Research Article Existence of Almost Periodic Solutions for ...Existence of Almost Periodic...

12
Research Article Existence of Almost Periodic Solutions for Impulsive Neutral Functional Differential Equations Junwei Liu 1 and Chuanyi Zhang 2 1 College of Science, Yanshan University, Qinhuangdao 066004, China 2 Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China Correspondence should be addressed to Junwei Liu; [email protected] Received 8 May 2014; Accepted 20 July 2014; Published 12 August 2014 Academic Editor: Robert A. Van Gorder Copyright Β© 2014 J. Liu and C. Zhang. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e existence of piecewise almost periodic solutions for impulsive neutral functional differential equations in Banach space is investigated. Our results are based on Krasnoselskii’s fixed-point theorem combined with an exponentially stable strongly continuous operator semigroup. An example is given to illustrate the theory. 1. Introduction In this paper, we study the existence of piecewise almost periodic solutions for a class of abstract impulsive neutral functional differential equations with unbounded delay mod- eled in the form ( () + (, )) = () + (, ), ∈ , ΜΈ = , ∈ , Ξ” ( )= ( ), ∈ , (1) where is the infinitesimal generator of an exponentially stable strongly continuous semigroup of linear operators {()} β‰₯0 on a Banach space (,β€– β‹… β€–), the history : (βˆ’βˆž, 0] β†’ , () = ( + ) belongs to an abstract phase space B defined axiomatically, (β‹…), (β‹…), (β‹…) ( ∈ ) are appropriate functions, { } ∈ is a discrete set of real numbers such that < when <, and the symbol Ξ”() represents the jump of the function (β‹…) at , which is defined by Ξ”() = ( + ) βˆ’ ( βˆ’ ). e existence of solutions to impulsive differential equa- tions is one of the most attracting topics in the qualita- tive theory of impulsive differential equations due to their applications in mechanical, electrical engineering, ecology, biology, and others; see, for instance, [1–6] and the references therein. Some recent contributions on mild solutions to impulsive neutral functional differential equations have been established in [7–14]. On the other hand, the existence of almost periodic solutions for impulsive differential equations has been investigated by many authors; see, for example, [2– 5, 15, 16]. However, the existence of almost periodic solutions for the impulsive neutral functional differential equations in the form (1) is an untreated topic in the literature and this fact is the motivation of the present work. e paper is organized as follows: in Section 2, we recall some notations, concepts, and useful lemmas which are used in this paper. In Section 3, some criteria ensuring the existence of almost periodic solutions for impulsive neutral functional differential equations are obtained. In Section 4, we give an application. 2. Preliminaries Let (,β€– β‹… β€–) be a Banach space. : () β†’ is the infinitesimal generator of a strongly continuous semigroup of linear operators {()} β‰₯0 on the Banach space and 1 , are positive constants such that β€–()β€– ≀ 1 βˆ’ for β‰₯0. Let 0 ∈ (); it is possible to define the fractional power , 0<<1, as a closed linear operator with its domain ( ). We denote by a Banach space between () and endowed with the norm β€–β€– = β€– β€–, ∈ ( ); the following properties hold. Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 782018, 11 pages http://dx.doi.org/10.1155/2014/782018

Transcript of Research Article Existence of Almost Periodic Solutions for ...Existence of Almost Periodic...

  • Research ArticleExistence of Almost Periodic Solutions for Impulsive NeutralFunctional Differential Equations

    Junwei Liu1 and Chuanyi Zhang2

    1 College of Science, Yanshan University, Qinhuangdao 066004, China2Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

    Correspondence should be addressed to Junwei Liu; [email protected]

    Received 8 May 2014; Accepted 20 July 2014; Published 12 August 2014

    Academic Editor: Robert A. Van Gorder

    Copyright Β© 2014 J. Liu and C. Zhang.This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    The existence of piecewise almost periodic solutions for impulsive neutral functional differential equations in Banach spaceis investigated. Our results are based on Krasnoselskii’s fixed-point theorem combined with an exponentially stable stronglycontinuous operator semigroup. An example is given to illustrate the theory.

    1. Introduction

    In this paper, we study the existence of piecewise almostperiodic solutions for a class of abstract impulsive neutralfunctional differential equationswith unbounded delaymod-eled in the form

    𝑑

    𝑑𝑑(𝑒 (𝑑) + 𝑔 (𝑑, 𝑒

    𝑑)) = 𝐴𝑒 (𝑑) + 𝑓 (𝑑, 𝑒

    𝑑) ,

    𝑑 ∈ 𝑅, 𝑑 ΜΈ= 𝑑𝑖, 𝑖 ∈ 𝑍,

    Δ𝑒 (𝑑𝑖) = 𝐼

    𝑖(𝑒

    𝑑𝑖) , 𝑖 ∈ 𝑍,

    (1)

    where 𝐴 is the infinitesimal generator of an exponentiallystable strongly continuous semigroup of linear operators{𝑇(𝑑)}

    𝑑β‰₯0on a Banach space (𝑋, β€– β‹… β€–), the history 𝑒

    𝑑:

    (βˆ’βˆž, 0] β†’ 𝑋, 𝑒𝑑(πœƒ) = 𝑒(𝑑 + πœƒ) belongs to an abstract phase

    space B defined axiomatically, 𝑓(β‹…), 𝑔(β‹…), 𝐼𝑖(β‹…) (𝑖 ∈ 𝑍) are

    appropriate functions, {𝑑𝑖}π‘–βˆˆπ‘

    is a discrete set of real numberssuch that 𝑑

    𝑖< 𝑑

    𝑗when 𝑖 < 𝑗, and the symbol Ξ”πœ‰(𝑑) represents

    the jump of the function πœ‰(β‹…) at 𝑑, which is defined by Ξ”πœ‰(𝑑) =πœ‰(𝑑

    +) βˆ’ πœ‰(𝑑

    βˆ’).

