Research Article On Some Transverse Geometrical Structures...

7
Research Article On Some Transverse Geometrical Structures of Lifted Foliation to Its Conormal Bundle Cristian Ida and Alexandru Oans Department of Mathematics and Computer Science, Transilvania University of Bras ¸ov, Street Iuliu Maniu 50, 500091 Bras ¸ov, Romania Correspondence should be addressed to Cristian Ida; [email protected] Received 15 October 2014; Revised 9 February 2015; Accepted 20 February 2015 Academic Editor: Peter G. L. Leach Copyright © 2015 C. Ida and A. Oan˘ a. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We consider the liſt of a foliation to its conormal bundle and some transverse geometrical structures associated with this foliation are studied. We introduce a good vertical connection on the conormal bundle and, moreover, if the conormal bundle is endowed with a transversal Cartan metric, we obtain that the liſted foliation to its conormal bundle is a Riemannian one. Also, some transversally framed (3, )-structures of corank 2 on the normal bundle of liſted foliation to its conormal bundle are introduced and an almost (para)contact structure on a transverse Liouville distribution is obtained. 1. Introduction and Preliminaries e study of the liſt of transversal Finsler foliations to their normal bundle using the technique of good vertical connection was initiated by Miernowski and Mozgawa [1] where it is proved that the liſted foliation is a Riemannian one. Also, using different methods, some connections between foliations and Lagrangians (or Hamiltonians) in order to recover Riemannian foliations are investigated in the recent papers [25]. Our aim in this paper is to extend the study from [1] for the case of liſted foliation to its conormal bundle. In this sense we introduce a good vertical connection on the conormal bundle and we give an application of it in order to obtain that the liſted foliation is a Riemannian one in the case when the conormal bundle is endowed with a transversal Cartan metric. Moreover, in this case, some transversally framed (3, )-structures and an almost (para)contact structure associated with liſted foliation are investigated. e methods used here are similarly and closely related to those used in [1, 6] for the case of transversal Finsler foliations. Let us consider an (+)-dimensional manifold which will be assumed to be connected and orientable. Definition 1. A codimension foliation F on is defined by a foliated cocycle { , , , } such that (i) { }, , is an open covering of ; (ii) for every , : are submersions, where is an -dimensional manifold, called transversal manifold; (iii) the maps , : ( )→ ( ) satisfy = , (1) for every (, ) ∈ × such that ̸ =0. Every fibre of is called a plaque of the foliation. Condition (1) says that on the intersection the plaques defined, respectively, by and coincide. e manifold is decomposed into a family of disjoint immersed connected submanifolds of dimension ; each of these submanifolds is called a leaf of F. By F we denote the tangent bundle to F and Γ(F) is the space of its global sections, that is, vector fields tangent to F, and by F = /F we denote the normal bundle of F. In this paper, a system of local coordinates adapted to the foliation F means coordinates ( 1 ,..., , 1 ,..., ) on an open subset on which the foliation is trivial and defined by the equations = 0, = 1, . . . , . We notice that the total spaces of the conormal bundle F of F carry a natural foliation F of codimension 2 such Hindawi Publishing Corporation e Scientific World Journal Volume 2015, Article ID 218912, 6 pages http://dx.doi.org/10.1155/2015/218912

Transcript of Research Article On Some Transverse Geometrical Structures...

Page 1: Research Article On Some Transverse Geometrical Structures ...downloads.hindawi.com/journals/tswj/2015/218912.pdfe Scienti c World Journal eld of type (1,1) ,(Q ) are vector elds,

Research ArticleOn Some Transverse Geometrical Structures of LiftedFoliation to Its Conormal Bundle

Cristian Ida and Alexandru Oans

Department of Mathematics and Computer Science Transilvania University of Brasov Street IuliuManiu 50 500091 Brasov Romania

Correspondence should be addressed to Cristian Ida cristianidaunitbvro

Received 15 October 2014 Revised 9 February 2015 Accepted 20 February 2015

Academic Editor Peter G L Leach

Copyright copy 2015 C Ida and A Oana This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

We consider the lift of a foliation to its conormal bundle and some transverse geometrical structures associatedwith this foliation arestudied We introduce a good vertical connection on the conormal bundle and moreover if the conormal bundle is endowed witha transversal Cartan metric we obtain that the lifted foliation to its conormal bundle is a Riemannian one Also some transversallyframed 119891(3 120576)-structures of corank 2 on the normal bundle of lifted foliation to its conormal bundle are introduced and an almost(para)contact structure on a transverse Liouville distribution is obtained

1 Introduction and Preliminaries

The study of the lift of transversal Finsler foliations totheir normal bundle using the technique of good verticalconnection was initiated by Miernowski and Mozgawa [1]where it is proved that the lifted foliation is a Riemannian oneAlso using different methods some connections betweenfoliations and Lagrangians (or Hamiltonians) in order torecover Riemannian foliations are investigated in the recentpapers [2ndash5] Our aim in this paper is to extend the studyfrom [1] for the case of lifted foliation to its conormal bundleIn this sense we introduce a good vertical connection onthe conormal bundle and we give an application of it inorder to obtain that the lifted foliation is a Riemannianone in the case when the conormal bundle is endowedwith a transversal Cartan metric Moreover in this casesome transversally framed 119891(3 120576)-structures and an almost(para)contact structure associated with lifted foliation areinvestigated

The methods used here are similarly and closely relatedto those used in [1 6] for the case of transversal Finslerfoliations

Let us consider119872 an (119899+119898)-dimensionalmanifoldwhichwill be assumed to be connected and orientable

Definition 1 A codimension 119899 foliationF on119872 is defined bya foliated cocycle 119880

119894 120593119894 119891119894119895 such that

(i) 119880119894 119894 isin 119868 is an open covering of119872

(ii) for every 119894 isin 119868 120593119894 119880119894rarr 119873 are submersions where

119873 is an 119899-dimensional manifold called transversalmanifold

(iii) the maps 119891119894119895

120593119894(119880119894cap 119880119895) rarr 120593

119895(119880119894cap 119880119895) satisfy

120593119895= 119891119894119895∘ 120593119894 (1)

for every (119894 119895) isin 119868 times 119868 such that 119880119894cap 119880119895

= 0

Every fibre of 120593119894is called a plaque of the foliation

Condition (1) says that on the intersection119880119894cap119880119895the plaques

defined respectively by 120593119894and 120593

119895coincide The manifold119872

is decomposed into a family of disjoint immersed connectedsubmanifolds of dimension 119898 each of these submanifolds iscalled a leaf ofF

By 119879F we denote the tangent bundle to F and Γ(F) isthe space of its global sections that is vector fields tangent toF and by 119876F = 119879119872119879F we denote the normal bundle ofF

In this paper a system of local coordinates adapted to thefoliationFmeans coordinates (1199091 119909119899 1199101 119910119898) on anopen subset119880 on which the foliation is trivial and defined bythe equations 119889119909119886 = 0 119886 = 1 119899

We notice that the total spaces of the conormal bundle119876lowastF ofF carry a natural foliation F of codimension 2119899 such

Hindawi Publishing Corporatione Scientific World JournalVolume 2015 Article ID 218912 6 pageshttpdxdoiorg1011552015218912

2 The Scientific World Journal

that the leaves of F are covering spaces of the leaves ofF andit is called the natural lift ofF to its conormal bundle 119876lowastF

If we denote by 119889119909119886 119886 = 1 119899 the correspondinglocal coframe on119876lowastF thenwe can induce a chart (119909119886 119901

119886 119910119906)

on 119876lowastF where 119901 = 119901119886119889119909119886 isin Γ(119876lowastF) and the system of

equations 119909119886 = const 119901119886= const defines the foliation F

Let 119876F = 119879(119876lowastF)119879F be the normal bundle ofthe foliated manifold (119876lowastF F) The vectors 120597120597119909119886 120597120597119901

119886

119886 = 1 119899 form a natural frame of 119876F at the point(119909119886 119901

119886 119910119906) isin 119876lowastF The canonical projection 120587 119876lowastF rarr

119872 given by 120587(119909119886 119901119886 119910119906) = (119909119886 119910119906) induces another projec-

tion 120587lowast 119879(119876lowastF) rarr 119879119872 which maps the vectors tangent

to F in the vectors tangent toFThus 120587lowastinduces amapping

lowast

119876F rarr 119876F and is denoted by 119881(119876lowastF) = kerlowast

which is a vertical bundle spanned by the vectors 120597120597119901119886

119886 = 1 119899

Lemma 2 Let 119900 119872 rarr 119876lowastF be the zero section of theconormal bundle119876lowastFThen the set 119900(119872) is saturated on119876lowastFwith foliation F

2 Good Vertical Connection on (119876lowastFF)

The purpose of this section is to define a linear connectionnabla X(119881(119876lowastF)) rarr X(Tlowast(119876lowastF) otimes 119881(119876lowastF)) related toconsidered foliated structure where 119876lowastF = 119876lowastF minus 119900(119872)Sincewe have the foliatedmanifold (119876lowastF F) we are lookingfor a Bott connection such that for any vector field119883 tangentto F and any transversal vector field 119884 we have

nabla119883119884 = 119901

119876F ([119883 ]) (2)

where 119901119876F 119879(119876lowastF) rarr 119876F is the canonical projection

and 119901119876F() = 119884

Let us consider now the F-transversal Hamilton-Liou-ville vector field defined by 119862lowast 119876lowastF rarr 119881(119876lowastF)119862lowast(119909119886 119901

119886 119910119906) = 119901

119886(120597120597119901119886) It can be checked that this defini-

tion is well posed From the definition of the Bott connectionthe following lemma holds

Lemma 3 Letnabla X(119881(119876lowastF)) rarr X(119879lowast(119876lowastF)otimes119881(119876lowastF))be a Bott connection Then nabla

119883119862lowast = 0 for every vector field

tangent to F

Now consider the local frame 120597120597119909119886 120597120597119901119886 120597120597119910119906 of

119879(119876lowastF) and recall that the vectors 120597120597119901119886 form the basis of

119881(119876lowastF) With these settings we put

nabla120597120597119909119886

120597

120597119901119887

= Γ119887119886119888

120597

120597119901119888

nabla120597120597119901119886

120597

120597119901119887

= Γ119886119887119888

120597

120597119901119888

nabla120597120597119910119906

120597

120597119901119887

= Γ119887119906119888

120597

120597119901119888

(3)

From the above formulas it follows that

Γ119887119906119888

= 0 nabla120597120597119901119886

119862lowast = (120575119886119888+ 119901119887Γ119886119887119888)

120597

120597119901119888

(4)

The Bott connection nabla allows us to define a mapping

119871 X (119876F) 997888rarr X (119881 (119876lowastF)) 119871 (119883) = nabla119862lowast (5)

where 119901119876F(119883) = 119883 If we denote by Λ the restriction of the

linear mapping 119871 to the bundle 119881(119876lowastF) then we can statethe following

Definition 4 The Bott connection nabla is said to be a goodvertical connection if Λ 119881(119876lowastF) rarr 119881(119876lowastF) is a bundleisomorphism

Observe thatnabla is a good vertical connection if and only ifthematrix 120575119886

119888+119901119887Γ119886119887119888

is nondegenerated If we put119867(119876lowastF) =

ker119871 then we can split the bundle 119876F into direct sum

119876F = 119867 (119876lowastF) oplus 119881 (119876lowastF) (6)

The coefficients of the mapping 119871 in the basis 120597120597119909119886 120597120597119901119886

of 119876F are

119871(120597

120597119909119886) = 119901

119887Γ119887119886119888

120597

120597119901119888

119871 (120597

120597119901119886

) = (120575119886119888+ 119901119887Γ119886119887119888)

120597

120597119901119888

= 119871119886119888

120597

120597119901119888

(7)

It is easy to check that the vectors 120575120575119909119886 = 120597120597119909119886 +

119873119886119887(120597120597119901119887) where119873

119886119887= minus(119871minus1)119888

119887119901119889Γ119889119886119888 form a basis of ker119871

In the sequel we will use the basis 120575120575119909119886 120597120597119901119886 called

adapted as well as its dual 119889119909119886 120575119901119886= 119889119901119886minus 119873119886119887119889119909119887 Using

this coframe we can define the local connection forms by

nabla120597

120597119901119887

= 120596119887119886otimes

120597

120597119901119886

(8)

where

120596119887119886= Γ119887119888119886119889119909119888 + Γ119887119888

119886119889119901119888= (Γ119887119888119886+ Γ119887119889119886119873119889119888) 119889119909119888 + Γ119887119888

119886120575119901119888

= 119867119887119888119886119889119909119888 + Γ119887119888

119886120575119901119888

(9)

