Research Article -Expansion Method and New Exact...

15
Research Article -Expansion Method and New Exact Solutions of the SchrΓΆdinger-KdV Equation Ali Filiz, 1 Mehmet Ekici, 2 and Abdullah Sonmezoglu 2 1 Department of Mathematics, Faculty of Science and Arts, Adnan Menderes University, 09010 Aydin, Turkey 2 Department of Mathematics, Faculty of Science and Arts, Bozok University, 66100 Yozgat, Turkey Correspondence should be addressed to Ali Filiz; afi[email protected] Received 17 August 2013; Accepted 27 October 2013; Published 29 January 2014 Academic Editors: A. K. Sharma and C. Yiu Copyright Β© 2014 Ali Filiz et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the SchrΒ¨ odinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi- elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. e proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics. 1. Introduction Nonlinear evolution equations are widely used to describe complex phenomena in many scientific and engineering fields, such as fluid dynamics, plasma physics, hydrodynam- ics, solid state physics, optical fibers, and acoustics. erefore, finding solutions of such nonlinear evolution equations is important. However, determining solutions of nonlinear evolution equations is a very difficult task and only in certain cases one can obtain exact solutions. Recently, many powerful methods to obtain exact solutions of nonlinear evolution equations have been proposed, such as the inverse scattering method [1], the BΒ¨ acklund transformation method [2, 3], the Hirota bilinear scheme [4, 5], the Painlev expansion [6], the homotopy perturbation method [7, 8], the homogenous balance method [9], the variational method [10–12], the tanh function method [13–16], the trial function and the sine-cosine method [17], ( /)-expansion method [18, 19], the trial equation method [20–28], the auxiliary equation method [29], the Jacobian-elliptic function method [30– 33], the -expansion method [34–38], and the Exp-function method [39–42]. In the present research, we shall apply the the -expan- sion method to obtain 52 types of exact solution: six for the Weierstrass-elliptic function solutions and the rest for Jacobian-elliptic function solutions of the Schrdinger-KdV equation: = +V, V +6VV + V = (|| 2 ) . (1) Among the methods mentioned above, the auxiliary equation method [29] is based on the assumption that the travelling wave solutions are in the form () = βˆ‘ =0 () , = ( βˆ’ ) , (2) where () satisfies the following auxiliary ordinary differen- tial equation: ( ) 2 = 2 () + 3 () + 4 () , (3) where , , and are real parameters. Although many exact solutions were obtained in [29] via the auxiliary equation (3), all these solutions are expressed only in terms of hyperbolic and trigonometric functions. In this paper, we want to generalize the work in [29]. We propose a new auxiliary Hindawi Publishing Corporation e Scientific World Journal Volume 2014, Article ID 534063, 14 pages http://dx.doi.org/10.1155/2014/534063

Transcript of Research Article -Expansion Method and New Exact...

  • Research Article𝐹-Expansion Method and New Exact Solutions ofthe SchrΓΆdinger-KdV Equation

    Ali Filiz,1 Mehmet Ekici,2 and Abdullah Sonmezoglu2

    1 Department of Mathematics, Faculty of Science and Arts, Adnan Menderes University, 09010 Aydin, Turkey2Department of Mathematics, Faculty of Science and Arts, Bozok University, 66100 Yozgat, Turkey

    Correspondence should be addressed to Ali Filiz; [email protected]

    Received 17 August 2013; Accepted 27 October 2013; Published 29 January 2014

    Academic Editors: A. K. Sharma and C. Yiu

    Copyright Β© 2014 Ali Filiz et al. This is an open access article distributed under the Creative Commons Attribution License, whichpermits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    𝐹-expansionmethod is proposed to seek exact solutions of nonlinear evolution equations.With the aid of symbolic computation, wechoose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number ofJacobi-elliptic function solutions are obtained including theWeierstrass-elliptic function solutions.When themodulusm of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively.The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations inmathematical physics.

    1. Introduction

    Nonlinear evolution equations are widely used to describecomplex phenomena in many scientific and engineeringfields, such as fluid dynamics, plasma physics, hydrodynam-ics, solid state physics, optical fibers, and acoustics.Therefore,finding solutions of such nonlinear evolution equations isimportant. However, determining solutions of nonlinearevolution equations is a very difficult task and only in certaincases one can obtain exact solutions. Recently,many powerfulmethods to obtain exact solutions of nonlinear evolutionequations have been proposed, such as the inverse scatteringmethod [1], the Bäcklund transformation method [2, 3], theHirota bilinear scheme [4, 5], the Painlev expansion [6],the homotopy perturbation method [7, 8], the homogenousbalance method [9], the variational method [10–12], thetanh function method [13–16], the trial function and thesine-cosine method [17], (𝐺/𝐺)-expansion method [18, 19],the trial equation method [20–28], the auxiliary equationmethod [29], the Jacobian-elliptic function method [30–33], the 𝐹-expansion method [34–38], and the Exp-functionmethod [39–42].

    In the present research, we shall apply the the 𝐹-expan-sion method to obtain 52 types of exact solution: six for

    the Weierstrass-elliptic function solutions and the rest forJacobian-elliptic function solutions of the Schrdinger-KdVequation:

    𝑖𝑒𝑑= 𝑒

    π‘₯π‘₯+ 𝑒V, V

    𝑑+ 6VV

    π‘₯+ V

    π‘₯π‘₯π‘₯= (|𝑒|

    2)π‘₯. (1)

    Among themethodsmentioned above, the auxiliary equationmethod [29] is based on the assumption that the travellingwave solutions are in the form

    𝑒 (πœ‚) =

    𝑛

    βˆ‘

    𝑖=0

    π‘Žπ‘–π‘§π‘–(πœ‚) , πœ‚ = 𝛼 (π‘₯ βˆ’ 𝛽𝑑) , (2)

    where 𝑧(πœ‚) satisfies the following auxiliary ordinary differen-tial equation:

    (𝑑𝑧

    π‘‘πœ‚)

    2

    = π‘Žπ‘§2(πœ‚) + 𝑏𝑧

    3(πœ‚) + 𝑐𝑧

    4(πœ‚) , (3)

    where π‘Ž, 𝑏, and 𝑐 are real parameters. Although many exactsolutions were obtained in [29] via the auxiliary equation (3),all these solutions are expressed only in terms of hyperbolicand trigonometric functions. In this paper, we want togeneralize the work in [29]. We propose a new auxiliary

    Hindawi Publishing Corporatione Scientific World JournalVolume 2014, Article ID 534063, 14 pageshttp://dx.doi.org/10.1155/2014/534063

  • 2 The Scientific World Journal

    equation which has more general exact solutions in termsof Jacobian-elliptic and the Weierstrass-elliptic functions.Moreover, many exact solutions in terms of hyperbolic andtrigonometric functions can be also obtained when themodulus of Jacobian-elliptic functions tends to one and zero,respectively.

    The rest of the paper is arranged as follows. In Section 2,we briefly describe the auxiliary equation method (𝐹-expansion method) for nonlinear evolution equations. Byusing the method proposed in Section 2, Jacobian-ellipticand theWeierstrass-elliptic functions solutions are presentedin Sections 3 and 4, respectively. Soliton-like solutions andtrigonometric-function solutions are listed in Sections 5 and6, respectively. Some conclusions are given in Section 7. Thepaper is ended by Appendices A–D which play an importantrole in obtaining the solutions.

    2. Description of the 𝐹-Expansion Method

    Consider a nonlinear partial differential equation (PDE) withindependent variables π‘₯, 𝑑 and dependent variable 𝑒:

    𝑁(𝑒, 𝑒𝑑, 𝑒π‘₯, 𝑒π‘₯π‘₯, . . .) = 0. (4)

    Assume that 𝑒(π‘₯, 𝑑) = 𝑒(πœ‰), where the wave variable πœ‰ =π‘₯ + 𝑐𝑑. By this, the nonlinear PDE (4) reduces to an ordinarydifferential equation (ODE):

    𝑁(𝑒, 𝑐𝑒, 𝑒, 𝑒, . . .) = 0. (5)

    Then we seek its solutions in the form

    𝑒 (πœ‰) =

    π‘š

    βˆ‘

    𝑖=0

    π‘Žπ‘–πΉπ‘–

    (πœ‰) , (6)

    where π‘Žπ‘–, 𝑖 = 0, 1, 2, . . . , π‘š, are constants to be determined,π‘š

    is a positive integer which can be evaluated by balancing thehighest order nonlinear term(s) and the highest order partialderivative of 𝑒 in (4), and𝐹(πœ‰) satisfies the following auxiliaryequation:

    𝐹

    (πœ‰) = πœŽβˆšπ‘ƒπΉ4(πœ‰) + 𝑄𝐹

    2(πœ‰) + 𝑅, (7)

    where 𝜎 = Β±1 and𝑃,𝑄, and𝑅 are constants.The last equationhence holds for 𝐹(πœ‰):

    𝐹= 2𝑃𝐹

    3+ 𝑄𝐹,

    𝐹= (6𝑃𝐹

    2+ 𝑄)𝐹

    ,

    𝐹(4)= 24𝑃

    2𝐹5+ 20𝑃𝑄𝐹

    3+ (12𝑃𝑅 + 𝑄

    2) 𝐹,

    𝐹(5)= (120𝑃

    2𝐹4+ 60𝑃𝑄𝐹

    2+ 12𝑃𝑅 + 𝑄

    2) 𝐹

    ...

    (8)

    In Appendices A and B, we present 52 types of exact solutionfor (7) (see [34–37, 43] for details). In fact, these exactsolutions can be used to construct more exact solutions for(1).

    3. New Exact Jacobian-Elliptic FunctionSolutions of the SchrΓΆdinger-KdV Equation

    The coupled Schrödinger-KdV equation

    π‘–π‘’π‘‘βˆ’ 𝑒

    π‘₯π‘₯βˆ’ 𝑒V = 0, V

    𝑑+ 6VV

    π‘₯+ V

    π‘₯π‘₯π‘₯βˆ’ (|𝑒|

    2)π‘₯= 0 (9)

    is known to describe various processes in dusty plasma, suchas Langmuir, dust-acoustic wave, and electromagnetic waves[44–47]. Exact solution of (9) was studied by many authors[48–51]. Here the 𝐹-expansion method is applied to system(9) and gives some new solutions. Let

    𝑒 = π‘’π‘–πœƒπ‘ˆ (πœ‰) , V = 𝑉 (πœ‰) ,

    πœƒ = 𝛼π‘₯ + 𝛽𝑑, πœ‰ = π‘₯ + 𝑐𝑑,

    (10)

    where 𝛼, 𝛽, and 𝑐 are constants.Substituting (10) into (9), we find that 𝑐 = 2𝛼 and 𝑉, π‘ˆ

    satisfy the following coupled nonlinear ordinary differentialsystem:

    π‘ˆ+ (𝛽 βˆ’ 𝛼

    2)π‘ˆ + π‘ˆπ‘‰ = 0,

    2𝛼𝑉+ 6𝑉𝑉

    + 𝑉

    βˆ’ (π‘ˆ

    2)

    = 0.

    (11)

    Balancing the highest nonlinear terms and the highest orderderivative terms in (11), we find π‘š = 2 and 𝑛 = 2. Therefore,we suppose that the solution of (11) can be expressed by

    π‘ˆ (πœ‰) = π‘Ž0+ π‘Ž

    1𝐹 (πœ‰) + π‘Ž

    2𝐹2

    (πœ‰) ,

    𝑉 (πœ‰) = 𝑏0+ 𝑏1𝐹 (πœ‰) + 𝑏

    2𝐹2

    (πœ‰) ,

    (12)

    where π‘Ž0, π‘Ž1, π‘Ž2, 𝑏0, 𝑏1, and 𝑏

    2are constants to be determined

    later and 𝐹(πœ‰) is a solution of ODE (7). Inserting (12) into(11) with the aid of (7), the left-hand side of (11) becomespolynomials in𝐹(πœ‰) if canceling𝐹 and setting the coefficientsof the polynomial to zero yields a set of algebraic equations,π‘Ž0, π‘Ž1, π‘Ž2, 𝑏0, 𝑏1, and 𝑏

    2. Solving the system of algebraic

    equations with the aid of Mathematica, we obtain

    π‘Ž0= 0, π‘Ž

    1= Β±2βˆšπ‘ƒ (𝑄 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽), π‘Ž

    2= 0,

    𝑏0= 𝛼

    2βˆ’ 𝛽 βˆ’ 𝑄, 𝑏

    1= 0, 𝑏

    2= βˆ’2𝑃.

    (13)

    Substituting these results into (12), we have the followingformal solution of (11):

    π‘ˆ = Β±2βˆšπ‘ƒ (𝑄 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽)𝐹 (πœ‰) ,

    𝑉 = 𝛼2βˆ’ 𝛽 βˆ’ 𝑄 βˆ’ 2𝑃𝐹

    2

    (πœ‰) , where πœ‰ = π‘₯ + 𝑐𝑑.(14)

    With the aid of Appendix A and from the formal solution of(14) along with (10), one can deduce more general combinedJacobian-elliptic function solutions of (1). Hence, the follow-ing exact solutions are obtained.