    The existence of solutions to impulsive differential equa-tions is one of the most attracting topics in the qualita-tive theory of impulsive differential equations due to theirapplications in mechanical, electrical engineering, ecology,biology, and others; see, for instance, [1–6] and the referencestherein. Some recent contributions on mild solutions to

    impulsive neutral functional differential equations have beenestablished in [7–14]. On the other hand, the existence ofalmost periodic solutions for impulsive differential equationshas been investigated by many authors; see, for example, [2–5, 15, 16]. However, the existence of almost periodic solutionsfor the impulsive neutral functional differential equations inthe form (1) is an untreated topic in the literature and this factis the motivation of the present work.

    The paper is organized as follows: in Section 2, we recallsome notations, concepts, and useful lemmas which areused in this paper. In Section 3, some criteria ensuring theexistence of almost periodic solutions for impulsive neutralfunctional differential equations are obtained. In Section 4,we give an application.

    2. Preliminaries

    Let (𝑋, β€– β‹… β€–) be a Banach space. 𝐴 : 𝐷(𝐴) β†’ 𝑋 is theinfinitesimal generator of a strongly continuous semigroup oflinear operators {𝑇(𝑑)}

    𝑑β‰₯0on the Banach space 𝑋 and 𝑀

    1, 𝛿

    are positive constants such that ‖𝑇(𝑑)β€– ≀ 𝑀1π‘’βˆ’π›Ώπ‘‘ for 𝑑 β‰₯ 0.

    Let 0 ∈ 𝜌(𝐴); it is possible to define the fractional power𝐴𝛼, 0 < 𝛼 < 1, as a closed linear operator with its domain

    𝐷(𝐴𝛼). We denote by 𝑋

    𝛼a Banach space between 𝐷(𝐴) and

    𝑋 endowed with the norm β€–π‘₯‖𝛼

    = ‖𝐴𝛼π‘₯β€–, π‘₯ ∈ 𝐷(𝐴𝛼); the

    following properties hold.

    Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2014, Article ID 782018, 11 pageshttp://dx.doi.org/10.1155/2014/782018

  • 2 Abstract and Applied Analysis

    Lemma 1 (see [17, 18]). Let 0 < 𝛼 < 𝛽 < 1; then 𝑋𝛽is

    continuously embedded into𝑋𝛼with bounded 𝐾; that is,

    β€–π‘₯‖𝛼≀ 𝐾‖π‘₯β€–

    𝛽. (2)

    Moreover, the function 𝑠 β†’ 𝐴𝛼𝑇(𝑠) is continuous in theuniform operator topology on (0,∞) and there exists 𝑀

    2> 0

    such that ‖𝐴𝛼𝑇(𝑑)β€– ≀ 𝑀2π‘’βˆ’π›Ώπ‘‘

    π‘‘βˆ’π›Ό for every 𝑑 > 0.

    Throughout this paper, let T be the set consisting of allreal sequences {𝑑

    𝑖}π‘–βˆˆπ‘

    such that 𝛾 = infπ‘–βˆˆπ‘

    (𝑑𝑖+1

    βˆ’ 𝑑𝑖) > 0.

    For {𝑑𝑖}π‘–βˆˆπ‘

    ∈ T , let 𝑃𝐢(𝑅,𝑋𝛼) be the space formed by all

    piecewise continuous functions πœ™ : 𝑅 β†’ 𝑋𝛼such that πœ™(β‹…)

    is continuous at 𝑑 for any 𝑑 βˆ‰ {𝑑𝑖}π‘–βˆˆπ‘

    and πœ™(𝑑𝑖) = πœ™(𝑑

    βˆ’

    𝑖) for all

    𝑖 ∈ 𝑍; let𝑃𝐢(𝑅×𝑋𝛼, 𝑋

    𝛼) be the space formed by all piecewise

    continuous functions πœ™ : 𝑅 Γ— 𝑋𝛼

    β†’ 𝑋𝛼such that, for any

    π‘₯ ∈ 𝑋𝛼, πœ™(β‹…, π‘₯) is continuous at 𝑑 for any 𝑑 βˆ‰ {𝑑

    𝑖}π‘–βˆˆπ‘

    andπœ™(𝑑

    𝑖, π‘₯) = πœ™(𝑑

    βˆ’

    𝑖, π‘₯) for all 𝑖 ∈ 𝑍 and for any 𝑑 ∈ 𝑅, πœ™(𝑑, β‹…) is

    continuous at π‘₯ ∈ 𝑋𝛼.

    Definition 2. A number 𝜏 ∈ 𝑅 is called an πœ–-translationnumber of the function πœ™ ∈ 𝑃𝐢(𝑅,𝑋

    𝛼) if

    πœ™(𝑑 + 𝜏) βˆ’ πœ™(𝑑)𝛼 < πœ–, (3)

    for all 𝑑 ∈ 𝑅 which satisfies |𝑑 βˆ’ 𝑑𝑖| > πœ–, for all 𝑖 ∈ 𝑍. Denote

    by 𝑇(πœ™, πœ–) the set of all πœ–-translation numbers of πœ™.

    Definition 3 (see [1]). A function πœ™ ∈ 𝑃𝐢(𝑅,𝑋𝛼) is said to

    be piecewise almost periodic if the following conditions arefulfilled.

    (1) {𝑑𝑗𝑖

    = 𝑑𝑖+𝑗

    βˆ’ 𝑑𝑖}, 𝑖 ∈ 𝑍, 𝑗 = 0, Β±1, Β±2, . . ., are

    equipotentially almost periodic; that is, for any πœ– > 0,there exists a relatively dense set of πœ–-almost periodsthat are common to all the sequences {𝑑𝑗

    𝑖}.