Notice that 119867119887119888119886119901119887

= 119873119888119886 The formula 120579(120597120597119901

119886) = 120575120575119909119886

defines a linear mapping 120579 119881(119876lowastF) rarr 119867(119876lowastF)This mapping allows us to extend the connection nabla to thehorizontal bundle119867(119876lowastF) by

nabla119883119884 = 120579 (nabla

119883120579minus1 (119884)) (10)

where 119884 isin Γ(119867(119876lowastF)) 119883 isin Γ(119879(119876lowastF)) In this way weconstruct a linear connection in 119876F

nabla119883119884 = nabla

119883 (V (119884)) + nabla119883 (119884 minus V (119884)) (11)

where 119884 isin Γ(119876F) 119883 isin Γ(119879(119876lowastF)) and V 119876F rarr119881(119876lowastF) is the vertical projection from decomposition (6)In particular we have

nabla120575

120575119909119886= 120596119887119886otimes

120575

120575119909119887 (12)

where 120596119887119886is given in (9)

The Scientific World Journal 3

If 120593 isin Γ(119876lowastF otimes 119876F) is a 1-form with values in 119876Flocally given by

120593 = 120593119886 otimes120575

120575119909119886+ 120593119887otimes

120597

120597119901119887

(13)

then following [1 7] we can define an exterior differential119863120593 by putting

119863120593 = (119889120593119886 minus 120593119886 and 120596119888119886) otimes

120575

120575119909119886+ (119889120593

119887minus 120593119887and 120596119887119888) otimes

120597

120597119901119888

(14)

A straightforward calculus shows that the above formula iswell defined

The bundle 119876lowastF otimes 119876F admits a natural section 120578 givenby

120578 = 119889119909119886 otimes120597

120597119909119886+ 119889119901119887otimes

120597

120597119901119887

= 119889119909119886 otimes120575

120575119909119886+ 120575119901119887otimes

120597

120597119901119887

(15)

It is clear that the form 120578 is well defined

Definition 5 The form 120577 = 119863120578 is called the torsion form ofthe connection nabla

Locally the form 120577 can be expressed as follows

119863120578 = (minus119889119909119886 and 120596119888119886) otimes

120575

120575119909119888+ (119889 (120575119901

119887) minus 120575119901

119888and 120596119888119887) otimes

120597

120597119901119887

= 120577119888 otimes120575

120575119909119888+ 120577119887otimes

120597

120597119901119887

(16)

where

120577119888 =1

2(119867119888119890119886minus 119867119888119886119890) 119889119909119886 and 119889119909119890 minus Γ119888119890

119886119889119909119886 and 120575119901

119890

120577119887= minus119889119873

119888119887and 119889119909119888 minus 119867119886

119890119887120575119901119886and 119889119909119890 minus Γ119886119890

119887120575119901119886and 120575119901119890

(17)

3 Transversal Cartan Metrics on 119876lowastF andRiemannian Foliations

As in the case of transversal Finsler metrics on the normalbundle of a foliation [1 3] a transversal Cartan metric on119876lowastF is a basic function (with respect to the lifted foliationF) 119870 119876lowastF rarr [0infin) which has the following properties

(i) 119870 is 119862infin on 119876lowastF(ii) 119870(119909 120582119901) = 120582119870(119909 119901) for all 120582 gt 0(iii) the 119899 times 119899 matrix (119892119886119887) where 119892119886119887 =

(12)(12059721198702120597119901119886120597119901119886) is positive definite at all

points of 119876lowastFAlso 119870(119909 119901) gt 0 whenever 119901 = 0 As usual [8] the proper-ties of119870 imply that

119901119886 = 119892119886119887119901119887 119901

119886= 119892119886119887119901119887 1198702 = 119892119886119887119901

119886119901119887= 119901119886119901119886

119862119886119887119888119901119888= 119862119886119888119887119901

119888= 119862119888119886119887119901

119888= 0

(18)

where (119892119886119887) is the inverse matrix of (119892119887119886) and we have put

119901119886 = (12)(1205971198702120597119901119886) 119862119886119887119888 = minus(14)(12059731198702120597119901

119886120597119901119887120597119901119888)

Also 119892119886119887 determines a metric structure on 119881(119876lowastF) bysetting

119866V(119883 119884) = 119892119886119887 (119909 119901)119883

119886(119909 119910 119901) 119884

119887(119909 119910 119901) (19)

for every 119883 = 119883119886(119909 119910 119901)(120597120597119901

119886) and 119884 = 119884

119887(119909 119910 119901)(120597

120597119901119887) isin Γ(119881(119876lowastF))Similar reasons as for transversal Finsler foliations (see

Theorem 31 from [1]) lead to the following result

Theorem 6 Let 119870 119876lowastF rarr [0infin) be a transversal Cartanmetric and let 119866V be the Riemannian metric on 119881(119876lowastF)induced by 119870 as in (19) Then there exists exactly one Bottvertical connection nabla X(119881(119876lowastF)) rarr X(119879lowast(119876lowastF) otimes119881(119876lowastF)) such that

(i) nabla is a good vertical connection

(ii) if119883119884 isin Γ(119881(119876lowastF)) and 119885 isin Γ(119879(119876lowastF)) then

119885119866V(119883 119884) = 119866V (nabla

119885119883119884) + 119866V (119883 nabla

119885119884) (20)

(iii) 120577(119883 119884) = 0 for every119883119884 isin Γ(119881(119876lowastF))

(iv) 120577(119883 119884) isin Γ(119881(119876lowastF)) for every119883119884 isin Γ(119867(119876lowastF))

Also the isomorphism 120579 does not depend on the coordi-nates along the leaves of F so the Riemannianmetric in119876F

defined by119866 = 119866ℎ+119866V where119866ℎ(119883 119884) = 119866V(120579minus1(119883) 120579minus1(119884))for every 119883119884 isin Γ(119867(119876lowastF)) and 119866(119883 119884) = 0 for every119883 isin Γ(119867(119876lowastF)) and 119884 isin Γ(119881(119876lowastF)) is a transversalRiemannian metric for the lifted foliation F to the conormalbundle 119876lowastF ofF Hence we can consider the following

Theorem 7 If the conormal bundle of foliationF is endowedwith a transversal Cartan metric then the lifted foliation F tothe conormal bundle 119876lowastF is Riemannian

4 Transversally Framed119891(3120576)-Structures on (119876lowastFF)

The study of structures on manifolds defined by a tensorfield satisfying 1198913 plusmn 119891 = 0 has the origin in a paper byYano [9] Later on these structures have been genericallycalled 119891-structures On the tangent manifold of a Finslerspace the notion of framed119891(3 1)-structure was defined andstudied by Anastasiei in [10] and on the cotangent bundle ofa Cartan space the study is continued in [11 12] Taking intoaccount that the conormal bundle 119876lowastF has a local modelof a cotangent manifold in this section we extend the studyconcerning 119891-structures in our context

Let 120576 = plusmn1 A framed 119891(3 120576)-structure of corank 119904 on a(2119899 + 119904)-dimensional manifold 119873 is a natural generalizationof an almost contact structure on 119873 (for 120576 = 1) and of analmost paracontact structure on119873 (for 120576 = minus1) respectivelyand it is a triplet (119891 (120585

119894) (120596119894)) 119894 = 1 119904 where 119891 is a tensor

4 The Scientific World Journal

field of type (1 1) (120585119894) are vector fields and (120596119894) are 1-forms

on119873 such that

120596119894 (120585119895) = 120575119894119895 119891 (120585

119894) = 0 120596119894 ∘ 119891 = 0

1198912 = minus120576(119868 minussum119894

120596119894 otimes 120585119894)

(21)

where 119868 denotes the Kronecker tensor field on 119873 The nameof 119891(3 120576)-structure was suggested by the identity1198913 +120576119891 = 0For an account of such kind of structures we refer to [13]

Let us consider now that 119876lowastF is endowed with atransversal Cartan metric 119870 The linear operator 120601 given inthe local adapted basis of 119876F by

120601(120575

120575119909119886) = minus120576119892

119886119887

120597

120597119901119887

120601 (120597

120597119901119886

) = 119892119886119887120575

120575119909119887(22)

defines an almost complex structure on 119876F for 120576 = 1 and analmost paracomplex structure on119876F for 120576 = minus1 respectivelyWe also have

119866 (120601 (119883) 120601 (119884)) = 119866 (119883 119884) forall119883 119884 isin Γ (119876F) (23)

Let us put 1205851= (119901119886119870)(120575120575119909119886) and 120585

2= (119901119886119870)(120597120597119901

119886) =

(1119870)119862lowast Thus we have two global transverse vector fieldson (119876lowastF F) which are linearly independent The first istransversally horizontal and the second one is transversallyvertical

From the definition of 120601 it follows

120601 (1205851) = minus120576120585

2 120601 (120585

2) = 1205851 (24)

Now if we consider the dual transverse 1-forms of 1205851and

1205852 respectively locally given by 1205961 = (119901

119886119870)119889119909119886 and 1205962 =

(119901119886119870)120575119901119886 then we easily check that

1205961 ∘ 120601 = 1205962 1205962 ∘ 120601 = minus1205761205961

1205961 (119883) = 119866 (119883 1205851) 1205962 (119883) = 119866 (119883 120585

2) forall119883 isin Γ (119876F)

(25)

Next using120601 120585119894 and120596119894 119894 isin 1 2 we construct the transverse

tensor field 119891 of type (1 1) on (119876lowastF F) by putting

119891 (119883) = 120601 (119883) minus 1205962 (119883) 1205851 + 1205761205961 (119883) 1205852 119883 isin Γ (119876F)

(26)

Using a similar argument as in [6 10ndash12] by direct calculuswe obtain the following

Theorem 8 The triple (119891 (120585119894) (120596119894)) 119894 isin 1 2 provides

some transversally framed 119891(3 120576)-structures of corank 2 on(119876lowastF F) that is the following hold

(i) 120596119894(120585119895) = 120575119894119895 119891(120585119894) = 0 120596119894 ∘ 119891 = 0

(ii) 1198912 = minus120576(119868 minus 1205961 otimes 1205851minus 1205962 otimes 120585

2)

(iii) 119891 is of rank 2119899 minus 2 and 1198913 + 120576119891 = 0

Theorem 9 The transversal Riemannian metric 119866 on(119876lowastF F) satisfies

119866 (119891 (119883) 119891 (119884)) = 119866 (119883 119884) minus 1205961 (119883) 1205961(119884)

minus 1205962 (119883) 1205962(119884) 119883 119884 isin Γ (119876F)

(27)

For 120576 = 1 we put

Φ (119883 119884) = 119866 (119891 (119883) 119884) 119883 119884 isin Γ (119876F) (28)

By usingTheorems 8 and 9 we obtain

Φ (119883 119884) = minusΦ (119884119883) 119883 119884 isin Γ (119876F) (29)

ThusΦ is a transverse 2-form on (119876lowastF F) It is degeneratewith null space span120585

1 1205852

Also using the calculus in local coordinates we easilyobtain

Φ(120575

120575119909119886

120575

120575119909119887) = 0 Φ(

120575

120575119909119886

120597

120597119901119887

) = minus120575119887119886+119901119886119901119887

1198702

Φ (120597

120597119901119886

120597

120597119901119887

) = 0

(30)

On the other hand we have

1198891205961 (120575

120575119909119886

120575

120575119909119887) =

120575

120575119909119886(119901119887

119870) minus

120575

120575119909119887(119901119886

119870)

1198891205961 (120575

120575119909119886

120597

120597119901119887

) =1

119870(minus120575119887119886+119901119886119901119887

1198702)

1198891205961 (120597

120597119901119886

120597

120597119901119887

) = 0

(31)

where in the second relation we have used 119901119886 = 119870(120597119870120597119901119886)

which follows from the homogeneity conditions (18) of 119870Comparing now Φ with 1198891205961 we obtain

1

119870Φ = 1198891205961 + Ψ (32)

where Ψ = ((120575120575119909119887)(119901119886119870) minus (120575120575119909119886)(119901

119887119870))119889119909119886 and 119889119909119887

Thus (1119870)Φ is transversally closed if and only if Ψ istransversally closed Concluding (1119870)Φ is in general analmost transversally presymplectic structure on (119876lowastF F)

Similarly for 120576 = minus1 we can put

119867(119883 119884) = 119866 (119891 (119883) 119884) 119883 119884 isin Γ (119876F) (33)

We have the following

Theorem 10 The mapping119867 is a symmetric bilinear form on(119876lowastF F) and the annihilator of119867 is ker119891

The Scientific World Journal 5

Proof The symmetry and bilinearity are obvious Also thenull space of119867 is

119883 isin Γ (119876F) | 119867 (119883 119884) = 0 forall119884 isin Γ (119876F)

= 119883 isin Γ (119876F) | 119866 (119891 (119883) 119884) = 0 = ker119891(34)

which end the proof

Locally we obtain

119867 = (119892119886119887

minus119901119886119901119887

1198702)119889119909119886 otimes 119889119909119887 minus (119892119886119887 minus

119901119886119901119887

1198702)120575119901119886otimes 120575119901119887

(35)

with det(119892119886119887

minus (1199011198861199011198871198702)) = 0 since (119892

119886119887minus (1199011198861199011198871198702))119901119887 =

119901119886minus 119901119886= 0 and similarly det(119892119886119887 minus (1199011198861199011198871198702)) = 0 since