  • The Scientific World Journal 3

    Case 1. 𝑃 = π‘š2, 𝑄 = βˆ’(1 + π‘š2), 𝑅 = 1, 𝐹(πœ‰) = π‘ π‘›πœ‰,

    𝑒1= 𝑒

    π‘–πœƒ{Β±2π‘šβˆšβˆ’1 βˆ’ π‘š2 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3π›½π‘ π‘›πœ‰} ,

    V1= 𝛼

    2βˆ’ 𝛽 + 1 + π‘š

    2βˆ’ 2π‘š

    2𝑠𝑛2πœ‰.

    (15)

    Case 2. 𝑃 = π‘š2, 𝑄 = βˆ’(1 + π‘š2), 𝑅 = 1, 𝐹(πœ‰) = π‘π‘‘πœ‰,

    𝑒2= 𝑒

    π‘–πœƒ{Β±2π‘šβˆšβˆ’1 βˆ’ π‘š2 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3π›½π‘π‘‘πœ‰} ,

    V2= 𝛼

    2βˆ’ 𝛽 + 1 + π‘š

    2βˆ’ 2π‘š

    2𝑐𝑑2πœ‰.

    (16)

    Case 3. 𝑃 = βˆ’π‘š2, 𝑄 = 2π‘š2 βˆ’ 1, 𝑅 = 1 βˆ’ π‘š2, 𝐹(πœ‰) = π‘π‘›πœ‰,

    𝑒3= 𝑒

    π‘–πœƒ{Β±2π‘šβˆšβˆ’2π‘š2 + 1 + 𝛼 + 3𝛼2 βˆ’ 3π›½π‘π‘›πœ‰} ,

    V3= 𝛼

    2βˆ’ 𝛽 βˆ’ 2π‘š

    2+ 1 + 2π‘š

    2𝑐𝑛2πœ‰.

    (17)

    Case 4. 𝑃 = βˆ’1, 𝑄 = 2 βˆ’ π‘š2, 𝑅 = π‘š2 βˆ’ 1, 𝐹(πœ‰) = π‘‘π‘›πœ‰,

    𝑒4= 𝑒

    π‘–πœƒ{Β±2βˆšβˆ’2 + π‘š2 + 𝛼 + 3𝛼2 βˆ’ 3π›½π‘‘π‘›πœ‰} ,

    V4= 𝛼

    2βˆ’ 𝛽 βˆ’ 2 + π‘š

    2+ 2𝑑𝑛

    2πœ‰.

    (18)

    Case 5. 𝑃 = 1, 𝑄 = βˆ’(1 + π‘š2), 𝑅 = π‘š2, 𝐹(πœ‰) = π‘›π‘ πœ‰,

    𝑒5= 𝑒

    π‘–πœƒ{Β±2βˆšβˆ’1 βˆ’ π‘š2 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3π›½π‘›π‘ πœ‰} ,

    V5= 𝛼

    2βˆ’ 𝛽 + 1 + π‘š

    2βˆ’ 2𝑛𝑠

    2πœ‰.

    (19)

    Case 6. 𝑃 = 1, 𝑄 = βˆ’(1 + π‘š2), 𝑅 = π‘š2, 𝐹(πœ‰) = π‘‘π‘πœ‰,

    𝑒6= 𝑒

    π‘–πœƒ{Β±2βˆšβˆ’1 βˆ’ π‘š2 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3π›½π‘‘π‘πœ‰} ,

    V6= 𝛼

    2βˆ’ 𝛽 + 1 + π‘š

    2βˆ’ 2𝑑𝑐

    2πœ‰.

    (20)

    Case 7. 𝑃 = 1 βˆ’ π‘š2, 𝑄 = 2π‘š2 βˆ’ 1, 𝑅 = βˆ’π‘š2, 𝐹(πœ‰) = π‘›π‘πœ‰,

    𝑒7= 𝑒

    π‘–πœƒ{Β±2√(1 βˆ’ π‘š2) (2π‘š2 βˆ’ 1 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽)π‘›π‘πœ‰} ,

    V7= 𝛼

    2βˆ’ 𝛽 βˆ’ 2π‘š

    2+ 1 βˆ’ 2 (1 βˆ’ π‘š

    2) 𝑛𝑐

    2πœ‰.

    (21)

    Case 8. 𝑃 = π‘š2 βˆ’ 1, 𝑄 = 2 βˆ’ π‘š2, 𝑅 = βˆ’1, 𝐹(πœ‰) = π‘›π‘‘πœ‰,

    𝑒8= 𝑒

    π‘–πœƒ{Β±2√(π‘š2 βˆ’ 1) (2 βˆ’ π‘š2 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽)π‘›π‘‘πœ‰} ,

    V8= 𝛼

    2βˆ’ 𝛽 βˆ’ 2 + π‘š

    2βˆ’ 2 (π‘š

    2βˆ’ 1) 𝑛𝑑

    2πœ‰.

    (22)

    Case 9. 𝑃 = 1 βˆ’ π‘š2, 𝑄 = 2 βˆ’ π‘š2, 𝑅 = 1, 𝐹(πœ‰) = π‘ π‘πœ‰,

    𝑒9= 𝑒

    π‘–πœƒ{Β±2√(1 βˆ’ π‘š2) (2 βˆ’ π‘š2 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽)π‘ π‘πœ‰} ,

    V9= 𝛼

    2βˆ’ 𝛽 βˆ’ 2 + π‘š

    2βˆ’ 2 (1 βˆ’ π‘š

    2) 𝑠𝑐

    2πœ‰.

    (23)

    Case 10. 𝑃 = βˆ’π‘š2(1 βˆ’ π‘š2), 𝑄 = 2π‘š2 βˆ’ 1, 𝑅 = 1, 𝐹(πœ‰) = π‘ π‘‘πœ‰,

    𝑒10= 𝑒

    π‘–πœƒ{Β±2π‘šβˆš(π‘š2 βˆ’ 1) (2π‘š2 βˆ’ 1 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽)π‘ π‘‘πœ‰} ,

    V10= 𝛼

    2βˆ’ 𝛽 βˆ’ 2π‘š

    2+ 1 + 2π‘š

    2(1 βˆ’ π‘š

    2) 𝑠𝑑

    2πœ‰.

    (24)

    Case 11. 𝑃 = 1, 𝑄 = 2 βˆ’ π‘š2, 𝑅 = 1 βˆ’ π‘š2, 𝐹(πœ‰) = π‘π‘ πœ‰,

    𝑒11= 𝑒

    π‘–πœƒ{Β±2√2 βˆ’ π‘š2 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3π›½π‘π‘ πœ‰} ,

    V11= 𝛼

    2βˆ’ 𝛽 βˆ’ 2 + π‘š

    2βˆ’ 2𝑐𝑠

    2πœ‰.

    (25)

    Case 12. 𝑃 = 1, 𝑄 = 2π‘š2 βˆ’ 1, 𝑅 = βˆ’π‘š2(1 βˆ’ π‘š2), 𝐹(πœ‰) = π‘‘π‘ πœ‰,

    𝑒12= 𝑒

    π‘–πœƒ{Β±2√2π‘š2 βˆ’ 1 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3π›½π‘‘π‘ πœ‰} ,

    V12= 𝛼

    2βˆ’ 𝛽 βˆ’ 2π‘š

    2+ 1 βˆ’ 2𝑑𝑠

    2πœ‰.

    (26)

    Case 13. 𝑃 = 1/4,𝑄 = (1βˆ’2π‘š2)/2, 𝑅 = 1/4, 𝐹(πœ‰) = π‘›π‘ πœ‰Β±π‘π‘ πœ‰,

    𝑒13= 𝑒

    π‘–πœƒ{

    {

    {

    ±√1 βˆ’ 2π‘š

    2βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2(π‘›π‘ πœ‰ Β± π‘π‘ πœ‰)

    }

    }

    }

    ,

    V13=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ 1 + 2π‘š

    2βˆ’ (π‘›π‘ πœ‰ Β± π‘π‘ πœ‰)

    2

    } .

    (27)

    Case 14. 𝑃 = (1 βˆ’ π‘š2)/4, 𝑄 = (1 + π‘š2)/2, 𝑅 = (1 βˆ’ π‘š2)/4,𝐹(πœ‰) = π‘›π‘πœ‰ Β± π‘ π‘πœ‰,

    𝑒14= 𝑒

    π‘–πœƒ{

    {

    {

    ±√(1 βˆ’ π‘š

    2) (1 + π‘š

    2βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽)

    2

    Γ— (π‘›π‘πœ‰ Β± π‘ π‘πœ‰)

    }

    }

    }

    ,

    V14=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ 1 βˆ’ π‘š

    2βˆ’ (1 βˆ’ π‘š

    2) (π‘›π‘πœ‰ Β± π‘ π‘πœ‰)

    2

    } .

    (28)

    Case 15. 𝑃 = 1/4,𝑄 = (π‘š2βˆ’2)/2,𝑅 = π‘š2/4,𝐹(πœ‰) = π‘›π‘ πœ‰Β±π‘‘π‘ πœ‰,

    𝑒15= 𝑒

    π‘–πœƒ{

    {

    {

    Β±βˆšπ‘š2βˆ’ 2 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2(π‘›π‘ πœ‰ Β± π‘‘π‘ πœ‰)

    }

    }

    }

    ,

    V15=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ π‘š

    2+ 2 βˆ’ (π‘›π‘ πœ‰ Β± π‘‘π‘ πœ‰)

    2

    } .

    (29)

    Case 16. 𝑃 = π‘š2/4, 𝑄 = (π‘š2 βˆ’ 2)/2, 𝑅 = π‘š2/4, 𝐹(πœ‰) = π‘ π‘›πœ‰ Β±π‘–π‘π‘›πœ‰,

    𝑒16= 𝑒

    π‘–πœƒ{

    {

    {

    Β±π‘šβˆšπ‘š2βˆ’ 2 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2(π‘ π‘›πœ‰ Β± π‘–π‘π‘›πœ‰)

    }

    }

    }

    ,

    V16=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ π‘š

    2+ 2 βˆ’ π‘š

    2

    (π‘ π‘›πœ‰ Β± π‘–π‘π‘›πœ‰)2

    } .

    (30)

  • 4 The Scientific World Journal

    Case 17. 𝑃 = π‘š2/4, 𝑄 = (π‘š2 βˆ’ 2)/2, 𝑅 = π‘š2/4, 𝐹(πœ‰) =√1 βˆ’ π‘š2π‘ π‘‘πœ‰ Β± π‘π‘‘πœ‰,

    𝑒17= 𝑒

    π‘–πœƒ{

    {

    {

    Β±π‘šβˆšπ‘š2βˆ’ 2 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2

    Γ— (√1 βˆ’ π‘š2π‘ π‘‘πœ‰ Β± π‘π‘‘πœ‰)

    }

    }

    }

    ,

    V17=1

    2{2𝛼

    2βˆ’2𝛽 βˆ’ π‘š

    2+2 βˆ’ π‘š

    2(√1 βˆ’ π‘š2π‘ π‘‘πœ‰ Β± π‘π‘‘πœ‰)

    2

    } .

    (31)

    Case 18. 𝑃 = 1/4, 𝑄 = (1 βˆ’ π‘š2)/2, 𝑅 = 1/4, 𝐹(πœ‰) = π‘šπ‘π‘‘πœ‰ Β±π‘–βˆš1 βˆ’ π‘š2π‘›π‘‘πœ‰,

    𝑒18= 𝑒

    π‘–πœƒ{

    {

    {

    ±√1 βˆ’ π‘š

    2βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2

    Γ— (π‘šπ‘π‘‘πœ‰ Β± π‘–βˆš1 βˆ’ π‘š2π‘›π‘‘πœ‰)

    }

    }

    }

    ,

    V18=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ 1 + π‘š

    2

    βˆ’ (π‘šπ‘π‘‘πœ‰ Β± π‘–βˆš1 βˆ’ π‘š2π‘›π‘‘πœ‰)

    2

    } .

    (32)

    Case 19. 𝑃 = 1/4, 𝑄 = (1 βˆ’ 2π‘š2)/2, 𝑅 = 1/4, 𝐹(πœ‰) = π‘šπ‘ π‘›πœ‰ Β±π‘–π‘‘π‘›πœ‰,

    𝑒19= 𝑒

    π‘–πœƒ{

    {

    {

    ±√1 βˆ’ 2π‘š

    2βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2

    Γ— (π‘šπ‘ π‘›πœ‰ Β± π‘–π‘‘π‘›πœ‰)

    }

    }

    }

    ,

    V19=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ 1 + 2π‘š

    2βˆ’ (π‘šπ‘ π‘›πœ‰ Β± π‘–π‘‘π‘›πœ‰)

    2

    } .