    (2) For any πœ– > 0, there exists a positive number 𝛿 = 𝛿(πœ–)such that if the points 𝑑 and 𝑑 belong to a sameinterval of continuity of πœ™ and |𝑑 βˆ’ 𝑑| < 𝛿, thenβ€–πœ™(𝑑

    ) βˆ’ πœ™(𝑑

    )‖𝛼< πœ–.

    (3) For every πœ– > 0, 𝑇(πœ™, πœ–) is a relatively dense set in 𝑅.

    We denote by 𝐴𝑃𝑇(𝑅,𝑋

    𝛼) the space of all piecewise

    almost periodic functions. 𝐴𝑃𝑇(𝑅,𝑋

    𝛼) endowed with the

    uniform convergence topology is a Banach space.

    Definition 4. 𝑓 ∈ 𝑃𝐢(𝑅 Γ— 𝑋𝛼, 𝑋

    𝛼) is said to be piecewise

    almost periodic in 𝑑 uniformly in π‘₯ ∈ 𝑋𝛼if for each compact

    set 𝐾 βŠ† 𝑋𝛼, {𝑓(β‹…, π‘₯) : π‘₯ ∈ 𝐾} is uniformly bounded and,

    given πœ– > 0, there exists a relatively dense setΞ©(πœ–) such that𝑓(𝑑 + 𝜏, π‘₯) βˆ’ 𝑓(𝑑, π‘₯)

    𝛼 < πœ–, (4)

    for all π‘₯ ∈ 𝐾, 𝜏 ∈ Ξ©(πœ–), and 𝑑 ∈ 𝑅, |𝑑 βˆ’ 𝑑𝑖| > πœ– for all 𝑖 ∈ 𝑍.

    Denote by 𝐴𝑃𝑇(𝑅 Γ— 𝑋

    𝛼, 𝑋

    𝛼) the set of all such functions.

    Lemma 5 (see [15]). Let πœ™ ∈ 𝐴𝑃𝑇(𝑅,𝑋

    𝛼); then the range of πœ™,

    𝑅(πœ™), is a relatively compact subset of𝑋𝛼.

    Lemma 6. Suppose that 𝑓(𝑑, π‘₯) ∈ 𝐴𝑃𝑇(𝑅 Γ— 𝑋

    𝛼, 𝑋

    𝛼) and

    𝑓(𝑑, β‹…) is uniformly continuous on each compact subset𝐾 βŠ† 𝑋𝛼

    uniformly for 𝑑 ∈ 𝑅; that is, for every πœ– > 0, there exists𝛿 > 0 such that π‘₯, 𝑦 ∈ 𝐾 and β€–π‘₯ βˆ’ 𝑦‖

    𝛼< 𝛿 implies that

    ‖𝑓(𝑑, π‘₯) βˆ’ 𝑓(𝑑, 𝑦)‖𝛼

    < πœ– for all 𝑑 ∈ 𝑅. Then 𝑓(β‹…, π‘₯(β‹…)) βˆˆπ΄π‘ƒ

    𝑇(𝑅,𝑋

    𝛼) for any π‘₯ ∈ 𝐴𝑃

    𝑇(𝑅,𝑋

    𝛼).

    Proof. Since π‘₯ ∈ 𝐴𝑃(𝑅,𝑋𝛼), by Lemma 5, 𝑅(π‘₯) is a relatively

    compact subset of𝑋𝛼. Because𝑓(𝑑, β‹…) is uniformly continuous

    on each compact subset𝐾 βŠ† 𝑋𝛼uniformly for 𝑑 ∈ 𝑅, then for

    any πœ– > 0, there exist a number 𝛿 : 0 < 𝛿 ≀ πœ–/2, such that

    𝑓(𝑑, π‘₯1) βˆ’ 𝑓(𝑑, π‘₯2)𝛼 <

    πœ–

    2, (5)

    where π‘₯1, π‘₯

    2∈ 𝑅(π‘₯), and β€–π‘₯

    1βˆ’ π‘₯

    2‖𝛼< 𝛿, 𝑑 ∈ 𝑅. By piecewise

    almost periodic of 𝑓 and π‘₯, there exists a relatively dense setΞ© of 𝑅 such that the following conditions hold:

    𝑓(𝑑 + 𝜏, π‘₯0) βˆ’ 𝑓(𝑑, π‘₯0)𝛼 <

    πœ–

    2,

    β€–π‘₯(𝑑 + 𝜏) βˆ’ π‘₯(𝑑)‖𝛼<

    πœ–

    2,

    (6)

    for π‘₯0∈ 𝑅(π‘₯) and 𝑑 ∈ 𝑅, |𝑑 βˆ’ 𝑑

    𝑖| > πœ–, 𝑖 ∈ 𝑍, 𝜏 ∈ Ξ©. Note that

    𝑓 (𝑑 + 𝜏, π‘₯ (𝑑 + 𝜏)) βˆ’ 𝑓 (𝑑, π‘₯ (𝑑))

    = 𝑓 (𝑑 + 𝜏, π‘₯ (𝑑 + 𝜏)) βˆ’ 𝑓 (𝑑, π‘₯ (𝑑 + 𝜏))

    + 𝑓 (𝑑, π‘₯ (𝑑 + 𝜏)) βˆ’ 𝑓 (𝑑, π‘₯ (𝑑)) .

    (7)

    We have𝑓(𝑑 + 𝜏, π‘₯(𝑑 + 𝜏)) βˆ’ 𝑓(𝑑, π‘₯(𝑑))

    𝛼

    ≀𝑓(𝑑 + 𝜏, π‘₯(𝑑 + 𝜏)) βˆ’ 𝑓(𝑑, π‘₯(𝑑 + 𝜏))

    𝛼

    +𝑓 (𝑑, π‘₯ (𝑑 + 𝜏)) βˆ’ 𝑓 (𝑑, π‘₯ (𝑑))

    𝛼.