(119892119886119887 minus (1199011198861199011198871198702))119901119887= 119901119886 minus 119901119886 = 0

Remark 11 The map 119867 is a transversally singular pseudo-Riemannian metric on (119876lowastF F)

5 An Almost (Para)Contact Structure onTransverse Liouville Distribution of(119876lowastFF)

Denote by 1205852 the line vector bundle over119876lowastF spanned by 120585

2

and we define the transverse vertical Liouville distribution asthe complementary orthogonal distribution 119878(119876lowastF) to 120585

2

in119881(119876lowastF)with respect to119866V namely119881(119876lowastF) = 119878(119876lowastF)oplus

1205852 Hence 119878(119876lowastF) is defined by 120572 = 1205962|

119881(119876lowastF) that is

Γ (119878 (119876lowastF)) = 119883 isin Γ (119881 (119876lowastF)) 120572 (119883) = 0 (36)

Thus any transverse vertical vector field119883 isin Γ(119881(119876lowastF)) canbe expressed as

119883 = 119875119883 + 120572 (119883) 1205852 (37)

where 119875 is the projection morphism of 119881(119876lowastF) on 119878(119876lowastF)By direct calculations one gets the following

Proposition 12 For any transverse vertical vector fields119883119884 isinΓ(119881(119876lowastF)) one has

119866V(119883 119875119884) = 119866V

(119875119883 119875119884) = 119866V(119883 119884) minus 120572 (119883) 120572 (119884) (38)

Theorem 13 The transverse vertical Liouville distribution119878(119876lowastF) is integrable

Proof The proof follows using an argument similar to Theo-rem 31 [14] (see alsoTheorem 21 [6] orTheorem 4 [15])

In the following we will consider the transverse Liouvilledistribution of (119876lowastF F) as the complementary orthogonaldistribution 119878(119876lowastF) to 120585

2 in 119876F with respect to 119866 that is

119878(119876lowastF) = 119867(119876lowastF) oplus 119878(119876lowastF)Let us restrict to 119878(119876lowastF) all the geometrical structures

introduced in Section 4 for all 119876F We indicate this byoverlines Hence we have

(i) 1205851= 1205851since 120585

1lies in 119878(119876lowastF)

(ii) 1205962 = 0 since 1205962(119883) = 119866(119883 1205852) = 0 for every

transverse vector field119883 isin 119878(119876lowastF)(iii) 119866 = 119866|

119878(119876lowastF)

(iv) 119891(119883) = 120601(119883) + 1205761205961(119883) otimes 1205852is an endomorphism of

119878(119876lowastF) since

119866(119891 (119883) 1205852) = 119866 (120601 (119883) 1205852) + 1205761205961 (119883)119866 (1205852 1205852)

= 1205962 (120601 (119883)) + 1205761205961 (119883) = 0(39)

We denote now 120585 = 1205851and 120578 = 1205961

By Theorem 8 we obtain the following

Theorem 14 The triple (119891 120585 120578) provides an almost(para)contact structure on 119878(119876lowastF) that is

(i) 1198913

+ 120576119891 = 0 119903119886119899119896119891 = 2119899 minus 2 = (2119899 minus 1) minus 1

(ii) 120578(120585) = 1 119891(120585) = 0 120578 ∘ 119891 = 0

(iii) 1198912

(119883) = minus120576(119883 minus 120578(119883)120585) for119883 isin 119878(119876lowastF)

Also by Theorem 9 we obtain the following

Theorem 15 The transversal Riemannian metric 119866 verifies

119866(119891 (119883) 119891 (119884)) = 119866 (119883 119884) minus 120578 (119883) 120578 (119884) (40)

for every transverse vector fields119883119884 isin 119878(119876lowastF)

Concluding the ensemble (119891 120585 120578 119866) is an almost(para)contact Riemannian structure on 119878(119876lowastF)

Conflict of Interests

The authors declare that they have no conflict of interests

Authorsrsquo Contribution

Both authors contributed equally to the paper All the authorsread and approved the final paper

Acknowledgment

The first author is supported by the Grant ldquoFellowship ofTransilvania University of Brasov 2014rdquo

References

[1] A Miernowski andWMozgawa ldquoLift of the Finsler foliation toits normal bundlerdquo Differential Geometry and Its Applicationsvol 24 no 2 pp 209ndash214 2006

[2] P Popescu and C Ida ldquoFoliations compatible with hamilto-niansrdquo in Proceedings of the BSG International Conference onDifferential Geometry and Dynamical Systems (DGDS rsquo13) pp147ndash155 Bucharest Romania October 2013

6 The Scientific World Journal

[3] P Popescu and M Popescu ldquoLagrangians adapted to submer-sions and foliationsrdquoDifferential Geometry and Its Applicationsvol 27 no 2 pp 171ndash178 2009

[4] P Popescu and M Popescu ldquoFoliated vector bundles andRiemannian foliationsrdquo Comptes Rendus Mathematique vol349 no 7-8 pp 445ndash449 2011

[5] P Popescu and M Popescu ldquoLagrangians and Hamiltonianstructures and foliationsrdquo Physics AUC vol 21 no 1 pp 203ndash206 2011

[6] C Ida ldquoSome framed 119891-structures on transversally Finsler foli-ationsrdquo Annales Universitatis Mariae Curie-Sklodowska SectioA Mathematica vol 65 no 1 pp 87ndash96 2011

[7] M Abate and G Patrizio Finsler MetricsmdashA Global Approachvol 1591 of Lecture Notes in Mathematics Springer BerlinGermany 1994

[8] R Miron D Hrimiuc H Shimada and S V SabauThe Geom-etry of Hamilton and Lagrange Spaces vol 118 of FundamentalTheories of Physics Kluwer Academic 2001

[9] K Yano ldquoOn a structure defined by a tensor field of type (1 1)satisfying 1198913 + 119891 = 0rdquo Tensor vol 14 pp 99ndash109 1963

[10] M Anastasiei ldquoA framed f-structure on tangent bundle of aFinsler spacerdquoAnalele Universitatii Bucuresti SeriaMatematicavol 49 pp 3ndash9 2000

[11] M Gırtu ldquoAn almost 2-paracontact structure on the cotangentbundle of a Cartan spacerdquoHacettepe Journal ofMathematics andStatistics vol 33 pp 15ndash22 2004

[12] M Gırtu ldquoA Sasakian structure on the indicatrix bundle of aCartan spacerdquo Analele Stiintifice ale Universitatii ldquoAlICuzardquo dinIasi Tomul LIII vol 1 pp 177ndash186 2007

[13] I Mihai R Rosca and L Verstraelen Some Aspects of theDifferential Geometry of Vector Fields vol 2 of Centre forPure and Applied Differential Geometry (PADGE) KatholiekeUniversiteit Leuven Leuven Belgium 1996

[14] A Bejancu and H R Farran ldquoOn the vertical bundle of apseudo-Finsler manifoldrdquo International Journal of Mathematicsand Mathematical Sciences vol 22 no 3 pp 637ndash642 1999

[15] C Ida and A Manea ldquoA vertical Liouville subfoliation on thecotangent bundle of a Cartan space and some related struc-turesrdquo International Journal of Geometric Methods in ModernPhysics vol 11 no 6 21 pages 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article On Some Transverse Geometrical Structures ...downloads.hindawi.com/journals/tswj/2015/218912.pdfe Scienti c World Journal eld of type (1,1) ,(Q ) are vector elds,

2 The Scientific World Journal

that the leaves of F are covering spaces of the leaves ofF andit is called the natural lift ofF to its conormal bundle 119876lowastF

If we denote by 119889119909119886 119886 = 1 119899 the correspondinglocal coframe on119876lowastF thenwe can induce a chart (119909119886 119901

119886 119910119906)

on 119876lowastF where 119901 = 119901119886119889119909119886 isin Γ(119876lowastF) and the system of

equations 119909119886 = const 119901119886= const defines the foliation F

Let 119876F = 119879(119876lowastF)119879F be the normal bundle ofthe foliated manifold (119876lowastF F) The vectors 120597120597119909119886 120597120597119901

119886

119886 = 1 119899 form a natural frame of 119876F at the point(119909119886 119901

119886 119910119906) isin 119876lowastF The canonical projection 120587 119876lowastF rarr

119872 given by 120587(119909119886 119901119886 119910119906) = (119909119886 119910119906) induces another projec-

tion 120587lowast 119879(119876lowastF) rarr 119879119872 which maps the vectors tangent

to F in the vectors tangent toFThus 120587lowastinduces amapping

lowast

119876F rarr 119876F and is denoted by 119881(119876lowastF) = kerlowast

which is a vertical bundle spanned by the vectors 120597120597119901119886

119886 = 1 119899

Lemma 2 Let 119900 119872 rarr 119876lowastF be the zero section of theconormal bundle119876lowastFThen the set 119900(119872) is saturated on119876lowastFwith foliation F

2 Good Vertical Connection on (119876lowastFF)

The purpose of this section is to define a linear connectionnabla X(119881(119876lowastF)) rarr X(Tlowast(119876lowastF) otimes 119881(119876lowastF)) related toconsidered foliated structure where 119876lowastF = 119876lowastF minus 119900(119872)Sincewe have the foliatedmanifold (119876lowastF F) we are lookingfor a Bott connection such that for any vector field119883 tangentto F and any transversal vector field 119884 we have

nabla119883119884 = 119901

119876F ([119883 ]) (2)

where 119901119876F 119879(119876lowastF) rarr 119876F is the canonical projection

and 119901119876F() = 119884

Let us consider now the F-transversal Hamilton-Liou-ville vector field defined by 119862lowast 119876lowastF rarr 119881(119876lowastF)119862lowast(119909119886 119901

119886 119910119906) = 119901

119886(120597120597119901119886) It can be checked that this defini-

tion is well posed From the definition of the Bott connectionthe following lemma holds

Lemma 3 Letnabla X(119881(119876lowastF)) rarr X(119879lowast(119876lowastF)otimes119881(119876lowastF))be a Bott connection Then nabla

119883119862lowast = 0 for every vector field

tangent to F

Now consider the local frame 120597120597119909119886 120597120597119901119886 120597120597119910119906 of

119879(119876lowastF) and recall that the vectors 120597120597119901119886 form the basis of

119881(119876lowastF) With these settings we put

nabla120597120597119909119886

120597

120597119901119887

= Γ119887119886119888

120597

120597119901119888

nabla120597120597119901119886

120597

120597119901119887

= Γ119886119887119888

120597

120597119901119888

nabla120597120597119910119906

120597

120597119901119887

= Γ119887119906119888

120597

120597119901119888

(3)

From the above formulas it follows that

Γ119887119906119888

= 0 nabla120597120597119901119886

119862lowast = (120575119886119888+ 119901119887Γ119886119887119888)

120597

120597119901119888

(4)

The Bott connection nabla allows us to define a mapping

119871 X (119876F) 997888rarr X (119881 (119876lowastF)) 119871 (119883) = nabla119862lowast (5)

where 119901119876F(119883) = 119883 If we denote by Λ the restriction of the

linear mapping 119871 to the bundle 119881(119876lowastF) then we can statethe following

Definition 4 The Bott connection nabla is said to be a goodvertical connection if Λ 119881(119876lowastF) rarr 119881(119876lowastF) is a bundleisomorphism

Observe thatnabla is a good vertical connection if and only ifthematrix 120575119886

119888+119901119887Γ119886119887119888

is nondegenerated If we put119867(119876lowastF) =

ker119871 then we can split the bundle 119876F into direct sum

119876F = 119867 (119876lowastF) oplus 119881 (119876lowastF) (6)

The coefficients of the mapping 119871 in the basis 120597120597119909119886 120597120597119901119886

of 119876F are

119871(120597

120597119909119886) = 119901

119887Γ119887119886119888

120597

120597119901119888

119871 (120597

120597119901119886

) = (120575119886119888+ 119901119887Γ119886119887119888)

120597

120597119901119888

= 119871119886119888

120597

120597119901119888

(7)

It is easy to check that the vectors 120575120575119909119886 = 120597120597119909119886 +

119873119886119887(120597120597119901119887) where119873

119886119887= minus(119871minus1)119888

119887119901119889Γ119889119886119888 form a basis of ker119871

In the sequel we will use the basis 120575120575119909119886 120597120597119901119886 called

adapted as well as its dual 119889119909119886 120575119901119886= 119889119901119886minus 119873119886119887119889119909119887 Using

this coframe we can define the local connection forms by

nabla120597

120597119901119887

= 120596119887119886otimes

120597

120597119901119886

(8)

where

120596119887119886= Γ119887119888119886119889119909119888 + Γ119887119888

119886119889119901119888= (Γ119887119888119886+ Γ119887119889119886119873119889119888) 119889119909119888 + Γ119887119888

119886120575119901119888

= 119867119887119888119886119889119909119888 + Γ119887119888

119886120575119901119888

(9)