    (33)

    Case 20. 𝑃 = 1/4, 𝑄 = (1 βˆ’ π‘š2)/2, 𝑅 = 1/4, 𝐹(πœ‰) =√1 βˆ’ π‘š2π‘ π‘πœ‰ Β± π‘–π‘‘π‘πœ‰,

    𝑒20= 𝑒

    π‘–πœƒ{

    {

    {

    ±√1 βˆ’ π‘š

    2βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2

    Γ— (√1 βˆ’ π‘š2π‘ π‘πœ‰ Β± π‘–π‘‘π‘πœ‰)

    }

    }

    }

    ,

    V20=1

    2{2𝛼

    2βˆ’2𝛽 βˆ’ 1+ π‘š

    2βˆ’(√1 βˆ’ π‘š2π‘ π‘πœ‰ Β± π‘–π‘‘π‘πœ‰)

    2

    } .

    (34)

    Case 21. 𝑃 = (π‘š2 βˆ’ 1)/4, 𝑄 = (π‘š2 + 1)/2, 𝑅 = (π‘š2 βˆ’ 1)/4,𝐹(πœ‰) = π‘šπ‘ π‘‘πœ‰ Β± π‘›π‘‘πœ‰,

    𝑒21= 𝑒

    π‘–πœƒ{

    {

    {

    ±√(π‘š

    2βˆ’ 1) (π‘š

    2+ 1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽)

    2

    Γ— (π‘šπ‘ π‘‘πœ‰ Β± π‘›π‘‘πœ‰)

    }

    }

    }

    ,

    V21=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ π‘š

    2βˆ’ 1 βˆ’ (π‘š

    2βˆ’ 1)

    Γ— (π‘šπ‘ π‘‘πœ‰ Β± π‘›π‘‘πœ‰)2

    } .

    (35)

    Case 22. 𝑃 = π‘š2/4,𝑄 = (π‘š2 βˆ’2)/2, 𝑅 = 1/4, 𝐹(πœ‰) = π‘ π‘›πœ‰/(1Β±π‘‘π‘›πœ‰),

    𝑒22= 𝑒

    π‘–πœƒ{

    {

    {

    Β±π‘šβˆšπ‘š2βˆ’ 2 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2

    π‘ π‘›πœ‰

    1 Β± π‘‘π‘›πœ‰

    }

    }

    }

    ,

    V22=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ π‘š

    2+ 2 βˆ’ π‘š

    2(

    π‘ π‘›πœ‰

    1 Β± π‘‘π‘›πœ‰)

    2

    } .

    (36)

    Case 23. 𝑃 = βˆ’1/4, 𝑄 = (π‘š2 + 1)/2, 𝑅 = (1 βˆ’ π‘š2)2/4, 𝐹(πœ‰) =π‘šπ‘π‘›πœ‰ Β± π‘‘π‘›πœ‰,

    𝑒23=π‘’π‘–πœƒ{

    {

    {

    Β±βˆšβˆ’π‘š

    2βˆ’ 1 + 2𝛼 + 6𝛼

    2βˆ’ 6𝛽

    2(π‘šπ‘π‘›πœ‰ Β± π‘‘π‘›πœ‰)

    }

    }

    }

    ,

    V23=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ π‘š

    2βˆ’ 1 + (π‘šπ‘π‘›πœ‰ Β± π‘‘π‘›πœ‰)

    2

    } .

    (37)

    Case 24. 𝑃 = (1 βˆ’ π‘š2)2/4, 𝑄 = (π‘š2 + 1)/2, 𝑅 = 1/4, 𝐹(πœ‰) =π‘‘π‘ πœ‰ Β± π‘π‘ πœ‰,

    𝑒24= 𝑒

    π‘–πœƒ{

    {

    {

    Β±(1 βˆ’ π‘š2)√

    π‘š2+ 1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2

    Γ— (π‘‘π‘ πœ‰ Β± π‘π‘ πœ‰)

    }

    }

    }

    ,

    V24=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ π‘š

    2βˆ’ 1 βˆ’ (1 βˆ’ π‘š

    2)2

    (π‘‘π‘ πœ‰ Β± π‘π‘ πœ‰)2

    } .

    (38)

  • The Scientific World Journal 5

    Case 25. 𝑃 = π‘š4(1 βˆ’π‘š2)/2(2 βˆ’π‘š2),𝑄 = 2(1 βˆ’π‘š2)/(π‘š2 βˆ’ 2),𝑅 = (1 βˆ’ π‘š

    2)/2(2 βˆ’ π‘š

    2), 𝐹(πœ‰) = π‘‘π‘πœ‰ Β± √1 βˆ’ π‘š2π‘›π‘πœ‰,

    𝑒25

    = π‘’π‘–πœƒ{Β±

    √2π‘š2

    2 βˆ’ π‘š2

    Γ— √(π‘š2 βˆ’ 1) [2 (1 βˆ’ π‘š2) + (π‘š2 βˆ’ 2) (βˆ’π›Ό βˆ’ 3𝛼2 + 3𝛽)]

    Γ— (π‘‘π‘πœ‰ Β± √1 βˆ’ π‘š2π‘›π‘πœ‰) } ,

    V25

    =1

    π‘š2 βˆ’ 2{ (π‘š

    2βˆ’ 2) (𝛼

    2βˆ’ 𝛽) + (1 βˆ’ π‘š

    2)

    Γ— [βˆ’2 + π‘š4(π‘‘π‘πœ‰ Β± √1 βˆ’ π‘š2π‘›π‘πœ‰)

    2

    ]} .

    (39)

    Case 26. 𝑃 > 0, 𝑄 < 0, 𝑅 = π‘š2𝑄2/(1 + π‘š2)2𝑃, 𝐹(πœ‰) =βˆšβˆ’π‘š2𝑄/(1 + π‘š2)𝑃𝑠𝑛(βˆšβˆ’π‘„/(1 + π‘š2)πœ‰),

    𝑒26= 𝑒

    π‘–πœƒ{

    {

    {

    Β±2π‘šβˆšπ‘„(βˆ’π‘„ + 𝛼 + 3𝛼

    2βˆ’ 3𝛽)

    1 + π‘š2

    Γ— 𝑠𝑛(βˆšβˆ’π‘„

    1 + π‘š2πœ‰)

    }

    }

    }

    ,

    V26= 𝛼

    2βˆ’ 𝛽 βˆ’ 𝑄 +

    2π‘š2𝑄

    π‘š2 + 1𝑠𝑛2(√

    βˆ’π‘„

    1 + π‘š2πœ‰) .

    (40)

    Case 27. 𝑃 < 0, 𝑄 > 0, 𝑅 = (1 βˆ’ π‘š2)𝑄2/(π‘š2 βˆ’ 2)2𝑃, 𝐹(πœ‰) =βˆšβˆ’π‘„/(2 βˆ’ π‘š2)𝑃𝑑𝑛(βˆšπ‘„/(2 βˆ’ π‘š2)πœ‰),

    𝑒27= 𝑒

    π‘–πœƒ{

    {

    {

    Β±2βˆšπ‘„(βˆ’π‘„ + 𝛼 + 3𝛼

    2βˆ’ 3𝛽)

    2 βˆ’ π‘š2

    Γ— 𝑑𝑛(βˆšπ‘„

    2 βˆ’ π‘š2πœ‰)

    }

    }

    }

    ,

    V27= 𝛼

    2βˆ’ 𝛽 βˆ’ 𝑄 +

    2𝑄

    2 βˆ’ π‘š2𝑑𝑛2(√

    𝑄

    2 βˆ’ π‘š2πœ‰) .

    (41)

    Case 28. 𝑃 < 0, 𝑄 > 0, 𝑅 = π‘š2(π‘š2 βˆ’ 1)𝑄2/(2π‘š2 βˆ’ 1)2𝑃,𝐹(πœ‰) = βˆšβˆ’π‘š2𝑄/(2π‘š2 βˆ’ 1)𝑃𝑐𝑛(βˆšπ‘„/(2π‘š2 βˆ’ 1)πœ‰),

    𝑒28= 𝑒

    π‘–πœƒ{

    {

    {

    Β±2π‘šβˆšπ‘„(βˆ’π‘„ + 𝛼 + 3𝛼

    2βˆ’ 3𝛽)

    2π‘š2 βˆ’ 1𝑐𝑛

    Γ— (βˆšπ‘„

    2π‘š2 βˆ’ 1πœ‰)

    }

    }

    }

    ,

    V28= 𝛼

    2βˆ’ 𝛽 βˆ’ 𝑄 +

    2π‘š2𝑄

    2π‘š2 βˆ’ 1𝑐𝑛2(√

    𝑄

    2π‘š2 βˆ’ 1πœ‰) .

    (42)

    Case 29. 𝑃 = 1, 𝑄 = 2 βˆ’ 4π‘š2, 𝑅 = 1, 𝐹(πœ‰) = π‘ π‘›πœ‰π‘‘π‘›πœ‰/π‘π‘›πœ‰,

    𝑒29= 𝑒

    π‘–πœƒ{Β±2√2 βˆ’ 4π‘š2 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽

    π‘ π‘›πœ‰π‘‘π‘›πœ‰

    π‘π‘›πœ‰} ,

    V29= 𝛼

    2βˆ’ 𝛽 βˆ’ 2 + 4π‘š

    2βˆ’2𝑠𝑛

    2πœ‰π‘‘π‘›

    2πœ‰

    𝑐𝑛2πœ‰.

    (43)

    Case 30. 𝑃 = π‘š2, 𝑄 = 2, 𝑅 = 1, 𝐹(πœ‰) = π‘ π‘›πœ‰π‘π‘›πœ‰/π‘‘π‘›πœ‰,

    𝑒30= 𝑒

    π‘–πœƒ{Β±2π‘šβˆš2 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽

    π‘ π‘›πœ‰π‘π‘›πœ‰

    π‘‘π‘›πœ‰} ,

    V30= 𝛼

    2βˆ’ 𝛽 βˆ’ 2 βˆ’

    2π‘š2𝑠𝑛2πœ‰π‘π‘›

    2πœ‰

    𝑑𝑛2πœ‰.

    (44)

    Case 31. 𝑃 = 1, 𝑄 = π‘š2 + 2, 𝑅 = 1 βˆ’ 2π‘š2 + π‘š4, 𝐹(πœ‰) =π‘‘π‘›πœ‰π‘π‘›πœ‰/π‘ π‘›πœ‰,

    𝑒31= 𝑒

    π‘–πœƒ{Β±2βˆšπ‘š2 + 2 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽

    π‘‘π‘›πœ‰π‘π‘›πœ‰

    π‘ π‘›πœ‰} ,

    V31= 𝛼

    2βˆ’ 𝛽 βˆ’ π‘š

    2βˆ’ 2 βˆ’

    2𝑑𝑛2πœ‰π‘π‘›

    2πœ‰

    𝑠𝑛2πœ‰.

    (45)

    Case 32. 𝑃 = 𝐴2(π‘š βˆ’ 1)2/4, 𝑄 = (π‘š2 + 1)/2 + 3π‘š, 𝑅 = (π‘š βˆ’1)2/4𝐴

    2, 𝐹(πœ‰) = π‘‘π‘›πœ‰π‘π‘›πœ‰/𝐴(1 + π‘ π‘›πœ‰)(1 + π‘šπ‘ π‘›πœ‰),

    𝑒32= 𝑒

    π‘–πœƒ{

    {

    {

    Β± (π‘š βˆ’ 1)βˆšπ‘š2+ 6π‘š + 1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2

    Γ—π‘‘π‘›πœ‰π‘π‘›πœ‰

    (1 + π‘ π‘›πœ‰) (1 + π‘šπ‘ π‘›πœ‰)

    }

    }

    }

    ,

    V32=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ π‘š

    2βˆ’ 6π‘š βˆ’ 1

    βˆ’(π‘š βˆ’ 1)

    2𝑑𝑛2πœ‰π‘π‘›

    2πœ‰

    (1 + π‘ π‘›πœ‰)2

    (1 + π‘šπ‘ π‘›πœ‰)2} .

    (46)

    Case 33. 𝑃 = 𝐴2(π‘š + 1)2/4, 𝑄 = (π‘š2 + 1)/2 βˆ’ 3π‘š, 𝑅 = (π‘š +1)2/4𝐴

    2, 𝐹(πœ‰) = π‘‘π‘›πœ‰π‘π‘›πœ‰/𝐴(1 + π‘ π‘›πœ‰)(1 βˆ’ π‘šπ‘ π‘›πœ‰),

    𝑒33= 𝑒

    π‘–πœƒ{

    {

    {

    Β± (π‘š + 1)βˆšπ‘š2βˆ’ 6π‘š + 1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2

    Γ—π‘‘π‘›πœ‰π‘π‘›πœ‰

    (1 + π‘ π‘›πœ‰) (1 βˆ’ π‘šπ‘ π‘›πœ‰)

    }

    }

    }

    ,

    V33=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ π‘š

    2+ 6π‘š βˆ’ 1

    βˆ’(π‘š + 1)

    2𝑑𝑛2πœ‰π‘π‘›

    2πœ‰

    (1 + π‘ π‘›πœ‰)2

    (1 βˆ’ π‘šπ‘ π‘›πœ‰)2} .