    (8)

    We deduce from (5) and (6) that the following formula holds:𝑓(𝑑 + 𝜏, π‘₯(𝑑 + 𝜏)) βˆ’ 𝑓(𝑑, π‘₯(𝑑))

    𝛼 ≀ πœ–,

    𝑑 ∈ 𝑅,𝑑 βˆ’ 𝑑𝑖

    > πœ–, 𝑖 ∈ 𝑍, 𝜏 ∈ Ξ©.

    (9)

    That is, 𝑓(β‹…, π‘₯(β‹…)) is piecewise almost periodic. The proof iscomplete.

    Since the uniform continuity is weaker than the Lipschitzcontinuity, we obtain the following lemma as an immediateconsequence of the previous lemma.

    Lemma 7. Let 𝑓(𝑑, π‘₯) ∈ 𝐴𝑃𝑇(𝑅 Γ— 𝑋

    𝛼, 𝑋

    𝛼) and 𝑓 is Lipschitz;

    that is, there is a positive number 𝐿 such that𝑓(𝑑, π‘₯) βˆ’ 𝑓(𝑑, 𝑦)

    𝛼 ≀ 𝐿π‘₯ βˆ’ 𝑦

    𝛼, (10)

    for all 𝑑 ∈ 𝑅 and π‘₯, 𝑦 ∈ 𝑋𝛼; if for any π‘₯ ∈ 𝐴𝑃

    𝑇(𝑅,𝑋

    𝛼), then

    𝑓(β‹…, π‘₯(β‹…)) ∈ 𝐴𝑃𝑇(𝑅,𝑋

    𝛼).

    In this paper, we assume that the phase space B is alinear space formed by functions mapping (βˆ’βˆž, 0] into 𝑋

    𝛼

    endowed with a norm β€– β‹… β€–B and satisfying the followingconditions.

  • Abstract and Applied Analysis 3

    (1) If π‘₯ ∈ 𝑃𝐢(𝑅,𝑋𝛼), then π‘₯

    π‘‘βˆˆ B for all 𝑑 ∈ 𝑅 and

    β€–π‘₯𝑑‖B ≀ 𝐿 sup𝑠≀𝑑‖π‘₯(𝑠)‖𝛼, where 𝐿 > 0 is a constant

    independent of π‘₯(β‹…) and 𝑑 ∈ 𝑅.

    (2) The spaceB is complete.

    (3) If {πœ™π‘›}π‘›βˆˆπ‘

    βŠ‚ B is a uniformly bounded sequence in𝑃𝐢((βˆ’βˆž, 0], 𝑋

    𝛼) formed by functions with compact

    support and πœ™π‘› β†’ πœ™ in the compact open topology,then πœ™ ∈ B and β€–πœ™π‘› βˆ’ πœ™β€–B β†’ 0, as 𝑛 β†’ ∞.

    Lemma 8 (see [1, 15]). Assume that 𝑓 ∈ 𝐴𝑃𝑇(𝑅,𝑋

    𝛼), the

    sequence {π‘₯𝑖: 𝑖 ∈ 𝑍} is almost periodic in 𝑋

    𝛼, and {𝑑𝑗

    𝑖=

    𝑑𝑖+𝑗

    βˆ’ 𝑑𝑖}, 𝑖 ∈ 𝑍, 𝑗 = 0, Β±1, Β±2, . . ., are equipotentially almost

    periodic. Then for each πœ– > 0, there are relatively dense setsΞ©πœ–,𝑓,π‘₯𝑖

    of 𝑅 and π‘„πœ–,𝑓,π‘₯𝑖

    of 𝑍 such that the following conditionshold.

    (i) ‖𝑓(𝑑 + 𝜏) βˆ’ 𝑓(𝑑)‖𝛼

    < πœ– for all 𝑑 ∈ 𝑅, |𝑑 βˆ’ 𝑑𝑖| > πœ–, 𝜏 ∈

    Ξ©πœ–,𝑓,π‘₯𝑖

    , and 𝑖 ∈ 𝑍.

    (ii) β€–π‘₯𝑖+π‘ž

    βˆ’ π‘₯𝑖‖𝛼< πœ– for all π‘ž ∈ 𝑄

    πœ–,𝑓,π‘₯𝑖and 𝑖 ∈ 𝑍.

    (iii) For every 𝜏 ∈ Ξ©πœ–,𝑓,π‘₯𝑖

    , there exists at least one numberπ‘ž ∈ 𝑄

    πœ–,𝑓,π‘₯𝑖such that

    π‘‘π‘ž

    π‘–βˆ’ 𝜏

    < πœ–, 𝑖 ∈ 𝑍. (11)

    Definition 9. A bounded function 𝑒 ∈ 𝑃𝐢(𝑅,𝑋𝛼) is a mild

    solution of (1) if the following holds:π‘’πœŽ= πœ™ ∈ B, the function

    𝐴𝑇(𝑑 βˆ’ 𝑠)𝑔(𝑠, 𝑒𝑠) is integrable, and for any 𝑑 ∈ 𝑅, 𝑑

    𝑖< 𝑑 ≀ 𝑑

    𝑖+1,

    𝑒 (𝑑) = 𝑇 (𝑑 βˆ’ 𝜎) [πœ™ (0) + 𝑔 (𝜎, πœ™)] βˆ’ 𝑔 (𝑑, 𝑒𝑑)

    βˆ’ ∫

    𝑑

    𝜎

    𝐴𝑇 (𝑑 βˆ’ 𝑠) 𝑔 (𝑠, 𝑒𝑠) 𝑑𝑠

    + ∫

    𝑑

    𝜎

    𝑇 (𝑑 βˆ’ 𝑠) 𝑓 (𝑠, 𝑒𝑠) 𝑑𝑠

    + βˆ‘

    𝜎

  • 4 Abstract and Applied Analysis

    In order to obtain our results, we need to introduce someadditional notations. Letβ„Ž : 𝑅 β†’ 𝑅 be a continuous functionsuch that β„Ž(𝑑) β‰₯ 1 for all 𝑑 ∈ 𝑅 and β„Ž(𝑑) β†’ ∞ as |𝑑| β†’ ∞.We consider the space

    (𝑃𝐢)0

    β„Ž(𝑅,𝑋

    𝛼) = {𝑒 ∈ 𝑃𝐢 (𝑅,𝑋

    𝛼) : lim

    |𝑑|β†’βˆž

    ‖𝑒 (𝑑)‖𝛼

    β„Ž (𝑑)= 0} .

