under regime switchinghave been widely discussed In a financial market model thekey process 119878 that models the evolution of stock price shouldbe a Brownianmotion Indeed this can be intuitively justified

on the basis of the central limit theorem if one perceivesthe movement of stocks The analysis of Oslashksendal [3] wasmainly based on the generalized Black-Scholes model whichhas two assets 119861(119905) and 119878(119905) as 119889119861(119905) = 120588(119905)119861(119905)119889119905 and119889119878(119905) = 120572(119905)119878(119905)119889119905+120573(119905)119878(119905)119889119882(119905) where119882(119905) is a Brownianmotion In that case Oslashksendal formulated optimal sellingdecisionmaking as an optimal stopping problem and deriveda closed-form solution The underlying problem may betreated as a free boundary value problemwhichwas extendedto incorporate possible regime switching by Guo and Zhang[4] and Pemy et al [5] with the switching represented by atwo-state Markov chain The rate of return 120572(t) in the aboveBlack-Scholes models in [4 5] is a Markov chain which isdifferent from the general one As an application Wu and Li[6 7] have given the strategy of multiperiod mean-varianceportfolio selection with regime switching and a stochasticcash flow which depends on the states of a stochastic marketfollowing a discrete-time Markov chain Being put in theMarkov jump Black-Scholes model with regime switching ismuch closer to the real market

In recent years Levy process as a more general processthan Brownianmotion has been applied in financial portfolio

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2014 Article ID 538041 9 pageshttpdxdoiorg1011552014538041

2 Abstract and Applied Analysis

optimization Kallsen [8] gave an optimal portfolio strat-egy of securities market under exponential Levy processMore specific than exponential Levy process a financialmarket model with stock price following the geometric Levyprocess was discussed by Applebaum [9] in which a Levyprocess 119883(119905) and geometric Levy motion 119878(119905) = 119890

119883(119905) wereintroduced Taking 119883 to be a Levy process could force ourstock prices clearly not moving continuously and a morerealistic approach is that the stock price is allowed to havesmall jumps in small time intervals Some applications offinancial market driven by Levy process are taken on lifeinsurance Vandaele and Vanmaele [10] show the real risk-minimizing hedging strategy for unit-linked life insurance infinancial market driven by a Levy process while Weng [11]has analyzed the constant proportion portfolio insurance byassuming that the risky asset price follows a regime switchingexponential Levy process and obtained the analytical formsof the shortfall probability expected shortfall and expectedgain Optimizing proportional reinsurance and investmentpolicies in a multidimensional Levy-driven insurance modelis discussed by Bauerle and Blatter [12] Moreover under agenerally method Yuen and Yin [13] have considered theoptimal dividend problem for the insurance risk process ina general Levy process which shows that if the Levy density isa completely monotone function then the optimal dividendstrategy is a barrier strategy

Among all the above literatures those portfolios arealways based on one risk-free asset and only one riskyasset which may limit the chosen stocks However in a realfinancialmarket there always existsmore than one risky assetin a portfolio That is why we are going to extend the single-stock financial marketmodel to amultistock financial marketmodel driven by geometric Levy process which ismore closerto the real market than proposed portfolios cited above Inthis paper we set up a general Black-Scholes model withgeometric Levy process For the general Black-Scholes modelof the financial market a portfolio strategy which is deter-mined by a partial differential equation (PDE) of parabolictype is given by using Ito formula The solvability of the PDEis researched by making use of variables transformation Anapplication of the solvability of the PDE on the Europeanoptions with the final data is given finally The contributionsof this paper are as follows (i) The B-S market model isextended into general form in which the interest rate of thebond the rate of return and the volatility of the stock vary asthe market states switching and the stock prices are drivenby geometric Levy process (ii) The PDE determining theportfolio strategy and its solvability are extensions of theexisting results

2 Problem Formulation

Assume that (ΩF 119875) is a complete probability space andF119905 119905 ge 0 is a nondecreasing family of 120590-algebra subfields

of F 120572(119905) 119905 ge 0 denotes a Markov chain in (ΩF 119875) asthe regime of financial market for example the bull marketor bear market of a stock market Let 119872 = 1 2 119898 be

the regime space of this Markov chain and let Γ = (120574119894119895)119898times119898

be the transition rate matrix which is satisfying

119875 120572 (119905 + Δ) = 119895 | 120572 (119905) = 119894 = 120574119894119895Δ + 119900 (Δ) 119894 = 119895

1 + 120574119894119894Δ + 119900 (Δ) 119894 = 119895

(1)

where Δ gt 0 is the increment of time 120574119894119895ge 0 (119894 = 119895) 120574

119894119894=

minussum119898

119895 = 119894119895=1120574119894119895

In this paper we consider a financial market modeldriven by geometric Levy process The market consists ofone risk-free asset denoted by 119861 and 119899 risky assets denotedby 1198781 1198782 119878

119899 The price process of these assets obeys the

following dynamic equations in which the price process ofthe risky assets follows the geometric Levy process that is

119889119861 (119905) = 119861 (119905) 119903 (119905 120572 (119905)) 119889119905 119861 (0) = 1198610

119889119878119896 (119905) = 119878

119896 (119905) [120583119896 (119905 120572 (119905)) 119889119905 + 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+int119877minus0

119911119896 (119889119905 119889119911)]

119878119896 (0) = 119878

0

119896gt 0

(2)

where 119861(119905) is the price of 119861 with the interest rate 119903(119905 120572(119905))and 119878

119896(119905) is the price of 119878

119896with the expect rate of return

120583119896(119905 120572(119905)) and the volatility 120590

119896(119905 120572(119905)) which follow the

regime switching of financialmarket 1198781(119905) 1198782(119905) 119878

119899(119905) are

independent from each other119882119896(119905) is the Brownian motion

which is independent from 120572(119905) 119905 ge 0 119896(sdot sdot) is defined as

below

119896 (119889119905 119889119911) = 119873

119896 (119889119905 119889119911) minus 120578119896 (119889119911) 119889119905 (3)

where119873119896(119889119905 119889119911) and 120578

119896(119889119911)119889119905 indicate the number of jumps

and average number of jumps within time 119889119905 and jump range119889119911 of price process 119878

119896(119905) respectively That is

120578119896 (119889119911) 119889t = E [119873

119896 (119889119905 119889119911)] (4)

where E is the expectation operator Moreover we assumethat119873

119896(119889119905 119889119911) 120572(119905) and119882

119896(119905) (119896 = 1 2 119899) are indepen-

dent of each other

Remark 1 Thefinancemarketmodel (2) is an extension of theB-S market model in which the interest rate of the bond therate of return and the volatility of the stock vary as themarketstates switching and the stock prices are driven by geometricLevy process

For finance market model (2) we introduce the conceptof self-financing portfolio as follows

Definition 2 A self-financing portfolio (120593 120595) = (120593 1205951

1205952 120595

119899) for the financial market model (2) is a series of

predictable processes

120593 (119905)119905ge0 120595

119896 (119905)119905ge0 (119896 = 1 2 119899) (5)

Abstract and Applied Analysis 3

that is for each 119879 gt 0

int

119879

0

1003816100381610038161003816120593(119904)1003816100381610038161003816

2119889119904 +

119899

sum

119896=1

int

119879

0

1003816100381610038161003816120595119896(119904)1003816100381610038161003816

2119889119904 lt infin (6)

and the corresponding wealth process 119881(119905)119905ge0

defined by

119881 (119905) = 120593 (119905) 119861 (119905) +

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 119905 ge 0 (7)

is an Ito process satisfying

119889119881 (119905) = 120593 (119905) 119889119861 (119905) +

119899

sum

119896=1

120595119896 (119905) 119889119878119896 (119905) 119905 ge 0 (8)

Problem Formulation In this note we will propose a port-folio strategy for the financial market model (2) whichis determined by a partial differential equation (PDE) ofparabolic type by using Ito formula The solvability of thePDE is researched bymaking use of variables transformationFurthermore the relationship between the solution of thePDE and the wealth process will be discussed

3 Main Results and Proofs

In this section wewill give the following fundamental resultsFor the sake of simplification wewrite 119903(119905 120572(119905)) as 119903119891(119905 119878(119905))as 119891 and so forth

To obtain the main result we give the solution of (2) andthe characteristic of the derivation (8) of the wealth process

The exact solutions of 119861(119905) in (2) can be found as follows

119861 (119905) = 119861 (0) exp(int119905

0

119903 (119904 120572 (119904)) 119889119904) (9)

To solve the second equation in (2) for 119878119896(119905) it follows

from the Ito formula that

119889 ln 119878119896 (119905) =

1

119878119896 (119905)

[119878119896 (119905) 120583119896 (119905 120572 (119905)) 119889119905

+119878119896 (119905) 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)]

minus1

2

1

1198782

119896(119905)

1198782

119896(119905) 1205902

119896(119905 120572 (119905)) 119889119905

+ int119877minus0

[ln (119878119896 (119905) + 119911119878119896 (119905))

minus ln (119878119896 (119905))] 119896 (119889119905 119889119911)

+ int119877minus0

[ ln (119878119896 (119905) + 119911119878119896 (119905)) minus ln (119878

119896 (119905))

minus119911119878119896 (119905)

1

119878119896 (119905)

] 120578119896 (119889119911) 119889119905

+

119904

sum

119895=1

120574119894119895ln (119878119896 (119905))

= [120583119896 (119905 120572 (119905)) minus

1

21205902

119896(119905 120572 (119905))] 119889119905

+ 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+ int119877minus0

ln (1 + 119911) 119896 (119889119905 119889119911)

+ int119877minus0

[ln (1 + 119911) minus 119911] 120578119896 (119889119911) 119889119905

(10)

Integrating both sides of the above equation from 0 to 119905 wehave

119878119896 (119905) = 119878

0

119896expint

119905

0

(120583119896 (119904 120572 (119904)) minus

1

21205902

119896(119904 120572 (119904))] 119889119904

+ int

119905

0

120590119896 (119904 120572 (119904)) 119889119882119896 (119904)

+ int

119905

0

int119877minus0

ln (1 + 119911) 119896 (119889119904 119889119911)

+ int

119905

0

int119877minus0

[ln (1 + 119911) minus 119911] 120578119896 (119889119911) 119889119904

(11)

Proposition 3 Consider the price model (2) of a financialmarket If a portfolio (120593 120595) is a self-financing strategy then thewealth process 119881(119905)

119905ge0defined by (7) satisfies

119889119881 (119905) = 119903 (119905 120572 (119905)) 119881 (119905)

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) [120583119896 (119905 120572 (119905)) minus 119903 (119905 120572 (119905))

minusint119877minus0

119911120578119896 (119889119911)] 119889119905

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) int

119877minus0

119911119873119896 (119889119905 119889119911)

(12)

Conversely consider the model (2) of a financial market If apair (120593 120595) of predictable processes following the wealth process119881(119905)

119905ge0defined by formula (7) satisfies (12) then (120593 120595) is a

self-financing strategy

Proof Substituting (2) into (8) we have

119889119881 (119905) = 120593 (119905) 119889119861 (119905) +

119899

sum

119896=1

120595119896 (119905) 119889119878119896 (119905)

= 120593 (119905) 119861 (119905) 119903 (119905 120572 (119905)) 119889119905 +

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905)

4 Abstract and Applied Analysis

times [120583119896 (119905 120572 (119905)) 119889119905 + 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+ int119877minus0

119911119896 (119889119905 119889119911)]

= [119881 (119905) minus

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905)] 119903 (119905 120572 (119905))

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120583119896 (119905 120572 (119905)) 119889119905

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) int

119877minus0

119911119896 (119889119905 119889119911)

= 119903 (119905 120572 (119905)) 119881 (119905) +

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905)

times [120583119896 (119905 120572 (119905)) minus 119903 (119905 120572 (119905))

minusint119877minus0

119911120578119896 (119889119911)] 119889119905

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) int

119877minus0

119911119873119896 (119889119905 119889119911)

(13)

which is (12)Conversely from (2) and (12) we can obtain (8)This completes the proof of the above proposition

Now we give the following fundamental results

Theorem 4 Consider the model (2) of a financial marketAssume that the portfolio (120593 120595

1 1205952 120595

119899) is a self-financing

strategy and 119881(119905)119905ge0

is the wealth process defined by (7) andsum119899

119896=1120595119896119878119896int119877minus0

119911120578119896(119889119911) = sum

119899

119896=1int119877minus0

119911120595119896119878119896120578119896(119889119911) If there

exists a function 119891(119905 119878) of 11986212 class (the set of functions whichare once differentiable in 119905 and continuously twice differentiablein 119878) such that

119881 (119905) = 119891 (119905 119878 (119905)) 119905 isin [0 119879]

119878 (119905) = (1198781 (119905) 1198782 (119905) 119878119899 (119905))

(14)

which holds true then the portfolio (120593 1205951 1205952 120595

119899) satisfies

120593 (119905) =119891 minus (120597119891120597119878) 119878

119879

B (119905) 119905 ge 0 (15)

120595 (119905) = (120597119891

1205971198781

120597119891

1205971198782

120597119891

120597119878119899

) =120597119891

120597119878 119905 ge 0 (16)

and the function 119891(119905 119878) solves the following backward PDE ofparabolic type

120597119891

120597119905+ 119903

119899

sum

119896=1

120597119891

120597119878119896

119878119896+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895= 119903119891

119905 lt 119879 119878 gt 0

(17)

Moreover if 119881(119879) = 119892(119878(119879)) then the function 119891(119905 119878)

satisfies the following equation

119891 (119879 119878) = 119892 (119878) 119878 gt 0 (18)

For the converse part we assume that 119879 gt 0 If thereexists a function 119891(119905 119878) of 11986212 class such that (17) and (18)are satisfied then the process (120593 120595) defined by (16) and (15) isa self-financing strategy The wealth process 119881 = 119881(119905)

119905isin[0119879]

corresponding to (120593 120595) satisfies (14)

Proof We proof the direct part of Theorem 4 firstlyFor

119881 (119905) = 119891 (119905 119878 (119905)) (19)

by applying the Ito formula we can infer that

119889119881 (119905) =120597119891

120597119905(119905 119878 (119905)) 119889119905

+

119899

sum

119896=1

120597119891

120597119878119896

(119905 119878 (119905)) (119878119896120583119896119889119905 + 119878119896120590119896119889119882119896)

+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

(119905 119878 (119905)) 119878119894120590119894119878119895120590119895119889119905

+

119899

sum

119896=1

int119877minus0

(119891 (119905 119878 + 119911119878) minus 119891 (119905 119878)) 119896 (119889119905 119889119911)

+

119899

sum

119896=1

int119877minus0

[119891 (119905 119878 + 119911119878) minus 119891 (119905 119878)

minus119911120597119891

120597119878119896

(119905 119878) 119878119896] 120578119896 (119889119911) 119889119905

+

119898

sum

119895=1

120574119894119895119891 (119905 119878 (119905))

= [

[

120597119891

120597119905+

119899

sum

119896=1

120597119891

120597119878119896

119878119896120583119896+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

minus

119899

sum

119896=1

int119877minus0

119911120597119891

120597119878119896

119878119896120578119896 (119889119911)] 119889119905

+

119899

sum

119896=1

120597119891

120597119878119896

119878119896120590119896119889119882119896

+

119899

sum

119896=1

int119877minus0

[119891 (119905 119878 + 119911119878) minus 119891 (119905 119878)]119873 (119889119905 119889119911)

(20)

Abstract and Applied Analysis 5

On the other hand since our strategy is self-financing theformula (12) is satisfied

Thus the rate of return and the volatility in (20) and (12)should be coincided and hence

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120590119896 =

119899

sum

119896=1

120597119891

120597119878119896

(119905 119878) 119878119896120590119896

119903 (119905 120572 (119905)) 119891 (119905 119878) +

119899

sum

119896=1

120595119896119878119896(120583119896minus 119903)

=120597119891

120597119905+

119899

sum

119896=1

120597119891

120597119878119896

119878119896120583119896+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

(21)

We can easily get 119878119896ge 0 from (11) which together with

the first equation of (21) and the independence of 119878119896(119896 =

1 2 119899) yields (16)From the first equation of (21) (7) and (14) we have

119903120593119861 = 119891 minus

119899

sum

119896=1

120597119891

120597119878119896

119878119896 (22)

So that

120593 =119891 minus sum

119899

119896=1(120597119891120597119878

119896) 119878119896

119861=119891 minus 119891119878119878119879

119861 (23)

Substituting (16) into the second equation of (21) we have

119903119891 minus

119899

sum

119896=1

120595119896119878119896119903 =

120597119891

120597119905+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895 (24)

which is (17)Conversely assume that 119891 = 119891(119905 119878) is a 119862

12-classfunction which is a solution of the PDE (17) and that (120593 120595)is a process defined by (16) and (15)

Firstly we will show that a process 119881 = 119881(119905) 119905 isin [0 119879]defined by (7) satisfies the equation

119881 (119905) = 119891 (119905 119878 (119905)) 119905 isin [0 119879] (25)

In fact substituting formulas (16) and (15) into the right handside of (7) we have

119881 (119905) = 120593119861 +

119899

sum

119896=1

120595119896119878119896=119891 minus sum

119899

119896=1(120597119891120597119878

119896) 119878119896

119861119861

+

119899

sum

119896=1

120597119891

120597119878119896

119878119896= 119891 119905 ge 0

(26)

This proves (25)Next we will show that (120593 120595) is a self-financing strategy

that is (12) holdsBy applying the Ito formula to the process119881 and function

119891 we have that (20) is satisfied

Furthermore by (17)

120597119891

120597119905+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895= 119903119891 minus 119903

119899

sum

119896=1

119878119896

120597119891

120597119878119896

120597119891

120597119905+

119899

sum

119896=1

119878119896120583119896

120597119891

120597119878119896

+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

= 119903119891 +

119899

sum

119896=1

(120583119896minus 119903) 119878

119896

120597119891

120597119878119896

(27)

Then by (25) and (16) we have

119903119881 +

119899

sum

119896=1

120595119896119878119896(120583119896minus 119903) =

120597119891

120597119905+

119899

sum

119896=1

119878119896120583119896

120597119891

120597119878119896

+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

(28)

119899

sum

119896=1

120595119896119878119896120590119896=

119899

sum

119896=1

120597119891

120597119878119896

119878119896120590119896 (29)

Those together with (16) yield that (20) implies (12) Theproof of Theorem 4 is completed

Remark 5 In order to determine the portfolio strategy (120601 120595)and obtain the final value 119881(119905) from Theorem 4 we shouldfind the solution of the PDF (17) with the final data (18)This is the key problem in the rest of this section Wehave the following result in terms of method of variablestransformation

Theorem 6 Let 119903(119905 120572(119905)) in (2) be a constant 119903 The function119891(119905 119878) 119905 le 119879 119878 gt 0 given by the following formula

119891 (119905 119878) =119890minus119903(119879minus119905)

radic2120587

times

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942119892 (0 0 119878

119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(30)

is a solution of the general Black-Scholes equation (17) with thefinal data (18)

Proof We are going to do some equivalent transformationsof general B-S equation (17) in order to get an appropriateequivalent equation with analytic solutions The procedurewill be divided into four steps

Step I Let

119891 (119905 1198781 119878

119899) = 119890119903(119905minus119879)

119902 (119905 ln 1198781minus (119903 minus

1

21205902

1) (119905 minus 119879)

ln 119878119899minus (119903 minus

1

21205902

119899) (119905 minus 119879))