Notice that 119867119887119888119886119901119887

= 119873119888119886 The formula 120579(120597120597119901

119886) = 120575120575119909119886

defines a linear mapping 120579 119881(119876lowastF) rarr 119867(119876lowastF)This mapping allows us to extend the connection nabla to thehorizontal bundle119867(119876lowastF) by

nabla119883119884 = 120579 (nabla

119883120579minus1 (119884)) (10)

where 119884 isin Γ(119867(119876lowastF)) 119883 isin Γ(119879(119876lowastF)) In this way weconstruct a linear connection in 119876F

nabla119883119884 = nabla

119883 (V (119884)) + nabla119883 (119884 minus V (119884)) (11)

where 119884 isin Γ(119876F) 119883 isin Γ(119879(119876lowastF)) and V 119876F rarr119881(119876lowastF) is the vertical projection from decomposition (6)In particular we have

nabla120575

120575119909119886= 120596119887119886otimes

120575

120575119909119887 (12)

where 120596119887119886is given in (9)

The Scientific World Journal 3

If 120593 isin Γ(119876lowastF otimes 119876F) is a 1-form with values in 119876Flocally given by

120593 = 120593119886 otimes120575

120575119909119886+ 120593119887otimes

120597

120597119901119887

(13)

then following [1 7] we can define an exterior differential119863120593 by putting

119863120593 = (119889120593119886 minus 120593119886 and 120596119888119886) otimes

120575

120575119909119886+ (119889120593

119887minus 120593119887and 120596119887119888) otimes

120597

120597119901119888

(14)

A straightforward calculus shows that the above formula iswell defined

The bundle 119876lowastF otimes 119876F admits a natural section 120578 givenby

120578 = 119889119909119886 otimes120597

120597119909119886+ 119889119901119887otimes

120597

120597119901119887

= 119889119909119886 otimes120575

120575119909119886+ 120575119901119887otimes

120597

120597119901119887

(15)

It is clear that the form 120578 is well defined

Definition 5 The form 120577 = 119863120578 is called the torsion form ofthe connection nabla

Locally the form 120577 can be expressed as follows

119863120578 = (minus119889119909119886 and 120596119888119886) otimes

120575

120575119909119888+ (119889 (120575119901

119887) minus 120575119901

119888and 120596119888119887) otimes

120597

120597119901119887

= 120577119888 otimes120575

120575119909119888+ 120577119887otimes

120597

120597119901119887

(16)

where

120577119888 =1

2(119867119888119890119886minus 119867119888119886119890) 119889119909119886 and 119889119909119890 minus Γ119888119890

119886119889119909119886 and 120575119901

119890

120577119887= minus119889119873

119888119887and 119889119909119888 minus 119867119886

119890119887120575119901119886and 119889119909119890 minus Γ119886119890

119887120575119901119886and 120575119901119890

(17)

3 Transversal Cartan Metrics on 119876lowastF andRiemannian Foliations

As in the case of transversal Finsler metrics on the normalbundle of a foliation [1 3] a transversal Cartan metric on119876lowastF is a basic function (with respect to the lifted foliationF) 119870 119876lowastF rarr [0infin) which has the following properties

(i) 119870 is 119862infin on 119876lowastF(ii) 119870(119909 120582119901) = 120582119870(119909 119901) for all 120582 gt 0(iii) the 119899 times 119899 matrix (119892119886119887) where 119892119886119887 =

(12)(12059721198702120597119901119886120597119901119886) is positive definite at all

points of 119876lowastFAlso 119870(119909 119901) gt 0 whenever 119901 = 0 As usual [8] the proper-ties of119870 imply that

119901119886 = 119892119886119887119901119887 119901

119886= 119892119886119887119901119887 1198702 = 119892119886119887119901

119886119901119887= 119901119886119901119886

119862119886119887119888119901119888= 119862119886119888119887119901

119888= 119862119888119886119887119901

119888= 0

(18)

where (119892119886119887) is the inverse matrix of (119892119887119886) and we have put

119901119886 = (12)(1205971198702120597119901119886) 119862119886119887119888 = minus(14)(12059731198702120597119901

119886120597119901119887120597119901119888)

Also 119892119886119887 determines a metric structure on 119881(119876lowastF) bysetting

119866V(119883 119884) = 119892119886119887 (119909 119901)119883

119886(119909 119910 119901) 119884

119887(119909 119910 119901) (19)

for every 119883 = 119883119886(119909 119910 119901)(120597120597119901

119886) and 119884 = 119884

119887(119909 119910 119901)(120597

120597119901119887) isin Γ(119881(119876lowastF))Similar reasons as for transversal Finsler foliations (see

Theorem 31 from [1]) lead to the following result

Theorem 6 Let 119870 119876lowastF rarr [0infin) be a transversal Cartanmetric and let 119866V be the Riemannian metric on 119881(119876lowastF)induced by 119870 as in (19) Then there exists exactly one Bottvertical connection nabla X(119881(119876lowastF)) rarr X(119879lowast(119876lowastF) otimes119881(119876lowastF)) such that

(i) nabla is a good vertical connection

(ii) if119883119884 isin Γ(119881(119876lowastF)) and 119885 isin Γ(119879(119876lowastF)) then

119885119866V(119883 119884) = 119866V (nabla

119885119883119884) + 119866V (119883 nabla

119885119884) (20)

(iii) 120577(119883 119884) = 0 for every119883119884 isin Γ(119881(119876lowastF))

(iv) 120577(119883 119884) isin Γ(119881(119876lowastF)) for every119883119884 isin Γ(119867(119876lowastF))

Also the isomorphism 120579 does not depend on the coordi-nates along the leaves of F so the Riemannianmetric in119876F

defined by119866 = 119866ℎ+119866V where119866ℎ(119883 119884) = 119866V(120579minus1(119883) 120579minus1(119884))for every 119883119884 isin Γ(119867(119876lowastF)) and 119866(119883 119884) = 0 for every119883 isin Γ(119867(119876lowastF)) and 119884 isin Γ(119881(119876lowastF)) is a transversalRiemannian metric for the lifted foliation F to the conormalbundle 119876lowastF ofF Hence we can consider the following

Theorem 7 If the conormal bundle of foliationF is endowedwith a transversal Cartan metric then the lifted foliation F tothe conormal bundle 119876lowastF is Riemannian

4 Transversally Framed119891(3120576)-Structures on (119876lowastFF)

The study of structures on manifolds defined by a tensorfield satisfying 1198913 plusmn 119891 = 0 has the origin in a paper byYano [9] Later on these structures have been genericallycalled 119891-structures On the tangent manifold of a Finslerspace the notion of framed119891(3 1)-structure was defined andstudied by Anastasiei in [10] and on the cotangent bundle ofa Cartan space the study is continued in [11 12] Taking intoaccount that the conormal bundle 119876lowastF has a local modelof a cotangent manifold in this section we extend the studyconcerning 119891-structures in our context

Let 120576 = plusmn1 A framed 119891(3 120576)-structure of corank 119904 on a(2119899 + 119904)-dimensional manifold 119873 is a natural generalizationof an almost contact structure on 119873 (for 120576 = 1) and of analmost paracontact structure on119873 (for 120576 = minus1) respectivelyand it is a triplet (119891 (120585

119894) (120596119894)) 119894 = 1 119904 where 119891 is a tensor

4 The Scientific World Journal

field of type (1 1) (120585119894) are vector fields and (120596119894) are 1-forms

on119873 such that

120596119894 (120585119895) = 120575119894119895 119891 (120585

119894) = 0 120596119894 ∘ 119891 = 0

1198912 = minus120576(119868 minussum119894

120596119894 otimes 120585119894)

(21)

where 119868 denotes the Kronecker tensor field on 119873 The nameof 119891(3 120576)-structure was suggested by the identity1198913 +120576119891 = 0For an account of such kind of structures we refer to [13]

Let us consider now that 119876lowastF is endowed with atransversal Cartan metric 119870 The linear operator 120601 given inthe local adapted basis of 119876F by

120601(120575

120575119909119886) = minus120576119892

119886119887

120597

120597119901119887

120601 (120597

120597119901119886

) = 119892119886119887120575

120575119909119887(22)

defines an almost complex structure on 119876F for 120576 = 1 and analmost paracomplex structure on119876F for 120576 = minus1 respectivelyWe also have

119866 (120601 (119883) 120601 (119884)) = 119866 (119883 119884) forall119883 119884 isin Γ (119876F) (23)

Let us put 1205851= (119901119886119870)(120575120575119909119886) and 120585

2= (119901119886119870)(120597120597119901

119886) =

(1119870)119862lowast Thus we have two global transverse vector fieldson (119876lowastF F) which are linearly independent The first istransversally horizontal and the second one is transversallyvertical

From the definition of 120601 it follows

120601 (1205851) = minus120576120585

2 120601 (120585

2) = 1205851 (24)

Now if we consider the dual transverse 1-forms of 1205851and

1205852 respectively locally given by 1205961 = (119901

119886119870)119889119909119886 and 1205962 =

(119901119886119870)120575119901119886 then we easily check that

1205961 ∘ 120601 = 1205962 1205962 ∘ 120601 = minus1205761205961

1205961 (119883) = 119866 (119883 1205851) 1205962 (119883) = 119866 (119883 120585

2) forall119883 isin Γ (119876F)

(25)

Next using120601 120585119894 and120596119894 119894 isin 1 2 we construct the transverse

tensor field 119891 of type (1 1) on (119876lowastF F) by putting

119891 (119883) = 120601 (119883) minus 1205962 (119883) 1205851 + 1205761205961 (119883) 1205852 119883 isin Γ (119876F)

(26)

Using a similar argument as in [6 10ndash12] by direct calculuswe obtain the following

Theorem 8 The triple (119891 (120585119894) (120596119894)) 119894 isin 1 2 provides

some transversally framed 119891(3 120576)-structures of corank 2 on(119876lowastF F) that is the following hold

(i) 120596119894(120585119895) = 120575119894119895 119891(120585119894) = 0 120596119894 ∘ 119891 = 0

(ii) 1198912 = minus120576(119868 minus 1205961 otimes 1205851minus 1205962 otimes 120585

2)

(iii) 119891 is of rank 2119899 minus 2 and 1198913 + 120576119891 = 0

Theorem 9 The transversal Riemannian metric 119866 on(119876lowastF F) satisfies

119866 (119891 (119883) 119891 (119884)) = 119866 (119883 119884) minus 1205961 (119883) 1205961(119884)

minus 1205962 (119883) 1205962(119884) 119883 119884 isin Γ (119876F)

(27)

For 120576 = 1 we put

Φ (119883 119884) = 119866 (119891 (119883) 119884) 119883 119884 isin Γ (119876F) (28)

By usingTheorems 8 and 9 we obtain

Φ (119883 119884) = minusΦ (119884119883) 119883 119884 isin Γ (119876F) (29)

ThusΦ is a transverse 2-form on (119876lowastF F) It is degeneratewith null space span120585

1 1205852

Also using the calculus in local coordinates we easilyobtain

Φ(120575

120575119909119886

120575

120575119909119887) = 0 Φ(

120575

120575119909119886

120597

120597119901119887

) = minus120575119887119886+119901119886119901119887

1198702

Φ (120597

120597119901119886

120597

120597119901119887

) = 0

(30)

On the other hand we have

1198891205961 (120575

120575119909119886

120575

120575119909119887) =

120575

120575119909119886(119901119887

119870) minus

120575

120575119909119887(119901119886

119870)

1198891205961 (120575

120575119909119886

120597

120597119901119887

) =1

119870(minus120575119887119886+119901119886119901119887

1198702)

1198891205961 (120597

120597119901119886

120597

120597119901119887

) = 0

(31)

where in the second relation we have used 119901119886 = 119870(120597119870120597119901119886)

which follows from the homogeneity conditions (18) of 119870Comparing now Φ with 1198891205961 we obtain

1

119870Φ = 1198891205961 + Ψ (32)

where Ψ = ((120575120575119909119887)(119901119886119870) minus (120575120575119909119886)(119901

119887119870))119889119909119886 and 119889119909119887

Thus (1119870)Φ is transversally closed if and only if Ψ istransversally closed Concluding (1119870)Φ is in general analmost transversally presymplectic structure on (119876lowastF F)

Similarly for 120576 = minus1 we can put

119867(119883 119884) = 119866 (119891 (119883) 119884) 119883 119884 isin Γ (119876F) (33)

We have the following

Theorem 10 The mapping119867 is a symmetric bilinear form on(119876lowastF F) and the annihilator of119867 is ker119891

The Scientific World Journal 5

Proof The symmetry and bilinearity are obvious Also thenull space of119867 is

119883 isin Γ (119876F) | 119867 (119883 119884) = 0 forall119884 isin Γ (119876F)

= 119883 isin Γ (119876F) | 119866 (119891 (119883) 119884) = 0 = ker119891(34)

which end the proof

Locally we obtain

119867 = (119892119886119887

minus119901119886119901119887

1198702)119889119909119886 otimes 119889119909119887 minus (119892119886119887 minus