    (16)

    Endowed with the norm β€–π‘’β€–β„Ž= sup

    π‘‘βˆˆπ‘…(‖𝑒(𝑑)β€–

    𝛼/β„Ž(𝑑)), it is a

    Banach space.We recall here the following compactness criterion in

    these spaces, which we can refer to [7, 19–23].

    Lemma 10. A set 𝐡 βŠ† (𝑃𝐢)0β„Ž(𝑅,𝑋

    𝛼) is a relatively compact set

    if and only if

    (1) lim|𝑑|β†’βˆž

    (β€–π‘₯(𝑑)‖𝛼/β„Ž(𝑑)) = 0 uniformly for π‘₯ ∈ 𝐡;

    (2) 𝐡(𝑑) = {π‘₯(𝑑) : π‘₯ ∈ 𝐡} is relatively compact in 𝑋𝛼for

    every 𝑑 ∈ 𝑅;(3) the set 𝐡 is equicontinuous on each interval (𝑑

    𝑖, 𝑑𝑖+1

    )

    (𝑖 ∈ 𝑍).

    Theorem 11 (Krasnoselskii’s fixed-point theorem [24]). Let𝑀 be a closed convex nonempty subset of a Banach space 𝑋;suppose that 𝐴 and 𝐡 map 𝑀 into𝑋 such that

    (i) 𝐴π‘₯ + 𝐡𝑦 ∈ 𝑀 (βˆ€π‘₯, 𝑦 ∈ 𝑀),(ii) 𝐴 is completely continuous,(iii) 𝐡 is a contraction with constant 𝐿 < 1.

    Then there is a 𝑦 ∈ 𝑀 with 𝐴𝑦 + 𝐡𝑦 = 𝑦.

    3. Main Results

    In this section, we discuss the existence of piecewise almostperiodic solutions for impulsive neutral functional differen-tial equation (1). To begin, let us list the following hypotheses.

    (A1) The operator 𝐴 is the infinitesimal generator of anexponentially stable strongly continuous semigroupof linear operators {𝑇(𝑑)}

    𝑑β‰₯0; that is, there exist con-

    stants 𝑀1> 0, 𝛿 > 0 such that ‖𝑇(𝑑)β€– ≀ 𝑀

    1π‘’βˆ’π›Ώπ‘‘ for

    𝑑 β‰₯ 0. Moreover, 𝑇(𝑑) is compact for 𝑑 > 0.(A2) 𝑓(𝑑, π‘₯) ∈ 𝐴𝑃

    𝑇(𝑅 Γ—B, 𝑋

    𝛼) is uniformly continuous in

    π‘₯ ∈ B uniformly in 𝑑 ∈ 𝑅; 𝐼𝑖(π‘₯) is almost periodic

    in 𝑖 ∈ 𝑍 uniformly in π‘₯ ∈ B and is a uniformlycontinuous function in π‘₯ for all 𝑖 ∈ 𝑍. For every𝑙 > 0, 𝐢

    1𝑙= sup

    π‘‘βˆˆπ‘…,β€–π‘₯β€–B≀𝑙𝐿‖𝑓(𝑑, π‘₯)β€–

    𝛼< ∞, 𝐢

    2𝑙=

    supπ‘–βˆˆπ‘,β€–π‘₯β€–B≀𝑙𝐿

    ‖𝐼𝑖(π‘₯)β€–

    𝛼< ∞. Moreover, there exist a

    number 𝐿0> 0, such that𝑀

    1(𝐢

    1/𝛿+𝐢

    2/(1βˆ’π‘’

    βˆ’π›Ώπ›Ύ)) ≀

    𝐿0/2, where 𝐢

    1= 𝐢

    1𝐿0, 𝐢

    2= 𝐢

    2𝐿0.

    (A3) 𝑔 ∈ 𝐴𝑃𝑇(𝑅 Γ— B, 𝑋

    𝛽), 𝑔(𝑑, 0) = 0, and there exist a

    number 𝐿1> 0 such that

    𝑔(𝑑, πœ™1) βˆ’ 𝑔(𝑑, πœ™2)𝛽 ≀ 𝐿1

    πœ™1 βˆ’ πœ™2B (17)

    for all 𝑑 ∈ 𝑅, πœ™1, πœ™

    2∈ B.

    (A4) Let {π‘₯𝑛} βŠ† 𝐴𝑃

    𝑇(𝑅,𝑋

    𝛼) be uniformly bounded in 𝑅

    and uniformly convergent in each compact set of 𝑅;then {𝑓(β‹…, π‘₯

    𝑛(β‹…))} is relatively compact in 𝑃𝐢(𝑅,𝑋

    𝛼).

    Theorem 12. Suppose that conditions (A1)–(A4) hold; then (1)has a piecewise almost periodic solution provided that𝐾𝐿𝐿

    1+

    (𝑀2πœ‹/𝛿

    π›½βˆ’π›Ό sin(πœ‹(1 + 𝛼 βˆ’ 𝛽))Ξ“(1 + 𝛼 βˆ’ 𝛽))𝐿1𝐿 ≀ 1/2.