(31)

6 Abstract and Applied Analysis

and denote 119910119894= ln 119878

119894minus (119903 minus (12)120590

2

119894)(119905 minus 119879) (119894 = 1 2 119899)

and then

120597119891

120597119905=

119889 (119890119903(119905minus119879)

)

119889119905119902 + 119890119903(119905minus119879)

119902119905

= 119890119903(119905minus119879)

119902 (119889119903

119889119905(119905 minus 119879) + 119903)

+ 119890119903(119905minus119879)

[119902119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

= 119903119890119903(119905minus119879)

119902 + 119890119903(119905minus119879)

119902119889119903

119889119905(119905 minus 119879)

+ 119890119903(119905minus119879)

[120597119902

120597119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

120597119891

120597119878119894

= 119890119903(119905minus119879) 120597119902

120597119910119894

1

119878119894

1205972119891

120597119878119894120597119878119895

=

120597 (119890119903(119905minus119879)

(120597119902120597119910119894) (1119878

119894))

120597119878119895

=

119890119903(119905minus119879)

1205972119902

120597119910119894120597119910119895

1

119878119894

1

119878119895

119894 = 119895

119890119903(119905minus119879)

(1205972119902

120597119910119894120597119910119894

1

119878119894

1

119878119894

minus120597119902

120597119910119894

1

1198782

119894

) 119894 = 119895

(32)

Inserting the above formulas into (17) we get

119903119891 +119889119903

119889119905(119905 minus 119879) 119902119890

119903(119905minus119879)+ 119890119903(119905minus119879)

[120597119902

120597119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

+ 119903

119899

sum

119894=1

119890119903(119905minus119879) 120597119902

120597119910119894

1

119878119894

119878119894+1

2

119899

sum

119894=1

119899

sum

119895=1

119890119903(119905minus119879) 120597

2119902

120597119910119894120597119910119895

1

119878119894

1

119878119895

119878119894120590119894119878119895120590119895

minus1

2

119899

sum

119894=1

119890119903(119905minus119879) 120597119902

120597119910119894

1198782

119894

1

1198782

119894

1198782

119894= 119903119891

(33)

which can be simplified as

119889119903

119889119905(119905 minus 119879) 119902 +

120597119902

120597119905+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119902

120597119910119894120597119910119895

120590119894120590119895= 0 (34)

The final data 119891(119879 119878) = 119892(119878) can be rewritten as

119902 (119879 119878) = 119892 (1198901198781 1198901198782 119890

119878119899) (35)

Step II We introduce another variable and a new function asfollows

120591 = 119879 minus 119905 gt 0 119905 = 119879 minus 120591 120591 ge 0 119905 le 119879

119902 (119905 119910) = 119906 (119879 minus 119905 119910) or 119906 (120591 119910) = 119902 (119879 minus 120591 119910)

(36)

It can be computed that

119902119905(119905 119910) = minus119906

120591(119879 minus 119905 119910)

120597119902

120597119910119894

=120597119906

120597119910119894

(119879 minus 119905 119910)

1205972119902

120597119910119894120597119910119895

=1205972119906

120597119910119894120597119910119895

(119879 minus 119905 119910)

(37)

Substituting the above formulas into (34) we get

119889119881

119889119905(119905 minus 119879) 119906 (119879 minus 119905 119910) minus 119906

120591(119879 minus 119905 119910) +

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895

= 0

119906 (0 119910) = 119892 (119890119910)

(38)

Since 119903(119905 120572(119905)) is assumed as a constant 119903 (38) can be changedinto

119906120591(120591 119910) minus

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895= 0

119906 (0 119910) = 119892 (119890119910)

(39)

Step III We claim that the unique solution of (39) is

119906 (119905 1199101 1199102 119910

119899)

=1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

119892 (0 0 119890119909119894 0 0) 119889119909

119894

(40)

In fact

119906120591(120591 119910) = minus

1

2radic2120587120591120591

times

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0) 119889119909

119894

+1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0)

times(119910119894minus 119909119894)2

21205902

1198941205912

119889119909119894

Abstract and Applied Analysis 7

120597119906

120597119910119894

=1

radic2120587120591int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

119892 (0 0 119890119909119894 0 0)

times (minus119910119894minus 119909119894

1205902

119894120591

)119889119909119894

1205972119906

120597119910119894120597119910119895

=

0 119894 = 119895

1

radic2120587120591int

infin

minusinfin

119892 (1198901199091 119890

119909119899)

1205902

119894

119890minus(119910119894minus119909119894)221205902

119894120591

times((119910119894minus 119909119894)2

1205904

1198941205912

minus1

1205902

119894120591)1205902

119894119889119909i 119894 = 119895

(41)

So

119906120591(120591 119892) minus

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895

= minus1

2radic2120587120591120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0) 119889119909

119894

+1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0)

(119910119894minus 119909119894)2

21205902

1198941205912

119889119909119894

minus1

2

119899

sum

119894=1

1

radic2120587120591int

infin

minusinfin

119892 (1198901199091 119890

119909119899)

1205902

119894

times 119890minus(119910119894minus119909119894)221205902

119894120591((119910119894minus 119909119894)2

1205904

1198941205912

minus1

1205902

119894120591)1205902

119894119889119909119894= 0

(42)

Step IV By introducing a change of variables 119911119894= 119909119894minus 119910119894

we have 119909119894= 119911119894+ 119910119894and 119889119909

119894= 119889119911119894 where 119911

119894isin (minusinfininfin) It

follows that

119906 (120591 119910)

=1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119911119894+119910119894 0 0) 119889119911

119894

(43)

In order to get rid of the denominator 1205902119894120591 in the exponent in

the above formula we make another change of variables as

119911119894= 120590119894radic120591119909119894 (44)

So 119889119911119894= 120590119894radic120591119889119909

119894

Recalling the relationship between 119902 and 119906 described in(36) we therefore have

119902 (119905 119910)

=1

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119890120590119894radic119879minus119905119909

119894+119910119894 0 0) 119889119909

119894

(45)

Hence by formula (31) we have

119891 (119905 119878)

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119890120590119894radic119879minus119905119909

119894+ln 119878119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(46)

Since 119890ln 119878 = 119878 then

119891 (119905 119878)

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(47)

In this way we provedTheorem 6

4 A Financial Example

As an application we consider the European call option InTheorem 6 we have given the solution of the general B-Sequation (17) which depends on the final data (18) that is119891(119879 119904) = 119892(119904) More specific we take the final data 119892(119904) forthe European call option as

119892 (119878) = 119892 (119878minus1198961

1 119878minus1198962

2 119878

minus119896119899

119899) =

119899

sum

119894=1

(119878119894minus 119870i)+ (48)

where 119878119894gt 0 and 119870

119894gt 0 are the strike price of 119878

119894 Then we

have the following corollary fromTheorem 6

Corollary 7 For the European call option the solution to thegeneral Black-Scholes value problem (17) with the final data(48) is given by

119891 (119905 119878) =

119899

sum

119894=1

119878119894Φ(minus119860

119894+ 120590119894radic119879 minus 119905)

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(minus119860

119894)

(49)

8 Abstract and Applied Analysis

where

minus119860119894=

(119903 minus 1205902

1198942) (119879 minus 119905) + ln (119878

119894119870119894)

120590119894radic119879 minus 119905

= 1198892

minus119860119894+ 120590119894radic119879 minus 119905 =

(119903 + 1205902

1198942) (119879 minus 119905) + ln (119878

119894119870119894)

120590119894radicT minus 119905

= 1198891

(50)

that is

119891 (119905 119878) =

119899

sum

119894=1

119878119894Φ(1198891) minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(1198892) (51)

In particular

119891 (0 119878) =

119899

sum

119894=1

119878119894Φ(1198891) minus 119890minus119903119879

119899

sum

119894=1

119870119894Φ(1198892) (52)

Proof For a European call option we infer that

119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

gt 119870119894 (53)

Dividing (53) by 119878119894and taking the ln we get

120590119894radic119879 minus 119905119909

119894minus (119903 minus

1205902

119894

2) (119905 minus 119879) gt ln

119870119894

119878119894

(54)

that is

119909119894gt

ln (119870119894119878119894) minus (119903 minus 120590

2

1198942) (119879 minus 119905)

120590119894radic119879 minus 119905

= 119860119894 (55)

Hence from (30) and (48) it follows that

119891 (119905 119878) =119890minus119903(119879minus119905)

radic2120587

times

119899

sum

119894=1

int

infin

119860119894

119890minus1199092

1198942119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

119860119894

119878119894119890(119903minus1205902

1198942)(119879minus119905)

119890minus1199092

1198942+120590119894radic119879minus119905119909

119894119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=1

radic2120587

119899

sum

119894=1

int

infin

119860119894

119878119894119890minus(1205902

1198942)(119879minus119905)

times 119890minus(12)(119909

119894minus120590119894radic119879minus119905)

2

+(12)1205902

119894(119879minus119905)

119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=1

radic2120587

119899

sum

119894=1

int

infin

119860119894minus120590119894radic119879minus119905

119878119894119890minus11991122119889119911

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=

119899

sum

119894=1

119878119894

1

radic2120587int

minus119860119894+120590119894radic119879minus119905

minusinfin

119890minus1199092

1198942119889119909119894

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894

1

radic2120587int

minus119860119894

minusinfin

119890minus1199092

1198942119889119909119894

=

119899

sum

119894=1

119878119894Φ(minus119860

119894+ 120590119894radic119879 minus 119905)

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(minus119860

119894)

(56)

where Φ(119905) is the probability distribution function of astandard Gaussion random variable119873(0 1) that is

Φ (119905) =1

radic2120587int

119905

minusinfin

119890minus11990922119889119909 119905 isin 119877 (57)

In this way we have proved Corollary 7

Remark 8 Theabove result is about the European call optionA similar representation to those from the above corollaryin the European put option case can be obtained by taking119892(119878) = sum

119899

119894=1(119870119894minus 119878119894)+ 119878119894gt 0 for some fixed 119870

119894gt 0

5 Conclusion

In this paper we have considered a financial market modelwith regime switching driven by geometric Levy processThis financial market model is based on the multiple riskyassets 119878

1 1198782 119878

119899driven by Levy process Ito formula and

equivalent transformation methods have been used to solvethis complicated financial market model An example of theportfolio strategy and the final value problem to applying ourmethod to the European call option has been given in the endof this paper

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 9

Acknowledgment

This work is supported by the National Natural ScienceFoundation of China (Grants no 61075105 and no 71371046)

References

[1] H Markowitz ldquoPortfolio selectionrdquo Journal of Finance vol 7pp 77ndash91 1952

[2] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[3] B Oslashksendal Stochastic Differential Equations Springer 6thedition 2005

[4] X Guo and Q Zhang ldquoOptimal selling rules in a regimeswitching modelrdquo IEEE Transactions on Automatic Control vol50 no 9 pp 1450ndash1455 2005

[5] M Pemy Q Zhang and G G Yin ldquoLiquidation of a large blockof stock with regime switchingrdquoMathematical Finance vol 18no 4 pp 629ndash648 2008

[6] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with Markov regime switching and uncertain time-horizonrdquo Journal of Systems Science amp Complexity vol 24 no 1pp 140ndash155 2011

[7] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with regime switching and a stochastic cash flowrdquoInsuranceMathematics amp Economics vol 50 no 3 pp 371ndash3842012

[8] J Kallsen ldquoOptimal portfolios for exponential Levy processesrdquoMathematical Methods of Operations Research vol 51 no 3 pp357ndash374 2000

[9] D Applebaum Levy Processes and Stochastic Calculus vol 93Cambridge University Press Cambridge UK 2004

[10] N Vandaele and M Vanmaele ldquoA locally risk-minimizinghedging strategy for unit-linked life insurance contracts ina Levy process financial marketrdquo Insurance Mathematics ampEconomics vol 42 no 3 pp 1128ndash1137 2008

[11] C Weng ldquoConstant proportion portfolio insurance under aregime switching exponential Levy processrdquo Insurance Math-ematics amp Economics vol 52 no 3 pp 508ndash521 2013

[12] N Bauerle and A Blatter ldquoOptimal control and dependencemodeling of insurance portfolios with Levy dynamicsrdquo Insur-ance Mathematics amp Economics vol 48 no 3 pp 398ndash4052011

[13] K C Yuen and C Yin ldquoOn optimality of the barrier strategyfor a general Levy risk processrdquo Mathematical and ComputerModelling vol 53 no 9-10 pp 1700ndash1707 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Portfolio Strategy of Financial Market with ...Research Article Portfolio Strategy of Financial Market with Regime Switching Driven by Geometric Lévy Process LiuweiZhouandZhijieWang

2 Abstract and Applied Analysis

optimization Kallsen [8] gave an optimal portfolio strat-egy of securities market under exponential Levy processMore specific than exponential Levy process a financialmarket model with stock price following the geometric Levyprocess was discussed by Applebaum [9] in which a Levyprocess 119883(119905) and geometric Levy motion 119878(119905) = 119890

119883(119905) wereintroduced Taking 119883 to be a Levy process could force ourstock prices clearly not moving continuously and a morerealistic approach is that the stock price is allowed to havesmall jumps in small time intervals Some applications offinancial market driven by Levy process are taken on lifeinsurance Vandaele and Vanmaele [10] show the real risk-minimizing hedging strategy for unit-linked life insurance infinancial market driven by a Levy process while Weng [11]has analyzed the constant proportion portfolio insurance byassuming that the risky asset price follows a regime switchingexponential Levy process and obtained the analytical formsof the shortfall probability expected shortfall and expectedgain Optimizing proportional reinsurance and investmentpolicies in a multidimensional Levy-driven insurance modelis discussed by Bauerle and Blatter [12] Moreover under agenerally method Yuen and Yin [13] have considered theoptimal dividend problem for the insurance risk process ina general Levy process which shows that if the Levy density isa completely monotone function then the optimal dividendstrategy is a barrier strategy

Among all the above literatures those portfolios arealways based on one risk-free asset and only one riskyasset which may limit the chosen stocks However in a realfinancialmarket there always existsmore than one risky assetin a portfolio That is why we are going to extend the single-stock financial marketmodel to amultistock financial marketmodel driven by geometric Levy process which ismore closerto the real market than proposed portfolios cited above Inthis paper we set up a general Black-Scholes model withgeometric Levy process For the general Black-Scholes modelof the financial market a portfolio strategy which is deter-mined by a partial differential equation (PDE) of parabolictype is given by using Ito formula The solvability of the PDEis researched by making use of variables transformation Anapplication of the solvability of the PDE on the Europeanoptions with the final data is given finally The contributionsof this paper are as follows (i) The B-S market model isextended into general form in which the interest rate of thebond the rate of return and the volatility of the stock vary asthe market states switching and the stock prices are drivenby geometric Levy process (ii) The PDE determining theportfolio strategy and its solvability are extensions of theexisting results

2 Problem Formulation

Assume that (ΩF 119875) is a complete probability space andF119905 119905 ge 0 is a nondecreasing family of 120590-algebra subfields

of F 120572(119905) 119905 ge 0 denotes a Markov chain in (ΩF 119875) asthe regime of financial market for example the bull marketor bear market of a stock market Let 119872 = 1 2 119898 be

the regime space of this Markov chain and let Γ = (120574119894119895)119898times119898

be the transition rate matrix which is satisfying

119875 120572 (119905 + Δ) = 119895 | 120572 (119905) = 119894 = 120574119894119895Δ + 119900 (Δ) 119894 = 119895

1 + 120574119894119894Δ + 119900 (Δ) 119894 = 119895

(1)

where Δ gt 0 is the increment of time 120574119894119895ge 0 (119894 = 119895) 120574

119894119894=

minussum119898

119895 = 119894119895=1120574119894119895

In this paper we consider a financial market modeldriven by geometric Levy process The market consists ofone risk-free asset denoted by 119861 and 119899 risky assets denotedby 1198781 1198782 119878

119899 The price process of these assets obeys the

following dynamic equations in which the price process ofthe risky assets follows the geometric Levy process that is

119889119861 (119905) = 119861 (119905) 119903 (119905 120572 (119905)) 119889119905 119861 (0) = 1198610

119889119878119896 (119905) = 119878

119896 (119905) [120583119896 (119905 120572 (119905)) 119889119905 + 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+int119877minus0

119911119896 (119889119905 119889119911)]

119878119896 (0) = 119878

0

119896gt 0

(2)

where 119861(119905) is the price of 119861 with the interest rate 119903(119905 120572(119905))and 119878

119896(119905) is the price of 119878

119896with the expect rate of return

120583119896(119905 120572(119905)) and the volatility 120590

119896(119905 120572(119905)) which follow the

regime switching of financialmarket 1198781(119905) 1198782(119905) 119878

119899(119905) are

independent from each other119882119896(119905) is the Brownian motion

which is independent from 120572(119905) 119905 ge 0 119896(sdot sdot) is defined as

below

119896 (119889119905 119889119911) = 119873

119896 (119889119905 119889119911) minus 120578119896 (119889119911) 119889119905 (3)

where119873119896(119889119905 119889119911) and 120578

119896(119889119911)119889119905 indicate the number of jumps

and average number of jumps within time 119889119905 and jump range119889119911 of price process 119878

119896(119905) respectively That is

120578119896 (119889119911) 119889t = E [119873

119896 (119889119905 119889119911)] (4)

where E is the expectation operator Moreover we assumethat119873

119896(119889119905 119889119911) 120572(119905) and119882

119896(119905) (119896 = 1 2 119899) are indepen-

dent of each other

Remark 1 Thefinancemarketmodel (2) is an extension of theB-S market model in which the interest rate of the bond therate of return and the volatility of the stock vary as themarketstates switching and the stock prices are driven by geometricLevy process

For finance market model (2) we introduce the conceptof self-financing portfolio as follows

Definition 2 A self-financing portfolio (120593 120595) = (120593 1205951

1205952 120595

119899) for the financial market model (2) is a series of

predictable processes

120593 (119905)119905ge0 120595

119896 (119905)119905ge0 (119896 = 1 2 119899) (5)

Abstract and Applied Analysis 3

that is for each 119879 gt 0

int

119879

0

1003816100381610038161003816120593(119904)1003816100381610038161003816

2119889119904 +

119899

sum

119896=1

int

119879

0

1003816100381610038161003816120595119896(119904)1003816100381610038161003816

2119889119904 lt infin (6)

and the corresponding wealth process 119881(119905)119905ge0

defined by

119881 (119905) = 120593 (119905) 119861 (119905) +

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 119905 ge 0 (7)

is an Ito process satisfying

119889119881 (119905) = 120593 (119905) 119889119861 (119905) +

119899

sum

119896=1

120595119896 (119905) 119889119878119896 (119905) 119905 ge 0 (8)

Problem Formulation In this note we will propose a port-folio strategy for the financial market model (2) whichis determined by a partial differential equation (PDE) ofparabolic type by using Ito formula The solvability of thePDE is researched bymaking use of variables transformationFurthermore the relationship between the solution of thePDE and the wealth process will be discussed

3 Main Results and Proofs

In this section wewill give the following fundamental resultsFor the sake of simplification wewrite 119903(119905 120572(119905)) as 119903119891(119905 119878(119905))as 119891 and so forth

To obtain the main result we give the solution of (2) andthe characteristic of the derivation (8) of the wealth process

The exact solutions of 119861(119905) in (2) can be found as follows

119861 (119905) = 119861 (0) exp(int119905

0

119903 (119904 120572 (119904)) 119889119904) (9)