119901119886119901119887

1198702)120575119901119886otimes 120575119901119887

(35)

with det(119892119886119887

minus (1199011198861199011198871198702)) = 0 since (119892

119886119887minus (1199011198861199011198871198702))119901119887 =

119901119886minus 119901119886= 0 and similarly det(119892119886119887 minus (1199011198861199011198871198702)) = 0 since

(119892119886119887 minus (1199011198861199011198871198702))119901119887= 119901119886 minus 119901119886 = 0

Remark 11 The map 119867 is a transversally singular pseudo-Riemannian metric on (119876lowastF F)

5 An Almost (Para)Contact Structure onTransverse Liouville Distribution of(119876lowastFF)

Denote by 1205852 the line vector bundle over119876lowastF spanned by 120585

2

and we define the transverse vertical Liouville distribution asthe complementary orthogonal distribution 119878(119876lowastF) to 120585

2

in119881(119876lowastF)with respect to119866V namely119881(119876lowastF) = 119878(119876lowastF)oplus

1205852 Hence 119878(119876lowastF) is defined by 120572 = 1205962|

119881(119876lowastF) that is

Γ (119878 (119876lowastF)) = 119883 isin Γ (119881 (119876lowastF)) 120572 (119883) = 0 (36)

Thus any transverse vertical vector field119883 isin Γ(119881(119876lowastF)) canbe expressed as

119883 = 119875119883 + 120572 (119883) 1205852 (37)

where 119875 is the projection morphism of 119881(119876lowastF) on 119878(119876lowastF)By direct calculations one gets the following

Proposition 12 For any transverse vertical vector fields119883119884 isinΓ(119881(119876lowastF)) one has

119866V(119883 119875119884) = 119866V

(119875119883 119875119884) = 119866V(119883 119884) minus 120572 (119883) 120572 (119884) (38)

Theorem 13 The transverse vertical Liouville distribution119878(119876lowastF) is integrable

Proof The proof follows using an argument similar to Theo-rem 31 [14] (see alsoTheorem 21 [6] orTheorem 4 [15])

In the following we will consider the transverse Liouvilledistribution of (119876lowastF F) as the complementary orthogonaldistribution 119878(119876lowastF) to 120585

2 in 119876F with respect to 119866 that is

119878(119876lowastF) = 119867(119876lowastF) oplus 119878(119876lowastF)Let us restrict to 119878(119876lowastF) all the geometrical structures

introduced in Section 4 for all 119876F We indicate this byoverlines Hence we have

(i) 1205851= 1205851since 120585

1lies in 119878(119876lowastF)

(ii) 1205962 = 0 since 1205962(119883) = 119866(119883 1205852) = 0 for every

transverse vector field119883 isin 119878(119876lowastF)(iii) 119866 = 119866|

119878(119876lowastF)

(iv) 119891(119883) = 120601(119883) + 1205761205961(119883) otimes 1205852is an endomorphism of

119878(119876lowastF) since

119866(119891 (119883) 1205852) = 119866 (120601 (119883) 1205852) + 1205761205961 (119883)119866 (1205852 1205852)

= 1205962 (120601 (119883)) + 1205761205961 (119883) = 0(39)

We denote now 120585 = 1205851and 120578 = 1205961

By Theorem 8 we obtain the following

Theorem 14 The triple (119891 120585 120578) provides an almost(para)contact structure on 119878(119876lowastF) that is

(i) 1198913

+ 120576119891 = 0 119903119886119899119896119891 = 2119899 minus 2 = (2119899 minus 1) minus 1

(ii) 120578(120585) = 1 119891(120585) = 0 120578 ∘ 119891 = 0

(iii) 1198912

(119883) = minus120576(119883 minus 120578(119883)120585) for119883 isin 119878(119876lowastF)

Also by Theorem 9 we obtain the following

Theorem 15 The transversal Riemannian metric 119866 verifies

119866(119891 (119883) 119891 (119884)) = 119866 (119883 119884) minus 120578 (119883) 120578 (119884) (40)

for every transverse vector fields119883119884 isin 119878(119876lowastF)

Concluding the ensemble (119891 120585 120578 119866) is an almost(para)contact Riemannian structure on 119878(119876lowastF)

Conflict of Interests

The authors declare that they have no conflict of interests

Authorsrsquo Contribution

Both authors contributed equally to the paper All the authorsread and approved the final paper

Acknowledgment

The first author is supported by the Grant ldquoFellowship ofTransilvania University of Brasov 2014rdquo

References

[1] A Miernowski andWMozgawa ldquoLift of the Finsler foliation toits normal bundlerdquo Differential Geometry and Its Applicationsvol 24 no 2 pp 209ndash214 2006

[2] P Popescu and C Ida ldquoFoliations compatible with hamilto-niansrdquo in Proceedings of the BSG International Conference onDifferential Geometry and Dynamical Systems (DGDS rsquo13) pp147ndash155 Bucharest Romania October 2013

6 The Scientific World Journal

[3] P Popescu and M Popescu ldquoLagrangians adapted to submer-sions and foliationsrdquoDifferential Geometry and Its Applicationsvol 27 no 2 pp 171ndash178 2009

[4] P Popescu and M Popescu ldquoFoliated vector bundles andRiemannian foliationsrdquo Comptes Rendus Mathematique vol349 no 7-8 pp 445ndash449 2011

[5] P Popescu and M Popescu ldquoLagrangians and Hamiltonianstructures and foliationsrdquo Physics AUC vol 21 no 1 pp 203ndash206 2011

[6] C Ida ldquoSome framed 119891-structures on transversally Finsler foli-ationsrdquo Annales Universitatis Mariae Curie-Sklodowska SectioA Mathematica vol 65 no 1 pp 87ndash96 2011

[7] M Abate and G Patrizio Finsler MetricsmdashA Global Approachvol 1591 of Lecture Notes in Mathematics Springer BerlinGermany 1994

[8] R Miron D Hrimiuc H Shimada and S V SabauThe Geom-etry of Hamilton and Lagrange Spaces vol 118 of FundamentalTheories of Physics Kluwer Academic 2001

[9] K Yano ldquoOn a structure defined by a tensor field of type (1 1)satisfying 1198913 + 119891 = 0rdquo Tensor vol 14 pp 99ndash109 1963

[10] M Anastasiei ldquoA framed f-structure on tangent bundle of aFinsler spacerdquoAnalele Universitatii Bucuresti SeriaMatematicavol 49 pp 3ndash9 2000

[11] M Gırtu ldquoAn almost 2-paracontact structure on the cotangentbundle of a Cartan spacerdquoHacettepe Journal ofMathematics andStatistics vol 33 pp 15ndash22 2004

[12] M Gırtu ldquoA Sasakian structure on the indicatrix bundle of aCartan spacerdquo Analele Stiintifice ale Universitatii ldquoAlICuzardquo dinIasi Tomul LIII vol 1 pp 177ndash186 2007

[13] I Mihai R Rosca and L Verstraelen Some Aspects of theDifferential Geometry of Vector Fields vol 2 of Centre forPure and Applied Differential Geometry (PADGE) KatholiekeUniversiteit Leuven Leuven Belgium 1996

[14] A Bejancu and H R Farran ldquoOn the vertical bundle of apseudo-Finsler manifoldrdquo International Journal of Mathematicsand Mathematical Sciences vol 22 no 3 pp 637ndash642 1999

[15] C Ida and A Manea ldquoA vertical Liouville subfoliation on thecotangent bundle of a Cartan space and some related struc-turesrdquo International Journal of Geometric Methods in ModernPhysics vol 11 no 6 21 pages 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article On Some Transverse Geometrical Structures ...downloads.hindawi.com/journals/tswj/2015/218912.pdfe Scienti c World Journal eld of type (1,1) ,(Q ) are vector elds,

The Scientific World Journal 3

If 120593 isin Γ(119876lowastF otimes 119876F) is a 1-form with values in 119876Flocally given by

120593 = 120593119886 otimes120575

120575119909119886+ 120593119887otimes

120597

120597119901119887

(13)

then following [1 7] we can define an exterior differential119863120593 by putting

119863120593 = (119889120593119886 minus 120593119886 and 120596119888119886) otimes

120575

120575119909119886+ (119889120593

119887minus 120593119887and 120596119887119888) otimes

120597

120597119901119888

(14)

A straightforward calculus shows that the above formula iswell defined

The bundle 119876lowastF otimes 119876F admits a natural section 120578 givenby

120578 = 119889119909119886 otimes120597

120597119909119886+ 119889119901119887otimes

120597

120597119901119887

= 119889119909119886 otimes120575

120575119909119886+ 120575119901119887otimes

120597

120597119901119887

(15)

It is clear that the form 120578 is well defined

Definition 5 The form 120577 = 119863120578 is called the torsion form ofthe connection nabla

Locally the form 120577 can be expressed as follows

119863120578 = (minus119889119909119886 and 120596119888119886) otimes

120575

120575119909119888+ (119889 (120575119901

119887) minus 120575119901

119888and 120596119888119887) otimes

120597

120597119901119887

= 120577119888 otimes120575

120575119909119888+ 120577119887otimes

120597

120597119901119887

(16)

where

120577119888 =1

2(119867119888119890119886minus 119867119888119886119890) 119889119909119886 and 119889119909119890 minus Γ119888119890

119886119889119909119886 and 120575119901

119890

120577119887= minus119889119873

119888119887and 119889119909119888 minus 119867119886

119890119887120575119901119886and 119889119909119890 minus Γ119886119890

119887120575119901119886and 120575119901119890

(17)

3 Transversal Cartan Metrics on 119876lowastF andRiemannian Foliations

As in the case of transversal Finsler metrics on the normalbundle of a foliation [1 3] a transversal Cartan metric on119876lowastF is a basic function (with respect to the lifted foliationF) 119870 119876lowastF rarr [0infin) which has the following properties

(i) 119870 is 119862infin on 119876lowastF(ii) 119870(119909 120582119901) = 120582119870(119909 119901) for all 120582 gt 0(iii) the 119899 times 119899 matrix (119892119886119887) where 119892119886119887 =

(12)(12059721198702120597119901119886120597119901119886) is positive definite at all

points of 119876lowastFAlso 119870(119909 119901) gt 0 whenever 119901 = 0 As usual [8] the proper-ties of119870 imply that

119901119886 = 119892119886119887119901119887 119901

119886= 119892119886119887119901119887 1198702 = 119892119886119887119901

119886119901119887= 119901119886119901119886

119862119886119887119888119901119888= 119862119886119888119887119901

119888= 119862119888119886119887119901

119888= 0

(18)

where (119892119886119887) is the inverse matrix of (119892119887119886) and we have put

119901119886 = (12)(1205971198702120597119901119886) 119862119886119887119888 = minus(14)(12059731198702120597119901

119886120597119901119887120597119901119888)

Also 119892119886119887 determines a metric structure on 119881(119876lowastF) bysetting

119866V(119883 119884) = 119892119886119887 (119909 119901)119883

119886(119909 119910 119901) 119884

119887(119909 119910 119901) (19)

for every 119883 = 119883119886(119909 119910 119901)(120597120597119901

119886) and 119884 = 119884

119887(119909 119910 119901)(120597

120597119901119887) isin Γ(119881(119876lowastF))Similar reasons as for transversal Finsler foliations (see

Theorem 31 from [1]) lead to the following result

Theorem 6 Let 119870 119876lowastF rarr [0infin) be a transversal Cartanmetric and let 119866V be the Riemannian metric on 119881(119876lowastF)induced by 119870 as in (19) Then there exists exactly one Bottvertical connection nabla X(119881(119876lowastF)) rarr X(119879lowast(119876lowastF) otimes119881(119876lowastF)) such that

(i) nabla is a good vertical connection

(ii) if119883119884 isin Γ(119881(119876lowastF)) and 119885 isin Γ(119879(119876lowastF)) then

119885119866V(119883 119884) = 119866V (nabla

119885119883119884) + 119866V (119883 nabla

119885119884) (20)

(iii) 120577(119883 119884) = 0 for every119883119884 isin Γ(119881(119876lowastF))

(iv) 120577(119883 119884) isin Γ(119881(119876lowastF)) for every119883119884 isin Γ(119867(119876lowastF))

Also the isomorphism 120579 does not depend on the coordi-nates along the leaves of F so the Riemannianmetric in119876F

defined by119866 = 119866ℎ+119866V where119866ℎ(119883 119884) = 119866V(120579minus1(119883) 120579minus1(119884))for every 119883119884 isin Γ(119867(119876lowastF)) and 119866(119883 119884) = 0 for every119883 isin Γ(119867(119876lowastF)) and 119884 isin Γ(119881(119876lowastF)) is a transversalRiemannian metric for the lifted foliation F to the conormalbundle 119876lowastF ofF Hence we can consider the following

Theorem 7 If the conormal bundle of foliationF is endowedwith a transversal Cartan metric then the lifted foliation F tothe conormal bundle 119876lowastF is Riemannian