    Proof. Let

    𝐡 = {𝑒 ∈ 𝐴𝑃𝑇(𝑅,𝑋

    𝛼) : ‖𝑒‖

    𝛼≀ 𝐿

    0} . (18)

    Note that 𝐡 is a closed convex set of𝐴𝑃𝑇(𝑅,𝑋

    𝛼). By (A3) and

    Lemma 1, we have

    𝐴𝑇 (𝑑 βˆ’ 𝑠) 𝑔 (𝑠, 𝑒𝑠)𝛼

    ≀𝐴1+π›Όβˆ’π›½

    𝑇 (𝑑 βˆ’ 𝑠)

    𝑔(𝑠, 𝑒𝑠)𝛽

    ≀ 𝑀2π‘’βˆ’π›Ώ(π‘‘βˆ’π‘ )

    (𝑑 βˆ’ 𝑠)βˆ’(1+π›Όβˆ’π›½)𝑔(𝑠, 𝑒𝑠) βˆ’ 𝑔(𝑠, 0)

    𝛽

    ≀ 𝑀2π‘’βˆ’π›Ώ(π‘‘βˆ’π‘ )

    (𝑑 βˆ’ 𝑠)βˆ’(1+π›Όβˆ’π›½)

    𝐿1

    𝑒𝑠B

    ≀ 𝑀2π‘’βˆ’π›Ώ(π‘‘βˆ’π‘ )

    (𝑑 βˆ’ 𝑠)βˆ’(1+π›Όβˆ’π›½)

    𝐿1𝐿 sup

    π‘Ÿβ‰€π‘ 

    ‖𝑒(π‘Ÿ)‖𝛼

    ≀ 𝑀2π‘’βˆ’π›Ώ(π‘‘βˆ’π‘ )

    (𝑑 βˆ’ 𝑠)βˆ’(1+π›Όβˆ’π›½)

    𝐿1𝐿𝐿

    0,

    (19)

    and we infer that 𝑠 β†’ 𝐴𝑇(𝑑 βˆ’ 𝑠)𝑔(𝑠, 𝑒𝑠) is integrable on

    (βˆ’βˆž, 𝑑].Define the operator Ξ₯ on (𝑃𝐢)0

    β„Ž(𝑅,𝑋

    𝛼) by

    Ξ₯𝑒 (𝑑) = βˆ’ 𝑔 (𝑑, 𝑒𝑑) βˆ’ ∫

    𝑑

    βˆ’βˆž

    𝐴𝑇 (𝑑 βˆ’ 𝑠) 𝑔 (𝑠, 𝑒𝑠) 𝑑𝑠

    + ∫

    𝑑

    βˆ’βˆž

    𝑇 (𝑑 βˆ’ 𝑠) 𝑓 (𝑠, 𝑒𝑠) 𝑑𝑠

    + βˆ‘

    𝑑𝑖

  • Abstract and Applied Analysis 5

    For any π‘₯, 𝑦 ∈ 𝐡, by (A3) and Lemma 1, we have

    Ξ₯1π‘₯ (𝑑)𝛼

    =

    βˆ’π‘” (𝑑, π‘₯

    𝑑) βˆ’ ∫

    𝑑

    βˆ’βˆž

    𝐴𝑇 (𝑑 βˆ’ 𝑠) 𝑔 (𝑠, π‘₯𝑠) 𝑑𝑠

    𝛼

    ≀𝑔 (𝑑, π‘₯𝑑)

    𝛼

    + ∫

    𝑑

    βˆ’βˆž

    𝐴𝑇 (𝑑 βˆ’ 𝑠) 𝑔 (𝑠, π‘₯𝑠)𝛼𝑑𝑠

    ≀ 𝐾𝑔 (𝑑, π‘₯𝑑)

    𝛽

    + ∫

    𝑑

    βˆ’βˆž

    𝐴1+π›Όβˆ’π›½

    𝑇 (𝑑 βˆ’ 𝑠)

    𝑔 (𝑠, π‘₯𝑠)𝛽𝑑𝑠

    = 𝐾𝑔(𝑑, π‘₯𝑑) βˆ’ 𝑔(𝑑, 0)

    𝛽

    + ∫

    𝑑

    βˆ’βˆž

    𝐴1+π›Όβˆ’π›½

    𝑇 (𝑑 βˆ’ 𝑠)

    ×𝑔 (𝑠, π‘₯𝑠) βˆ’ 𝑔 (𝑠, 0)

    𝛽𝑑𝑠

    ≀ 𝐾𝐿1

    π‘₯𝑑B

    + ∫

    𝑑

    βˆ’βˆž

    𝐴1+π›Όβˆ’π›½

    𝑇 (𝑑 βˆ’ 𝑠)𝐿1

    π‘₯𝑠B𝑑𝑠

    ≀ 𝐾𝐿1𝐿 sup

    π‘Ÿβ‰€π‘‘

    β€–π‘₯(π‘Ÿ)‖𝛼

    + ∫

    𝑑

    βˆ’βˆž

    𝑀2π‘’βˆ’π›Ώ(π‘‘βˆ’π‘ )

    (𝑑 βˆ’ 𝑠)βˆ’(1+π›Όβˆ’π›½)

    Γ— 𝐿1𝐿 sup

    π‘Ÿβ‰€π‘ 

    β€–π‘₯ (π‘Ÿ)‖𝛼𝑑𝑠

    ≀ 𝐾𝐿1𝐿‖π‘₯β€–

    𝛼

    + ∫

    𝑑

    βˆ’βˆž

    𝑀2π‘’βˆ’π›Ώ(π‘‘βˆ’π‘ )

    (𝑑 βˆ’ 𝑠)βˆ’(1+π›Όβˆ’π›½)