To solve the second equation in (2) for 119878119896(119905) it follows

from the Ito formula that

119889 ln 119878119896 (119905) =

1

119878119896 (119905)

[119878119896 (119905) 120583119896 (119905 120572 (119905)) 119889119905

+119878119896 (119905) 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)]

minus1

2

1

1198782

119896(119905)

1198782

119896(119905) 1205902

119896(119905 120572 (119905)) 119889119905

+ int119877minus0

[ln (119878119896 (119905) + 119911119878119896 (119905))

minus ln (119878119896 (119905))] 119896 (119889119905 119889119911)

+ int119877minus0

[ ln (119878119896 (119905) + 119911119878119896 (119905)) minus ln (119878

119896 (119905))

minus119911119878119896 (119905)

1

119878119896 (119905)

] 120578119896 (119889119911) 119889119905

+

119904

sum

119895=1

120574119894119895ln (119878119896 (119905))

= [120583119896 (119905 120572 (119905)) minus

1

21205902

119896(119905 120572 (119905))] 119889119905

+ 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+ int119877minus0

ln (1 + 119911) 119896 (119889119905 119889119911)

+ int119877minus0

[ln (1 + 119911) minus 119911] 120578119896 (119889119911) 119889119905

(10)

Integrating both sides of the above equation from 0 to 119905 wehave

119878119896 (119905) = 119878

0

119896expint

119905

0

(120583119896 (119904 120572 (119904)) minus

1

21205902

119896(119904 120572 (119904))] 119889119904

+ int

119905

0

120590119896 (119904 120572 (119904)) 119889119882119896 (119904)

+ int

119905

0

int119877minus0

ln (1 + 119911) 119896 (119889119904 119889119911)

+ int

119905

0

int119877minus0

[ln (1 + 119911) minus 119911] 120578119896 (119889119911) 119889119904

(11)

Proposition 3 Consider the price model (2) of a financialmarket If a portfolio (120593 120595) is a self-financing strategy then thewealth process 119881(119905)

119905ge0defined by (7) satisfies

119889119881 (119905) = 119903 (119905 120572 (119905)) 119881 (119905)

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) [120583119896 (119905 120572 (119905)) minus 119903 (119905 120572 (119905))

minusint119877minus0

119911120578119896 (119889119911)] 119889119905

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) int

119877minus0

119911119873119896 (119889119905 119889119911)

(12)

Conversely consider the model (2) of a financial market If apair (120593 120595) of predictable processes following the wealth process119881(119905)

119905ge0defined by formula (7) satisfies (12) then (120593 120595) is a

self-financing strategy

Proof Substituting (2) into (8) we have

119889119881 (119905) = 120593 (119905) 119889119861 (119905) +

119899

sum

119896=1

120595119896 (119905) 119889119878119896 (119905)

= 120593 (119905) 119861 (119905) 119903 (119905 120572 (119905)) 119889119905 +

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905)

4 Abstract and Applied Analysis

times [120583119896 (119905 120572 (119905)) 119889119905 + 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+ int119877minus0

119911119896 (119889119905 119889119911)]

= [119881 (119905) minus

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905)] 119903 (119905 120572 (119905))

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120583119896 (119905 120572 (119905)) 119889119905

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) int

119877minus0

119911119896 (119889119905 119889119911)

= 119903 (119905 120572 (119905)) 119881 (119905) +

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905)

times [120583119896 (119905 120572 (119905)) minus 119903 (119905 120572 (119905))

minusint119877minus0

119911120578119896 (119889119911)] 119889119905

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) int

119877minus0

119911119873119896 (119889119905 119889119911)

(13)

which is (12)Conversely from (2) and (12) we can obtain (8)This completes the proof of the above proposition

Now we give the following fundamental results

Theorem 4 Consider the model (2) of a financial marketAssume that the portfolio (120593 120595

1 1205952 120595

119899) is a self-financing

strategy and 119881(119905)119905ge0

is the wealth process defined by (7) andsum119899

119896=1120595119896119878119896int119877minus0

119911120578119896(119889119911) = sum

119899

119896=1int119877minus0

119911120595119896119878119896120578119896(119889119911) If there

exists a function 119891(119905 119878) of 11986212 class (the set of functions whichare once differentiable in 119905 and continuously twice differentiablein 119878) such that

119881 (119905) = 119891 (119905 119878 (119905)) 119905 isin [0 119879]

119878 (119905) = (1198781 (119905) 1198782 (119905) 119878119899 (119905))

(14)

which holds true then the portfolio (120593 1205951 1205952 120595

119899) satisfies

120593 (119905) =119891 minus (120597119891120597119878) 119878

119879

B (119905) 119905 ge 0 (15)

120595 (119905) = (120597119891

1205971198781

120597119891

1205971198782

120597119891

120597119878119899

) =120597119891

120597119878 119905 ge 0 (16)

and the function 119891(119905 119878) solves the following backward PDE ofparabolic type

120597119891

120597119905+ 119903

119899

sum

119896=1

120597119891

120597119878119896

119878119896+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895= 119903119891

119905 lt 119879 119878 gt 0

(17)

Moreover if 119881(119879) = 119892(119878(119879)) then the function 119891(119905 119878)

satisfies the following equation

119891 (119879 119878) = 119892 (119878) 119878 gt 0 (18)

For the converse part we assume that 119879 gt 0 If thereexists a function 119891(119905 119878) of 11986212 class such that (17) and (18)are satisfied then the process (120593 120595) defined by (16) and (15) isa self-financing strategy The wealth process 119881 = 119881(119905)

119905isin[0119879]

corresponding to (120593 120595) satisfies (14)

Proof We proof the direct part of Theorem 4 firstlyFor

119881 (119905) = 119891 (119905 119878 (119905)) (19)

by applying the Ito formula we can infer that

119889119881 (119905) =120597119891

120597119905(119905 119878 (119905)) 119889119905

+

119899

sum

119896=1

120597119891

120597119878119896

(119905 119878 (119905)) (119878119896120583119896119889119905 + 119878119896120590119896119889119882119896)

+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

(119905 119878 (119905)) 119878119894120590119894119878119895120590119895119889119905

+

119899

sum

119896=1

int119877minus0

(119891 (119905 119878 + 119911119878) minus 119891 (119905 119878)) 119896 (119889119905 119889119911)

+

119899

sum

119896=1

int119877minus0

[119891 (119905 119878 + 119911119878) minus 119891 (119905 119878)

minus119911120597119891

120597119878119896

(119905 119878) 119878119896] 120578119896 (119889119911) 119889119905

+

119898

sum

119895=1

120574119894119895119891 (119905 119878 (119905))

= [

[

120597119891

120597119905+

119899

sum

119896=1

120597119891

120597119878119896

119878119896120583119896+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

minus

119899

sum

119896=1

int119877minus0

119911120597119891

120597119878119896

119878119896120578119896 (119889119911)] 119889119905

+

119899

sum

119896=1

120597119891

120597119878119896

119878119896120590119896119889119882119896

+

119899

sum

119896=1

int119877minus0

[119891 (119905 119878 + 119911119878) minus 119891 (119905 119878)]119873 (119889119905 119889119911)

(20)

Abstract and Applied Analysis 5

On the other hand since our strategy is self-financing theformula (12) is satisfied

Thus the rate of return and the volatility in (20) and (12)should be coincided and hence

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120590119896 =

119899

sum

119896=1

120597119891

120597119878119896

(119905 119878) 119878119896120590119896

119903 (119905 120572 (119905)) 119891 (119905 119878) +

119899

sum

119896=1

120595119896119878119896(120583119896minus 119903)

=120597119891

120597119905+

119899

sum

119896=1

120597119891

120597119878119896

119878119896120583119896+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

(21)

We can easily get 119878119896ge 0 from (11) which together with

the first equation of (21) and the independence of 119878119896(119896 =

1 2 119899) yields (16)From the first equation of (21) (7) and (14) we have

119903120593119861 = 119891 minus

119899

sum

119896=1

120597119891

120597119878119896

119878119896 (22)

So that

120593 =119891 minus sum

119899

119896=1(120597119891120597119878

119896) 119878119896

119861=119891 minus 119891119878119878119879

119861 (23)

Substituting (16) into the second equation of (21) we have

119903119891 minus

119899

sum

119896=1

120595119896119878119896119903 =

120597119891

120597119905+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895 (24)

which is (17)Conversely assume that 119891 = 119891(119905 119878) is a 119862

12-classfunction which is a solution of the PDE (17) and that (120593 120595)is a process defined by (16) and (15)

Firstly we will show that a process 119881 = 119881(119905) 119905 isin [0 119879]defined by (7) satisfies the equation

119881 (119905) = 119891 (119905 119878 (119905)) 119905 isin [0 119879] (25)

In fact substituting formulas (16) and (15) into the right handside of (7) we have

119881 (119905) = 120593119861 +

119899

sum

119896=1

120595119896119878119896=119891 minus sum

119899

119896=1(120597119891120597119878

119896) 119878119896

119861119861

+

119899

sum

119896=1

120597119891

120597119878119896

119878119896= 119891 119905 ge 0

(26)

This proves (25)Next we will show that (120593 120595) is a self-financing strategy

that is (12) holdsBy applying the Ito formula to the process119881 and function

119891 we have that (20) is satisfied

Furthermore by (17)

120597119891

120597119905+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895= 119903119891 minus 119903

119899

sum

119896=1

119878119896

120597119891

120597119878119896

120597119891

120597119905+

119899

sum

119896=1

119878119896120583119896

120597119891

120597119878119896

+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

= 119903119891 +

119899

sum

119896=1

(120583119896minus 119903) 119878

119896

120597119891

120597119878119896

(27)

Then by (25) and (16) we have

119903119881 +

119899

sum

119896=1

120595119896119878119896(120583119896minus 119903) =

120597119891

120597119905+

119899

sum

119896=1

119878119896120583119896

120597119891

120597119878119896

+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

(28)

119899

sum

119896=1

120595119896119878119896120590119896=

119899

sum

119896=1

120597119891

120597119878119896

119878119896120590119896 (29)

Those together with (16) yield that (20) implies (12) Theproof of Theorem 4 is completed

Remark 5 In order to determine the portfolio strategy (120601 120595)and obtain the final value 119881(119905) from Theorem 4 we shouldfind the solution of the PDF (17) with the final data (18)This is the key problem in the rest of this section Wehave the following result in terms of method of variablestransformation

Theorem 6 Let 119903(119905 120572(119905)) in (2) be a constant 119903 The function119891(119905 119878) 119905 le 119879 119878 gt 0 given by the following formula

119891 (119905 119878) =119890minus119903(119879minus119905)

radic2120587

times

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942119892 (0 0 119878

119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(30)

is a solution of the general Black-Scholes equation (17) with thefinal data (18)

Proof We are going to do some equivalent transformationsof general B-S equation (17) in order to get an appropriateequivalent equation with analytic solutions The procedurewill be divided into four steps

Step I Let

119891 (119905 1198781 119878

119899) = 119890119903(119905minus119879)

119902 (119905 ln 1198781minus (119903 minus

1

21205902

1) (119905 minus 119879)

ln 119878119899minus (119903 minus

1

21205902

119899) (119905 minus 119879))

(31)

6 Abstract and Applied Analysis

and denote 119910119894= ln 119878

119894minus (119903 minus (12)120590

2

119894)(119905 minus 119879) (119894 = 1 2 119899)

and then

120597119891

120597119905=

119889 (119890119903(119905minus119879)

)

119889119905119902 + 119890119903(119905minus119879)

119902119905

= 119890119903(119905minus119879)

119902 (119889119903

119889119905(119905 minus 119879) + 119903)

+ 119890119903(119905minus119879)

[119902119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

= 119903119890119903(119905minus119879)

119902 + 119890119903(119905minus119879)

119902119889119903

119889119905(119905 minus 119879)

+ 119890119903(119905minus119879)

[120597119902

120597119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

120597119891

120597119878119894

= 119890119903(119905minus119879) 120597119902

120597119910119894

1

119878119894

1205972119891

120597119878119894120597119878119895

=

120597 (119890119903(119905minus119879)

(120597119902120597119910119894) (1119878

119894))

120597119878119895

=

119890119903(119905minus119879)

1205972119902

120597119910119894120597119910119895

1

119878119894

1

119878119895

119894 = 119895

119890119903(119905minus119879)

(1205972119902

120597119910119894120597119910119894

1

119878119894

1

119878119894

minus120597119902

120597119910119894

1

1198782

119894

) 119894 = 119895

(32)

Inserting the above formulas into (17) we get

119903119891 +119889119903

119889119905(119905 minus 119879) 119902119890

119903(119905minus119879)+ 119890119903(119905minus119879)

[120597119902

120597119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

+ 119903

119899

sum

119894=1

119890119903(119905minus119879) 120597119902

120597119910119894

1

119878119894

119878119894+1

2

119899

sum

119894=1

119899

sum

119895=1

119890119903(119905minus119879) 120597

2119902

120597119910119894120597119910119895

1

119878119894

1

119878119895

119878119894120590119894119878119895120590119895

minus1

2

119899

sum

119894=1

119890119903(119905minus119879) 120597119902

120597119910119894

1198782

119894

1

1198782

119894

1198782

119894= 119903119891

(33)

which can be simplified as

119889119903

119889119905(119905 minus 119879) 119902 +

120597119902

120597119905+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119902

120597119910119894120597119910119895

120590119894120590119895= 0 (34)

The final data 119891(119879 119878) = 119892(119878) can be rewritten as

119902 (119879 119878) = 119892 (1198901198781 1198901198782 119890

119878119899) (35)

Step II We introduce another variable and a new function asfollows

120591 = 119879 minus 119905 gt 0 119905 = 119879 minus 120591 120591 ge 0 119905 le 119879

119902 (119905 119910) = 119906 (119879 minus 119905 119910) or 119906 (120591 119910) = 119902 (119879 minus 120591 119910)

(36)

It can be computed that

119902119905(119905 119910) = minus119906

120591(119879 minus 119905 119910)

120597119902

120597119910119894

=120597119906

120597119910119894

(119879 minus 119905 119910)

1205972119902

120597119910119894120597119910119895

=1205972119906

120597119910119894120597119910119895

(119879 minus 119905 119910)

(37)

Substituting the above formulas into (34) we get

119889119881

119889119905(119905 minus 119879) 119906 (119879 minus 119905 119910) minus 119906

120591(119879 minus 119905 119910) +

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895

= 0

119906 (0 119910) = 119892 (119890119910)

(38)

Since 119903(119905 120572(119905)) is assumed as a constant 119903 (38) can be changedinto

119906120591(120591 119910) minus

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895= 0

119906 (0 119910) = 119892 (119890119910)

(39)

Step III We claim that the unique solution of (39) is

119906 (119905 1199101 1199102 119910

119899)

=1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

119892 (0 0 119890119909119894 0 0) 119889119909

119894

(40)

In fact

119906120591(120591 119910) = minus

1

2radic2120587120591120591

times

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0) 119889119909

119894

+1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0)

times(119910119894minus 119909119894)2

21205902

1198941205912

119889119909119894

Abstract and Applied Analysis 7

120597119906

120597119910119894

=1

radic2120587120591int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

119892 (0 0 119890119909119894 0 0)

times (minus119910119894minus 119909119894

1205902

119894120591

)119889119909119894

1205972119906

120597119910119894120597119910119895

=

0 119894 = 119895

1

radic2120587120591int

infin

minusinfin

119892 (1198901199091 119890

119909119899)

1205902

119894

119890minus(119910119894minus119909119894)221205902

119894120591

times((119910119894minus 119909119894)2

1205904

1198941205912

minus1

1205902

119894120591)1205902

119894119889119909i 119894 = 119895

(41)

So

119906120591(120591 119892) minus

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895

= minus1

2radic2120587120591120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0) 119889119909

119894

+1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0)

(119910119894minus 119909119894)2

21205902

1198941205912

119889119909119894

minus1

2

119899

sum

119894=1

1

radic2120587120591int

infin

minusinfin

119892 (1198901199091 119890

119909119899)

1205902

119894

times 119890minus(119910119894minus119909119894)221205902

119894120591((119910119894minus 119909119894)2

1205904

1198941205912

minus1

1205902

119894120591)1205902

119894119889119909119894= 0

(42)

Step IV By introducing a change of variables 119911119894= 119909119894minus 119910119894

we have 119909119894= 119911119894+ 119910119894and 119889119909

119894= 119889119911119894 where 119911

119894isin (minusinfininfin) It

follows that

119906 (120591 119910)

=1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119911119894+119910119894 0 0) 119889119911

119894

(43)

In order to get rid of the denominator 1205902119894120591 in the exponent in

the above formula we make another change of variables as

119911119894= 120590119894radic120591119909119894 (44)

So 119889119911119894= 120590119894radic120591119889119909

119894

Recalling the relationship between 119902 and 119906 described in(36) we therefore have

119902 (119905 119910)

=1

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119890120590119894radic119879minus119905119909

119894+119910119894 0 0) 119889119909

119894

(45)

Hence by formula (31) we have

119891 (119905 119878)

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119890120590119894radic119879minus119905119909

119894+ln 119878119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(46)

Since 119890ln 119878 = 119878 then

119891 (119905 119878)

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(47)

In this way we provedTheorem 6

4 A Financial Example

As an application we consider the European call option InTheorem 6 we have given the solution of the general B-Sequation (17) which depends on the final data (18) that is119891(119879 119904) = 119892(119904) More specific we take the final data 119892(119904) forthe European call option as

119892 (119878) = 119892 (119878minus1198961

1 119878minus1198962

2 119878

minus119896119899

119899) =

119899

sum

119894=1

(119878119894minus 119870i)+ (48)

where 119878119894gt 0 and 119870

119894gt 0 are the strike price of 119878

119894 Then we

have the following corollary fromTheorem 6

Corollary 7 For the European call option the solution to thegeneral Black-Scholes value problem (17) with the final data(48) is given by

119891 (119905 119878) =

119899

sum

119894=1

119878119894Φ(minus119860

119894+ 120590119894radic119879 minus 119905)

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(minus119860

119894)

(49)

8 Abstract and Applied Analysis

where

minus119860119894=

(119903 minus 1205902

1198942) (119879 minus 119905) + ln (119878

119894119870119894)

120590119894radic119879 minus 119905

= 1198892

minus119860119894+ 120590119894radic119879 minus 119905 =

(119903 + 1205902

1198942) (119879 minus 119905) + ln (119878

119894119870119894)

120590119894radicT minus 119905

= 1198891

(50)

that is

119891 (119905 119878) =

119899

sum

119894=1

119878119894Φ(1198891) minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(1198892) (51)

In particular

119891 (0 119878) =

119899

sum

119894=1

119878119894Φ(1198891) minus 119890minus119903119879

119899

sum

119894=1

119870119894Φ(1198892) (52)

Proof For a European call option we infer that

119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

gt 119870119894 (53)

Dividing (53) by 119878119894and taking the ln we get

120590119894radic119879 minus 119905119909

119894minus (119903 minus

1205902

119894

2) (119905 minus 119879) gt ln

119870119894

119878119894

(54)

that is

119909119894gt

ln (119870119894119878119894) minus (119903 minus 120590

2

1198942) (119879 minus 119905)

120590119894radic119879 minus 119905

= 119860119894 (55)

Hence from (30) and (48) it follows that

119891 (119905 119878) =119890minus119903(119879minus119905)

radic2120587

times

119899

sum

119894=1

int

infin

119860119894

119890minus1199092

1198942119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

119860119894

119878119894119890(119903minus1205902

1198942)(119879minus119905)