4 Transversally Framed119891(3120576)-Structures on (119876lowastFF)

The study of structures on manifolds defined by a tensorfield satisfying 1198913 plusmn 119891 = 0 has the origin in a paper byYano [9] Later on these structures have been genericallycalled 119891-structures On the tangent manifold of a Finslerspace the notion of framed119891(3 1)-structure was defined andstudied by Anastasiei in [10] and on the cotangent bundle ofa Cartan space the study is continued in [11 12] Taking intoaccount that the conormal bundle 119876lowastF has a local modelof a cotangent manifold in this section we extend the studyconcerning 119891-structures in our context

Let 120576 = plusmn1 A framed 119891(3 120576)-structure of corank 119904 on a(2119899 + 119904)-dimensional manifold 119873 is a natural generalizationof an almost contact structure on 119873 (for 120576 = 1) and of analmost paracontact structure on119873 (for 120576 = minus1) respectivelyand it is a triplet (119891 (120585

119894) (120596119894)) 119894 = 1 119904 where 119891 is a tensor

4 The Scientific World Journal

field of type (1 1) (120585119894) are vector fields and (120596119894) are 1-forms

on119873 such that

120596119894 (120585119895) = 120575119894119895 119891 (120585

119894) = 0 120596119894 ∘ 119891 = 0

1198912 = minus120576(119868 minussum119894

120596119894 otimes 120585119894)

(21)

where 119868 denotes the Kronecker tensor field on 119873 The nameof 119891(3 120576)-structure was suggested by the identity1198913 +120576119891 = 0For an account of such kind of structures we refer to [13]

Let us consider now that 119876lowastF is endowed with atransversal Cartan metric 119870 The linear operator 120601 given inthe local adapted basis of 119876F by

120601(120575

120575119909119886) = minus120576119892

119886119887

120597

120597119901119887

120601 (120597

120597119901119886

) = 119892119886119887120575

120575119909119887(22)

defines an almost complex structure on 119876F for 120576 = 1 and analmost paracomplex structure on119876F for 120576 = minus1 respectivelyWe also have

119866 (120601 (119883) 120601 (119884)) = 119866 (119883 119884) forall119883 119884 isin Γ (119876F) (23)

Let us put 1205851= (119901119886119870)(120575120575119909119886) and 120585

2= (119901119886119870)(120597120597119901

119886) =

(1119870)119862lowast Thus we have two global transverse vector fieldson (119876lowastF F) which are linearly independent The first istransversally horizontal and the second one is transversallyvertical

From the definition of 120601 it follows

120601 (1205851) = minus120576120585

2 120601 (120585

2) = 1205851 (24)

Now if we consider the dual transverse 1-forms of 1205851and

1205852 respectively locally given by 1205961 = (119901

119886119870)119889119909119886 and 1205962 =

(119901119886119870)120575119901119886 then we easily check that

1205961 ∘ 120601 = 1205962 1205962 ∘ 120601 = minus1205761205961

1205961 (119883) = 119866 (119883 1205851) 1205962 (119883) = 119866 (119883 120585

2) forall119883 isin Γ (119876F)

(25)

Next using120601 120585119894 and120596119894 119894 isin 1 2 we construct the transverse

tensor field 119891 of type (1 1) on (119876lowastF F) by putting

119891 (119883) = 120601 (119883) minus 1205962 (119883) 1205851 + 1205761205961 (119883) 1205852 119883 isin Γ (119876F)

(26)

Using a similar argument as in [6 10ndash12] by direct calculuswe obtain the following

Theorem 8 The triple (119891 (120585119894) (120596119894)) 119894 isin 1 2 provides

some transversally framed 119891(3 120576)-structures of corank 2 on(119876lowastF F) that is the following hold

(i) 120596119894(120585119895) = 120575119894119895 119891(120585119894) = 0 120596119894 ∘ 119891 = 0

(ii) 1198912 = minus120576(119868 minus 1205961 otimes 1205851minus 1205962 otimes 120585

2)

(iii) 119891 is of rank 2119899 minus 2 and 1198913 + 120576119891 = 0

Theorem 9 The transversal Riemannian metric 119866 on(119876lowastF F) satisfies

119866 (119891 (119883) 119891 (119884)) = 119866 (119883 119884) minus 1205961 (119883) 1205961(119884)

minus 1205962 (119883) 1205962(119884) 119883 119884 isin Γ (119876F)

(27)

For 120576 = 1 we put

Φ (119883 119884) = 119866 (119891 (119883) 119884) 119883 119884 isin Γ (119876F) (28)

By usingTheorems 8 and 9 we obtain

Φ (119883 119884) = minusΦ (119884119883) 119883 119884 isin Γ (119876F) (29)

ThusΦ is a transverse 2-form on (119876lowastF F) It is degeneratewith null space span120585

1 1205852

Also using the calculus in local coordinates we easilyobtain

Φ(120575

120575119909119886

120575

120575119909119887) = 0 Φ(

120575

120575119909119886

120597

120597119901119887

) = minus120575119887119886+119901119886119901119887

1198702

Φ (120597

120597119901119886

120597

120597119901119887

) = 0

(30)

On the other hand we have

1198891205961 (120575

120575119909119886

120575

120575119909119887) =

120575

120575119909119886(119901119887

119870) minus

120575

120575119909119887(119901119886

119870)

1198891205961 (120575

120575119909119886

120597

120597119901119887

) =1

119870(minus120575119887119886+119901119886119901119887

1198702)

1198891205961 (120597

120597119901119886

120597

120597119901119887

) = 0

(31)

where in the second relation we have used 119901119886 = 119870(120597119870120597119901119886)

which follows from the homogeneity conditions (18) of 119870Comparing now Φ with 1198891205961 we obtain

1

119870Φ = 1198891205961 + Ψ (32)

where Ψ = ((120575120575119909119887)(119901119886119870) minus (120575120575119909119886)(119901

119887119870))119889119909119886 and 119889119909119887

Thus (1119870)Φ is transversally closed if and only if Ψ istransversally closed Concluding (1119870)Φ is in general analmost transversally presymplectic structure on (119876lowastF F)

Similarly for 120576 = minus1 we can put

119867(119883 119884) = 119866 (119891 (119883) 119884) 119883 119884 isin Γ (119876F) (33)

We have the following

Theorem 10 The mapping119867 is a symmetric bilinear form on(119876lowastF F) and the annihilator of119867 is ker119891

The Scientific World Journal 5

Proof The symmetry and bilinearity are obvious Also thenull space of119867 is

119883 isin Γ (119876F) | 119867 (119883 119884) = 0 forall119884 isin Γ (119876F)

= 119883 isin Γ (119876F) | 119866 (119891 (119883) 119884) = 0 = ker119891(34)

which end the proof

Locally we obtain

119867 = (119892119886119887

minus119901119886119901119887

1198702)119889119909119886 otimes 119889119909119887 minus (119892119886119887 minus

119901119886119901119887

1198702)120575119901119886otimes 120575119901119887

(35)

with det(119892119886119887

minus (1199011198861199011198871198702)) = 0 since (119892

119886119887minus (1199011198861199011198871198702))119901119887 =

119901119886minus 119901119886= 0 and similarly det(119892119886119887 minus (1199011198861199011198871198702)) = 0 since

(119892119886119887 minus (1199011198861199011198871198702))119901119887= 119901119886 minus 119901119886 = 0

Remark 11 The map 119867 is a transversally singular pseudo-Riemannian metric on (119876lowastF F)

5 An Almost (Para)Contact Structure onTransverse Liouville Distribution of(119876lowastFF)

Denote by 1205852 the line vector bundle over119876lowastF spanned by 120585

2

and we define the transverse vertical Liouville distribution asthe complementary orthogonal distribution 119878(119876lowastF) to 120585

2

in119881(119876lowastF)with respect to119866V namely119881(119876lowastF) = 119878(119876lowastF)oplus

1205852 Hence 119878(119876lowastF) is defined by 120572 = 1205962|

119881(119876lowastF) that is

Γ (119878 (119876lowastF)) = 119883 isin Γ (119881 (119876lowastF)) 120572 (119883) = 0 (36)

Thus any transverse vertical vector field119883 isin Γ(119881(119876lowastF)) canbe expressed as

119883 = 119875119883 + 120572 (119883) 1205852 (37)

where 119875 is the projection morphism of 119881(119876lowastF) on 119878(119876lowastF)By direct calculations one gets the following

Proposition 12 For any transverse vertical vector fields119883119884 isinΓ(119881(119876lowastF)) one has

119866V(119883 119875119884) = 119866V

(119875119883 119875119884) = 119866V(119883 119884) minus 120572 (119883) 120572 (119884) (38)

Theorem 13 The transverse vertical Liouville distribution119878(119876lowastF) is integrable

Proof The proof follows using an argument similar to Theo-rem 31 [14] (see alsoTheorem 21 [6] orTheorem 4 [15])

In the following we will consider the transverse Liouvilledistribution of (119876lowastF F) as the complementary orthogonaldistribution 119878(119876lowastF) to 120585

2 in 119876F with respect to 119866 that is

119878(119876lowastF) = 119867(119876lowastF) oplus 119878(119876lowastF)Let us restrict to 119878(119876lowastF) all the geometrical structures

introduced in Section 4 for all 119876F We indicate this byoverlines Hence we have

(i) 1205851= 1205851since 120585

1lies in 119878(119876lowastF)

(ii) 1205962 = 0 since 1205962(119883) = 119866(119883 1205852) = 0 for every

transverse vector field119883 isin 119878(119876lowastF)(iii) 119866 = 119866|

119878(119876lowastF)

(iv) 119891(119883) = 120601(119883) + 1205761205961(119883) otimes 1205852is an endomorphism of

119878(119876lowastF) since

119866(119891 (119883) 1205852) = 119866 (120601 (119883) 1205852) + 1205761205961 (119883)119866 (1205852 1205852)

= 1205962 (120601 (119883)) + 1205761205961 (119883) = 0(39)

We denote now 120585 = 1205851and 120578 = 1205961

By Theorem 8 we obtain the following

Theorem 14 The triple (119891 120585 120578) provides an almost(para)contact structure on 119878(119876lowastF) that is

(i) 1198913

+ 120576119891 = 0 119903119886119899119896119891 = 2119899 minus 2 = (2119899 minus 1) minus 1

(ii) 120578(120585) = 1 119891(120585) = 0 120578 ∘ 119891 = 0

(iii) 1198912

(119883) = minus120576(119883 minus 120578(119883)120585) for119883 isin 119878(119876lowastF)

Also by Theorem 9 we obtain the following

Theorem 15 The transversal Riemannian metric 119866 verifies

119866(119891 (119883) 119891 (119884)) = 119866 (119883 119884) minus 120578 (119883) 120578 (119884) (40)

for every transverse vector fields119883119884 isin 119878(119876lowastF)

Concluding the ensemble (119891 120585 120578 119866) is an almost(para)contact Riemannian structure on 119878(119876lowastF)

Conflict of Interests

The authors declare that they have no conflict of interests

Authorsrsquo Contribution

Both authors contributed equally to the paper All the authorsread and approved the final paper

Acknowledgment

The first author is supported by the Grant ldquoFellowship ofTransilvania University of Brasov 2014rdquo

References

[1] A Miernowski andWMozgawa ldquoLift of the Finsler foliation toits normal bundlerdquo Differential Geometry and Its Applicationsvol 24 no 2 pp 209ndash214 2006

[2] P Popescu and C Ida ldquoFoliations compatible with hamilto-niansrdquo in Proceedings of the BSG International Conference onDifferential Geometry and Dynamical Systems (DGDS rsquo13) pp147ndash155 Bucharest Romania October 2013

6 The Scientific World Journal

[3] P Popescu and M Popescu ldquoLagrangians adapted to submer-sions and foliationsrdquoDifferential Geometry and Its Applicationsvol 27 no 2 pp 171ndash178 2009

[4] P Popescu and M Popescu ldquoFoliated vector bundles andRiemannian foliationsrdquo Comptes Rendus Mathematique vol349 no 7-8 pp 445ndash449 2011

[5] P Popescu and M Popescu ldquoLagrangians and Hamiltonianstructures and foliationsrdquo Physics AUC vol 21 no 1 pp 203ndash206 2011

[6] C Ida ldquoSome framed 119891-structures on transversally Finsler foli-ationsrdquo Annales Universitatis Mariae Curie-Sklodowska SectioA Mathematica vol 65 no 1 pp 87ndash96 2011

[7] M Abate and G Patrizio Finsler MetricsmdashA Global Approachvol 1591 of Lecture Notes in Mathematics Springer BerlinGermany 1994

[8] R Miron D Hrimiuc H Shimada and S V SabauThe Geom-etry of Hamilton and Lagrange Spaces vol 118 of FundamentalTheories of Physics Kluwer Academic 2001

[9] K Yano ldquoOn a structure defined by a tensor field of type (1 1)satisfying 1198913 + 119891 = 0rdquo Tensor vol 14 pp 99ndash109 1963

[10] M Anastasiei ldquoA framed f-structure on tangent bundle of aFinsler spacerdquoAnalele Universitatii Bucuresti SeriaMatematicavol 49 pp 3ndash9 2000