    Γ— 𝐿1𝐿‖π‘₯β€–

    𝛼𝑑𝑠

    ≀ 𝐾𝐿1𝐿‖π‘₯β€–

    𝛼

    +𝑀

    2πœ‹

    π›Ώπ›½βˆ’π›Ό sin (πœ‹ (1 + 𝛼 βˆ’ 𝛽)) Ξ“ (1 + 𝛼 βˆ’ 𝛽)

    Γ— 𝐿1𝐿‖π‘₯β€–

    𝛼,

    Ξ₯2𝑦 (𝑑)𝛼 =

    ∫

    𝑑

    βˆ’βˆž

    𝑇 (𝑑 βˆ’ 𝑠) 𝑓 (𝑠, 𝑦𝑠) 𝑑𝑠

    +βˆ‘

    𝑑𝑖

  • 6 Abstract and Applied Analysis

    where 𝑑 ∈ 𝑅, |𝑑 βˆ’ 𝑑𝑖| > πœ–, 𝑖 ∈ 𝑍. So for 𝜏 ∈ Ξ©

    πœ–,𝑓,𝑔,𝐼𝑖, we know

    that

    Ξ₯1π‘₯ (𝑑 + 𝜏) βˆ’ Ξ₯

    1π‘₯ (𝑑)

    = βˆ’π‘” (𝑑 + 𝜏, π‘₯𝑑+𝜏

    ) βˆ’ ∫

    𝑑+𝜏

    βˆ’βˆž

    𝐴𝑇 (𝑑 + 𝜏 βˆ’ 𝑠) 𝑔 (𝑠, π‘₯𝑠) 𝑑𝑠

    + 𝑔 (𝑑, π‘₯𝑑) + ∫

    𝑑

    βˆ’βˆž

    𝐴𝑇 (𝑑 βˆ’ 𝑠) 𝑔 (𝑠, π‘₯𝑠) 𝑑𝑠

    = βˆ’π‘” (𝑑 + 𝜏, π‘₯𝑑+𝜏

    ) + 𝑔 (𝑑, π‘₯𝑑)

    βˆ’ ∫

    𝑑

    βˆ’βˆž

    𝐴𝑇 (𝑑 βˆ’ 𝑠) [𝑔 (𝑠 + 𝜏, π‘₯𝑠+𝜏

    ) βˆ’ 𝑔 (𝑠, π‘₯𝑠)] 𝑑𝑠,

    (28)

    soΞ₯1π‘₯(𝑑 + 𝜏) βˆ’ Ξ₯1π‘₯(𝑑)

    𝛼

    ≀𝑔(𝑑 + 𝜏, π‘₯𝑑+𝜏) βˆ’ 𝑔(𝑑, π‘₯𝑑)

    𝛼

    + ∫

    𝑑

    βˆ’βˆž

    𝐴𝑇 (𝑑 βˆ’ 𝑠) [𝑔 (𝑠 + 𝜏, π‘₯𝑠+𝜏) βˆ’ 𝑔 (𝑠, π‘₯𝑠)]𝛼𝑑𝑠

    ≀ 𝐾𝑔(𝑑 + 𝜏, π‘₯𝑑+𝜏) βˆ’ 𝑔(𝑑, π‘₯𝑑)

    𝛽

    + ∫

    𝑑

    βˆ’βˆž

    𝐴1+π›Όβˆ’π›½

    𝑇 (𝑑 βˆ’ 𝑠)

    ×𝑔 (𝑠 + 𝜏, π‘₯𝑠+𝜏) βˆ’ 𝑔 (𝑠, π‘₯𝑠)

    𝛽𝑑𝑠

    ≀ πΎπœ– + ∫

    𝑑

    βˆ’βˆž

    𝑀2π‘’βˆ’π›Ώ(π‘‘βˆ’π‘ )

    (𝑑 βˆ’ 𝑠)βˆ’(1+π›Όβˆ’π›½)

    πœ–π‘‘π‘ 

    ≀ πœ–(𝐾 +𝑀

    2πœ‹

    π›Ώπ›½βˆ’π›Ό sin (πœ‹ (1 + 𝛼 βˆ’ 𝛽)) Ξ“ (1 + 𝛼 βˆ’ 𝛽)) .

    (29)

    That is,Ξ₯1π‘₯(𝑑 + 𝜏) βˆ’ Ξ₯1π‘₯(𝑑)

    𝛼

    ≀ πœ– (𝐾 + (𝑀2πœ‹)

    Γ— (π›Ώπ›½βˆ’π›Ό sin (πœ‹ (1 + 𝛼 βˆ’ 𝛽))

    Γ— Ξ“ (1 + 𝛼 βˆ’ 𝛽))βˆ’1

    ) ,

    (30)

    Ξ₯2𝑦 (𝑑 + 𝜏) βˆ’ Ξ₯

    2𝑦 (𝑑)

    = ∫

    𝑑+𝜏

    βˆ’βˆž

    𝑇 (𝑑 + 𝜏 βˆ’ 𝑠) 𝑓 (𝑠, 𝑦𝑠) 𝑑𝑠

    + βˆ‘

    𝑑𝑖

  • Abstract and Applied Analysis 7

    + ∫

    𝑑

    βˆ’βˆž

    𝐴𝑇 (𝑑 βˆ’ 𝑠) [𝑔 (𝑠, π‘₯𝑠) βˆ’ 𝑔 (𝑠, 𝑦𝑠)]𝛼𝑑𝑠

    ≀ 𝐾𝑔(𝑑, π‘₯𝑑) βˆ’ 𝑔(𝑑, 𝑦𝑑)

    𝛽

    + ∫

    𝑑

    βˆ’βˆž

    𝐴1+π›Όβˆ’π›½

    𝑇 (𝑑 βˆ’ 𝑠)