119890minus1199092

1198942+120590119894radic119879minus119905119909

119894119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=1

radic2120587

119899

sum

119894=1

int

infin

119860119894

119878119894119890minus(1205902

1198942)(119879minus119905)

times 119890minus(12)(119909

119894minus120590119894radic119879minus119905)

2

+(12)1205902

119894(119879minus119905)

119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=1

radic2120587

119899

sum

119894=1

int

infin

119860119894minus120590119894radic119879minus119905

119878119894119890minus11991122119889119911

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=

119899

sum

119894=1

119878119894

1

radic2120587int

minus119860119894+120590119894radic119879minus119905

minusinfin

119890minus1199092

1198942119889119909119894

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894

1

radic2120587int

minus119860119894

minusinfin

119890minus1199092

1198942119889119909119894

=

119899

sum

119894=1

119878119894Φ(minus119860

119894+ 120590119894radic119879 minus 119905)

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(minus119860

119894)

(56)

where Φ(119905) is the probability distribution function of astandard Gaussion random variable119873(0 1) that is

Φ (119905) =1

radic2120587int

119905

minusinfin

119890minus11990922119889119909 119905 isin 119877 (57)

In this way we have proved Corollary 7

Remark 8 Theabove result is about the European call optionA similar representation to those from the above corollaryin the European put option case can be obtained by taking119892(119878) = sum

119899

119894=1(119870119894minus 119878119894)+ 119878119894gt 0 for some fixed 119870

119894gt 0

5 Conclusion

In this paper we have considered a financial market modelwith regime switching driven by geometric Levy processThis financial market model is based on the multiple riskyassets 119878

1 1198782 119878

119899driven by Levy process Ito formula and

equivalent transformation methods have been used to solvethis complicated financial market model An example of theportfolio strategy and the final value problem to applying ourmethod to the European call option has been given in the endof this paper

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 9

Acknowledgment

This work is supported by the National Natural ScienceFoundation of China (Grants no 61075105 and no 71371046)

References

[1] H Markowitz ldquoPortfolio selectionrdquo Journal of Finance vol 7pp 77ndash91 1952

[2] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[3] B Oslashksendal Stochastic Differential Equations Springer 6thedition 2005

[4] X Guo and Q Zhang ldquoOptimal selling rules in a regimeswitching modelrdquo IEEE Transactions on Automatic Control vol50 no 9 pp 1450ndash1455 2005

[5] M Pemy Q Zhang and G G Yin ldquoLiquidation of a large blockof stock with regime switchingrdquoMathematical Finance vol 18no 4 pp 629ndash648 2008

[6] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with Markov regime switching and uncertain time-horizonrdquo Journal of Systems Science amp Complexity vol 24 no 1pp 140ndash155 2011

[7] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with regime switching and a stochastic cash flowrdquoInsuranceMathematics amp Economics vol 50 no 3 pp 371ndash3842012

[8] J Kallsen ldquoOptimal portfolios for exponential Levy processesrdquoMathematical Methods of Operations Research vol 51 no 3 pp357ndash374 2000

[9] D Applebaum Levy Processes and Stochastic Calculus vol 93Cambridge University Press Cambridge UK 2004

[10] N Vandaele and M Vanmaele ldquoA locally risk-minimizinghedging strategy for unit-linked life insurance contracts ina Levy process financial marketrdquo Insurance Mathematics ampEconomics vol 42 no 3 pp 1128ndash1137 2008

[11] C Weng ldquoConstant proportion portfolio insurance under aregime switching exponential Levy processrdquo Insurance Math-ematics amp Economics vol 52 no 3 pp 508ndash521 2013

[12] N Bauerle and A Blatter ldquoOptimal control and dependencemodeling of insurance portfolios with Levy dynamicsrdquo Insur-ance Mathematics amp Economics vol 48 no 3 pp 398ndash4052011

[13] K C Yuen and C Yin ldquoOn optimality of the barrier strategyfor a general Levy risk processrdquo Mathematical and ComputerModelling vol 53 no 9-10 pp 1700ndash1707 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Portfolio Strategy of Financial Market with ...Research Article Portfolio Strategy of Financial Market with Regime Switching Driven by Geometric Lévy Process LiuweiZhouandZhijieWang

Abstract and Applied Analysis 3

that is for each 119879 gt 0

int

119879

0

1003816100381610038161003816120593(119904)1003816100381610038161003816

2119889119904 +

119899

sum

119896=1

int

119879

0

1003816100381610038161003816120595119896(119904)1003816100381610038161003816

2119889119904 lt infin (6)

and the corresponding wealth process 119881(119905)119905ge0

defined by

119881 (119905) = 120593 (119905) 119861 (119905) +

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 119905 ge 0 (7)

is an Ito process satisfying

119889119881 (119905) = 120593 (119905) 119889119861 (119905) +

119899

sum

119896=1

120595119896 (119905) 119889119878119896 (119905) 119905 ge 0 (8)

Problem Formulation In this note we will propose a port-folio strategy for the financial market model (2) whichis determined by a partial differential equation (PDE) ofparabolic type by using Ito formula The solvability of thePDE is researched bymaking use of variables transformationFurthermore the relationship between the solution of thePDE and the wealth process will be discussed

3 Main Results and Proofs

In this section wewill give the following fundamental resultsFor the sake of simplification wewrite 119903(119905 120572(119905)) as 119903119891(119905 119878(119905))as 119891 and so forth

To obtain the main result we give the solution of (2) andthe characteristic of the derivation (8) of the wealth process

The exact solutions of 119861(119905) in (2) can be found as follows

119861 (119905) = 119861 (0) exp(int119905

0

119903 (119904 120572 (119904)) 119889119904) (9)

To solve the second equation in (2) for 119878119896(119905) it follows

from the Ito formula that

119889 ln 119878119896 (119905) =

1

119878119896 (119905)

[119878119896 (119905) 120583119896 (119905 120572 (119905)) 119889119905

+119878119896 (119905) 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)]

minus1

2

1

1198782

119896(119905)

1198782

119896(119905) 1205902

119896(119905 120572 (119905)) 119889119905

+ int119877minus0

[ln (119878119896 (119905) + 119911119878119896 (119905))

minus ln (119878119896 (119905))] 119896 (119889119905 119889119911)

+ int119877minus0

[ ln (119878119896 (119905) + 119911119878119896 (119905)) minus ln (119878

119896 (119905))

minus119911119878119896 (119905)

1

119878119896 (119905)

] 120578119896 (119889119911) 119889119905

+

119904

sum

119895=1

120574119894119895ln (119878119896 (119905))

= [120583119896 (119905 120572 (119905)) minus

1

21205902

119896(119905 120572 (119905))] 119889119905

+ 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+ int119877minus0

ln (1 + 119911) 119896 (119889119905 119889119911)

+ int119877minus0

[ln (1 + 119911) minus 119911] 120578119896 (119889119911) 119889119905

(10)

Integrating both sides of the above equation from 0 to 119905 wehave

119878119896 (119905) = 119878

0

119896expint

119905

0

(120583119896 (119904 120572 (119904)) minus

1

21205902

119896(119904 120572 (119904))] 119889119904

+ int

119905

0

120590119896 (119904 120572 (119904)) 119889119882119896 (119904)

+ int

119905

0

int119877minus0

ln (1 + 119911) 119896 (119889119904 119889119911)

+ int

119905

0

int119877minus0

[ln (1 + 119911) minus 119911] 120578119896 (119889119911) 119889119904

(11)

Proposition 3 Consider the price model (2) of a financialmarket If a portfolio (120593 120595) is a self-financing strategy then thewealth process 119881(119905)

119905ge0defined by (7) satisfies

119889119881 (119905) = 119903 (119905 120572 (119905)) 119881 (119905)

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) [120583119896 (119905 120572 (119905)) minus 119903 (119905 120572 (119905))

minusint119877minus0

119911120578119896 (119889119911)] 119889119905

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) int

119877minus0

119911119873119896 (119889119905 119889119911)

(12)

Conversely consider the model (2) of a financial market If apair (120593 120595) of predictable processes following the wealth process119881(119905)

119905ge0defined by formula (7) satisfies (12) then (120593 120595) is a

self-financing strategy

Proof Substituting (2) into (8) we have

119889119881 (119905) = 120593 (119905) 119889119861 (119905) +

119899

sum

119896=1

120595119896 (119905) 119889119878119896 (119905)

= 120593 (119905) 119861 (119905) 119903 (119905 120572 (119905)) 119889119905 +

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905)

4 Abstract and Applied Analysis

times [120583119896 (119905 120572 (119905)) 119889119905 + 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+ int119877minus0

119911119896 (119889119905 119889119911)]

= [119881 (119905) minus

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905)] 119903 (119905 120572 (119905))

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120583119896 (119905 120572 (119905)) 119889119905

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) int

119877minus0

119911119896 (119889119905 119889119911)

= 119903 (119905 120572 (119905)) 119881 (119905) +

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905)

times [120583119896 (119905 120572 (119905)) minus 119903 (119905 120572 (119905))

minusint119877minus0

119911120578119896 (119889119911)] 119889119905

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) int

119877minus0

119911119873119896 (119889119905 119889119911)

(13)

which is (12)Conversely from (2) and (12) we can obtain (8)This completes the proof of the above proposition

Now we give the following fundamental results

Theorem 4 Consider the model (2) of a financial marketAssume that the portfolio (120593 120595

1 1205952 120595

119899) is a self-financing

strategy and 119881(119905)119905ge0

is the wealth process defined by (7) andsum119899

119896=1120595119896119878119896int119877minus0

119911120578119896(119889119911) = sum

119899

119896=1int119877minus0

119911120595119896119878119896120578119896(119889119911) If there

exists a function 119891(119905 119878) of 11986212 class (the set of functions whichare once differentiable in 119905 and continuously twice differentiablein 119878) such that

119881 (119905) = 119891 (119905 119878 (119905)) 119905 isin [0 119879]

119878 (119905) = (1198781 (119905) 1198782 (119905) 119878119899 (119905))

(14)

which holds true then the portfolio (120593 1205951 1205952 120595

119899) satisfies

120593 (119905) =119891 minus (120597119891120597119878) 119878

119879

B (119905) 119905 ge 0 (15)

120595 (119905) = (120597119891

1205971198781

120597119891

1205971198782

120597119891

120597119878119899

) =120597119891

120597119878 119905 ge 0 (16)

and the function 119891(119905 119878) solves the following backward PDE ofparabolic type

120597119891

120597119905+ 119903

119899

sum

119896=1

120597119891

120597119878119896

119878119896+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895= 119903119891

119905 lt 119879 119878 gt 0

(17)

Moreover if 119881(119879) = 119892(119878(119879)) then the function 119891(119905 119878)

satisfies the following equation

119891 (119879 119878) = 119892 (119878) 119878 gt 0 (18)

For the converse part we assume that 119879 gt 0 If thereexists a function 119891(119905 119878) of 11986212 class such that (17) and (18)are satisfied then the process (120593 120595) defined by (16) and (15) isa self-financing strategy The wealth process 119881 = 119881(119905)

119905isin[0119879]

corresponding to (120593 120595) satisfies (14)

Proof We proof the direct part of Theorem 4 firstlyFor

119881 (119905) = 119891 (119905 119878 (119905)) (19)

by applying the Ito formula we can infer that

119889119881 (119905) =120597119891

120597119905(119905 119878 (119905)) 119889119905

+

119899

sum

119896=1

120597119891

120597119878119896

(119905 119878 (119905)) (119878119896120583119896119889119905 + 119878119896120590119896119889119882119896)

+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

(119905 119878 (119905)) 119878119894120590119894119878119895120590119895119889119905

+

119899

sum

119896=1

int119877minus0

(119891 (119905 119878 + 119911119878) minus 119891 (119905 119878)) 119896 (119889119905 119889119911)

+

119899

sum

119896=1

int119877minus0

[119891 (119905 119878 + 119911119878) minus 119891 (119905 119878)

minus119911120597119891

120597119878119896

(119905 119878) 119878119896] 120578119896 (119889119911) 119889119905

+

119898

sum

119895=1

120574119894119895119891 (119905 119878 (119905))

= [

[

120597119891

120597119905+

119899

sum

119896=1

120597119891

120597119878119896

119878119896120583119896+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

minus

119899

sum

119896=1

int119877minus0

119911120597119891

120597119878119896

119878119896120578119896 (119889119911)] 119889119905

+

119899

sum

119896=1

120597119891

120597119878119896

119878119896120590119896119889119882119896

+

119899

sum

119896=1

int119877minus0

[119891 (119905 119878 + 119911119878) minus 119891 (119905 119878)]119873 (119889119905 119889119911)

(20)

Abstract and Applied Analysis 5

On the other hand since our strategy is self-financing theformula (12) is satisfied

Thus the rate of return and the volatility in (20) and (12)should be coincided and hence

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120590119896 =

119899

sum

119896=1

120597119891

120597119878119896

(119905 119878) 119878119896120590119896

119903 (119905 120572 (119905)) 119891 (119905 119878) +

119899

sum

119896=1

120595119896119878119896(120583119896minus 119903)

=120597119891

120597119905+

119899

sum

119896=1

120597119891

120597119878119896

119878119896120583119896+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

(21)

We can easily get 119878119896ge 0 from (11) which together with

the first equation of (21) and the independence of 119878119896(119896 =

1 2 119899) yields (16)From the first equation of (21) (7) and (14) we have

119903120593119861 = 119891 minus

119899

sum

119896=1

120597119891

120597119878119896

119878119896 (22)

So that

120593 =119891 minus sum

119899

119896=1(120597119891120597119878

119896) 119878119896

119861=119891 minus 119891119878119878119879

119861 (23)

Substituting (16) into the second equation of (21) we have

119903119891 minus

119899

sum

119896=1

120595119896119878119896119903 =

120597119891

120597119905+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895 (24)

which is (17)Conversely assume that 119891 = 119891(119905 119878) is a 119862

12-classfunction which is a solution of the PDE (17) and that (120593 120595)is a process defined by (16) and (15)

Firstly we will show that a process 119881 = 119881(119905) 119905 isin [0 119879]defined by (7) satisfies the equation

119881 (119905) = 119891 (119905 119878 (119905)) 119905 isin [0 119879] (25)

In fact substituting formulas (16) and (15) into the right handside of (7) we have

119881 (119905) = 120593119861 +

119899

sum

119896=1

120595119896119878119896=119891 minus sum

119899

119896=1(120597119891120597119878

119896) 119878119896

119861119861

+

119899

sum

119896=1

120597119891

120597119878119896

119878119896= 119891 119905 ge 0

(26)

This proves (25)Next we will show that (120593 120595) is a self-financing strategy

that is (12) holdsBy applying the Ito formula to the process119881 and function

119891 we have that (20) is satisfied

Furthermore by (17)

120597119891

120597119905+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895= 119903119891 minus 119903

119899

sum

119896=1

119878119896

120597119891

120597119878119896

120597119891

120597119905+

119899

sum

119896=1

119878119896120583119896

120597119891

120597119878119896

+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

= 119903119891 +

119899

sum

119896=1

(120583119896minus 119903) 119878

119896

120597119891

120597119878119896

(27)

Then by (25) and (16) we have

119903119881 +

119899

sum

119896=1

120595119896119878119896(120583119896minus 119903) =

120597119891

120597119905+

119899

sum

119896=1

119878119896120583119896

120597119891

120597119878119896

+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

(28)

119899

sum

119896=1

120595119896119878119896120590119896=

119899

sum

119896=1

120597119891

120597119878119896

119878119896120590119896 (29)

Those together with (16) yield that (20) implies (12) Theproof of Theorem 4 is completed

Remark 5 In order to determine the portfolio strategy (120601 120595)and obtain the final value 119881(119905) from Theorem 4 we shouldfind the solution of the PDF (17) with the final data (18)This is the key problem in the rest of this section Wehave the following result in terms of method of variablestransformation

Theorem 6 Let 119903(119905 120572(119905)) in (2) be a constant 119903 The function119891(119905 119878) 119905 le 119879 119878 gt 0 given by the following formula

119891 (119905 119878) =119890minus119903(119879minus119905)

radic2120587

times

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942119892 (0 0 119878

119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(30)

is a solution of the general Black-Scholes equation (17) with thefinal data (18)

Proof We are going to do some equivalent transformationsof general B-S equation (17) in order to get an appropriateequivalent equation with analytic solutions The procedurewill be divided into four steps

Step I Let

119891 (119905 1198781 119878

119899) = 119890119903(119905minus119879)

119902 (119905 ln 1198781minus (119903 minus

1

21205902

1) (119905 minus 119879)

ln 119878119899minus (119903 minus

1

21205902

119899) (119905 minus 119879))

(31)

6 Abstract and Applied Analysis

and denote 119910119894= ln 119878

119894minus (119903 minus (12)120590

2

119894)(119905 minus 119879) (119894 = 1 2 119899)

and then

120597119891

120597119905=

119889 (119890119903(119905minus119879)

)

119889119905119902 + 119890119903(119905minus119879)

119902119905

= 119890119903(119905minus119879)

119902 (119889119903

119889119905(119905 minus 119879) + 119903)

+ 119890119903(119905minus119879)

[119902119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

= 119903119890119903(119905minus119879)

119902 + 119890119903(119905minus119879)

119902119889119903

119889119905(119905 minus 119879)

+ 119890119903(119905minus119879)

[120597119902

120597119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

120597119891

120597119878119894

= 119890119903(119905minus119879) 120597119902

120597119910119894

1

119878119894

1205972119891

120597119878119894120597119878119895

=

120597 (119890119903(119905minus119879)

(120597119902120597119910119894) (1119878

119894))

120597119878119895

=

119890119903(119905minus119879)

1205972119902

120597119910119894120597119910119895

1

119878119894

1

119878119895

119894 = 119895

119890119903(119905minus119879)

(1205972119902

120597119910119894120597119910119894

1

119878119894

1

119878119894

minus120597119902

120597119910119894

1

1198782

119894

) 119894 = 119895

(32)

Inserting the above formulas into (17) we get

119903119891 +119889119903

119889119905(119905 minus 119879) 119902119890

119903(119905minus119879)+ 119890119903(119905minus119879)

[120597119902

120597119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

+ 119903

119899

sum

119894=1

119890119903(119905minus119879) 120597119902

120597119910119894

1

119878119894

119878119894+1

2

119899

sum

119894=1

119899

sum

119895=1

119890119903(119905minus119879) 120597

2119902

120597119910119894120597119910119895

1

119878119894

1

119878119895

119878119894120590119894119878119895120590119895

minus1

2

119899

sum

119894=1

119890119903(119905minus119879) 120597119902

120597119910119894

1198782

119894

1

1198782

119894

1198782

119894= 119903119891

(33)

which can be simplified as

119889119903

119889119905(119905 minus 119879) 119902 +

120597119902

120597119905+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119902

120597119910119894120597119910119895

120590119894120590119895= 0 (34)

The final data 119891(119879 119878) = 119892(119878) can be rewritten as

119902 (119879 119878) = 119892 (1198901198781 1198901198782 119890

119878119899) (35)

Step II We introduce another variable and a new function asfollows

120591 = 119879 minus 119905 gt 0 119905 = 119879 minus 120591 120591 ge 0 119905 le 119879

119902 (119905 119910) = 119906 (119879 minus 119905 119910) or 119906 (120591 119910) = 119902 (119879 minus 120591 119910)