[11] M Gırtu ldquoAn almost 2-paracontact structure on the cotangentbundle of a Cartan spacerdquoHacettepe Journal ofMathematics andStatistics vol 33 pp 15ndash22 2004

[12] M Gırtu ldquoA Sasakian structure on the indicatrix bundle of aCartan spacerdquo Analele Stiintifice ale Universitatii ldquoAlICuzardquo dinIasi Tomul LIII vol 1 pp 177ndash186 2007

[13] I Mihai R Rosca and L Verstraelen Some Aspects of theDifferential Geometry of Vector Fields vol 2 of Centre forPure and Applied Differential Geometry (PADGE) KatholiekeUniversiteit Leuven Leuven Belgium 1996

[14] A Bejancu and H R Farran ldquoOn the vertical bundle of apseudo-Finsler manifoldrdquo International Journal of Mathematicsand Mathematical Sciences vol 22 no 3 pp 637ndash642 1999

[15] C Ida and A Manea ldquoA vertical Liouville subfoliation on thecotangent bundle of a Cartan space and some related struc-turesrdquo International Journal of Geometric Methods in ModernPhysics vol 11 no 6 21 pages 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article On Some Transverse Geometrical Structures ...downloads.hindawi.com/journals/tswj/2015/218912.pdfe Scienti c World Journal eld of type (1,1) ,(Q ) are vector elds,

4 The Scientific World Journal

field of type (1 1) (120585119894) are vector fields and (120596119894) are 1-forms

on119873 such that

120596119894 (120585119895) = 120575119894119895 119891 (120585

119894) = 0 120596119894 ∘ 119891 = 0

1198912 = minus120576(119868 minussum119894

120596119894 otimes 120585119894)

(21)

where 119868 denotes the Kronecker tensor field on 119873 The nameof 119891(3 120576)-structure was suggested by the identity1198913 +120576119891 = 0For an account of such kind of structures we refer to [13]

Let us consider now that 119876lowastF is endowed with atransversal Cartan metric 119870 The linear operator 120601 given inthe local adapted basis of 119876F by

120601(120575

120575119909119886) = minus120576119892

119886119887

120597

120597119901119887

120601 (120597

120597119901119886

) = 119892119886119887120575

120575119909119887(22)

defines an almost complex structure on 119876F for 120576 = 1 and analmost paracomplex structure on119876F for 120576 = minus1 respectivelyWe also have

119866 (120601 (119883) 120601 (119884)) = 119866 (119883 119884) forall119883 119884 isin Γ (119876F) (23)

Let us put 1205851= (119901119886119870)(120575120575119909119886) and 120585

2= (119901119886119870)(120597120597119901

119886) =

(1119870)119862lowast Thus we have two global transverse vector fieldson (119876lowastF F) which are linearly independent The first istransversally horizontal and the second one is transversallyvertical

From the definition of 120601 it follows

120601 (1205851) = minus120576120585

2 120601 (120585

2) = 1205851 (24)

Now if we consider the dual transverse 1-forms of 1205851and

1205852 respectively locally given by 1205961 = (119901

119886119870)119889119909119886 and 1205962 =

(119901119886119870)120575119901119886 then we easily check that

1205961 ∘ 120601 = 1205962 1205962 ∘ 120601 = minus1205761205961

1205961 (119883) = 119866 (119883 1205851) 1205962 (119883) = 119866 (119883 120585

2) forall119883 isin Γ (119876F)

(25)

Next using120601 120585119894 and120596119894 119894 isin 1 2 we construct the transverse

tensor field 119891 of type (1 1) on (119876lowastF F) by putting

119891 (119883) = 120601 (119883) minus 1205962 (119883) 1205851 + 1205761205961 (119883) 1205852 119883 isin Γ (119876F)

(26)

Using a similar argument as in [6 10ndash12] by direct calculuswe obtain the following

Theorem 8 The triple (119891 (120585119894) (120596119894)) 119894 isin 1 2 provides

some transversally framed 119891(3 120576)-structures of corank 2 on(119876lowastF F) that is the following hold

(i) 120596119894(120585119895) = 120575119894119895 119891(120585119894) = 0 120596119894 ∘ 119891 = 0

(ii) 1198912 = minus120576(119868 minus 1205961 otimes 1205851minus 1205962 otimes 120585

2)

(iii) 119891 is of rank 2119899 minus 2 and 1198913 + 120576119891 = 0

Theorem 9 The transversal Riemannian metric 119866 on(119876lowastF F) satisfies

119866 (119891 (119883) 119891 (119884)) = 119866 (119883 119884) minus 1205961 (119883) 1205961(119884)

minus 1205962 (119883) 1205962(119884) 119883 119884 isin Γ (119876F)

(27)

For 120576 = 1 we put

Φ (119883 119884) = 119866 (119891 (119883) 119884) 119883 119884 isin Γ (119876F) (28)

By usingTheorems 8 and 9 we obtain

Φ (119883 119884) = minusΦ (119884119883) 119883 119884 isin Γ (119876F) (29)

ThusΦ is a transverse 2-form on (119876lowastF F) It is degeneratewith null space span120585

1 1205852

Also using the calculus in local coordinates we easilyobtain

Φ(120575

120575119909119886

120575

120575119909119887) = 0 Φ(

120575

120575119909119886

120597

120597119901119887

) = minus120575119887119886+119901119886119901119887

1198702

Φ (120597

120597119901119886

120597

120597119901119887

) = 0

(30)

On the other hand we have

1198891205961 (120575

120575119909119886

120575

120575119909119887) =

120575

120575119909119886(119901119887

119870) minus

120575

120575119909119887(119901119886

119870)

1198891205961 (120575

120575119909119886

120597

120597119901119887

) =1

119870(minus120575119887119886+119901119886119901119887

1198702)

1198891205961 (120597

120597119901119886

120597

120597119901119887

) = 0

(31)

where in the second relation we have used 119901119886 = 119870(120597119870120597119901119886)

which follows from the homogeneity conditions (18) of 119870Comparing now Φ with 1198891205961 we obtain

1

119870Φ = 1198891205961 + Ψ (32)

where Ψ = ((120575120575119909119887)(119901119886119870) minus (120575120575119909119886)(119901

119887119870))119889119909119886 and 119889119909119887

Thus (1119870)Φ is transversally closed if and only if Ψ istransversally closed Concluding (1119870)Φ is in general analmost transversally presymplectic structure on (119876lowastF F)

Similarly for 120576 = minus1 we can put

119867(119883 119884) = 119866 (119891 (119883) 119884) 119883 119884 isin Γ (119876F) (33)

We have the following

Theorem 10 The mapping119867 is a symmetric bilinear form on(119876lowastF F) and the annihilator of119867 is ker119891

The Scientific World Journal 5

Proof The symmetry and bilinearity are obvious Also thenull space of119867 is

119883 isin Γ (119876F) | 119867 (119883 119884) = 0 forall119884 isin Γ (119876F)

= 119883 isin Γ (119876F) | 119866 (119891 (119883) 119884) = 0 = ker119891(34)

which end the proof

Locally we obtain

119867 = (119892119886119887

minus119901119886119901119887

1198702)119889119909119886 otimes 119889119909119887 minus (119892119886119887 minus

119901119886119901119887

1198702)120575119901119886otimes 120575119901119887

(35)

with det(119892119886119887

minus (1199011198861199011198871198702)) = 0 since (119892

119886119887minus (1199011198861199011198871198702))119901119887 =

119901119886minus 119901119886= 0 and similarly det(119892119886119887 minus (1199011198861199011198871198702)) = 0 since

(119892119886119887 minus (1199011198861199011198871198702))119901119887= 119901119886 minus 119901119886 = 0

Remark 11 The map 119867 is a transversally singular pseudo-Riemannian metric on (119876lowastF F)

5 An Almost (Para)Contact Structure onTransverse Liouville Distribution of(119876lowastFF)

Denote by 1205852 the line vector bundle over119876lowastF spanned by 120585

2

and we define the transverse vertical Liouville distribution asthe complementary orthogonal distribution 119878(119876lowastF) to 120585

2

in119881(119876lowastF)with respect to119866V namely119881(119876lowastF) = 119878(119876lowastF)oplus

1205852 Hence 119878(119876lowastF) is defined by 120572 = 1205962|

119881(119876lowastF) that is

Γ (119878 (119876lowastF)) = 119883 isin Γ (119881 (119876lowastF)) 120572 (119883) = 0 (36)

Thus any transverse vertical vector field119883 isin Γ(119881(119876lowastF)) canbe expressed as

119883 = 119875119883 + 120572 (119883) 1205852 (37)

where 119875 is the projection morphism of 119881(119876lowastF) on 119878(119876lowastF)By direct calculations one gets the following

Proposition 12 For any transverse vertical vector fields119883119884 isinΓ(119881(119876lowastF)) one has

119866V(119883 119875119884) = 119866V

(119875119883 119875119884) = 119866V(119883 119884) minus 120572 (119883) 120572 (119884) (38)

Theorem 13 The transverse vertical Liouville distribution119878(119876lowastF) is integrable

Proof The proof follows using an argument similar to Theo-rem 31 [14] (see alsoTheorem 21 [6] orTheorem 4 [15])

In the following we will consider the transverse Liouvilledistribution of (119876lowastF F) as the complementary orthogonaldistribution 119878(119876lowastF) to 120585

2 in 119876F with respect to 119866 that is

119878(119876lowastF) = 119867(119876lowastF) oplus 119878(119876lowastF)Let us restrict to 119878(119876lowastF) all the geometrical structures

introduced in Section 4 for all 119876F We indicate this byoverlines Hence we have

(i) 1205851= 1205851since 120585

1lies in 119878(119876lowastF)

(ii) 1205962 = 0 since 1205962(119883) = 119866(119883 1205852) = 0 for every

transverse vector field119883 isin 119878(119876lowastF)(iii) 119866 = 119866|

119878(119876lowastF)

(iv) 119891(119883) = 120601(119883) + 1205761205961(119883) otimes 1205852is an endomorphism of

119878(119876lowastF) since

119866(119891 (119883) 1205852) = 119866 (120601 (119883) 1205852) + 1205761205961 (119883)119866 (1205852 1205852)

= 1205962 (120601 (119883)) + 1205761205961 (119883) = 0(39)

We denote now 120585 = 1205851and 120578 = 1205961

By Theorem 8 we obtain the following

Theorem 14 The triple (119891 120585 120578) provides an almost(para)contact structure on 119878(119876lowastF) that is

(i) 1198913

+ 120576119891 = 0 119903119886119899119896119891 = 2119899 minus 2 = (2119899 minus 1) minus 1

(ii) 120578(120585) = 1 119891(120585) = 0 120578 ∘ 119891 = 0

(iii) 1198912

(119883) = minus120576(119883 minus 120578(119883)120585) for119883 isin 119878(119876lowastF)

Also by Theorem 9 we obtain the following

Theorem 15 The transversal Riemannian metric 119866 verifies

119866(119891 (119883) 119891 (119884)) = 119866 (119883 119884) minus 120578 (119883) 120578 (119884) (40)

for every transverse vector fields119883119884 isin 119878(119876lowastF)

Concluding the ensemble (119891 120585 120578 119866) is an almost(para)contact Riemannian structure on 119878(119876lowastF)

Conflict of Interests

The authors declare that they have no conflict of interests

Authorsrsquo Contribution

Both authors contributed equally to the paper All the authorsread and approved the final paper

Acknowledgment

The first author is supported by the Grant ldquoFellowship ofTransilvania University of Brasov 2014rdquo

References

[1] A Miernowski andWMozgawa ldquoLift of the Finsler foliation toits normal bundlerdquo Differential Geometry and Its Applicationsvol 24 no 2 pp 209ndash214 2006

[2] P Popescu and C Ida ldquoFoliations compatible with hamilto-niansrdquo in Proceedings of the BSG International Conference onDifferential Geometry and Dynamical Systems (DGDS rsquo13) pp147ndash155 Bucharest Romania October 2013

6 The Scientific World Journal

[3] P Popescu and M Popescu ldquoLagrangians adapted to submer-sions and foliationsrdquoDifferential Geometry and Its Applicationsvol 27 no 2 pp 171ndash178 2009

[4] P Popescu and M Popescu ldquoFoliated vector bundles andRiemannian foliationsrdquo Comptes Rendus Mathematique vol349 no 7-8 pp 445ndash449 2011

[5] P Popescu and M Popescu ldquoLagrangians and Hamiltonianstructures and foliationsrdquo Physics AUC vol 21 no 1 pp 203ndash206 2011

[6] C Ida ldquoSome framed 119891-structures on transversally Finsler foli-ationsrdquo Annales Universitatis Mariae Curie-Sklodowska SectioA Mathematica vol 65 no 1 pp 87ndash96 2011

[7] M Abate and G Patrizio Finsler MetricsmdashA Global Approachvol 1591 of Lecture Notes in Mathematics Springer BerlinGermany 1994