    (47)

  • 6 The Scientific World Journal

    Case 34. 𝑃 = βˆ’4/π‘š, 𝑄 = 6π‘š βˆ’π‘š2 βˆ’ 1, 𝑅 = βˆ’2π‘š3 + π‘š4 + π‘š2,𝐹(πœ‰) = π‘šπ‘π‘›πœ‰π‘‘π‘›πœ‰/(π‘šπ‘ π‘›

    2πœ‰ + 1),

    𝑒34= 𝑒

    π‘–πœƒ{Β±4βˆšπ‘š2 βˆ’ 6π‘š + 1 + 𝛼 + 3𝛼2 βˆ’ 3𝛽

    βˆšπ‘šπ‘π‘›πœ‰π‘‘π‘›πœ‰

    π‘šπ‘ π‘›2πœ‰ + 1} ,

    V34= 𝛼

    2βˆ’ 𝛽 + π‘š

    2βˆ’ 6π‘š + 1 +

    8π‘šπ‘π‘›2πœ‰π‘‘π‘›

    2πœ‰

    (π‘šπ‘ π‘›2πœ‰ + 1)2.

    (48)

    Case 35. 𝑃 = 4/π‘š, 𝑄 = βˆ’6π‘š βˆ’ π‘š2 βˆ’ 1, 𝑅 = 2π‘š3 + π‘š4 + π‘š2,𝐹(πœ‰) = π‘šπ‘π‘›πœ‰π‘‘π‘›πœ‰/(π‘šπ‘ π‘›

    2πœ‰ βˆ’ 1),

    𝑒35= 𝑒

    π‘–πœƒ{ Β± 4βˆšβˆ’π‘š2 βˆ’ 6π‘š βˆ’ 1 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽

    Γ—βˆšπ‘šπ‘π‘›πœ‰π‘‘π‘›πœ‰

    π‘šπ‘ π‘›2πœ‰ βˆ’ 1} ,

    V35= 𝛼

    2βˆ’ 𝛽 + π‘š

    2+ 6π‘š + 1 βˆ’

    8π‘šπ‘π‘›2πœ‰π‘‘π‘›

    2πœ‰

    (π‘šπ‘ π‘›2πœ‰ βˆ’ 1)2.

    (49)

    Case 36. 𝑃 = 1/4,𝑄 = (1 βˆ’ 2π‘š2)/2, 𝑅 = 1/4, 𝐹(πœ‰) = π‘ π‘›πœ‰/(1 Β±π‘π‘›πœ‰),

    𝑒36= 𝑒

    π‘–πœƒ{

    {

    {

    ±√1 βˆ’ 2π‘š

    2βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2

    π‘ π‘›πœ‰

    1 Β± π‘π‘›πœ‰

    }

    }

    }

    ,

    V36=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ 1 + 2π‘š

    2βˆ’

    𝑠𝑛2πœ‰

    (1 Β± π‘π‘›πœ‰)2} .

    (50)

    Case 37. 𝑃 = (1 βˆ’ π‘š2)/4, 𝑄 = (1 + π‘š2)/2, 𝑅 = (1 βˆ’ π‘š2)/4,𝐹(πœ‰) = π‘π‘›πœ‰/(1 Β± π‘ π‘›πœ‰),

    𝑒37= 𝑒

    π‘–πœƒ{

    {

    {

    ±√(1 βˆ’ π‘š

    2) (1 + π‘š

    2βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽)

    2

    Γ—π‘π‘›πœ‰

    1 Β± π‘ π‘›πœ‰} ,

    V37=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ 1 βˆ’ π‘š

    2βˆ’

    (1 βˆ’ π‘š2) 𝑐𝑛

    2πœ‰

    (1 Β± π‘ π‘›πœ‰)2} .

    (51)

    Case 38. 𝑃 = 4π‘š1, 𝑄 = 2 + 6π‘š

    1βˆ’ π‘š

    2, 𝑅 = 2 + 2π‘š1βˆ’ π‘š

    2,𝐹(πœ‰) = π‘š

    2π‘ π‘›πœ‰π‘π‘›πœ‰/(π‘š

    1βˆ’ 𝑑𝑛

    2πœ‰),

    𝑒38= 𝑒

    π‘–πœƒ{ Β± 4βˆšπ‘š

    1(2 + 6π‘š

    1βˆ’ π‘š2 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽)

    Γ—π‘š2π‘ π‘›πœ‰π‘π‘›πœ‰

    π‘š1βˆ’ 𝑑𝑛2πœ‰

    } ,

    V38= 𝛼

    2βˆ’ 𝛽 βˆ’ 2 βˆ’ 6π‘š

    1+ π‘š

    2βˆ’8π‘š

    1π‘š4𝑠𝑛2πœ‰π‘π‘›

    2πœ‰

    (π‘š1βˆ’ 𝑑𝑛2πœ‰)

    2.

    (52)

    Case 39. 𝑃 = βˆ’4π‘š1, 𝑄 = 2 βˆ’ 6π‘š

    1βˆ’ π‘š

    2, 𝑅 = 2 βˆ’ 2π‘š1βˆ’ π‘š

    2,𝐹(πœ‰) = βˆ’π‘š

    2π‘ π‘›πœ‰π‘π‘›πœ‰/(π‘š

    1+ 𝑑𝑛

    2πœ‰),

    𝑒39= 𝑒

    π‘–πœƒ{ Β± 4βˆšπ‘š

    1(βˆ’2 + 6π‘š

    1+ π‘š2 + 𝛼 + 3𝛼2 βˆ’ 3𝛽)

    Γ—π‘š2π‘ π‘›πœ‰π‘π‘›πœ‰

    π‘š1+ 𝑑𝑛2πœ‰

    } ,

    V39= 𝛼

    2βˆ’ 𝛽 βˆ’ 2 + 6π‘š

    1+ π‘š

    2+8π‘š

    1π‘š4𝑠𝑛2πœ‰π‘π‘›

    2πœ‰

    (π‘š1+ 𝑑𝑛2πœ‰)

    2.

    (53)

    Case 40. 𝑃 = (2βˆ’π‘š2 βˆ’2π‘š1)/4,𝑄 = π‘š2/2βˆ’1βˆ’3π‘š

    1, 𝑅 = (2βˆ’

    π‘š2βˆ’2π‘š

    1)/4, 𝐹(πœ‰) = π‘š2π‘ π‘›πœ‰π‘π‘›πœ‰/(𝑠𝑛2πœ‰+ (1+π‘š

    1)π‘‘π‘›πœ‰βˆ’1βˆ’π‘š

    1),

    𝑒40

    = π‘’π‘–πœƒ{

    {

    {

    ±√(2 βˆ’ π‘š

    2βˆ’ 2π‘š

    1) (π‘š

    2βˆ’ 2 βˆ’ 6π‘š

    1βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽)

    2

    Γ—π‘š2π‘ π‘›πœ‰π‘π‘›πœ‰

    𝑠𝑛2πœ‰ + (1 + π‘š1) π‘‘π‘›πœ‰ βˆ’ 1 βˆ’ π‘š

    1

    }

    }

    }

    ,

    V40=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ π‘š

    2+ 2 + 6π‘š

    1

    βˆ’π‘š4(2 βˆ’ π‘š

    2βˆ’ 2π‘š

    1) 𝑠𝑛

    2πœ‰π‘π‘›

    2πœ‰

    [𝑠𝑛2πœ‰ + (1 + π‘š1) π‘‘π‘›πœ‰ βˆ’ 1 βˆ’ π‘š

    1]2} .

    (54)

    Case 41. 𝑃 = (2βˆ’π‘š2 +2π‘š1)/4,𝑄 = π‘š2/2 βˆ’ 1+ 3π‘š

    1, 𝑅 = (2βˆ’

    π‘š2+2π‘š

    1)/4,𝐹(πœ‰) = π‘š2π‘ π‘›πœ‰π‘π‘›πœ‰/(𝑠𝑛2πœ‰+(βˆ’1+π‘š

    1)π‘‘π‘›πœ‰βˆ’1βˆ’π‘š

    1),

    𝑒41

    = π‘’π‘–πœƒ{

    {

    {

    ±√(2 βˆ’ π‘š

    2+ 2π‘š

    1) (π‘š

    2βˆ’ 2 + 6π‘š

    1βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽)

    2

    Γ—π‘š2π‘ π‘›πœ‰π‘π‘›πœ‰

    𝑠𝑛2πœ‰ + (βˆ’1 + π‘š1) π‘‘π‘›πœ‰ βˆ’ 1 βˆ’ π‘š

    1

    }

    }

    }

    ,

    V41=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ π‘š

    2+ 2 βˆ’ 6π‘š

    1

    βˆ’π‘š4(2 βˆ’ π‘š

    2+ 2π‘š

    1) 𝑠𝑛

    2πœ‰π‘π‘›

    2πœ‰

    [𝑠𝑛2πœ‰ + (βˆ’1 + π‘š1) π‘‘π‘›πœ‰ βˆ’ 1 βˆ’ π‘š

    1]2} .

    (55)

    Case 42. 𝑃 = (𝐢2π‘š4βˆ’(𝐡2+𝐢2)π‘š2+𝐡2)/4,𝑄 = (π‘š2+1)/2,𝑅 =(π‘š2βˆ’ 1)/4(𝐢

    2π‘š2βˆ’ 𝐡

    2), 𝐹(πœ‰) = (√(𝐡2 βˆ’ 𝐢2)/(𝐡2 βˆ’ 𝐢2π‘š2) +

    π‘ π‘›πœ‰)/(π΅π‘π‘›πœ‰ + πΆπ‘‘π‘›πœ‰),

  • The Scientific World Journal 7

    𝑒42

    = π‘’π‘–πœƒ

    {{

    {{

    {

    ±√[𝐢2π‘š4βˆ’ (𝐡

    2+ 𝐢

    2)π‘š

    2+ 𝐡

    2] (π‘š

    2+ 1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽)

    2

    Γ—

    √(𝐡2βˆ’ 𝐢

    2) / (𝐡

    2βˆ’ 𝐢

    2π‘š2) + π‘ π‘›πœ‰

    π΅π‘π‘›πœ‰ + πΆπ‘‘π‘›πœ‰

    }}

    }}

    }

    ,

    V42=1

    2

    {{

    {{

    {

    2𝛼2βˆ’ 2𝛽 βˆ’ π‘š

    2βˆ’ 1 βˆ’ [𝐢

    2π‘š4βˆ’ (𝐡

    2+ 𝐢

    2)π‘š

    2+ 𝐡

    2]

    Γ— (

    √(𝐡2βˆ’ 𝐢

    2) / (𝐡

    2βˆ’ 𝐢

    2π‘š2) + π‘ π‘›πœ‰

    π΅π‘π‘›πœ‰ + πΆπ‘‘π‘›πœ‰

    )

    2

    }}

    }}

    }

    .

    (56)

    Case 43. 𝑃 = (𝐡2 + 𝐢2π‘š2)/4, 𝑄 = 1/2 βˆ’ π‘š2, 𝑅 =1/4(𝐡

    2+ 𝐢

    2π‘š2), 𝐹(πœ‰) = (√(𝐢2π‘š2 + 𝐡2 βˆ’ 𝐢2)/(𝐡2 + 𝐢2π‘š2) +

    π‘π‘›πœ‰)/(π΅π‘ π‘›πœ‰ + πΆπ‘‘π‘›πœ‰),

    𝑒43= 𝑒

    π‘–πœƒ

    {{

    {{

    {

    ±√(𝐡2+ 𝐢

    2π‘š2) (1 βˆ’ 2π‘š

    2βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽)

    2

    Γ—

    √(𝐢2π‘š2 + 𝐡2 βˆ’ 𝐢2) / (𝐡2 + 𝐢2π‘š2) + π‘π‘›πœ‰

    π΅π‘ π‘›πœ‰ + πΆπ‘‘π‘›πœ‰

    }}

    }}

    }

    ,

    V43=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ 1 + 2π‘š

    2βˆ’ (𝐡

    2+ 𝐢

    2π‘š2)

    Γ—(√(𝐢2π‘š2 + 𝐡2 βˆ’ 𝐢2)/(𝐡2 + 𝐢2π‘š2) + π‘π‘›πœ‰

    π΅π‘ π‘›πœ‰ + πΆπ‘‘π‘›πœ‰)

    2

    } .