(36)

It can be computed that

119902119905(119905 119910) = minus119906

120591(119879 minus 119905 119910)

120597119902

120597119910119894

=120597119906

120597119910119894

(119879 minus 119905 119910)

1205972119902

120597119910119894120597119910119895

=1205972119906

120597119910119894120597119910119895

(119879 minus 119905 119910)

(37)

Substituting the above formulas into (34) we get

119889119881

119889119905(119905 minus 119879) 119906 (119879 minus 119905 119910) minus 119906

120591(119879 minus 119905 119910) +

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895

= 0

119906 (0 119910) = 119892 (119890119910)

(38)

Since 119903(119905 120572(119905)) is assumed as a constant 119903 (38) can be changedinto

119906120591(120591 119910) minus

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895= 0

119906 (0 119910) = 119892 (119890119910)

(39)

Step III We claim that the unique solution of (39) is

119906 (119905 1199101 1199102 119910

119899)

=1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

119892 (0 0 119890119909119894 0 0) 119889119909

119894

(40)

In fact

119906120591(120591 119910) = minus

1

2radic2120587120591120591

times

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0) 119889119909

119894

+1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0)

times(119910119894minus 119909119894)2

21205902

1198941205912

119889119909119894

Abstract and Applied Analysis 7

120597119906

120597119910119894

=1

radic2120587120591int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

119892 (0 0 119890119909119894 0 0)

times (minus119910119894minus 119909119894

1205902

119894120591

)119889119909119894

1205972119906

120597119910119894120597119910119895

=

0 119894 = 119895

1

radic2120587120591int

infin

minusinfin

119892 (1198901199091 119890

119909119899)

1205902

119894

119890minus(119910119894minus119909119894)221205902

119894120591

times((119910119894minus 119909119894)2

1205904

1198941205912

minus1

1205902

119894120591)1205902

119894119889119909i 119894 = 119895

(41)

So

119906120591(120591 119892) minus

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895

= minus1

2radic2120587120591120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0) 119889119909

119894

+1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0)

(119910119894minus 119909119894)2

21205902

1198941205912

119889119909119894

minus1

2

119899

sum

119894=1

1

radic2120587120591int

infin

minusinfin

119892 (1198901199091 119890

119909119899)

1205902

119894

times 119890minus(119910119894minus119909119894)221205902

119894120591((119910119894minus 119909119894)2

1205904

1198941205912

minus1

1205902

119894120591)1205902

119894119889119909119894= 0

(42)

Step IV By introducing a change of variables 119911119894= 119909119894minus 119910119894

we have 119909119894= 119911119894+ 119910119894and 119889119909

119894= 119889119911119894 where 119911

119894isin (minusinfininfin) It

follows that

119906 (120591 119910)

=1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119911119894+119910119894 0 0) 119889119911

119894

(43)

In order to get rid of the denominator 1205902119894120591 in the exponent in

the above formula we make another change of variables as

119911119894= 120590119894radic120591119909119894 (44)

So 119889119911119894= 120590119894radic120591119889119909

119894

Recalling the relationship between 119902 and 119906 described in(36) we therefore have

119902 (119905 119910)

=1

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119890120590119894radic119879minus119905119909

119894+119910119894 0 0) 119889119909

119894

(45)

Hence by formula (31) we have

119891 (119905 119878)

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119890120590119894radic119879minus119905119909

119894+ln 119878119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(46)

Since 119890ln 119878 = 119878 then

119891 (119905 119878)

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(47)

In this way we provedTheorem 6

4 A Financial Example

As an application we consider the European call option InTheorem 6 we have given the solution of the general B-Sequation (17) which depends on the final data (18) that is119891(119879 119904) = 119892(119904) More specific we take the final data 119892(119904) forthe European call option as

119892 (119878) = 119892 (119878minus1198961

1 119878minus1198962

2 119878

minus119896119899

119899) =

119899

sum

119894=1

(119878119894minus 119870i)+ (48)

where 119878119894gt 0 and 119870

119894gt 0 are the strike price of 119878

119894 Then we

have the following corollary fromTheorem 6

Corollary 7 For the European call option the solution to thegeneral Black-Scholes value problem (17) with the final data(48) is given by

119891 (119905 119878) =

119899

sum

119894=1

119878119894Φ(minus119860

119894+ 120590119894radic119879 minus 119905)

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(minus119860

119894)

(49)

8 Abstract and Applied Analysis

where

minus119860119894=

(119903 minus 1205902

1198942) (119879 minus 119905) + ln (119878

119894119870119894)

120590119894radic119879 minus 119905

= 1198892

minus119860119894+ 120590119894radic119879 minus 119905 =

(119903 + 1205902

1198942) (119879 minus 119905) + ln (119878

119894119870119894)

120590119894radicT minus 119905

= 1198891

(50)

that is

119891 (119905 119878) =

119899

sum

119894=1

119878119894Φ(1198891) minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(1198892) (51)

In particular

119891 (0 119878) =

119899

sum

119894=1

119878119894Φ(1198891) minus 119890minus119903119879

119899

sum

119894=1

119870119894Φ(1198892) (52)

Proof For a European call option we infer that

119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

gt 119870119894 (53)

Dividing (53) by 119878119894and taking the ln we get

120590119894radic119879 minus 119905119909

119894minus (119903 minus

1205902

119894

2) (119905 minus 119879) gt ln

119870119894

119878119894

(54)

that is

119909119894gt

ln (119870119894119878119894) minus (119903 minus 120590

2

1198942) (119879 minus 119905)

120590119894radic119879 minus 119905

= 119860119894 (55)

Hence from (30) and (48) it follows that

119891 (119905 119878) =119890minus119903(119879minus119905)

radic2120587

times

119899

sum

119894=1

int

infin

119860119894

119890minus1199092

1198942119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

119860119894

119878119894119890(119903minus1205902

1198942)(119879minus119905)

119890minus1199092

1198942+120590119894radic119879minus119905119909

119894119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=1

radic2120587

119899

sum

119894=1

int

infin

119860119894

119878119894119890minus(1205902

1198942)(119879minus119905)

times 119890minus(12)(119909

119894minus120590119894radic119879minus119905)

2

+(12)1205902

119894(119879minus119905)

119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=1

radic2120587

119899

sum

119894=1

int

infin

119860119894minus120590119894radic119879minus119905

119878119894119890minus11991122119889119911

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=

119899

sum

119894=1

119878119894

1

radic2120587int

minus119860119894+120590119894radic119879minus119905

minusinfin

119890minus1199092

1198942119889119909119894

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894

1

radic2120587int

minus119860119894

minusinfin

119890minus1199092

1198942119889119909119894

=

119899

sum

119894=1

119878119894Φ(minus119860

119894+ 120590119894radic119879 minus 119905)

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(minus119860

119894)

(56)

where Φ(119905) is the probability distribution function of astandard Gaussion random variable119873(0 1) that is

Φ (119905) =1

radic2120587int

119905

minusinfin

119890minus11990922119889119909 119905 isin 119877 (57)

In this way we have proved Corollary 7

Remark 8 Theabove result is about the European call optionA similar representation to those from the above corollaryin the European put option case can be obtained by taking119892(119878) = sum

119899

119894=1(119870119894minus 119878119894)+ 119878119894gt 0 for some fixed 119870

119894gt 0

5 Conclusion

In this paper we have considered a financial market modelwith regime switching driven by geometric Levy processThis financial market model is based on the multiple riskyassets 119878

1 1198782 119878

119899driven by Levy process Ito formula and

equivalent transformation methods have been used to solvethis complicated financial market model An example of theportfolio strategy and the final value problem to applying ourmethod to the European call option has been given in the endof this paper

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 9

Acknowledgment

This work is supported by the National Natural ScienceFoundation of China (Grants no 61075105 and no 71371046)

References

[1] H Markowitz ldquoPortfolio selectionrdquo Journal of Finance vol 7pp 77ndash91 1952

[2] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[3] B Oslashksendal Stochastic Differential Equations Springer 6thedition 2005

[4] X Guo and Q Zhang ldquoOptimal selling rules in a regimeswitching modelrdquo IEEE Transactions on Automatic Control vol50 no 9 pp 1450ndash1455 2005

[5] M Pemy Q Zhang and G G Yin ldquoLiquidation of a large blockof stock with regime switchingrdquoMathematical Finance vol 18no 4 pp 629ndash648 2008

[6] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with Markov regime switching and uncertain time-horizonrdquo Journal of Systems Science amp Complexity vol 24 no 1pp 140ndash155 2011

[7] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with regime switching and a stochastic cash flowrdquoInsuranceMathematics amp Economics vol 50 no 3 pp 371ndash3842012

[8] J Kallsen ldquoOptimal portfolios for exponential Levy processesrdquoMathematical Methods of Operations Research vol 51 no 3 pp357ndash374 2000

[9] D Applebaum Levy Processes and Stochastic Calculus vol 93Cambridge University Press Cambridge UK 2004

[10] N Vandaele and M Vanmaele ldquoA locally risk-minimizinghedging strategy for unit-linked life insurance contracts ina Levy process financial marketrdquo Insurance Mathematics ampEconomics vol 42 no 3 pp 1128ndash1137 2008

[11] C Weng ldquoConstant proportion portfolio insurance under aregime switching exponential Levy processrdquo Insurance Math-ematics amp Economics vol 52 no 3 pp 508ndash521 2013

[12] N Bauerle and A Blatter ldquoOptimal control and dependencemodeling of insurance portfolios with Levy dynamicsrdquo Insur-ance Mathematics amp Economics vol 48 no 3 pp 398ndash4052011

[13] K C Yuen and C Yin ldquoOn optimality of the barrier strategyfor a general Levy risk processrdquo Mathematical and ComputerModelling vol 53 no 9-10 pp 1700ndash1707 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Portfolio Strategy of Financial Market with ...Research Article Portfolio Strategy of Financial Market with Regime Switching Driven by Geometric Lévy Process LiuweiZhouandZhijieWang

4 Abstract and Applied Analysis

times [120583119896 (119905 120572 (119905)) 119889119905 + 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+ int119877minus0

119911119896 (119889119905 119889119911)]

= [119881 (119905) minus

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905)] 119903 (119905 120572 (119905))

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120583119896 (119905 120572 (119905)) 119889119905

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) int

119877minus0

119911119896 (119889119905 119889119911)

= 119903 (119905 120572 (119905)) 119881 (119905) +

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905)

times [120583119896 (119905 120572 (119905)) minus 119903 (119905 120572 (119905))

minusint119877minus0

119911120578119896 (119889119911)] 119889119905

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120590119896 (119905 120572 (119905)) 119889119882119896 (119905)

+

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) int

119877minus0

119911119873119896 (119889119905 119889119911)

(13)

which is (12)Conversely from (2) and (12) we can obtain (8)This completes the proof of the above proposition

Now we give the following fundamental results

Theorem 4 Consider the model (2) of a financial marketAssume that the portfolio (120593 120595

1 1205952 120595

119899) is a self-financing

strategy and 119881(119905)119905ge0

is the wealth process defined by (7) andsum119899

119896=1120595119896119878119896int119877minus0

119911120578119896(119889119911) = sum

119899

119896=1int119877minus0

119911120595119896119878119896120578119896(119889119911) If there

exists a function 119891(119905 119878) of 11986212 class (the set of functions whichare once differentiable in 119905 and continuously twice differentiablein 119878) such that

119881 (119905) = 119891 (119905 119878 (119905)) 119905 isin [0 119879]

119878 (119905) = (1198781 (119905) 1198782 (119905) 119878119899 (119905))

(14)

which holds true then the portfolio (120593 1205951 1205952 120595

119899) satisfies

120593 (119905) =119891 minus (120597119891120597119878) 119878

119879

B (119905) 119905 ge 0 (15)

120595 (119905) = (120597119891

1205971198781

120597119891

1205971198782

120597119891

120597119878119899

) =120597119891

120597119878 119905 ge 0 (16)

and the function 119891(119905 119878) solves the following backward PDE ofparabolic type

120597119891

120597119905+ 119903

119899

sum

119896=1

120597119891

120597119878119896

119878119896+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895= 119903119891

119905 lt 119879 119878 gt 0

(17)

Moreover if 119881(119879) = 119892(119878(119879)) then the function 119891(119905 119878)

satisfies the following equation

119891 (119879 119878) = 119892 (119878) 119878 gt 0 (18)

For the converse part we assume that 119879 gt 0 If thereexists a function 119891(119905 119878) of 11986212 class such that (17) and (18)are satisfied then the process (120593 120595) defined by (16) and (15) isa self-financing strategy The wealth process 119881 = 119881(119905)

119905isin[0119879]

corresponding to (120593 120595) satisfies (14)

Proof We proof the direct part of Theorem 4 firstlyFor

119881 (119905) = 119891 (119905 119878 (119905)) (19)

by applying the Ito formula we can infer that

119889119881 (119905) =120597119891

120597119905(119905 119878 (119905)) 119889119905

+

119899

sum

119896=1

120597119891

120597119878119896

(119905 119878 (119905)) (119878119896120583119896119889119905 + 119878119896120590119896119889119882119896)

+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

(119905 119878 (119905)) 119878119894120590119894119878119895120590119895119889119905

+

119899

sum

119896=1

int119877minus0

(119891 (119905 119878 + 119911119878) minus 119891 (119905 119878)) 119896 (119889119905 119889119911)

+

119899

sum

119896=1

int119877minus0

[119891 (119905 119878 + 119911119878) minus 119891 (119905 119878)

minus119911120597119891

120597119878119896

(119905 119878) 119878119896] 120578119896 (119889119911) 119889119905

+

119898

sum

119895=1

120574119894119895119891 (119905 119878 (119905))

= [

[

120597119891

120597119905+

119899

sum

119896=1

120597119891

120597119878119896

119878119896120583119896+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

minus

119899

sum

119896=1

int119877minus0

119911120597119891

120597119878119896

119878119896120578119896 (119889119911)] 119889119905

+

119899

sum

119896=1

120597119891

120597119878119896

119878119896120590119896119889119882119896

+

119899

sum

119896=1

int119877minus0

[119891 (119905 119878 + 119911119878) minus 119891 (119905 119878)]119873 (119889119905 119889119911)

(20)

Abstract and Applied Analysis 5

On the other hand since our strategy is self-financing theformula (12) is satisfied

Thus the rate of return and the volatility in (20) and (12)should be coincided and hence

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120590119896 =

119899

sum

119896=1

120597119891

120597119878119896

(119905 119878) 119878119896120590119896

119903 (119905 120572 (119905)) 119891 (119905 119878) +

119899

sum

119896=1

120595119896119878119896(120583119896minus 119903)

=120597119891

120597119905+

119899

sum

119896=1

120597119891

120597119878119896

119878119896120583119896+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

(21)

We can easily get 119878119896ge 0 from (11) which together with

the first equation of (21) and the independence of 119878119896(119896 =

1 2 119899) yields (16)From the first equation of (21) (7) and (14) we have

119903120593119861 = 119891 minus

119899

sum

119896=1

120597119891

120597119878119896

119878119896 (22)

So that

120593 =119891 minus sum

119899

119896=1(120597119891120597119878

119896) 119878119896

119861=119891 minus 119891119878119878119879

119861 (23)

Substituting (16) into the second equation of (21) we have

119903119891 minus

119899

sum

119896=1

120595119896119878119896119903 =

120597119891

120597119905+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895 (24)

which is (17)Conversely assume that 119891 = 119891(119905 119878) is a 119862

12-classfunction which is a solution of the PDE (17) and that (120593 120595)is a process defined by (16) and (15)

Firstly we will show that a process 119881 = 119881(119905) 119905 isin [0 119879]defined by (7) satisfies the equation

119881 (119905) = 119891 (119905 119878 (119905)) 119905 isin [0 119879] (25)

In fact substituting formulas (16) and (15) into the right handside of (7) we have

119881 (119905) = 120593119861 +

119899

sum

119896=1

120595119896119878119896=119891 minus sum

119899

119896=1(120597119891120597119878

119896) 119878119896

119861119861

+

119899

sum

119896=1

120597119891

120597119878119896

119878119896= 119891 119905 ge 0

(26)

This proves (25)Next we will show that (120593 120595) is a self-financing strategy

that is (12) holdsBy applying the Ito formula to the process119881 and function

119891 we have that (20) is satisfied

Furthermore by (17)

120597119891

120597119905+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895= 119903119891 minus 119903

119899

sum

119896=1

119878119896

120597119891

120597119878119896

120597119891

120597119905+

119899

sum

119896=1

119878119896120583119896

120597119891

120597119878119896

+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

= 119903119891 +

119899

sum

119896=1

(120583119896minus 119903) 119878

119896

120597119891

120597119878119896

(27)

Then by (25) and (16) we have

119903119881 +

119899

sum

119896=1

120595119896119878119896(120583119896minus 119903) =

120597119891

120597119905+

119899

sum

119896=1

119878119896120583119896

120597119891

120597119878119896

+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

(28)

119899

sum

119896=1

120595119896119878119896120590119896=

119899

sum

119896=1

120597119891

120597119878119896

119878119896120590119896 (29)

Those together with (16) yield that (20) implies (12) Theproof of Theorem 4 is completed

Remark 5 In order to determine the portfolio strategy (120601 120595)and obtain the final value 119881(119905) from Theorem 4 we shouldfind the solution of the PDF (17) with the final data (18)This is the key problem in the rest of this section Wehave the following result in terms of method of variablestransformation

Theorem 6 Let 119903(119905 120572(119905)) in (2) be a constant 119903 The function119891(119905 119878) 119905 le 119879 119878 gt 0 given by the following formula

119891 (119905 119878) =119890minus119903(119879minus119905)

radic2120587

times

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942119892 (0 0 119878

119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(30)

is a solution of the general Black-Scholes equation (17) with thefinal data (18)

Proof We are going to do some equivalent transformationsof general B-S equation (17) in order to get an appropriateequivalent equation with analytic solutions The procedurewill be divided into four steps

Step I Let

119891 (119905 1198781 119878

119899) = 119890119903(119905minus119879)

119902 (119905 ln 1198781minus (119903 minus

1

21205902

1) (119905 minus 119879)

ln 119878119899minus (119903 minus

1

21205902

119899) (119905 minus 119879))

(31)

6 Abstract and Applied Analysis

and denote 119910119894= ln 119878

119894minus (119903 minus (12)120590

2

119894)(119905 minus 119879) (119894 = 1 2 119899)

and then

120597119891

120597119905=

119889 (119890119903(119905minus119879)

)

119889119905119902 + 119890119903(119905minus119879)

119902119905

= 119890119903(119905minus119879)

119902 (119889119903

119889119905(119905 minus 119879) + 119903)

+ 119890119903(119905minus119879)

[119902119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

= 119903119890119903(119905minus119879)

119902 + 119890119903(119905minus119879)

119902119889119903

119889119905(119905 minus 119879)

+ 119890119903(119905minus119879)

[120597119902

120597119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

120597119891

120597119878119894

= 119890119903(119905minus119879) 120597119902

120597119910119894

1

119878119894

1205972119891

120597119878119894120597119878119895

=

120597 (119890119903(119905minus119879)

(120597119902120597119910119894) (1119878

119894))

120597119878119895

=

119890119903(119905minus119879)

1205972119902

120597119910119894120597119910119895

1

119878119894

1

119878119895

119894 = 119895

119890119903(119905minus119879)