[8] R Miron D Hrimiuc H Shimada and S V SabauThe Geom-etry of Hamilton and Lagrange Spaces vol 118 of FundamentalTheories of Physics Kluwer Academic 2001

[9] K Yano ldquoOn a structure defined by a tensor field of type (1 1)satisfying 1198913 + 119891 = 0rdquo Tensor vol 14 pp 99ndash109 1963

[10] M Anastasiei ldquoA framed f-structure on tangent bundle of aFinsler spacerdquoAnalele Universitatii Bucuresti SeriaMatematicavol 49 pp 3ndash9 2000

[11] M Gırtu ldquoAn almost 2-paracontact structure on the cotangentbundle of a Cartan spacerdquoHacettepe Journal ofMathematics andStatistics vol 33 pp 15ndash22 2004

[12] M Gırtu ldquoA Sasakian structure on the indicatrix bundle of aCartan spacerdquo Analele Stiintifice ale Universitatii ldquoAlICuzardquo dinIasi Tomul LIII vol 1 pp 177ndash186 2007

[13] I Mihai R Rosca and L Verstraelen Some Aspects of theDifferential Geometry of Vector Fields vol 2 of Centre forPure and Applied Differential Geometry (PADGE) KatholiekeUniversiteit Leuven Leuven Belgium 1996

[14] A Bejancu and H R Farran ldquoOn the vertical bundle of apseudo-Finsler manifoldrdquo International Journal of Mathematicsand Mathematical Sciences vol 22 no 3 pp 637ndash642 1999

[15] C Ida and A Manea ldquoA vertical Liouville subfoliation on thecotangent bundle of a Cartan space and some related struc-turesrdquo International Journal of Geometric Methods in ModernPhysics vol 11 no 6 21 pages 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article On Some Transverse Geometrical Structures ...downloads.hindawi.com/journals/tswj/2015/218912.pdfe Scienti c World Journal eld of type (1,1) ,(Q ) are vector elds,

The Scientific World Journal 5

Proof The symmetry and bilinearity are obvious Also thenull space of119867 is

119883 isin Γ (119876F) | 119867 (119883 119884) = 0 forall119884 isin Γ (119876F)

= 119883 isin Γ (119876F) | 119866 (119891 (119883) 119884) = 0 = ker119891(34)

which end the proof

Locally we obtain

119867 = (119892119886119887

minus119901119886119901119887

1198702)119889119909119886 otimes 119889119909119887 minus (119892119886119887 minus

119901119886119901119887

1198702)120575119901119886otimes 120575119901119887

(35)

with det(119892119886119887

minus (1199011198861199011198871198702)) = 0 since (119892

119886119887minus (1199011198861199011198871198702))119901119887 =

119901119886minus 119901119886= 0 and similarly det(119892119886119887 minus (1199011198861199011198871198702)) = 0 since

(119892119886119887 minus (1199011198861199011198871198702))119901119887= 119901119886 minus 119901119886 = 0

Remark 11 The map 119867 is a transversally singular pseudo-Riemannian metric on (119876lowastF F)

5 An Almost (Para)Contact Structure onTransverse Liouville Distribution of(119876lowastFF)

Denote by 1205852 the line vector bundle over119876lowastF spanned by 120585

2

and we define the transverse vertical Liouville distribution asthe complementary orthogonal distribution 119878(119876lowastF) to 120585

2

in119881(119876lowastF)with respect to119866V namely119881(119876lowastF) = 119878(119876lowastF)oplus

1205852 Hence 119878(119876lowastF) is defined by 120572 = 1205962|

119881(119876lowastF) that is

Γ (119878 (119876lowastF)) = 119883 isin Γ (119881 (119876lowastF)) 120572 (119883) = 0 (36)

Thus any transverse vertical vector field119883 isin Γ(119881(119876lowastF)) canbe expressed as

119883 = 119875119883 + 120572 (119883) 1205852 (37)

where 119875 is the projection morphism of 119881(119876lowastF) on 119878(119876lowastF)By direct calculations one gets the following

Proposition 12 For any transverse vertical vector fields119883119884 isinΓ(119881(119876lowastF)) one has

119866V(119883 119875119884) = 119866V

(119875119883 119875119884) = 119866V(119883 119884) minus 120572 (119883) 120572 (119884) (38)

Theorem 13 The transverse vertical Liouville distribution119878(119876lowastF) is integrable

Proof The proof follows using an argument similar to Theo-rem 31 [14] (see alsoTheorem 21 [6] orTheorem 4 [15])

In the following we will consider the transverse Liouvilledistribution of (119876lowastF F) as the complementary orthogonaldistribution 119878(119876lowastF) to 120585

2 in 119876F with respect to 119866 that is

119878(119876lowastF) = 119867(119876lowastF) oplus 119878(119876lowastF)Let us restrict to 119878(119876lowastF) all the geometrical structures

introduced in Section 4 for all 119876F We indicate this byoverlines Hence we have

(i) 1205851= 1205851since 120585

1lies in 119878(119876lowastF)

(ii) 1205962 = 0 since 1205962(119883) = 119866(119883 1205852) = 0 for every

transverse vector field119883 isin 119878(119876lowastF)(iii) 119866 = 119866|

119878(119876lowastF)

(iv) 119891(119883) = 120601(119883) + 1205761205961(119883) otimes 1205852is an endomorphism of

119878(119876lowastF) since

119866(119891 (119883) 1205852) = 119866 (120601 (119883) 1205852) + 1205761205961 (119883)119866 (1205852 1205852)

= 1205962 (120601 (119883)) + 1205761205961 (119883) = 0(39)

We denote now 120585 = 1205851and 120578 = 1205961

By Theorem 8 we obtain the following

Theorem 14 The triple (119891 120585 120578) provides an almost(para)contact structure on 119878(119876lowastF) that is

(i) 1198913

+ 120576119891 = 0 119903119886119899119896119891 = 2119899 minus 2 = (2119899 minus 1) minus 1

(ii) 120578(120585) = 1 119891(120585) = 0 120578 ∘ 119891 = 0

(iii) 1198912

(119883) = minus120576(119883 minus 120578(119883)120585) for119883 isin 119878(119876lowastF)

Also by Theorem 9 we obtain the following

Theorem 15 The transversal Riemannian metric 119866 verifies

119866(119891 (119883) 119891 (119884)) = 119866 (119883 119884) minus 120578 (119883) 120578 (119884) (40)

for every transverse vector fields119883119884 isin 119878(119876lowastF)

Concluding the ensemble (119891 120585 120578 119866) is an almost(para)contact Riemannian structure on 119878(119876lowastF)

Conflict of Interests

The authors declare that they have no conflict of interests

Authorsrsquo Contribution

Both authors contributed equally to the paper All the authorsread and approved the final paper

Acknowledgment

The first author is supported by the Grant ldquoFellowship ofTransilvania University of Brasov 2014rdquo

References

[1] A Miernowski andWMozgawa ldquoLift of the Finsler foliation toits normal bundlerdquo Differential Geometry and Its Applicationsvol 24 no 2 pp 209ndash214 2006

[2] P Popescu and C Ida ldquoFoliations compatible with hamilto-niansrdquo in Proceedings of the BSG International Conference onDifferential Geometry and Dynamical Systems (DGDS rsquo13) pp147ndash155 Bucharest Romania October 2013

6 The Scientific World Journal

[3] P Popescu and M Popescu ldquoLagrangians adapted to submer-sions and foliationsrdquoDifferential Geometry and Its Applicationsvol 27 no 2 pp 171ndash178 2009

[4] P Popescu and M Popescu ldquoFoliated vector bundles andRiemannian foliationsrdquo Comptes Rendus Mathematique vol349 no 7-8 pp 445ndash449 2011

[5] P Popescu and M Popescu ldquoLagrangians and Hamiltonianstructures and foliationsrdquo Physics AUC vol 21 no 1 pp 203ndash206 2011

[6] C Ida ldquoSome framed 119891-structures on transversally Finsler foli-ationsrdquo Annales Universitatis Mariae Curie-Sklodowska SectioA Mathematica vol 65 no 1 pp 87ndash96 2011

[7] M Abate and G Patrizio Finsler MetricsmdashA Global Approachvol 1591 of Lecture Notes in Mathematics Springer BerlinGermany 1994

[8] R Miron D Hrimiuc H Shimada and S V SabauThe Geom-etry of Hamilton and Lagrange Spaces vol 118 of FundamentalTheories of Physics Kluwer Academic 2001

[9] K Yano ldquoOn a structure defined by a tensor field of type (1 1)satisfying 1198913 + 119891 = 0rdquo Tensor vol 14 pp 99ndash109 1963

[10] M Anastasiei ldquoA framed f-structure on tangent bundle of aFinsler spacerdquoAnalele Universitatii Bucuresti SeriaMatematicavol 49 pp 3ndash9 2000

[11] M Gırtu ldquoAn almost 2-paracontact structure on the cotangentbundle of a Cartan spacerdquoHacettepe Journal ofMathematics andStatistics vol 33 pp 15ndash22 2004

[12] M Gırtu ldquoA Sasakian structure on the indicatrix bundle of aCartan spacerdquo Analele Stiintifice ale Universitatii ldquoAlICuzardquo dinIasi Tomul LIII vol 1 pp 177ndash186 2007

[13] I Mihai R Rosca and L Verstraelen Some Aspects of theDifferential Geometry of Vector Fields vol 2 of Centre forPure and Applied Differential Geometry (PADGE) KatholiekeUniversiteit Leuven Leuven Belgium 1996

[14] A Bejancu and H R Farran ldquoOn the vertical bundle of apseudo-Finsler manifoldrdquo International Journal of Mathematicsand Mathematical Sciences vol 22 no 3 pp 637ndash642 1999

[15] C Ida and A Manea ldquoA vertical Liouville subfoliation on thecotangent bundle of a Cartan space and some related struc-turesrdquo International Journal of Geometric Methods in ModernPhysics vol 11 no 6 21 pages 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article On Some Transverse Geometrical Structures ...downloads.hindawi.com/journals/tswj/2015/218912.pdfe Scienti c World Journal eld of type (1,1) ,(Q ) are vector elds,

6 The Scientific World Journal

[3] P Popescu and M Popescu ldquoLagrangians adapted to submer-sions and foliationsrdquoDifferential Geometry and Its Applicationsvol 27 no 2 pp 171ndash178 2009

[4] P Popescu and M Popescu ldquoFoliated vector bundles andRiemannian foliationsrdquo Comptes Rendus Mathematique vol349 no 7-8 pp 445ndash449 2011

[5] P Popescu and M Popescu ldquoLagrangians and Hamiltonianstructures and foliationsrdquo Physics AUC vol 21 no 1 pp 203ndash206 2011

[6] C Ida ldquoSome framed 119891-structures on transversally Finsler foli-ationsrdquo Annales Universitatis Mariae Curie-Sklodowska SectioA Mathematica vol 65 no 1 pp 87ndash96 2011

[7] M Abate and G Patrizio Finsler MetricsmdashA Global Approachvol 1591 of Lecture Notes in Mathematics Springer BerlinGermany 1994

[8] R Miron D Hrimiuc H Shimada and S V SabauThe Geom-etry of Hamilton and Lagrange Spaces vol 118 of FundamentalTheories of Physics Kluwer Academic 2001

[9] K Yano ldquoOn a structure defined by a tensor field of type (1 1)satisfying 1198913 + 119891 = 0rdquo Tensor vol 14 pp 99ndash109 1963

[10] M Anastasiei ldquoA framed f-structure on tangent bundle of aFinsler spacerdquoAnalele Universitatii Bucuresti SeriaMatematicavol 49 pp 3ndash9 2000

[11] M Gırtu ldquoAn almost 2-paracontact structure on the cotangentbundle of a Cartan spacerdquoHacettepe Journal ofMathematics andStatistics vol 33 pp 15ndash22 2004

[12] M Gırtu ldquoA Sasakian structure on the indicatrix bundle of aCartan spacerdquo Analele Stiintifice ale Universitatii ldquoAlICuzardquo dinIasi Tomul LIII vol 1 pp 177ndash186 2007

[13] I Mihai R Rosca and L Verstraelen Some Aspects of theDifferential Geometry of Vector Fields vol 2 of Centre forPure and Applied Differential Geometry (PADGE) KatholiekeUniversiteit Leuven Leuven Belgium 1996

[14] A Bejancu and H R Farran ldquoOn the vertical bundle of apseudo-Finsler manifoldrdquo International Journal of Mathematicsand Mathematical Sciences vol 22 no 3 pp 637ndash642 1999

[15] C Ida and A Manea ldquoA vertical Liouville subfoliation on thecotangent bundle of a Cartan space and some related struc-turesrdquo International Journal of Geometric Methods in ModernPhysics vol 11 no 6 21 pages 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article On Some Transverse Geometrical Structures ...downloads.hindawi.com/journals/tswj/2015/218912.pdfe Scienti c World Journal eld of type (1,1) ,(Q ) are vector elds,

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of