    (57)

    Case 44. 𝑃 = (𝐡2 +𝐢2)/4,𝑄 = π‘š2/2 βˆ’ 1, 𝑅 = π‘š4/4(𝐡2 +𝐢2),𝐹(πœ‰) = (√(𝐡2 + 𝐢2 βˆ’ 𝐢2π‘š2)/(𝐡2 + 𝐢2)+π‘‘π‘›πœ‰)/(π΅π‘ π‘›πœ‰+πΆπ‘π‘›πœ‰),

    𝑒44= 𝑒

    π‘–πœƒ{

    {

    {

    ±√(𝐡2+ 𝐢

    2) (π‘š

    2βˆ’ 2 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽)

    2

    Γ—

    √(𝐡2 + 𝐢2 βˆ’ 𝐢2π‘š2) / (𝐡2 + 𝐢2) + π‘‘π‘›πœ‰

    π΅π‘ π‘›πœ‰ + πΆπ‘π‘›πœ‰

    }}

    }}

    }

    ,

    V44=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ π‘š

    2+ 2 βˆ’ (𝐡

    2+ 𝐢

    2)

    Γ— (√(𝐡2 + 𝐢2 βˆ’ 𝐢2π‘š2)/(𝐡2 + 𝐢2) + π‘‘π‘›πœ‰

    π΅π‘ π‘›πœ‰ + πΆπ‘π‘›πœ‰)

    2

    } .

    (58)

    Case 45. 𝑃 = βˆ’(π‘š2 + 2π‘š + 1)𝐡2, 𝑄 = 2π‘š2 + 2, 𝑅 = (2π‘š βˆ’π‘š2βˆ’ 1)/𝐡

    2, 𝐹(πœ‰) = (π‘šπ‘ π‘›2πœ‰ βˆ’ 1)/𝐡(π‘šπ‘ π‘›2πœ‰ + 1),

    𝑒45= 𝑒

    π‘–πœƒ{ Β± 2 (π‘š + 1)βˆšβˆ’2π‘š

    2 βˆ’ 2 + 𝛼 + 3𝛼2 βˆ’ 3𝛽

    Γ—π‘šπ‘ π‘›

    2πœ‰ βˆ’ 1

    π‘šπ‘ π‘›2πœ‰ + 1} ,

    V45= 𝛼

    2βˆ’ 𝛽 βˆ’ 2π‘š

    2βˆ’ 2 + 2(π‘š + 1)

    2

    Γ— (π‘šπ‘ π‘›

    2πœ‰ βˆ’ 1

    π‘šπ‘ π‘›2πœ‰ + 1)

    2

    .

    (59)

    Case 46. 𝑃 = βˆ’(π‘š2 βˆ’ 2π‘š + 1)𝐡2, 𝑄 = 2π‘š2 + 2, 𝑅 = βˆ’(2π‘š +π‘š2+ 1)/𝐡

    2, 𝐹(πœ‰) = (π‘šπ‘ π‘›2πœ‰ + 1)/𝐡(π‘šπ‘ π‘›2πœ‰ βˆ’ 1),

    𝑒46= 𝑒

    π‘–πœƒ{ Β± 2 (π‘š βˆ’ 1)βˆšβˆ’2π‘š

    2 βˆ’ 2 + 𝛼 + 3𝛼2 βˆ’ 3𝛽

    Γ—π‘šπ‘ π‘›

    2πœ‰ + 1

    π‘šπ‘ π‘›2πœ‰ βˆ’ 1} ,

    V46= 𝛼

    2βˆ’ 𝛽 βˆ’ 2π‘š

    2βˆ’ 2 + 2(π‘š βˆ’ 1)

    2

    Γ— (π‘šπ‘ π‘›

    2πœ‰ + 1

    π‘šπ‘ π‘›2πœ‰ βˆ’ 1)

    2

    .

    (60)

    We note that there is much duplication in the list of 46solutions in terms of Jacobian-elliptic functions. Here aresome examples; using the well-known identities relatingJacobian-elliptic functions (see 121.00, 129.01, 129.02, and129.03 in [52], e.g.) reveals that 𝑒

    1, 𝑒3, and 𝑒

    4are identical;

    V1, V3, and V

    4are identical; 𝑒

    2, 𝑒8, and 𝑒

    10are identical; V

    2,

    V8, and V

    10are identical; 𝑒

    5, 𝑒11, and 𝑒

    12are identical; V

    5, V11,

    and V12

    are identical; 𝑒6, 𝑒7, and 𝑒

    9are identical; V

    6, V7, and

    V9are identical. Use of 162.01 in [52] reveals that 𝑒

    27and 𝑒

    28

    are equivalent and V27and V

    28are equivalent.

    4. The New Weierstrass-Elliptic FunctionSolutions of the SchrΓΆdinger-KdV Equation

    On using the solutions given in [43], mentioned inAppendix B, and from the formal solution (14) along with(10), we get then the following exact solutions.

    Case 47. 𝑔2= (4/3)(𝑄

    2βˆ’ 3𝑃𝑅), 𝑔

    3= (4𝑄/27)(βˆ’2𝑄

    2+ 9𝑃𝑅),

    𝐹(πœ‰) = √(1/𝑃)[β„˜(πœ‰; 𝑔2, 𝑔3) βˆ’ (1/3)𝑄],

    𝑒47= 𝑒

    π‘–πœƒ{ Β± 2βˆšπ‘ƒ (𝑄 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽)

    Γ—βˆš1

    𝑃[β„˜ (πœ‰; 𝑔

    2, 𝑔3) βˆ’

    1

    3𝑄]} ,

    V47= 𝛼

    2βˆ’ 𝛽 βˆ’ 𝑄 βˆ’ 2 [β„˜ (πœ‰; 𝑔

    2, 𝑔3) βˆ’

    1

    3𝑄] .

    (61)

  • 8 The Scientific World Journal

    Case 48. 𝑔2= (4/3)(𝑄

    2βˆ’ 3𝑃𝑅), 𝑔

    3= (4𝑄/27)(βˆ’2𝑄

    2+ 9𝑃𝑅),

    𝐹(πœ‰) = √3𝑅/(3β„˜(πœ‰; 𝑔2, 𝑔3) βˆ’ 𝑄),

    𝑒48= 𝑒

    π‘–πœƒ{ Β± 2βˆšπ‘ƒ (𝑄 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽)

    Γ— √3𝑅

    3β„˜ (πœ‰; 𝑔2, 𝑔3) βˆ’ 𝑄

    } ,

    V48= 𝛼

    2βˆ’ 𝛽 βˆ’ 𝑄 βˆ’

    6𝑃𝑅

    3β„˜ (πœ‰; 𝑔2, 𝑔3) βˆ’ 𝑄

    .

    (62)

    Case 49. 𝑔2= βˆ’(5𝑄𝐷 + 4𝑄

    2+ 33𝑃𝑄𝑅)/12, 𝑔

    3= (21𝑄

    2

    𝐷 βˆ’ 63𝑃𝑅𝐷 + 20𝑄3βˆ’ 27𝑃𝑄𝑅)/216, 𝐹(πœ‰) =

    √12π‘…β„˜(πœ‰; 𝑔2, 𝑔3) + 2𝑅(2𝑄 + 𝐷)/(12β„˜(πœ‰; 𝑔

    2, 𝑔3) + 𝐷),

    𝑒49= 𝑒

    π‘–πœƒ

    {{

    {{

    {

    Β± 2βˆšπ‘ƒ (𝑄 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽)

    Γ—

    √12π‘…β„˜ (πœ‰; 𝑔2, 𝑔3) + 2𝑅 (2𝑄 + 𝐷)

    12β„˜ (πœ‰; 𝑔2, 𝑔3) + 𝐷

    }}

    }}

    }

    ,

    V49= 𝛼

    2βˆ’ 𝛽 βˆ’ 𝑄

    βˆ’4𝑃𝑅 [6β„˜ (πœ‰; 𝑔

    2, 𝑔3) + 2𝑄 + 𝐷]

    [12β„˜ (πœ‰; 𝑔2, 𝑔3) + 𝐷]

    2.

    (63)

    Case 50. 𝑔2= (1/12)𝑄

    2+ 𝑃𝑅, 𝑔

    3= (1/216)𝑄(36𝑃𝑅 βˆ’ 𝑄

    2),

    𝐹(πœ‰) = βˆšπ‘…[6β„˜(πœ‰; 𝑔2, 𝑔3) + 𝑄]/3β„˜

    (πœ‰; 𝑔

    2, 𝑔3),

    𝑒50= 𝑒

    π‘–πœƒ{ Β± 2βˆšπ‘ƒπ‘… (𝑄 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽)

    Γ—6β„˜ (πœ‰; 𝑔

    2, 𝑔3) + 𝑄

    3β„˜ (πœ‰; 𝑔2, 𝑔3)} ,

    V50= 𝛼

    2βˆ’ 𝛽 βˆ’ 𝑄 βˆ’

    2𝑃𝑅[6β„˜ (πœ‰; 𝑔2, 𝑔3) + 𝑄]

    2

    9[β„˜ (πœ‰; 𝑔2, 𝑔3)]2

    .

    (64)

    Case 51. 𝑔2= (1/12)𝑄

    2+ 𝑃𝑅, 𝑔

    3= (1/216)𝑄(36𝑃𝑅 βˆ’ 𝑄

    2),

    𝐹(πœ‰) = 3β„˜(πœ‰; 𝑔

    2, 𝑔3)/βˆšπ‘ƒ[6β„˜(πœ‰; 𝑔

    2, 𝑔3) + 𝑄],

    𝑒51= 𝑒

    π‘–πœƒ{Β±2βˆšπ‘„ βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽

    3β„˜(πœ‰; 𝑔

    2, 𝑔3)

    6β„˜ (πœ‰; 𝑔2, 𝑔3) + 𝑄

    } ,

    V51= 𝛼

    2βˆ’ 𝛽 βˆ’ 𝑄 βˆ’

    18[β„˜(πœ‰; 𝑔

    2, 𝑔3)]2

    [6β„˜ (πœ‰; 𝑔2, 𝑔3) + 𝑄]

    2.

    (65)

    Case 52. 𝑅 = 5𝑄2/36𝑃, 𝑔2= 2𝑄

    2/9, 𝑔

    3= 𝑄

    3/54, 𝐹(πœ‰) =

    π‘„βˆšβˆ’15𝑄/2π‘ƒβ„˜(πœ‰; 𝑔2, 𝑔3)/(3β„˜(πœ‰; 𝑔

    2, 𝑔3) + 𝑄),

    𝑒52= 𝑒

    π‘–πœƒ{ Β± 2βˆšπ‘ƒ (𝑄 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽)

    Γ—π‘„βˆšβˆ’15𝑄/2π‘ƒβ„˜ (πœ‰; 𝑔

    2, 𝑔3)

    3β„˜ (πœ‰; 𝑔2, 𝑔3) + 𝑄

    } ,

    V52= 𝛼

    2βˆ’ 𝛽 βˆ’ 𝑄 +

    15𝑄3β„˜2(πœ‰; 𝑔

    2, 𝑔3)

    [3β„˜ (πœ‰; 𝑔2, 𝑔3) + 𝑄]

    2.

    (66)

    It should be noted that any solution that can be expressed interms of aWeierstrass-elliptic function can be also convertedinto a solution in terms of a Jacobian-elliptic function (formore details, see [53]). Consequently, Cases 47–52 are alreadycovered in Cases 1–46. For example, using 1031.01 in [52]reveals that, with the 𝑃, 𝑄, and 𝑅 values for Case 1, 𝑒

    1and

    𝑒48are identical and V

    1and V

    48are identical.

    5. New Soliton-Like Solutions of theSchrΓΆdinger-KdV Equation

    Some soliton-like solutions of (1) can be obtained in thelimited case when the modulus π‘š β†’ 1 (see Appendix C),as follows:

    𝑒1= 𝑒

    π‘–πœƒ{Β±2βˆšβˆ’2 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽tanhπœ‰} ,

    V1= 𝛼

    2βˆ’ 𝛽 + 2sech2πœ‰,

    𝑒3= 𝑒

    π‘–πœƒ{Β±2βˆšβˆ’1 + 𝛼 + 3𝛼2 βˆ’ 3𝛽sechπœ‰} ,

    V3= 𝛼

    2βˆ’ 𝛽 βˆ’ 1 + 2sech2πœ‰,

    𝑒5= 𝑒

    π‘–πœƒ{Β±2βˆšβˆ’2 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽cothπœ‰} ,

    V5= 𝛼

    2βˆ’ 𝛽 βˆ’ 2csch2πœ‰,

    𝑒11= 𝑒

    π‘–πœƒ{Β±2√1 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽cschπœ‰} ,

    V11= 𝛼

    2βˆ’ 𝛽 βˆ’ 1 βˆ’ 2csch2πœ‰,

    𝑒13= 𝑒

    π‘–πœƒ{

    {

    {

    Β±βˆšβˆ’1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2(coth πœ‰ Β± cschπœ‰)

    }

    }

    }

    ,

    V13=1

    2{2𝛼

    2βˆ’ 2𝛽 + 1 βˆ’ (coth πœ‰ Β± cschπœ‰)2} ,

    𝑒16= 𝑒

    π‘–πœƒ{

    {

    {

    Β±βˆšβˆ’1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2(tanhπœ‰ Β± 𝑖sechπœ‰)

    }

    }

    }

    ,

    V16=1

    2{2𝛼

    2βˆ’ 2𝛽 + 1 βˆ’ (tanhπœ‰ Β± 𝑖𝑠echπœ‰)2} ,

  • The Scientific World Journal 9

    𝑒22= 𝑒

    π‘–πœƒ{

    {

    {

    Β±βˆšβˆ’1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2

    tanhπœ‰1 Β± sechπœ‰

    }

    }

    }

    ,

    V22=1

    2{2𝛼

    2βˆ’ 2𝛽 + 1 βˆ’ (

    tanhπœ‰1 Β± sechπœ‰

    )