(1205972119902

120597119910119894120597119910119894

1

119878119894

1

119878119894

minus120597119902

120597119910119894

1

1198782

119894

) 119894 = 119895

(32)

Inserting the above formulas into (17) we get

119903119891 +119889119903

119889119905(119905 minus 119879) 119902119890

119903(119905minus119879)+ 119890119903(119905minus119879)

[120597119902

120597119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

+ 119903

119899

sum

119894=1

119890119903(119905minus119879) 120597119902

120597119910119894

1

119878119894

119878119894+1

2

119899

sum

119894=1

119899

sum

119895=1

119890119903(119905minus119879) 120597

2119902

120597119910119894120597119910119895

1

119878119894

1

119878119895

119878119894120590119894119878119895120590119895

minus1

2

119899

sum

119894=1

119890119903(119905minus119879) 120597119902

120597119910119894

1198782

119894

1

1198782

119894

1198782

119894= 119903119891

(33)

which can be simplified as

119889119903

119889119905(119905 minus 119879) 119902 +

120597119902

120597119905+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119902

120597119910119894120597119910119895

120590119894120590119895= 0 (34)

The final data 119891(119879 119878) = 119892(119878) can be rewritten as

119902 (119879 119878) = 119892 (1198901198781 1198901198782 119890

119878119899) (35)

Step II We introduce another variable and a new function asfollows

120591 = 119879 minus 119905 gt 0 119905 = 119879 minus 120591 120591 ge 0 119905 le 119879

119902 (119905 119910) = 119906 (119879 minus 119905 119910) or 119906 (120591 119910) = 119902 (119879 minus 120591 119910)

(36)

It can be computed that

119902119905(119905 119910) = minus119906

120591(119879 minus 119905 119910)

120597119902

120597119910119894

=120597119906

120597119910119894

(119879 minus 119905 119910)

1205972119902

120597119910119894120597119910119895

=1205972119906

120597119910119894120597119910119895

(119879 minus 119905 119910)

(37)

Substituting the above formulas into (34) we get

119889119881

119889119905(119905 minus 119879) 119906 (119879 minus 119905 119910) minus 119906

120591(119879 minus 119905 119910) +

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895

= 0

119906 (0 119910) = 119892 (119890119910)

(38)

Since 119903(119905 120572(119905)) is assumed as a constant 119903 (38) can be changedinto

119906120591(120591 119910) minus

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895= 0

119906 (0 119910) = 119892 (119890119910)

(39)

Step III We claim that the unique solution of (39) is

119906 (119905 1199101 1199102 119910

119899)

=1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

119892 (0 0 119890119909119894 0 0) 119889119909

119894

(40)

In fact

119906120591(120591 119910) = minus

1

2radic2120587120591120591

times

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0) 119889119909

119894

+1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0)

times(119910119894minus 119909119894)2

21205902

1198941205912

119889119909119894

Abstract and Applied Analysis 7

120597119906

120597119910119894

=1

radic2120587120591int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

119892 (0 0 119890119909119894 0 0)

times (minus119910119894minus 119909119894

1205902

119894120591

)119889119909119894

1205972119906

120597119910119894120597119910119895

=

0 119894 = 119895

1

radic2120587120591int

infin

minusinfin

119892 (1198901199091 119890

119909119899)

1205902

119894

119890minus(119910119894minus119909119894)221205902

119894120591

times((119910119894minus 119909119894)2

1205904

1198941205912

minus1

1205902

119894120591)1205902

119894119889119909i 119894 = 119895

(41)

So

119906120591(120591 119892) minus

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895

= minus1

2radic2120587120591120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0) 119889119909

119894

+1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0)

(119910119894minus 119909119894)2

21205902

1198941205912

119889119909119894

minus1

2

119899

sum

119894=1

1

radic2120587120591int

infin

minusinfin

119892 (1198901199091 119890

119909119899)

1205902

119894

times 119890minus(119910119894minus119909119894)221205902

119894120591((119910119894minus 119909119894)2

1205904

1198941205912

minus1

1205902

119894120591)1205902

119894119889119909119894= 0

(42)

Step IV By introducing a change of variables 119911119894= 119909119894minus 119910119894

we have 119909119894= 119911119894+ 119910119894and 119889119909

119894= 119889119911119894 where 119911

119894isin (minusinfininfin) It

follows that

119906 (120591 119910)

=1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119911119894+119910119894 0 0) 119889119911

119894

(43)

In order to get rid of the denominator 1205902119894120591 in the exponent in

the above formula we make another change of variables as

119911119894= 120590119894radic120591119909119894 (44)

So 119889119911119894= 120590119894radic120591119889119909

119894

Recalling the relationship between 119902 and 119906 described in(36) we therefore have

119902 (119905 119910)

=1

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119890120590119894radic119879minus119905119909

119894+119910119894 0 0) 119889119909

119894

(45)

Hence by formula (31) we have

119891 (119905 119878)

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119890120590119894radic119879minus119905119909

119894+ln 119878119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(46)

Since 119890ln 119878 = 119878 then

119891 (119905 119878)

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(47)

In this way we provedTheorem 6

4 A Financial Example

As an application we consider the European call option InTheorem 6 we have given the solution of the general B-Sequation (17) which depends on the final data (18) that is119891(119879 119904) = 119892(119904) More specific we take the final data 119892(119904) forthe European call option as

119892 (119878) = 119892 (119878minus1198961

1 119878minus1198962

2 119878

minus119896119899

119899) =

119899

sum

119894=1

(119878119894minus 119870i)+ (48)

where 119878119894gt 0 and 119870

119894gt 0 are the strike price of 119878

119894 Then we

have the following corollary fromTheorem 6

Corollary 7 For the European call option the solution to thegeneral Black-Scholes value problem (17) with the final data(48) is given by

119891 (119905 119878) =

119899

sum

119894=1

119878119894Φ(minus119860

119894+ 120590119894radic119879 minus 119905)

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(minus119860

119894)

(49)

8 Abstract and Applied Analysis

where

minus119860119894=

(119903 minus 1205902

1198942) (119879 minus 119905) + ln (119878

119894119870119894)

120590119894radic119879 minus 119905

= 1198892

minus119860119894+ 120590119894radic119879 minus 119905 =

(119903 + 1205902

1198942) (119879 minus 119905) + ln (119878

119894119870119894)

120590119894radicT minus 119905

= 1198891

(50)

that is

119891 (119905 119878) =

119899

sum

119894=1

119878119894Φ(1198891) minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(1198892) (51)

In particular

119891 (0 119878) =

119899

sum

119894=1

119878119894Φ(1198891) minus 119890minus119903119879

119899

sum

119894=1

119870119894Φ(1198892) (52)

Proof For a European call option we infer that

119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

gt 119870119894 (53)

Dividing (53) by 119878119894and taking the ln we get

120590119894radic119879 minus 119905119909

119894minus (119903 minus

1205902

119894

2) (119905 minus 119879) gt ln

119870119894

119878119894

(54)

that is

119909119894gt

ln (119870119894119878119894) minus (119903 minus 120590

2

1198942) (119879 minus 119905)

120590119894radic119879 minus 119905

= 119860119894 (55)

Hence from (30) and (48) it follows that

119891 (119905 119878) =119890minus119903(119879minus119905)

radic2120587

times

119899

sum

119894=1

int

infin

119860119894

119890minus1199092

1198942119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

119860119894

119878119894119890(119903minus1205902

1198942)(119879minus119905)

119890minus1199092

1198942+120590119894radic119879minus119905119909

119894119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=1

radic2120587

119899

sum

119894=1

int

infin

119860119894

119878119894119890minus(1205902

1198942)(119879minus119905)

times 119890minus(12)(119909

119894minus120590119894radic119879minus119905)

2

+(12)1205902

119894(119879minus119905)

119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=1

radic2120587

119899

sum

119894=1

int

infin

119860119894minus120590119894radic119879minus119905

119878119894119890minus11991122119889119911

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=

119899

sum

119894=1

119878119894

1

radic2120587int

minus119860119894+120590119894radic119879minus119905

minusinfin

119890minus1199092

1198942119889119909119894

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894

1

radic2120587int

minus119860119894

minusinfin

119890minus1199092

1198942119889119909119894

=

119899

sum

119894=1

119878119894Φ(minus119860

119894+ 120590119894radic119879 minus 119905)

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(minus119860

119894)

(56)

where Φ(119905) is the probability distribution function of astandard Gaussion random variable119873(0 1) that is

Φ (119905) =1

radic2120587int

119905

minusinfin

119890minus11990922119889119909 119905 isin 119877 (57)

In this way we have proved Corollary 7

Remark 8 Theabove result is about the European call optionA similar representation to those from the above corollaryin the European put option case can be obtained by taking119892(119878) = sum

119899

119894=1(119870119894minus 119878119894)+ 119878119894gt 0 for some fixed 119870

119894gt 0

5 Conclusion

In this paper we have considered a financial market modelwith regime switching driven by geometric Levy processThis financial market model is based on the multiple riskyassets 119878

1 1198782 119878

119899driven by Levy process Ito formula and

equivalent transformation methods have been used to solvethis complicated financial market model An example of theportfolio strategy and the final value problem to applying ourmethod to the European call option has been given in the endof this paper

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 9

Acknowledgment

This work is supported by the National Natural ScienceFoundation of China (Grants no 61075105 and no 71371046)

References

[1] H Markowitz ldquoPortfolio selectionrdquo Journal of Finance vol 7pp 77ndash91 1952

[2] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[3] B Oslashksendal Stochastic Differential Equations Springer 6thedition 2005

[4] X Guo and Q Zhang ldquoOptimal selling rules in a regimeswitching modelrdquo IEEE Transactions on Automatic Control vol50 no 9 pp 1450ndash1455 2005

[5] M Pemy Q Zhang and G G Yin ldquoLiquidation of a large blockof stock with regime switchingrdquoMathematical Finance vol 18no 4 pp 629ndash648 2008

[6] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with Markov regime switching and uncertain time-horizonrdquo Journal of Systems Science amp Complexity vol 24 no 1pp 140ndash155 2011

[7] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with regime switching and a stochastic cash flowrdquoInsuranceMathematics amp Economics vol 50 no 3 pp 371ndash3842012

[8] J Kallsen ldquoOptimal portfolios for exponential Levy processesrdquoMathematical Methods of Operations Research vol 51 no 3 pp357ndash374 2000

[9] D Applebaum Levy Processes and Stochastic Calculus vol 93Cambridge University Press Cambridge UK 2004

[10] N Vandaele and M Vanmaele ldquoA locally risk-minimizinghedging strategy for unit-linked life insurance contracts ina Levy process financial marketrdquo Insurance Mathematics ampEconomics vol 42 no 3 pp 1128ndash1137 2008

[11] C Weng ldquoConstant proportion portfolio insurance under aregime switching exponential Levy processrdquo Insurance Math-ematics amp Economics vol 52 no 3 pp 508ndash521 2013

[12] N Bauerle and A Blatter ldquoOptimal control and dependencemodeling of insurance portfolios with Levy dynamicsrdquo Insur-ance Mathematics amp Economics vol 48 no 3 pp 398ndash4052011

[13] K C Yuen and C Yin ldquoOn optimality of the barrier strategyfor a general Levy risk processrdquo Mathematical and ComputerModelling vol 53 no 9-10 pp 1700ndash1707 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Portfolio Strategy of Financial Market with ...Research Article Portfolio Strategy of Financial Market with Regime Switching Driven by Geometric Lévy Process LiuweiZhouandZhijieWang

Abstract and Applied Analysis 5

On the other hand since our strategy is self-financing theformula (12) is satisfied

Thus the rate of return and the volatility in (20) and (12)should be coincided and hence

119899

sum

119896=1

120595119896 (119905) 119878119896 (119905) 120590119896 =

119899

sum

119896=1

120597119891

120597119878119896

(119905 119878) 119878119896120590119896

119903 (119905 120572 (119905)) 119891 (119905 119878) +

119899

sum

119896=1

120595119896119878119896(120583119896minus 119903)

=120597119891

120597119905+

119899

sum

119896=1

120597119891

120597119878119896

119878119896120583119896+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

(21)

We can easily get 119878119896ge 0 from (11) which together with

the first equation of (21) and the independence of 119878119896(119896 =

1 2 119899) yields (16)From the first equation of (21) (7) and (14) we have

119903120593119861 = 119891 minus

119899

sum

119896=1

120597119891

120597119878119896

119878119896 (22)

So that

120593 =119891 minus sum

119899

119896=1(120597119891120597119878

119896) 119878119896

119861=119891 minus 119891119878119878119879

119861 (23)

Substituting (16) into the second equation of (21) we have

119903119891 minus

119899

sum

119896=1

120595119896119878119896119903 =

120597119891

120597119905+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895 (24)

which is (17)Conversely assume that 119891 = 119891(119905 119878) is a 119862

12-classfunction which is a solution of the PDE (17) and that (120593 120595)is a process defined by (16) and (15)

Firstly we will show that a process 119881 = 119881(119905) 119905 isin [0 119879]defined by (7) satisfies the equation

119881 (119905) = 119891 (119905 119878 (119905)) 119905 isin [0 119879] (25)

In fact substituting formulas (16) and (15) into the right handside of (7) we have

119881 (119905) = 120593119861 +

119899

sum

119896=1

120595119896119878119896=119891 minus sum

119899

119896=1(120597119891120597119878

119896) 119878119896

119861119861

+

119899

sum

119896=1

120597119891

120597119878119896

119878119896= 119891 119905 ge 0

(26)

This proves (25)Next we will show that (120593 120595) is a self-financing strategy

that is (12) holdsBy applying the Ito formula to the process119881 and function

119891 we have that (20) is satisfied

Furthermore by (17)

120597119891

120597119905+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895= 119903119891 minus 119903

119899

sum

119896=1

119878119896

120597119891

120597119878119896

120597119891

120597119905+

119899

sum

119896=1

119878119896120583119896

120597119891

120597119878119896

+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

= 119903119891 +

119899

sum

119896=1

(120583119896minus 119903) 119878

119896

120597119891

120597119878119896

(27)

Then by (25) and (16) we have

119903119881 +

119899

sum

119896=1

120595119896119878119896(120583119896minus 119903) =

120597119891

120597119905+

119899

sum

119896=1

119878119896120583119896

120597119891

120597119878119896

+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119891

120597119878119894120597119878119895

119878119894120590119894119878119895120590119895

(28)

119899

sum

119896=1

120595119896119878119896120590119896=

119899

sum

119896=1

120597119891

120597119878119896

119878119896120590119896 (29)

Those together with (16) yield that (20) implies (12) Theproof of Theorem 4 is completed

Remark 5 In order to determine the portfolio strategy (120601 120595)and obtain the final value 119881(119905) from Theorem 4 we shouldfind the solution of the PDF (17) with the final data (18)This is the key problem in the rest of this section Wehave the following result in terms of method of variablestransformation

Theorem 6 Let 119903(119905 120572(119905)) in (2) be a constant 119903 The function119891(119905 119878) 119905 le 119879 119878 gt 0 given by the following formula

119891 (119905 119878) =119890minus119903(119879minus119905)

radic2120587

times

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942119892 (0 0 119878

119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(30)

is a solution of the general Black-Scholes equation (17) with thefinal data (18)

Proof We are going to do some equivalent transformationsof general B-S equation (17) in order to get an appropriateequivalent equation with analytic solutions The procedurewill be divided into four steps

Step I Let

119891 (119905 1198781 119878

119899) = 119890119903(119905minus119879)

119902 (119905 ln 1198781minus (119903 minus

1

21205902

1) (119905 minus 119879)

ln 119878119899minus (119903 minus

1

21205902

119899) (119905 minus 119879))

(31)

6 Abstract and Applied Analysis

and denote 119910119894= ln 119878

119894minus (119903 minus (12)120590

2

119894)(119905 minus 119879) (119894 = 1 2 119899)

and then

120597119891

120597119905=

119889 (119890119903(119905minus119879)

)

119889119905119902 + 119890119903(119905minus119879)

119902119905

= 119890119903(119905minus119879)

119902 (119889119903

119889119905(119905 minus 119879) + 119903)

+ 119890119903(119905minus119879)

[119902119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

= 119903119890119903(119905minus119879)

119902 + 119890119903(119905minus119879)

119902119889119903

119889119905(119905 minus 119879)

+ 119890119903(119905minus119879)

[120597119902

120597119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

120597119891

120597119878119894

= 119890119903(119905minus119879) 120597119902

120597119910119894

1

119878119894

1205972119891

120597119878119894120597119878119895

=

120597 (119890119903(119905minus119879)

(120597119902120597119910119894) (1119878

119894))

120597119878119895

=

119890119903(119905minus119879)

1205972119902

120597119910119894120597119910119895

1

119878119894

1

119878119895

119894 = 119895

119890119903(119905minus119879)

(1205972119902

120597119910119894120597119910119894

1

119878119894

1

119878119894

minus120597119902

120597119910119894

1

1198782

119894

) 119894 = 119895

(32)

Inserting the above formulas into (17) we get

119903119891 +119889119903

119889119905(119905 minus 119879) 119902119890

119903(119905minus119879)+ 119890119903(119905minus119879)

[120597119902

120597119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

+ 119903

119899

sum

119894=1

119890119903(119905minus119879) 120597119902

120597119910119894

1

119878119894

119878119894+1

2

119899

sum

119894=1

119899

sum

119895=1

119890119903(119905minus119879) 120597

2119902

120597119910119894120597119910119895

1

119878119894

1

119878119895

119878119894120590119894119878119895120590119895

minus1

2

119899

sum

119894=1

119890119903(119905minus119879) 120597119902

120597119910119894

1198782

119894

1

1198782

119894

1198782

119894= 119903119891

(33)

which can be simplified as

119889119903

119889119905(119905 minus 119879) 119902 +

120597119902

120597119905+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119902

120597119910119894120597119910119895

120590119894120590119895= 0 (34)

The final data 119891(119879 119878) = 119892(119878) can be rewritten as

119902 (119879 119878) = 119892 (1198901198781 1198901198782 119890

119878119899) (35)

Step II We introduce another variable and a new function asfollows

120591 = 119879 minus 119905 gt 0 119905 = 119879 minus 120591 120591 ge 0 119905 le 119879

119902 (119905 119910) = 119906 (119879 minus 119905 119910) or 119906 (120591 119910) = 119902 (119879 minus 120591 119910)

(36)

It can be computed that

119902119905(119905 119910) = minus119906

120591(119879 minus 119905 119910)

120597119902

120597119910119894

=120597119906

120597119910119894

(119879 minus 119905 119910)

1205972119902

120597119910119894120597119910119895

=1205972119906

120597119910119894120597119910119895

(119879 minus 119905 119910)

(37)

Substituting the above formulas into (34) we get

119889119881

119889119905(119905 minus 119879) 119906 (119879 minus 119905 119910) minus 119906

120591(119879 minus 119905 119910) +

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895

= 0

119906 (0 119910) = 119892 (119890119910)

(38)

Since 119903(119905 120572(119905)) is assumed as a constant 119903 (38) can be changedinto

119906120591(120591 119910) minus

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895= 0

119906 (0 119910) = 119892 (119890119910)

(39)

Step III We claim that the unique solution of (39) is

119906 (119905 1199101 1199102 119910

119899)

=1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

119892 (0 0 119890119909119894 0 0) 119889119909

119894

(40)