    2

    } ,

    𝑒23= 𝑒

    π‘–πœƒ{Β±2βˆšβˆ’1 + 𝛼 + 3𝛼2 βˆ’ 3𝛽sechπœ‰} ,

    V23= 𝛼

    2βˆ’ 𝛽 βˆ’ 1 + 2sech2πœ‰,

    𝑒26= 𝑒

    π‘–πœƒ{

    {

    {

    Β±2βˆšπ‘„(βˆ’π‘„ + 𝛼 + 3𝛼

    2βˆ’ 3𝛽)

    2tanh(βˆšβˆ’π‘„

    2πœ‰)

    }

    }

    }

    ,

    V26= 𝛼

    2βˆ’ 𝛽 βˆ’ 𝑄sech2 (βˆšβˆ’π‘„

    2πœ‰) ,

    𝑒27= 𝑒

    π‘–πœƒ{Β±2βˆšπ‘„ (βˆ’π‘„ + 𝛼 + 3𝛼2 βˆ’ 3𝛽)sech (βˆšπ‘„πœ‰)} ,

    V27= 𝛼

    2βˆ’ 𝛽 βˆ’ 𝑄 [1 βˆ’ 2sech2 (βˆšπ‘„πœ‰)] ,

    𝑒30= 𝑒

    π‘–πœƒ{Β±2√2 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽tanhπœ‰} ,

    V30= 𝛼

    2βˆ’ 𝛽 βˆ’ 2 (2 βˆ’ sech2πœ‰) ,

    𝑒31= 𝑒

    π‘–πœƒ{Β±2√3 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽sechπœ‰cschπœ‰} ,

    V31= 𝛼

    2βˆ’ 𝛽 βˆ’ 3 βˆ’ 2(sechπœ‰cschπœ‰)2,

    𝑒34= 𝑒

    π‘–πœƒ{Β±4βˆšβˆ’4 + 𝛼 + 3𝛼2 βˆ’ 3𝛽

    sech2πœ‰1 + tanh2πœ‰

    } ,

    V34= 𝛼

    2βˆ’ 𝛽 βˆ’ 4 +

    8sech4πœ‰

    (1 + tanh2πœ‰)2,

    𝑒40= 𝑒

    π‘–πœƒ{

    {

    {

    ±√(βˆ’1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2)1 + sechπœ‰1 βˆ’ sechπœ‰

    }

    }

    }

    ,

    V40=1

    2{2𝛼

    2βˆ’ 2𝛽 + 1 βˆ’

    1 + sechπœ‰1 βˆ’ sechπœ‰

    } ,

    𝑒41= 𝑒

    π‘–πœƒ{

    {

    {

    ±√(βˆ’1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2)1 βˆ’ sechπœ‰1 + sechπœ‰

    }

    }

    }

    ,

    V41=1

    2{2𝛼

    2βˆ’ 2𝛽 + 1 βˆ’

    1 βˆ’ sechπœ‰1 + sechπœ‰

    } ,

    𝑒43= 𝑒

    π‘–πœƒ{

    {

    {

    Β±βˆšβˆ’1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2

    𝐡 + √𝐡2 + 𝐢2sechπœ‰π΅tanhπœ‰ + 𝐢sechπœ‰

    }

    }

    }

    ,

    V43=1

    2{2𝛼

    2βˆ’ 2𝛽 + 1 βˆ’ (

    𝐡 + √𝐡2 + 𝐢2sechπœ‰π΅tanhπœ‰ + 𝐢sechπœ‰

    )

    2

    } .

    (67)

    Here, it should be noted that each exact solution given in (67)can be split into two solutions if one chooses the (+ve) and(βˆ’ve) signs, respectively, but they have not been calculated.Also, all the exact solutions given by (67) can be verifiedby substitution. The main feature for some of these exactsolutions is the inclusion of the free parameters 𝑄, 𝐡, and 𝐢.

    6. New Trigonometric-Function Solutions ofthe SchrΓΆdinger-KdV Equation

    Some trigonometric-function solutions of (1) can be obtainedin the limited case when the modulusπ‘š β†’ 0. For example,

    𝑒5= 𝑒

    π‘–πœƒ{Β±2βˆšβˆ’1 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽cscπœ‰} ,

    V5= 𝛼

    2βˆ’ 𝛽 + 1 βˆ’ 2csc2πœ‰,

    𝑒6= 𝑒

    π‘–πœƒ{Β±2βˆšβˆ’1 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽secπœ‰} ,

    V6= 𝛼

    2βˆ’ 𝛽 + 1 βˆ’ 2sec2πœ‰,

    𝑒9= 𝑒

    π‘–πœƒ{Β±2√2 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽tanπœ‰} ,

    V9= 𝛼

    2βˆ’ 𝛽 βˆ’ 2sec2πœ‰,

    𝑒11= 𝑒

    π‘–πœƒ{Β±2√2 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽cotπœ‰} ,

    V11= 𝛼

    2βˆ’ 𝛽 βˆ’ 2csc2πœ‰,

    𝑒13= 𝑒

    π‘–πœƒ{

    {

    {

    ±√1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2(cscπœ‰ Β± cotπœ‰)

    }

    }

    }

    ,

    V13=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ 1 βˆ’ (cscπœ‰ Β± cotπœ‰)2} ,

    𝑒14= 𝑒

    π‘–πœƒ{

    {

    {

    ±√1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2(secπœ‰ Β± tanπœ‰)

    }

    }

    }

    ,

    V14=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ 1 βˆ’ (secπœ‰ Β± tan πœ‰)2} ,

    𝑒24= 𝑒

    π‘–πœƒ{

    {

    {

    ±√1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2(cscπœ‰ Β± cotπœ‰)

    }

    }

    }

    ,

    V24=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ 1 + (cscπœ‰ Β± cotπœ‰)2} ,

    𝑒32= 𝑒

    π‘–πœƒ{

    {

    {

    ±√1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2(secπœ‰ βˆ’ tanπœ‰)

    }

    }

    }

    ,

    V32= 𝛼

    2βˆ’ 𝛽 βˆ’ secπœ‰ (secπœ‰ βˆ’ tanπœ‰) ,

    𝑒36= 𝑒

    π‘–πœƒ{

    {

    {

    ±√1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2(cscπœ‰ Β± cotπœ‰)

    }

    }

    }

    ,

  • 10 The Scientific World Journal

    V36=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ 1 βˆ’ (cscπœ‰ Β± cotπœ‰)2} ,

    𝑒37= 𝑒

    π‘–πœƒ{

    {

    {

    ±√1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2(secπœ‰ Β± tanπœ‰)

    }

    }

    }

    ,

    V37=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ 1 βˆ’ (secπœ‰ Β± tanπœ‰)2} ,

    𝑒42= 𝑒

    π‘–πœƒ{

    {

    {

    ±√1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2

    √𝐡2 βˆ’ 𝐢2 + 𝐡sinπœ‰π΅cosπœ‰ + 𝐢

    }

    }

    }

    ,

    V42=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ 1 βˆ’ (

    √𝐡2 βˆ’ 𝐢2 + 𝐡sinπœ‰π΅cosπœ‰ + 𝐢

    )

    2

    } ,

    𝑒43= 𝑒

    π‘–πœƒ{

    {

    {

    ±√1 βˆ’ 2𝛼 βˆ’ 6𝛼

    2+ 6𝛽

    2

    √𝐡2 βˆ’ 𝐢2 + 𝐡cosπœ‰π΅sinπœ‰ + 𝐢

    }

    }

    }

    ,

    V43=1

    2{2𝛼

    2βˆ’ 2𝛽 βˆ’ 1 βˆ’ (

    √𝐡2 βˆ’ 𝐢2 + 𝐡cosπœ‰π΅sinπœ‰ + 𝐢

    )

    2

    } ,

    𝑒44= 𝑒

    π‘–πœƒ{Β±βˆšβˆ’1 βˆ’ 𝛼 βˆ’ 3𝛼2 + 3𝛽

    2√𝐡2 + 𝐢2

    𝐡sinπœ‰ + 𝐢cosπœ‰} ,

    V44= 𝛼

    2βˆ’ 𝛽 + 1 βˆ’

    2 (𝐡2+ 𝐢

    2)

    (𝐡sinπœ‰ + 𝐢cosπœ‰)2.

    (68)

    Here, we note also that each trigonometric-function solutionobtained in this section can split into two solutions if wechoose the (+ve) and (βˆ’ve) signs, respectively. Besides, allthese solutions can be verified by direct substitution. Also, themain feature for some of these exact solutions is the inclusionof the free parameters 𝑄, 𝐡, and 𝐢.

    7. Conclusion

    In this paper, the 𝐹-expansion method has been applied toconstruct 52 types of exact solution of the the Schrödinger-KdV equation. The main advantage of this method overother methods is that it possesses all types of exact solu-tion, including those of Jacobian-elliptic and Weierstrass-elliptic functions. Moreover, the soliton-like solutions andtrigonometric-function solutions have been also obtained asthe modulus π‘š of Jacobi-elliptic function approaches to 1and 0. It can be said that the results in this paper providegood supplements to the existing literature and are useful fordescribing certain nonlinear phenomena.Thismethod can beapplied to many other nonlinear evolution equations. Finally,it is worthwhile to mention that the proposed method is alsoa straightforward, short, promising, and powerful methodfor other nonlinear evolution equations in mathematicalphysics.

    Appendices

    A. Relations between Values of (𝑃, 𝑄, 𝑅) andCorresponding 𝐹(πœ‰) in (7)

    Relations between values of (𝑃,𝑄,𝑅) and corresponding𝐹(πœ‰)in (7), where 𝐴, 𝐡, and 𝐢 are arbitrary constants and π‘š

    1=

    √1 βˆ’ π‘š2. As shown in Table 1.

    B. The Weierstrass-Elliptic Function Solutionsfor (7)

    The Weierstrass-elliptic function solutions for (7), where𝐷 = (1/2)(βˆ’5𝑄 Β± √9𝑄2 βˆ’ 36𝑃𝑅) and β„˜(πœ‰; 𝑔

    2, 𝑔3) =

    π‘‘β„˜(πœ‰; 𝑔2, 𝑔3)/π‘‘πœ‰. As shown in Table 2.

    C. Relations between Jacobian-EllipticFunctions and Hyperbolic Functions

    The Jacobian-elliptic functions degenerate into hyperbolicfunctions whenπ‘š β†’ 1 as follows:π‘ π‘›πœ‰ β†’ tanhπœ‰, π‘π‘›πœ‰ β†’ sechπœ‰, π‘‘π‘›πœ‰ β†’ sechπœ‰,

    π‘ π‘πœ‰ β†’ sinhπœ‰, π‘ π‘‘πœ‰ β†’ sinhπœ‰, π‘π‘‘πœ‰ β†’ 1,

    π‘›π‘ πœ‰ β†’ coth πœ‰, π‘›π‘πœ‰ β†’ coshπœ‰, π‘›π‘‘πœ‰ β†’ coshπœ‰,

    π‘π‘ πœ‰ β†’ cschπœ‰, π‘‘π‘ πœ‰ β†’ cschπœ‰, π‘‘π‘πœ‰ β†’ 1.(C.1)

    The Jacobian-elliptic functions degenerate into trigono-metric functions whenπ‘š β†’ 0 as follows:π‘ π‘›πœ‰ β†’ sinπœ‰, π‘π‘›πœ‰ β†’ cosπœ‰, π‘‘π‘›πœ‰ β†’ 1,

    π‘ π‘πœ‰ β†’ tanπœ‰, π‘ π‘‘πœ‰ β†’ sinπœ‰, π‘π‘‘πœ‰ β†’ cos πœ‰,

    π‘›π‘ πœ‰ β†’ cscπœ‰, π‘›π‘πœ‰ β†’ secπœ‰, π‘›π‘‘πœ‰ β†’ 1,

    π‘π‘ πœ‰ β†’ cotπœ‰, π‘‘π‘ πœ‰ β†’ cscπœ‰, π‘‘π‘πœ‰ β†’ secπœ‰.

    (C.2)

    D. Some Trigonometric and HyperbolicIdentities

    Consider the following:

    coth πœƒ βˆ’ cschπœƒ = tanh πœƒ2, cscπœƒ βˆ’ cotπœƒ = tan πœƒ

    2,

    coth πœƒ + cschπœƒ = coth πœƒ2, cscπœƒ + cotπœƒ = cotπœƒ

    2,

    tanh πœƒ + 𝑖sechπœƒ = tanh [12(πœƒ +

    π‘–πœ‹

    2)] ,

    secπœƒ + tan πœƒ = tan [12(πœƒ +

    πœ‹

    2)] ,

    tanh πœƒ βˆ’ 𝑖sechπœƒ = coth [12(πœƒ +

    π‘–πœ‹

    2)] ,

    secπœƒ βˆ’ tan πœƒ = cot [12(πœƒ +

    πœ‹

    2)] .

    (D.1)

  • The Scientific World Journal 11

    Table 1

    Case 𝑃 𝑄 𝑅 𝐹(πœ‰)

    1 π‘š2

    βˆ’(1 + π‘š2) 1 π‘ π‘›πœ‰

    2 π‘š2

    βˆ’(1 + π‘š2) 1 π‘π‘‘πœ‰ =

    π‘π‘›πœ‰

    π‘‘π‘›πœ‰

    3 βˆ’π‘š2

    2π‘š2βˆ’ 1 1 βˆ’ π‘š

    2π‘π‘›πœ‰

    4 βˆ’1 2 βˆ’ π‘š2

    π‘š2βˆ’ 1 π‘‘π‘›πœ‰

    5 1 βˆ’(1 + π‘š2) π‘š

    2π‘›π‘ πœ‰ = (π‘ π‘›πœ‰)

    βˆ’1

    6 1 βˆ’(1 + π‘š2) π‘š

    2π‘‘π‘πœ‰ =

    π‘‘π‘›πœ‰

    π‘π‘›πœ‰

    7 1 βˆ’ π‘š2

    2π‘š2βˆ’ 1 βˆ’π‘š

    2π‘›π‘πœ‰ = (π‘π‘›πœ‰)

    βˆ’1

    8 π‘š2βˆ’ 1 2 βˆ’ π‘š

    2βˆ’1 π‘›π‘‘πœ‰ = (π‘‘π‘›πœ‰)

    βˆ’1

    9 1 βˆ’ π‘š2

    2 βˆ’ π‘š2

    1 π‘ π‘πœ‰ =π‘ π‘›πœ‰

    π‘π‘›πœ‰

    10 βˆ’π‘š2(1 βˆ’ π‘š

    2) 2π‘š

    2βˆ’ 1 1 π‘ π‘‘πœ‰ =

    π‘ π‘›πœ‰

    π‘‘π‘›πœ‰

    11 1 2 βˆ’ π‘š2

    1 βˆ’ π‘š2

    π‘π‘ πœ‰ =π‘π‘›πœ‰

    π‘ π‘›πœ‰

    12 1 2π‘š2βˆ’ 1 βˆ’π‘š

    2(1 βˆ’ π‘š

    2) π‘‘π‘ πœ‰ =

    π‘‘π‘›πœ‰

    π‘ π‘›πœ‰

    131

    4

    1 βˆ’ 2π‘š2

    2

    1

    4π‘›π‘ πœ‰ Β± π‘π‘ πœ‰

    141 βˆ’ π‘š

    2

    4

    1 + π‘š2

    2

    1 βˆ’ π‘š2

    4π‘›π‘πœ‰ Β± π‘ π‘πœ‰

    151

    4

    π‘š2βˆ’ 2

    2

    π‘š2

    4π‘›π‘ πœ‰ Β± π‘‘π‘ πœ‰

    16π‘š2

    4

    π‘š2βˆ’ 2

    2

    π‘š2

    4π‘ π‘›πœ‰ Β± π‘–π‘π‘›πœ‰

    17π‘š2

    4

    π‘š2βˆ’ 2

    2

    π‘š2

    4

    √1 βˆ’ π‘š2π‘ π‘‘πœ‰ Β± π‘π‘‘πœ‰

    181

    4

    1 βˆ’ π‘š2

    2

    1

    4π‘šπ‘π‘‘πœ‰ Β± π‘–βˆš1 βˆ’ π‘š2π‘›π‘‘πœ‰

    191

    4

    1 βˆ’ 2π‘š2

    2

    1

    4π‘šπ‘ π‘›πœ‰ Β± π‘–π‘‘π‘›πœ‰

    201

    4

    1 βˆ’ π‘š2

    2

    1

    4

    √1 βˆ’ π‘š2π‘ π‘πœ‰ Β± π‘‘π‘πœ‰

    21π‘š2βˆ’ 1

    4

    π‘š2+ 1

    2

    π‘š2βˆ’ 1

    4π‘šπ‘ π‘‘πœ‰ Β± π‘›π‘‘πœ‰

    22π‘š2

    4

    π‘š2βˆ’ 2

    2

    1

    4

    π‘ π‘›πœ‰

    1 Β± π‘‘π‘›πœ‰

    23 βˆ’1

    4

    π‘š2+ 1

    2

    (1 βˆ’ π‘š2)2

    4π‘šπ‘π‘›πœ‰ Β± π‘‘π‘›πœ‰

    24(1 βˆ’ π‘š

    2)2

    4

    π‘š2+ 1

    2

    1

    4π‘‘π‘ πœ‰ Β± π‘π‘ πœ‰

    25π‘š4(1 βˆ’ π‘š

    2)

    2(2 βˆ’ π‘š2)

    2(1 βˆ’ π‘š2)

    π‘š2 βˆ’ 2

    1 βˆ’ π‘š2

    2(2 βˆ’ π‘š2)π‘‘π‘πœ‰ Β± √1 βˆ’ π‘š2π‘›π‘πœ‰

    26 𝑃 > 0 𝑄 < 0π‘š2𝑄2

    (1 + π‘š2)2

    𝑃

    βˆšβˆ’π‘š

    2𝑄

    (1 + π‘š2)𝑃𝑠𝑛(√

    βˆ’π‘„

    1 + π‘š2πœ‰)

  • 12 The Scientific World Journal

    Table 1: Continued.

    Case 𝑃 𝑄 𝑅 𝐹(πœ‰)

    27 𝑃 < 0 𝑄 > 0(1 βˆ’ π‘š

    2)𝑄2

    (π‘š2 βˆ’ 2)2

    𝑃

    βˆšβˆ’π‘„

    (2 βˆ’ π‘š2)𝑃𝑑𝑛(√

    𝑄

    2 βˆ’ π‘š2πœ‰)

    28 𝑃 < 0 𝑄 > 0π‘š2(π‘š2βˆ’ 1)𝑄

    2

    (2π‘š2 βˆ’ 1)2

    𝑃

    βˆšβˆ’π‘š2𝑄

    (2π‘š2 βˆ’ 1)𝑃𝑐𝑛(√

    𝑄

    2π‘š2 βˆ’ 1πœ‰)

    29 1 2 βˆ’ 4π‘š2

    1π‘ π‘›πœ‰π‘‘π‘›πœ‰

    π‘π‘›πœ‰

    30 π‘š4

    2 1π‘ π‘›πœ‰π‘π‘›πœ‰

    π‘‘π‘›πœ‰

    31 1 π‘š2+ 2 1 βˆ’ 2π‘š

    2+ π‘š

    4π‘‘π‘›πœ‰π‘π‘›πœ‰

    π‘ π‘›πœ‰

    32𝐴2(π‘š βˆ’ 1)

    2

    4

    π‘š2+ 1

    2+ 3π‘š

    (π‘š βˆ’ 1)2

    4𝐴2

    π‘‘π‘›πœ‰π‘π‘›πœ‰

    𝐴(1 + π‘ π‘›πœ‰)(1 + π‘š π‘ π‘›πœ‰)

    33𝐴2(π‘š + 1)

    2

    4

    π‘š2+ 1

    2βˆ’ 3π‘š

    (π‘š + 1)2

    4𝐴2

    π‘‘π‘›πœ‰π‘π‘›πœ‰

    𝐴(1 + π‘ π‘›πœ‰)(1 βˆ’ π‘š π‘ π‘›πœ‰)

    34 βˆ’4

    π‘š6π‘š βˆ’ π‘š

    2βˆ’ 1 βˆ’2π‘š

    3+ π‘š

    4+ π‘š

    2π‘šπ‘π‘›πœ‰π‘‘π‘›πœ‰

    π‘šπ‘ π‘›2πœ‰ + 1

    354

    π‘šβˆ’6π‘š βˆ’ π‘š

    2βˆ’ 1 2π‘š

    3+ π‘š

    4+ π‘š

    2π‘šπ‘π‘›πœ‰π‘‘π‘›πœ‰

    π‘šπ‘ π‘›2πœ‰ βˆ’ 1

    361

    4

    1 βˆ’ 2π‘š2

    2

    1

    4

    π‘ π‘›πœ‰

    1 Β± π‘π‘›πœ‰

    371 βˆ’ π‘š

    2

    4

    1 + π‘š2

    2

    1 βˆ’ π‘š2

    4

    π‘π‘›πœ‰

    1 Β± π‘ π‘›πœ‰

    38 4π‘š1

    2 + 6π‘š1βˆ’ π‘š

    22 + 2π‘š

    1βˆ’ π‘š

    2π‘š2π‘ π‘›πœ‰π‘π‘›πœ‰

    π‘š1βˆ’ 𝑑𝑛2πœ‰

    39 βˆ’4π‘š1

    2 βˆ’ 6π‘š1βˆ’ π‘š

    22 βˆ’ 2π‘š

    1βˆ’ π‘š

    2βˆ’π‘š2π‘ π‘›πœ‰π‘π‘›πœ‰

    π‘š1+ 𝑑𝑛2πœ‰

    402 βˆ’ π‘š

    2βˆ’ 2π‘š

    1

    4

    π‘š2

    2βˆ’ 1 βˆ’ 3π‘š

    1

    2 βˆ’ π‘š2βˆ’ 2π‘š

    1

    4

    π‘š2π‘ π‘›πœ‰π‘π‘›πœ‰

    𝑠𝑛2πœ‰ + (1 + π‘š1)π‘‘π‘›πœ‰ βˆ’ 1 βˆ’ π‘š

    1

    412 βˆ’ π‘š

    2+ 2π‘š

    1

    4

    π‘š2

    2βˆ’ 1 + 3π‘š

    1

    2 βˆ’ π‘š2+ 2π‘š

    1

    4

    π‘š2π‘ π‘›πœ‰π‘π‘›πœ‰

    𝑠𝑛2πœ‰ + (βˆ’1 + π‘š1)π‘‘π‘›πœ‰ βˆ’ 1 + π‘š

    1

    42𝐢2π‘š4βˆ’ (𝐡

    2+ 𝐢

    2)π‘š2+ 𝐡

    2

    4

    π‘š2+ 1

    2

    π‘š2βˆ’ 1

    4(𝐢2π‘š2 βˆ’ 𝐡2)

    √((𝐡2 βˆ’ 𝐢2)/(𝐡2 βˆ’ 𝐢2 π‘š2)) + π‘ π‘›πœ‰

    π΅π‘π‘›πœ‰ + πΆπ‘‘π‘›πœ‰

    43𝐡2+ 𝐢

    2π‘š2

    4

    1

    2βˆ’ π‘š

    21

    4(𝐢2π‘š2 + 𝐡2)

    √((𝐢2π‘š2 + 𝐡2 βˆ’ 𝐢2)/(𝐡2 + 𝐢2π‘š2)) + π‘π‘›πœ‰

    π΅π‘ π‘›πœ‰ + πΆπ‘‘π‘›πœ‰

    44𝐡2+ 𝐢

    2

    4

    π‘š2

    2βˆ’ 1

    π‘š4

    4(𝐢2 + 𝐡2)

    √((𝐡2 + 𝐢2 βˆ’ 𝐢2π‘š2)/(𝐡2 + 𝐢2)) + π‘‘π‘›πœ‰

    π΅π‘ π‘›πœ‰ + πΆπ‘π‘›πœ‰

    45 βˆ’(π‘š2+ 2π‘š + 1)𝐡

    22π‘š

    2+ 2

    2π‘š βˆ’ π‘š2βˆ’ 1

    𝐡2

    π‘šπ‘ π‘›2πœ‰ βˆ’ 1

    𝐡(π‘šπ‘ π‘›2πœ‰ + 1)

    46 βˆ’(π‘š2βˆ’ 2π‘š + 1)𝐡

    22π‘š

    2+ 2 βˆ’

    2π‘š + π‘š2+ 1

    𝐡2

    π‘šπ‘ π‘›2πœ‰ + 1

    𝐡(π‘šπ‘ π‘›2πœ‰ βˆ’ 1)

  • The Scientific World Journal 13

    Table 2

    Case 𝑔2

    𝑔3

    𝐹(πœ‰)

    474

    3(𝑄2βˆ’ 3𝑃𝑅)

    4𝑄

    27(βˆ’2𝑄

    2+ 9𝑃𝑅) √

    1

    𝑃(β„˜(πœ‰; 𝑔

    2, 𝑔3) βˆ’

    1

    3𝑄)

    484

    3(𝑄2βˆ’ 3𝑃𝑅)

    4𝑄

    27(βˆ’2𝑄

    2+ 9𝑃𝑅) √

    3𝑅

    3β„˜(πœ‰; 𝑔2, 𝑔3) βˆ’ 𝑄

    49 βˆ’5𝑄𝐷 + 4𝑄

    2+ 33𝑃𝑄𝑅

    12

    21𝑄2𝐷 βˆ’ 63𝑃𝑅𝐷 + 20𝑄

    3βˆ’ 27𝑃𝑄𝑅

    216

    √12π‘…β„˜(πœ‰; 𝑔2, 𝑔3) + 2𝑅(2𝑄 + 𝐷)

    12β„˜(πœ‰; 𝑔2, 𝑔3) + 𝐷

    501

    12𝑄2+ 𝑃𝑅

    1

    216𝑄(36𝑃𝑅 βˆ’ 𝑄

    2)

    βˆšπ‘…[6β„˜(πœ‰; 𝑔2, 𝑔3) + 𝑄]

    3β„˜(πœ‰; 𝑔2, 𝑔3)

    511

    12𝑄2+ 𝑃𝑅

    1

    216𝑄(36𝑃𝑅 βˆ’ 𝑄

    2)

    3β„˜(πœ‰; 𝑔

    2, 𝑔3)

    βˆšπ‘ƒ[6β„˜(πœ‰; 𝑔2, 𝑔3) + 𝑄]

    522𝑄

    2

    9

    𝑄3

    54

    π‘„βˆšβˆ’15𝑄/2π‘ƒβ„˜(πœ‰; 𝑔2, 𝑔3)

    3β„˜(πœ‰; 𝑔2, 𝑔3) + 𝑄

    , 𝑅 = 5𝑄2

    36𝑃

    Conflict of Interests

    The authors declare that there is no conflict of interests re-garding the publication of this paper.