In fact

119906120591(120591 119910) = minus

1

2radic2120587120591120591

times

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0) 119889119909

119894

+1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0)

times(119910119894minus 119909119894)2

21205902

1198941205912

119889119909119894

Abstract and Applied Analysis 7

120597119906

120597119910119894

=1

radic2120587120591int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

119892 (0 0 119890119909119894 0 0)

times (minus119910119894minus 119909119894

1205902

119894120591

)119889119909119894

1205972119906

120597119910119894120597119910119895

=

0 119894 = 119895

1

radic2120587120591int

infin

minusinfin

119892 (1198901199091 119890

119909119899)

1205902

119894

119890minus(119910119894minus119909119894)221205902

119894120591

times((119910119894minus 119909119894)2

1205904

1198941205912

minus1

1205902

119894120591)1205902

119894119889119909i 119894 = 119895

(41)

So

119906120591(120591 119892) minus

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895

= minus1

2radic2120587120591120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0) 119889119909

119894

+1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0)

(119910119894minus 119909119894)2

21205902

1198941205912

119889119909119894

minus1

2

119899

sum

119894=1

1

radic2120587120591int

infin

minusinfin

119892 (1198901199091 119890

119909119899)

1205902

119894

times 119890minus(119910119894minus119909119894)221205902

119894120591((119910119894minus 119909119894)2

1205904

1198941205912

minus1

1205902

119894120591)1205902

119894119889119909119894= 0

(42)

Step IV By introducing a change of variables 119911119894= 119909119894minus 119910119894

we have 119909119894= 119911119894+ 119910119894and 119889119909

119894= 119889119911119894 where 119911

119894isin (minusinfininfin) It

follows that

119906 (120591 119910)

=1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119911119894+119910119894 0 0) 119889119911

119894

(43)

In order to get rid of the denominator 1205902119894120591 in the exponent in

the above formula we make another change of variables as

119911119894= 120590119894radic120591119909119894 (44)

So 119889119911119894= 120590119894radic120591119889119909

119894

Recalling the relationship between 119902 and 119906 described in(36) we therefore have

119902 (119905 119910)

=1

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119890120590119894radic119879minus119905119909

119894+119910119894 0 0) 119889119909

119894

(45)

Hence by formula (31) we have

119891 (119905 119878)

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119890120590119894radic119879minus119905119909

119894+ln 119878119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(46)

Since 119890ln 119878 = 119878 then

119891 (119905 119878)

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(47)

In this way we provedTheorem 6

4 A Financial Example

As an application we consider the European call option InTheorem 6 we have given the solution of the general B-Sequation (17) which depends on the final data (18) that is119891(119879 119904) = 119892(119904) More specific we take the final data 119892(119904) forthe European call option as

119892 (119878) = 119892 (119878minus1198961

1 119878minus1198962

2 119878

minus119896119899

119899) =

119899

sum

119894=1

(119878119894minus 119870i)+ (48)

where 119878119894gt 0 and 119870

119894gt 0 are the strike price of 119878

119894 Then we

have the following corollary fromTheorem 6

Corollary 7 For the European call option the solution to thegeneral Black-Scholes value problem (17) with the final data(48) is given by

119891 (119905 119878) =

119899

sum

119894=1

119878119894Φ(minus119860

119894+ 120590119894radic119879 minus 119905)

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(minus119860

119894)

(49)

8 Abstract and Applied Analysis

where

minus119860119894=

(119903 minus 1205902

1198942) (119879 minus 119905) + ln (119878

119894119870119894)

120590119894radic119879 minus 119905

= 1198892

minus119860119894+ 120590119894radic119879 minus 119905 =

(119903 + 1205902

1198942) (119879 minus 119905) + ln (119878

119894119870119894)

120590119894radicT minus 119905

= 1198891

(50)

that is

119891 (119905 119878) =

119899

sum

119894=1

119878119894Φ(1198891) minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(1198892) (51)

In particular

119891 (0 119878) =

119899

sum

119894=1

119878119894Φ(1198891) minus 119890minus119903119879

119899

sum

119894=1

119870119894Φ(1198892) (52)

Proof For a European call option we infer that

119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

gt 119870119894 (53)

Dividing (53) by 119878119894and taking the ln we get

120590119894radic119879 minus 119905119909

119894minus (119903 minus

1205902

119894

2) (119905 minus 119879) gt ln

119870119894

119878119894

(54)

that is

119909119894gt

ln (119870119894119878119894) minus (119903 minus 120590

2

1198942) (119879 minus 119905)

120590119894radic119879 minus 119905

= 119860119894 (55)

Hence from (30) and (48) it follows that

119891 (119905 119878) =119890minus119903(119879minus119905)

radic2120587

times

119899

sum

119894=1

int

infin

119860119894

119890minus1199092

1198942119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

119860119894

119878119894119890(119903minus1205902

1198942)(119879minus119905)

119890minus1199092

1198942+120590119894radic119879minus119905119909

119894119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=1

radic2120587

119899

sum

119894=1

int

infin

119860119894

119878119894119890minus(1205902

1198942)(119879minus119905)

times 119890minus(12)(119909

119894minus120590119894radic119879minus119905)

2

+(12)1205902

119894(119879minus119905)

119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=1

radic2120587

119899

sum

119894=1

int

infin

119860119894minus120590119894radic119879minus119905

119878119894119890minus11991122119889119911

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=

119899

sum

119894=1

119878119894

1

radic2120587int

minus119860119894+120590119894radic119879minus119905

minusinfin

119890minus1199092

1198942119889119909119894

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894

1

radic2120587int

minus119860119894

minusinfin

119890minus1199092

1198942119889119909119894

=

119899

sum

119894=1

119878119894Φ(minus119860

119894+ 120590119894radic119879 minus 119905)

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(minus119860

119894)

(56)

where Φ(119905) is the probability distribution function of astandard Gaussion random variable119873(0 1) that is

Φ (119905) =1

radic2120587int

119905

minusinfin

119890minus11990922119889119909 119905 isin 119877 (57)

In this way we have proved Corollary 7

Remark 8 Theabove result is about the European call optionA similar representation to those from the above corollaryin the European put option case can be obtained by taking119892(119878) = sum

119899

119894=1(119870119894minus 119878119894)+ 119878119894gt 0 for some fixed 119870

119894gt 0

5 Conclusion

In this paper we have considered a financial market modelwith regime switching driven by geometric Levy processThis financial market model is based on the multiple riskyassets 119878

1 1198782 119878

119899driven by Levy process Ito formula and

equivalent transformation methods have been used to solvethis complicated financial market model An example of theportfolio strategy and the final value problem to applying ourmethod to the European call option has been given in the endof this paper

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 9

Acknowledgment

This work is supported by the National Natural ScienceFoundation of China (Grants no 61075105 and no 71371046)

References

[1] H Markowitz ldquoPortfolio selectionrdquo Journal of Finance vol 7pp 77ndash91 1952

[2] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[3] B Oslashksendal Stochastic Differential Equations Springer 6thedition 2005

[4] X Guo and Q Zhang ldquoOptimal selling rules in a regimeswitching modelrdquo IEEE Transactions on Automatic Control vol50 no 9 pp 1450ndash1455 2005

[5] M Pemy Q Zhang and G G Yin ldquoLiquidation of a large blockof stock with regime switchingrdquoMathematical Finance vol 18no 4 pp 629ndash648 2008

[6] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with Markov regime switching and uncertain time-horizonrdquo Journal of Systems Science amp Complexity vol 24 no 1pp 140ndash155 2011

[7] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with regime switching and a stochastic cash flowrdquoInsuranceMathematics amp Economics vol 50 no 3 pp 371ndash3842012

[8] J Kallsen ldquoOptimal portfolios for exponential Levy processesrdquoMathematical Methods of Operations Research vol 51 no 3 pp357ndash374 2000

[9] D Applebaum Levy Processes and Stochastic Calculus vol 93Cambridge University Press Cambridge UK 2004

[10] N Vandaele and M Vanmaele ldquoA locally risk-minimizinghedging strategy for unit-linked life insurance contracts ina Levy process financial marketrdquo Insurance Mathematics ampEconomics vol 42 no 3 pp 1128ndash1137 2008

[11] C Weng ldquoConstant proportion portfolio insurance under aregime switching exponential Levy processrdquo Insurance Math-ematics amp Economics vol 52 no 3 pp 508ndash521 2013

[12] N Bauerle and A Blatter ldquoOptimal control and dependencemodeling of insurance portfolios with Levy dynamicsrdquo Insur-ance Mathematics amp Economics vol 48 no 3 pp 398ndash4052011

[13] K C Yuen and C Yin ldquoOn optimality of the barrier strategyfor a general Levy risk processrdquo Mathematical and ComputerModelling vol 53 no 9-10 pp 1700ndash1707 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Portfolio Strategy of Financial Market with ...Research Article Portfolio Strategy of Financial Market with Regime Switching Driven by Geometric Lévy Process LiuweiZhouandZhijieWang

6 Abstract and Applied Analysis

and denote 119910119894= ln 119878

119894minus (119903 minus (12)120590

2

119894)(119905 minus 119879) (119894 = 1 2 119899)

and then

120597119891

120597119905=

119889 (119890119903(119905minus119879)

)

119889119905119902 + 119890119903(119905minus119879)

119902119905

= 119890119903(119905minus119879)

119902 (119889119903

119889119905(119905 minus 119879) + 119903)

+ 119890119903(119905minus119879)

[119902119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

= 119903119890119903(119905minus119879)

119902 + 119890119903(119905minus119879)

119902119889119903

119889119905(119905 minus 119879)

+ 119890119903(119905minus119879)

[120597119902

120597119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

120597119891

120597119878119894

= 119890119903(119905minus119879) 120597119902

120597119910119894

1

119878119894

1205972119891

120597119878119894120597119878119895

=

120597 (119890119903(119905minus119879)

(120597119902120597119910119894) (1119878

119894))

120597119878119895

=

119890119903(119905minus119879)

1205972119902

120597119910119894120597119910119895

1

119878119894

1

119878119895

119894 = 119895

119890119903(119905minus119879)

(1205972119902

120597119910119894120597119910119894

1

119878119894

1

119878119894

minus120597119902

120597119910119894

1

1198782

119894

) 119894 = 119895

(32)

Inserting the above formulas into (17) we get

119903119891 +119889119903

119889119905(119905 minus 119879) 119902119890

119903(119905minus119879)+ 119890119903(119905minus119879)

[120597119902

120597119905minus

119899

sum

119894=1

120597119902

120597119910119894

(119903 minus1

21205902

119894)]

+ 119903

119899

sum

119894=1

119890119903(119905minus119879) 120597119902

120597119910119894

1

119878119894

119878119894+1

2

119899

sum

119894=1

119899

sum

119895=1

119890119903(119905minus119879) 120597

2119902

120597119910119894120597119910119895

1

119878119894

1

119878119895

119878119894120590119894119878119895120590119895

minus1

2

119899

sum

119894=1

119890119903(119905minus119879) 120597119902

120597119910119894

1198782

119894

1

1198782

119894

1198782

119894= 119903119891

(33)

which can be simplified as

119889119903

119889119905(119905 minus 119879) 119902 +

120597119902

120597119905+1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119902

120597119910119894120597119910119895

120590119894120590119895= 0 (34)

The final data 119891(119879 119878) = 119892(119878) can be rewritten as

119902 (119879 119878) = 119892 (1198901198781 1198901198782 119890

119878119899) (35)

Step II We introduce another variable and a new function asfollows

120591 = 119879 minus 119905 gt 0 119905 = 119879 minus 120591 120591 ge 0 119905 le 119879

119902 (119905 119910) = 119906 (119879 minus 119905 119910) or 119906 (120591 119910) = 119902 (119879 minus 120591 119910)

(36)

It can be computed that

119902119905(119905 119910) = minus119906

120591(119879 minus 119905 119910)

120597119902

120597119910119894

=120597119906

120597119910119894

(119879 minus 119905 119910)

1205972119902

120597119910119894120597119910119895

=1205972119906

120597119910119894120597119910119895

(119879 minus 119905 119910)

(37)

Substituting the above formulas into (34) we get

119889119881

119889119905(119905 minus 119879) 119906 (119879 minus 119905 119910) minus 119906

120591(119879 minus 119905 119910) +

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895

= 0

119906 (0 119910) = 119892 (119890119910)

(38)

Since 119903(119905 120572(119905)) is assumed as a constant 119903 (38) can be changedinto

119906120591(120591 119910) minus

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895= 0

119906 (0 119910) = 119892 (119890119910)

(39)

Step III We claim that the unique solution of (39) is

119906 (119905 1199101 1199102 119910

119899)

=1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

119892 (0 0 119890119909119894 0 0) 119889119909

119894

(40)

In fact

119906120591(120591 119910) = minus

1

2radic2120587120591120591

times

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0) 119889119909

119894

+1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0)

times(119910119894minus 119909119894)2

21205902

1198941205912

119889119909119894

Abstract and Applied Analysis 7

120597119906

120597119910119894

=1

radic2120587120591int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

119892 (0 0 119890119909119894 0 0)

times (minus119910119894minus 119909119894

1205902

119894120591

)119889119909119894

1205972119906

120597119910119894120597119910119895

=

0 119894 = 119895

1

radic2120587120591int

infin

minusinfin

119892 (1198901199091 119890

119909119899)

1205902

119894

119890minus(119910119894minus119909119894)221205902

119894120591

times((119910119894minus 119909119894)2

1205904

1198941205912

minus1

1205902

119894120591)1205902

119894119889119909i 119894 = 119895

(41)

So

119906120591(120591 119892) minus

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895

= minus1

2radic2120587120591120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0) 119889119909

119894

+1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0)

(119910119894minus 119909119894)2

21205902

1198941205912

119889119909119894

minus1

2

119899

sum

119894=1

1

radic2120587120591int

infin

minusinfin

119892 (1198901199091 119890

119909119899)

1205902

119894

times 119890minus(119910119894minus119909119894)221205902

119894120591((119910119894minus 119909119894)2

1205904

1198941205912

minus1

1205902

119894120591)1205902

119894119889119909119894= 0

(42)

Step IV By introducing a change of variables 119911119894= 119909119894minus 119910119894

we have 119909119894= 119911119894+ 119910119894and 119889119909

119894= 119889119911119894 where 119911

119894isin (minusinfininfin) It

follows that

119906 (120591 119910)

=1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119911119894+119910119894 0 0) 119889119911

119894

(43)

In order to get rid of the denominator 1205902119894120591 in the exponent in

the above formula we make another change of variables as

119911119894= 120590119894radic120591119909119894 (44)

So 119889119911119894= 120590119894radic120591119889119909

119894

Recalling the relationship between 119902 and 119906 described in(36) we therefore have

119902 (119905 119910)

=1

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119890120590119894radic119879minus119905119909

119894+119910119894 0 0) 119889119909

119894

(45)

Hence by formula (31) we have

119891 (119905 119878)

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119890120590119894radic119879minus119905119909

119894+ln 119878119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(46)

Since 119890ln 119878 = 119878 then

119891 (119905 119878)

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(47)

In this way we provedTheorem 6

4 A Financial Example

As an application we consider the European call option InTheorem 6 we have given the solution of the general B-Sequation (17) which depends on the final data (18) that is119891(119879 119904) = 119892(119904) More specific we take the final data 119892(119904) forthe European call option as

119892 (119878) = 119892 (119878minus1198961

1 119878minus1198962

2 119878

minus119896119899

119899) =

119899

sum

119894=1

(119878119894minus 119870i)+ (48)

where 119878119894gt 0 and 119870

119894gt 0 are the strike price of 119878

119894 Then we

have the following corollary fromTheorem 6

Corollary 7 For the European call option the solution to thegeneral Black-Scholes value problem (17) with the final data(48) is given by

119891 (119905 119878) =

119899

sum

119894=1

119878119894Φ(minus119860

119894+ 120590119894radic119879 minus 119905)

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(minus119860

119894)

(49)

8 Abstract and Applied Analysis

where

minus119860119894=

(119903 minus 1205902

1198942) (119879 minus 119905) + ln (119878

119894119870119894)

120590119894radic119879 minus 119905

= 1198892

minus119860119894+ 120590119894radic119879 minus 119905 =

(119903 + 1205902

1198942) (119879 minus 119905) + ln (119878

119894119870119894)

120590119894radicT minus 119905

= 1198891

(50)

that is

119891 (119905 119878) =

119899

sum

119894=1

119878119894Φ(1198891) minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(1198892) (51)

In particular

119891 (0 119878) =

119899

sum

119894=1

119878119894Φ(1198891) minus 119890minus119903119879

119899

sum

119894=1

119870119894Φ(1198892) (52)

Proof For a European call option we infer that

119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

gt 119870119894 (53)

Dividing (53) by 119878119894and taking the ln we get

120590119894radic119879 minus 119905119909

119894minus (119903 minus

1205902

119894

2) (119905 minus 119879) gt ln

119870119894

119878119894

(54)

that is

119909119894gt

ln (119870119894119878119894) minus (119903 minus 120590

2

1198942) (119879 minus 119905)

120590119894radic119879 minus 119905

= 119860119894 (55)

Hence from (30) and (48) it follows that

119891 (119905 119878) =119890minus119903(119879minus119905)

radic2120587

times

119899

sum

119894=1

int

infin

119860119894

119890minus1199092

1198942119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

119860119894

119878119894119890(119903minus1205902

1198942)(119879minus119905)

119890minus1199092

1198942+120590119894radic119879minus119905119909

119894119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=1

radic2120587

119899

sum

119894=1

int

infin

119860119894

119878119894119890minus(1205902

1198942)(119879minus119905)

times 119890minus(12)(119909

119894minus120590119894radic119879minus119905)

2

+(12)1205902

119894(119879minus119905)

119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=1

radic2120587

119899

sum

119894=1

int

infin

119860119894minus120590119894radic119879minus119905

119878119894119890minus11991122119889119911

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=

119899

sum

119894=1

119878119894

1

radic2120587int

minus119860119894+120590119894radic119879minus119905

minusinfin

119890minus1199092

1198942119889119909119894

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894

1

radic2120587int

minus119860119894

minusinfin

119890minus1199092

1198942119889119909119894

=

119899

sum

119894=1

119878119894Φ(minus119860

119894+ 120590119894radic119879 minus 119905)

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(minus119860

119894)

(56)

where Φ(119905) is the probability distribution function of astandard Gaussion random variable119873(0 1) that is

Φ (119905) =1

radic2120587int

119905

minusinfin

119890minus11990922119889119909 119905 isin 119877 (57)

In this way we have proved Corollary 7

Remark 8 Theabove result is about the European call optionA similar representation to those from the above corollaryin the European put option case can be obtained by taking119892(119878) = sum

119899

119894=1(119870119894minus 119878119894)+ 119878119894gt 0 for some fixed 119870

119894gt 0

5 Conclusion

In this paper we have considered a financial market modelwith regime switching driven by geometric Levy processThis financial market model is based on the multiple riskyassets 119878

1 1198782 119878

119899driven by Levy process Ito formula and

equivalent transformation methods have been used to solvethis complicated financial market model An example of theportfolio strategy and the final value problem to applying ourmethod to the European call option has been given in the endof this paper

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 9

Acknowledgment

This work is supported by the National Natural ScienceFoundation of China (Grants no 61075105 and no 71371046)

References

[1] H Markowitz ldquoPortfolio selectionrdquo Journal of Finance vol 7pp 77ndash91 1952

[2] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[3] B Oslashksendal Stochastic Differential Equations Springer 6thedition 2005

[4] X Guo and Q Zhang ldquoOptimal selling rules in a regimeswitching modelrdquo IEEE Transactions on Automatic Control vol50 no 9 pp 1450ndash1455 2005

[5] M Pemy Q Zhang and G G Yin ldquoLiquidation of a large blockof stock with regime switchingrdquoMathematical Finance vol 18no 4 pp 629ndash648 2008

[6] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with Markov regime switching and uncertain time-horizonrdquo Journal of Systems Science amp Complexity vol 24 no 1pp 140ndash155 2011

[7] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with regime switching and a stochastic cash flowrdquoInsuranceMathematics amp Economics vol 50 no 3 pp 371ndash3842012

[8] J Kallsen ldquoOptimal portfolios for exponential Levy processesrdquoMathematical Methods of Operations Research vol 51 no 3 pp357ndash374 2000

[9] D Applebaum Levy Processes and Stochastic Calculus vol 93Cambridge University Press Cambridge UK 2004

[10] N Vandaele and M Vanmaele ldquoA locally risk-minimizinghedging strategy for unit-linked life insurance contracts ina Levy process financial marketrdquo Insurance Mathematics ampEconomics vol 42 no 3 pp 1128ndash1137 2008

[11] C Weng ldquoConstant proportion portfolio insurance under aregime switching exponential Levy processrdquo Insurance Math-ematics amp Economics vol 52 no 3 pp 508ndash521 2013

[12] N Bauerle and A Blatter ldquoOptimal control and dependencemodeling of insurance portfolios with Levy dynamicsrdquo Insur-ance Mathematics amp Economics vol 48 no 3 pp 398ndash4052011

[13] K C Yuen and C Yin ldquoOn optimality of the barrier strategyfor a general Levy risk processrdquo Mathematical and ComputerModelling vol 53 no 9-10 pp 1700ndash1707 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Portfolio Strategy of Financial Market with ...Research Article Portfolio Strategy of Financial Market with Regime Switching Driven by Geometric Lévy Process LiuweiZhouandZhijieWang

Abstract and Applied Analysis 7

120597119906

120597119910119894

=1

radic2120587120591int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

119892 (0 0 119890119909119894 0 0)

times (minus119910119894minus 119909119894

1205902

119894120591

)119889119909119894

1205972119906

120597119910119894120597119910119895

=

0 119894 = 119895

1

radic2120587120591int

infin

minusinfin

119892 (1198901199091 119890

119909119899)

1205902

119894

119890minus(119910119894minus119909119894)221205902

119894120591

times((119910119894minus 119909119894)2

1205904

1198941205912

minus1

1205902

119894120591)1205902

119894119889119909i 119894 = 119895

(41)

So

119906120591(120591 119892) minus

1

2

119899

sum

119894=1

119899

sum

119895=1

1205972119906

120597119910119894120597119910119895

120590119894120590119895

= minus1

2radic2120587120591120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0) 119889119909

119894

+1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119909119894 0 0)

(119910119894minus 119909119894)2

21205902

1198941205912

119889119909119894

minus1

2

119899

sum

119894=1

1

radic2120587120591int

infin

minusinfin

119892 (1198901199091 119890

119909119899)

1205902

119894

times 119890minus(119910119894minus119909119894)221205902

119894120591((119910119894minus 119909119894)2

1205904

1198941205912

minus1

1205902

119894120591)1205902

119894119889119909119894= 0

(42)

Step IV By introducing a change of variables 119911119894= 119909119894minus 119910119894

we have 119909119894= 119911119894+ 119910119894and 119889119909

119894= 119889119911119894 where 119911

119894isin (minusinfininfin) It

follows that

119906 (120591 119910)

=1

radic2120587120591

119899

sum

119894=1

int

infin

minusinfin

119890minus(119910119894minus119909119894)221205902

119894120591

120590119894

times 119892 (0 0 119890119911119894+119910119894 0 0) 119889119911

119894

(43)

In order to get rid of the denominator 1205902119894120591 in the exponent in

the above formula we make another change of variables as

119911119894= 120590119894radic120591119909119894 (44)

So 119889119911119894= 120590119894radic120591119889119909

119894

Recalling the relationship between 119902 and 119906 described in(36) we therefore have

119902 (119905 119910)

=1

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119890120590119894radic119879minus119905119909

119894+119910119894 0 0) 119889119909

119894

(45)

Hence by formula (31) we have

119891 (119905 119878)

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119890120590119894radic119879minus119905119909

119894+ln 119878119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(46)

Since 119890ln 119878 = 119878 then

119891 (119905 119878)

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

minusinfin

119890minus1199092

1198942

times 119892 (0 0 119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

0 0) 119889119909119894

(47)

In this way we provedTheorem 6

4 A Financial Example

As an application we consider the European call option InTheorem 6 we have given the solution of the general B-Sequation (17) which depends on the final data (18) that is119891(119879 119904) = 119892(119904) More specific we take the final data 119892(119904) forthe European call option as

119892 (119878) = 119892 (119878minus1198961

1 119878minus1198962

2 119878

minus119896119899

119899) =

119899

sum

119894=1

(119878119894minus 119870i)+ (48)

where 119878119894gt 0 and 119870

119894gt 0 are the strike price of 119878

119894 Then we

have the following corollary fromTheorem 6

Corollary 7 For the European call option the solution to thegeneral Black-Scholes value problem (17) with the final data(48) is given by

119891 (119905 119878) =

119899

sum

119894=1

119878119894Φ(minus119860

119894+ 120590119894radic119879 minus 119905)

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(minus119860

119894)

(49)

8 Abstract and Applied Analysis

where

minus119860119894=

(119903 minus 1205902

1198942) (119879 minus 119905) + ln (119878

119894119870119894)

120590119894radic119879 minus 119905

= 1198892

minus119860119894+ 120590119894radic119879 minus 119905 =

(119903 + 1205902

1198942) (119879 minus 119905) + ln (119878

119894119870119894)

120590119894radicT minus 119905

= 1198891

(50)

that is

119891 (119905 119878) =

119899

sum

119894=1

119878119894Φ(1198891) minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(1198892) (51)

In particular

119891 (0 119878) =

119899

sum

119894=1

119878119894Φ(1198891) minus 119890minus119903119879

119899

sum

119894=1

119870119894Φ(1198892) (52)

Proof For a European call option we infer that

119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

gt 119870119894 (53)

Dividing (53) by 119878119894and taking the ln we get

120590119894radic119879 minus 119905119909

119894minus (119903 minus

1205902

119894

2) (119905 minus 119879) gt ln

119870119894

119878119894

(54)

that is

119909119894gt

ln (119870119894119878119894) minus (119903 minus 120590

2

1198942) (119879 minus 119905)

120590119894radic119879 minus 119905

= 119860119894 (55)

Hence from (30) and (48) it follows that

119891 (119905 119878) =119890minus119903(119879minus119905)

radic2120587

times

119899

sum

119894=1

int

infin

119860119894

119890minus1199092

1198942119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

119860119894

119878119894119890(119903minus1205902

1198942)(119879minus119905)

119890minus1199092

1198942+120590119894radic119879minus119905119909

119894119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=1

radic2120587

119899

sum

119894=1

int

infin

119860119894

119878119894119890minus(1205902

1198942)(119879minus119905)

times 119890minus(12)(119909

119894minus120590119894radic119879minus119905)

2

+(12)1205902

119894(119879minus119905)

119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=1

radic2120587

119899

sum

119894=1

int

infin

119860119894minus120590119894radic119879minus119905

119878119894119890minus11991122119889119911

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=

119899

sum

119894=1

119878119894

1

radic2120587int

minus119860119894+120590119894radic119879minus119905

minusinfin

119890minus1199092

1198942119889119909119894

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894

1

radic2120587int

minus119860119894

minusinfin

119890minus1199092

1198942119889119909119894

=

119899

sum

119894=1

119878119894Φ(minus119860

119894+ 120590119894radic119879 minus 119905)

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(minus119860

119894)

(56)

where Φ(119905) is the probability distribution function of astandard Gaussion random variable119873(0 1) that is

Φ (119905) =1

radic2120587int

119905

minusinfin

119890minus11990922119889119909 119905 isin 119877 (57)

In this way we have proved Corollary 7

Remark 8 Theabove result is about the European call optionA similar representation to those from the above corollaryin the European put option case can be obtained by taking119892(119878) = sum

119899

119894=1(119870119894minus 119878119894)+ 119878119894gt 0 for some fixed 119870

119894gt 0

5 Conclusion

In this paper we have considered a financial market modelwith regime switching driven by geometric Levy processThis financial market model is based on the multiple riskyassets 119878

1 1198782 119878

119899driven by Levy process Ito formula and

equivalent transformation methods have been used to solvethis complicated financial market model An example of theportfolio strategy and the final value problem to applying ourmethod to the European call option has been given in the endof this paper

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 9

Acknowledgment

This work is supported by the National Natural ScienceFoundation of China (Grants no 61075105 and no 71371046)

References

[1] H Markowitz ldquoPortfolio selectionrdquo Journal of Finance vol 7pp 77ndash91 1952

[2] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[3] B Oslashksendal Stochastic Differential Equations Springer 6thedition 2005

[4] X Guo and Q Zhang ldquoOptimal selling rules in a regimeswitching modelrdquo IEEE Transactions on Automatic Control vol50 no 9 pp 1450ndash1455 2005

[5] M Pemy Q Zhang and G G Yin ldquoLiquidation of a large blockof stock with regime switchingrdquoMathematical Finance vol 18no 4 pp 629ndash648 2008

[6] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with Markov regime switching and uncertain time-horizonrdquo Journal of Systems Science amp Complexity vol 24 no 1pp 140ndash155 2011

[7] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with regime switching and a stochastic cash flowrdquoInsuranceMathematics amp Economics vol 50 no 3 pp 371ndash3842012

[8] J Kallsen ldquoOptimal portfolios for exponential Levy processesrdquoMathematical Methods of Operations Research vol 51 no 3 pp357ndash374 2000

[9] D Applebaum Levy Processes and Stochastic Calculus vol 93Cambridge University Press Cambridge UK 2004

[10] N Vandaele and M Vanmaele ldquoA locally risk-minimizinghedging strategy for unit-linked life insurance contracts ina Levy process financial marketrdquo Insurance Mathematics ampEconomics vol 42 no 3 pp 1128ndash1137 2008

[11] C Weng ldquoConstant proportion portfolio insurance under aregime switching exponential Levy processrdquo Insurance Math-ematics amp Economics vol 52 no 3 pp 508ndash521 2013

[12] N Bauerle and A Blatter ldquoOptimal control and dependencemodeling of insurance portfolios with Levy dynamicsrdquo Insur-ance Mathematics amp Economics vol 48 no 3 pp 398ndash4052011

[13] K C Yuen and C Yin ldquoOn optimality of the barrier strategyfor a general Levy risk processrdquo Mathematical and ComputerModelling vol 53 no 9-10 pp 1700ndash1707 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Portfolio Strategy of Financial Market with ...Research Article Portfolio Strategy of Financial Market with Regime Switching Driven by Geometric Lévy Process LiuweiZhouandZhijieWang

8 Abstract and Applied Analysis

where

minus119860119894=

(119903 minus 1205902

1198942) (119879 minus 119905) + ln (119878

119894119870119894)

120590119894radic119879 minus 119905

= 1198892

minus119860119894+ 120590119894radic119879 minus 119905 =

(119903 + 1205902

1198942) (119879 minus 119905) + ln (119878

119894119870119894)

120590119894radicT minus 119905

= 1198891

(50)

that is

119891 (119905 119878) =

119899

sum

119894=1

119878119894Φ(1198891) minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(1198892) (51)

In particular

119891 (0 119878) =

119899

sum

119894=1

119878119894Φ(1198891) minus 119890minus119903119879

119899

sum

119894=1

119870119894Φ(1198892) (52)

Proof For a European call option we infer that

119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

gt 119870119894 (53)

Dividing (53) by 119878119894and taking the ln we get

120590119894radic119879 minus 119905119909

119894minus (119903 minus

1205902

119894

2) (119905 minus 119879) gt ln

119870119894

119878119894

(54)

that is

119909119894gt

ln (119870119894119878119894) minus (119903 minus 120590

2

1198942) (119879 minus 119905)

120590119894radic119879 minus 119905

= 119860119894 (55)

Hence from (30) and (48) it follows that

119891 (119905 119878) =119890minus119903(119879minus119905)

radic2120587

times

119899

sum

119894=1

int

infin

119860119894

119890minus1199092

1198942119878119894119890120590119894radic119879minus119905119909

119894minus(119903minus120590

2

1198942)(119905minus119879)

119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

int

infin

119860119894

119878119894119890(119903minus1205902

1198942)(119879minus119905)

119890minus1199092

1198942+120590119894radic119879minus119905119909

119894119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=1

radic2120587

119899

sum

119894=1

int

infin

119860119894

119878119894119890minus(1205902

1198942)(119879minus119905)

times 119890minus(12)(119909

119894minus120590119894radic119879minus119905)

2

+(12)1205902

119894(119879minus119905)

119889119909119894

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=1

radic2120587

119899

sum

119894=1

int

infin

119860119894minus120590119894radic119879minus119905

119878119894119890minus11991122119889119911

minus119890minus119903(119879minus119905)

radic2120587

119899

sum

119894=1

119870119894int

infin

119860119894

119890minus1199092

1198942119889119909119894

=

119899

sum

119894=1

119878119894

1

radic2120587int

minus119860119894+120590119894radic119879minus119905

minusinfin

119890minus1199092

1198942119889119909119894

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894

1

radic2120587int

minus119860119894

minusinfin

119890minus1199092

1198942119889119909119894

=

119899

sum

119894=1

119878119894Φ(minus119860

119894+ 120590119894radic119879 minus 119905)

minus 119890minus119903(119879minus119905)

119899

sum

119894=1

119870119894Φ(minus119860

119894)

(56)

where Φ(119905) is the probability distribution function of astandard Gaussion random variable119873(0 1) that is

Φ (119905) =1

radic2120587int

119905

minusinfin

119890minus11990922119889119909 119905 isin 119877 (57)

In this way we have proved Corollary 7

Remark 8 Theabove result is about the European call optionA similar representation to those from the above corollaryin the European put option case can be obtained by taking119892(119878) = sum

119899

119894=1(119870119894minus 119878119894)+ 119878119894gt 0 for some fixed 119870

119894gt 0

5 Conclusion

In this paper we have considered a financial market modelwith regime switching driven by geometric Levy processThis financial market model is based on the multiple riskyassets 119878

1 1198782 119878

119899driven by Levy process Ito formula and

equivalent transformation methods have been used to solvethis complicated financial market model An example of theportfolio strategy and the final value problem to applying ourmethod to the European call option has been given in the endof this paper

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 9

Acknowledgment

This work is supported by the National Natural ScienceFoundation of China (Grants no 61075105 and no 71371046)

References

[1] H Markowitz ldquoPortfolio selectionrdquo Journal of Finance vol 7pp 77ndash91 1952

[2] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[3] B Oslashksendal Stochastic Differential Equations Springer 6thedition 2005

[4] X Guo and Q Zhang ldquoOptimal selling rules in a regimeswitching modelrdquo IEEE Transactions on Automatic Control vol50 no 9 pp 1450ndash1455 2005

[5] M Pemy Q Zhang and G G Yin ldquoLiquidation of a large blockof stock with regime switchingrdquoMathematical Finance vol 18no 4 pp 629ndash648 2008

[6] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with Markov regime switching and uncertain time-horizonrdquo Journal of Systems Science amp Complexity vol 24 no 1pp 140ndash155 2011

[7] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with regime switching and a stochastic cash flowrdquoInsuranceMathematics amp Economics vol 50 no 3 pp 371ndash3842012

[8] J Kallsen ldquoOptimal portfolios for exponential Levy processesrdquoMathematical Methods of Operations Research vol 51 no 3 pp357ndash374 2000

[9] D Applebaum Levy Processes and Stochastic Calculus vol 93Cambridge University Press Cambridge UK 2004

[10] N Vandaele and M Vanmaele ldquoA locally risk-minimizinghedging strategy for unit-linked life insurance contracts ina Levy process financial marketrdquo Insurance Mathematics ampEconomics vol 42 no 3 pp 1128ndash1137 2008

[11] C Weng ldquoConstant proportion portfolio insurance under aregime switching exponential Levy processrdquo Insurance Math-ematics amp Economics vol 52 no 3 pp 508ndash521 2013

[12] N Bauerle and A Blatter ldquoOptimal control and dependencemodeling of insurance portfolios with Levy dynamicsrdquo Insur-ance Mathematics amp Economics vol 48 no 3 pp 398ndash4052011

[13] K C Yuen and C Yin ldquoOn optimality of the barrier strategyfor a general Levy risk processrdquo Mathematical and ComputerModelling vol 53 no 9-10 pp 1700ndash1707 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article Portfolio Strategy of Financial Market with ...Research Article Portfolio Strategy of Financial Market with Regime Switching Driven by Geometric Lévy Process LiuweiZhouandZhijieWang

Abstract and Applied Analysis 9

Acknowledgment

This work is supported by the National Natural ScienceFoundation of China (Grants no 61075105 and no 71371046)

References

[1] H Markowitz ldquoPortfolio selectionrdquo Journal of Finance vol 7pp 77ndash91 1952

[2] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[3] B Oslashksendal Stochastic Differential Equations Springer 6thedition 2005

[4] X Guo and Q Zhang ldquoOptimal selling rules in a regimeswitching modelrdquo IEEE Transactions on Automatic Control vol50 no 9 pp 1450ndash1455 2005

[5] M Pemy Q Zhang and G G Yin ldquoLiquidation of a large blockof stock with regime switchingrdquoMathematical Finance vol 18no 4 pp 629ndash648 2008

[6] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with Markov regime switching and uncertain time-horizonrdquo Journal of Systems Science amp Complexity vol 24 no 1pp 140ndash155 2011

[7] H Wu and Z Li ldquoMulti-period mean-variance portfolioselection with regime switching and a stochastic cash flowrdquoInsuranceMathematics amp Economics vol 50 no 3 pp 371ndash3842012

[8] J Kallsen ldquoOptimal portfolios for exponential Levy processesrdquoMathematical Methods of Operations Research vol 51 no 3 pp357ndash374 2000

[9] D Applebaum Levy Processes and Stochastic Calculus vol 93Cambridge University Press Cambridge UK 2004

[10] N Vandaele and M Vanmaele ldquoA locally risk-minimizinghedging strategy for unit-linked life insurance contracts ina Levy process financial marketrdquo Insurance Mathematics ampEconomics vol 42 no 3 pp 1128ndash1137 2008

[11] C Weng ldquoConstant proportion portfolio insurance under aregime switching exponential Levy processrdquo Insurance Math-ematics amp Economics vol 52 no 3 pp 508ndash521 2013

[12] N Bauerle and A Blatter ldquoOptimal control and dependencemodeling of insurance portfolios with Levy dynamicsrdquo Insur-ance Mathematics amp Economics vol 48 no 3 pp 398ndash4052011

[13] K C Yuen and C Yin ldquoOn optimality of the barrier strategyfor a general Levy risk processrdquo Mathematical and ComputerModelling vol 53 no 9-10 pp 1700ndash1707 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article Portfolio Strategy of Financial Market with ...Research Article Portfolio Strategy of Financial Market with Regime Switching Driven by Geometric Lévy Process LiuweiZhouandZhijieWang

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of