    References

    [1] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear EvolutionEquations and Inverse Scattering, Cambridge University Press,Cambridge, UK, 1991.

    [2] M. Wadati, β€œWave propagation in nonlinear lattice. I,” Journalof the Physical Society of Japan, vol. 38, no. 3, pp. 673–680, 1975.

    [3] V. B. Matveev and M. A. Salle, Darboux Transformation andSolitons, Springer Series in Nonlinear Dynamics, Springer,Berlin, Germany, 1991.

    [4] R. Hirota, β€œExact solution of the korteweg-de Vries equation formultiple collisions of solitons,” Physical Review Letters, vol. 27,no. 18, pp. 1192–1194, 1971.

    [5] R. Hirota, The Direct Method in Soliton Theory, CambridgeUniversity Press, Cambridge, UK, 2004.

    [6] J.Weiss,M. Tabor, andG. Carnevale, β€œThe painlevé property forpartial differential equations,” Journal of Mathematical Physics,vol. 24, no. 3, pp. 522–526, 1982.

    [7] J.-H. He, β€œHomotopy perturbation method for bifurcation ofnonlinear problems,” International Journal of Nonlinear Sciencesand Numerical Simulation, vol. 6, no. 2, pp. 207–208, 2005.

    [8] J.-H. He, β€œApplication of homotopy perturbation method tononlinear wave equations,” Chaos, Solitons and Fractals, vol. 26,no. 3, pp. 695–700, 2005.

    [9] M. Wang, β€œExact solutions for a compound KdV-Burgersequation,” Physics Letters A, vol. 213, no. 5-6, pp. 279–287, 1996.

    [10] J.-H. He, β€œVariational principles for some nonlinear partialdifferential equations with variable coefficients,”Chaos, Solitonsand Fractals, vol. 19, no. 4, pp. 847–851, 2004.

    [11] J.-H. He, β€œVariational approach to (2+1)-dimensional dispersivelong water equations,” Physics Letters A, vol. 335, no. 2-3, pp.182–184, 2005.

    [12] H.-M. Liu, β€œVariational approach to nonlinear electrochemicalsystem,” International Journal of Nonlinear Sciences and Numer-ical Simulation, vol. 5, no. 1, pp. 95–96, 2004.

    [13] W. Malfliet, β€œSolitary wave solutions of nonlinear wave equa-tions,” American Journal of Physics, vol. 60, no. 7, pp. 650–654,1992.

    [14] E. J. Parkes and B. R. Duffy, β€œTravelling solitary wave solutionsto a compound KdV-Burgers equation,” Physics Letters A, vol.229, no. 4, pp. 217–220, 1997.

    [15] E. Fan, β€œExtended tanh-function method and its applicationsto nonlinear equations,” Physics Letters A, vol. 277, no. 4-5, pp.212–218, 2000.

    [16] Z. Yan and H. Zhang, β€œNew explicit solitary wave solutions andperiodic wave solutions for Whitham-Broer-Kaup equation inshallow water,” Physics Letters A, vol. 285, no. 5-6, pp. 355–362,2001.

    [17] A.-M. Wazwaz, β€œAn analytic study of compactons structuresin a class of nonlinear dispersive equations,” Mathematics andComputers in Simulation, vol. 63, no. 1, pp. 35–44, 2003.

    [18] M. Wang, X. Li, and J. Zhang, β€œThe (G/G)-expansion methodand travelling wave solutions of nonlinear evolution equationsin mathematical physics,” Physics Letters A, vol. 372, no. 4, pp.417–423, 2008.

    [19] G. Ebadi and A. Biswas, β€œThe (G/G) method and topologicalsoliton solution of the K(m,n) equation,” Communications inNonlinear Science and Numerical Simulation, vol. 16, no. 6, pp.2377–2382, 2011.

    [20] C.-S. Liu, β€œTrial equation method and its applications tononlinear evolution equations,” Acta Physica Sinica, vol. 54, no.6, pp. 2505–2509, 2005.

  • 14 The Scientific World Journal

    [21] C.-S. Liu, β€œA new trial equation method and its applications,”Communications in Theoretical Physics, vol. 45, no. 3, pp. 395–397, 2006.

    [22] C.-S. Liu, β€œTrial equation method to nonlinear evolution equa-tions with rank inhomogeneous: mathematical discussions andits applications,” Communications inTheoretical Physics, vol. 45,no. 2, pp. 219–223, 2006.

    [23] C. S. Liu, β€œUsing trial equation method to solve the exact solu-tions for two kinds of KdV equations with variable coefficients,”Acta Physica Sinica, vol. 54, no. 10, pp. 4506–4510, 2005.

    [24] C.-S. Liu, β€œApplications of complete discrimination system forpolynomial for classifications of traveling wave solutions tononlinear differential equations,” Computer Physics Communi-cations, vol. 181, no. 2, pp. 317–324, 2010.

    [25] Y. Gurefe, A. Sonmezoglu, and E. Misirli, β€œApplication of thetrial equation method for solving some nonlinear evolutionequations arising in mathematical physics,” Pramana, vol. 77,no. 6, pp. 1023–1029, 2011.

    [26] Y. Pandir, Y. Gurefe, U. Kadak, and E. Misirli, β€œClassification ofexact solutions for some nonlinear partial differential equationswith generalized evolution,” Abstract and Applied Analysis, vol.2012, Article ID 478531, 16 pages, 2012.

    [27] Y. Gurefe, E. Misirli, A. Sonmezoglu, and M. Ekici, β€œExtendedtrial equation method to generalized nonlinear partial differen-tial equations,” Applied Mathematics and Computation, vol. 219,no. 10, pp. 5253–5260, 2013.

    [28] Y. Gurefe, E. Misirli, Y. Pandir, A. Sonmezoglu, and M.Ekici, β€œNew exact solutions of the Davey-Stewartson equationwithpower-law nonlinearity,” Bulletin of the Malaysian Mathe-matical Sciences Society. Accepted.

    [29] F. Kangalgil and F. Ayaz, β€œNew exact travelling wave solutionsfor the Ostrovsky equation,” Physics Letters A, vol. 372, no. 11,pp. 1831–1835, 2008.

    [30] S. Liu, Z. Fu, S. Liu, and Q. Zhao, β€œJacobi elliptic functionexpansion method and periodic wave solutions of nonlinearwave equations,” Physics Letters A, vol. 289, no. 1-2, pp. 69–74,2001.

    [31] Z. Fu, S. Liu, S. Liu, and Q. Zhao, β€œNew Jacobi ellipticfunction expansion and new periodic solutions of nonlinearwave equations,” Physics Letters A, vol. 290, no. 1-2, pp. 72–76,2001.

    [32] G.-T. Liu and T.-Y. Fan, β€œNew applications of developed Jacobielliptic function expansionmethods,” Physics Letters A, vol. 345,no. 1–3, pp. 161–166, 2005.

    [33] H. Zhang, β€œExtended Jacobi elliptic function expansionmethodand its applications,” Communications in Nonlinear Science andNumerical Simulation, vol. 12, no. 5, pp. 627–635, 2007.

    [34] H.-T. Chen and H.-Q. Zhang, β€œNew double periodic andmultiple soliton solutions of the generalized (2+1)-dimensionalBoussinesq equation,” Chaos, Solitons and Fractals, vol. 20, no.4, pp. 765–769, 2004.

    [35] D. Zhang, β€œDoubly periodic solutions of themodifiedKawaharaequation,” Chaos, Solitons and Fractals, vol. 25, no. 5, pp. 1155–1160, 2005.

    [36] Q. Liu and J.-M. Zhu, β€œExact Jacobian elliptic function solutionsand hyperbolic function solutions for Sawada-Kotere equationwith variable coefficient,” Physics Letters A, vol. 352, no. 3, pp.233–238, 2006.

    [37] X. Zhao, H. Zhi, and H. Zhang, β€œImproved Jacobi-functionmethod with symbolic computation to construct new double-periodic solutions for the generalized Ito system,” Chaos, Soli-tons and Fractals, vol. 28, no. 1, pp. 112–126, 2006.

    [38] A. Ebaid and E. H. Aly, β€œExact solutions for the transformedreduced Ostrovsky equation via the F-expansion method interms of Weierstrass-elliptic and Jacobian-elliptic functions,”Wave Motion, vol. 49, no. 2, pp. 296–308, 2012.

    [39] J.-H. He and X.-H. Wu, β€œExp-function method for nonlinearwave equations,” Chaos, Solitons and Fractals, vol. 30, no. 3, pp.700–708, 2006.

    [40] A. Ebaid, β€œExact solitary wave solutions for some nonlinearevolution equations via Exp-function method,” Physics LettersA, vol. 365, no. 3, pp. 213–219, 2007.

    [41] A. Ebaid, β€œExact solutions for the generalized Klein-Gordonequation via a transformation and Exp-function method andcomparison with Adomian’s method,” Journal of Computationaland Applied Mathematics, vol. 223, no. 1, pp. 278–290, 2009.

    [42] C. Köroǧlu and T. ÖzisΜ§, β€œA novel traveling wave solution forOstrovsky equation using Exp-function method,” Computersand Mathematics with Applications, vol. 58, no. 11-12, pp. 2142–2146, 2009.

    [43] Z. Yan, β€œAn improved algebra method and its applications innonlinear wave equations,” MM Research Preprints, no. 22, pp.264–274, 2003.

    [44] A.-M. Wazwaz, β€œThe tanh method for travelling wave solutionsto the Zhiber-Shabat equation and other related equations,”Communications in Nonlinear Science and Numerical Simula-tion, vol. 13, no. 3, pp. 584–592, 2008.

    [45] T. Yoshinaga, M. Wakamiya, and T. Kakutani, β€œRecurrence andchaotic behavior resulting from nonlinear interaction betweenlong and short waves,” Physics of Fluids A, vol. 3, no. 1, pp. 83–89,1991.

    [46] N. N. Rao, β€œNonlinear wavemodulations in plasmas,” Pramana,vol. 49, no. 1, pp. 109–127, 1997.

    [47] S. V. Singh, N. N. Rao, and P. K. Shukla, β€œNonlinearly coupledLangmuir and dust-acoustic waves in a dusty plasma,” Journalof Plasma Physics, vol. 60, no. 3, pp. 551–567, 1998.

    [48] S. Liu, Z. Fu, S. Liu, and Q. Zhao, β€œJacobi elliptic functionexpansion method and periodic wave solutions of nonlinearwave equations,” Physics Letters A, vol. 289, no. 1-2, pp. 69–74,2001.

    [49] D. Kaya and S. M. El-Sayed, β€œOn the solution of the coupledSchrödinger-KdV equation by the decomposition method,”Physics Letters A, vol. 313, no. 1-2, pp. 82–88, 2003.

    [50] C.-L. Bai and H. Zhao, β€œGeneralized method to construct thesolitonic solutions to (3+1)-dimensional nonlinear equation,”Physics Letters A, vol. 354, no. 5-6, pp. 428–436, 2006.

    [51] B. Salim Bahrami, H. Abdollahzadeh, I. M. Berijani, D. D.Ganji, and M. Abdollahzadeh, β€œExact travelling solutions forsome nonlinear physical models by (G/G)-expansion method,”Pramana, vol. 77, no. 2, pp. 263–275, 2011.

    [52] P. F. Byrd andM. D. Friedman,Handbook of Elliptic Integrals forEngineers and Scientists, Springer, New York, NY, USA, 1971.

    [53] A. Ebaid and S. M. Khaled, β€œNew types of exact solutionsfor nonlinear Schrödinger equation with cubic nonlinearity,”Journal of Computational and AppliedMathematics, vol. 235, no.8, pp. 1984–1992, 2011.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of