    𝑔(𝑠, π‘₯𝑠) βˆ’ 𝑔(𝑠, 𝑦𝑠)𝛽𝑑𝑠

    ≀ 𝐾𝐿1

    π‘₯𝑑 βˆ’ 𝑦𝑑B

    + ∫

    𝑑

    βˆ’βˆž

    𝐴1+π›Όβˆ’π›½

    𝑇 (𝑑 βˆ’ 𝑠)𝐿1

    π‘₯𝑠 βˆ’ 𝑦𝑠B𝑑𝑠

    ≀ 𝐾𝐿1𝐿 sup

    π‘Ÿβ‰€π‘‘

    π‘₯ (π‘Ÿ) βˆ’ 𝑦 (π‘Ÿ)𝛼

    + ∫

    𝑑

    βˆ’βˆž

    𝐴1+π›Όβˆ’π›½

    𝑇 (𝑑 βˆ’ 𝑠)𝐿1𝐿 sup

    π‘Ÿβ‰€π‘ 

    π‘₯(π‘Ÿ) βˆ’ 𝑦(π‘Ÿ)𝛼𝑑𝑠

    ≀ 𝐾𝐿1𝐿π‘₯ βˆ’ 𝑦

    𝛼

    + ∫

    𝑑

    βˆ’βˆž

    𝑀2π‘’βˆ’π›Ώ(π‘‘βˆ’π‘ )

    (𝑑 βˆ’ 𝑠)βˆ’(1+π›Όβˆ’π›½)

    𝐿1𝐿π‘₯ βˆ’ 𝑦

    𝛼𝑑𝑠

    ≀ 𝐾𝐿1𝐿π‘₯ βˆ’ 𝑦

    𝛼

    +𝑀

    2πœ‹

    π›Ώπ›½βˆ’π›Ό sin (πœ‹ (1 + 𝛼 βˆ’ 𝛽)) Ξ“ (1 + 𝛼 βˆ’ 𝛽)

    Γ— 𝐿1𝐿π‘₯ βˆ’ 𝑦

    𝛼.

    (34)

    Therefore,Ξ₯1π‘₯ βˆ’ Ξ₯1𝑦

    𝛼

    ≀ [𝐾𝐿1𝐿 +

    𝑀2πœ‹

    π›Ώπ›½βˆ’π›Ό sin (πœ‹ (1 + 𝛼 βˆ’ 𝛽)) Ξ“ (1 + 𝛼 βˆ’ 𝛽)𝐿1𝐿]

    Γ—π‘₯ βˆ’ 𝑦

    𝛼.

    (35)

    Since𝐾𝐿1𝐿+ (𝑀

    2πœ‹/𝛿

    π›½βˆ’π›Ό sin(πœ‹(1+π›Όβˆ’π›½))Ξ“(1+π›Όβˆ’π›½))𝐿1𝐿 ≀

    1/2 < 1, it follows that Ξ₯1is a contraction.

    Step 3. Ξ₯2is completely continuous.

    Claim 1. Ξ₯2is continuous.

    Let {π‘₯𝑛} βŠ† 𝐴𝑃

    𝑇(𝑅,𝑋

    𝛼), π‘₯

    𝑛→ π‘₯ in 𝐴𝑃

    𝑇(𝑅,𝑋

    𝛼) as 𝑛 β†’

    ∞; by Lemma 5, we may find a compact subset 𝐡0βŠ† 𝑋

    𝛼such

    that π‘₯𝑛(𝑑), π‘₯(𝑑) ∈ 𝐡

    0for all 𝑑 ∈ 𝑅, 𝑛 ∈ 𝑁; here we assume

    𝐡 βŠ† 𝐡0. By (A2), for the given πœ–, there exist 𝛿 > 0 such that

    π‘₯, 𝑦 ∈ B, β€–π‘₯ βˆ’ 𝑦‖B ≀ 𝛿, implies that

    𝑓 (𝑑, π‘₯𝑑) βˆ’ 𝑓 (𝑑, 𝑦𝑑)𝛼 ≀ πœ–,

    𝐼𝑖(π‘₯

    𝑑𝑖) βˆ’ 𝐼

    𝑖(𝑦

    𝑑𝑖)𝛼

    ≀ πœ–.

    (36)

    For the above 𝛿, there exists 𝑛0∈ 𝑁 such that

    π‘₯𝑛(𝑑) βˆ’ π‘₯(𝑑)𝛼 ≀

    𝛿

    𝐿(37)

    for 𝑛 > 𝑛0and 𝑑 ∈ 𝑅; then

    (π‘₯𝑛)𝑑 βˆ’ π‘₯𝑑B ≀ 𝛿,

    𝑓(𝑑, (π‘₯𝑛)𝑑) βˆ’ 𝑓 (𝑑, π‘₯𝑑)𝛼 ≀ πœ–,

    𝐼𝑖((π‘₯

    𝑛)𝑑𝑖) βˆ’ 𝐼

    𝑖(π‘₯

    𝑑𝑖)𝛼

    ≀ πœ–,

    (38)

    for 𝑛 > 𝑛0and 𝑑 ∈ 𝑅. Hence,

    Ξ₯2(π‘₯𝑛)(𝑑) βˆ’ Ξ₯2π‘₯(𝑑)𝛼

    =

    ∫

    𝑑

    βˆ’βˆž

    𝑇 (𝑑 βˆ’ 𝑠) 𝑓 (𝑠, (π‘₯𝑛)𝑠) 𝑑𝑠

    + βˆ‘

    𝑑𝑖

  • 8 Abstract and Applied Analysis

    where {Ξ₯2𝑒(𝑑 βˆ’ πœ–) : 𝑒 ∈ 𝐡} is uniformly bounded in 𝑋

    𝛼and

    𝑇(πœ–) is compact, so {Ξ₯πœ–2𝑒(𝑑) : 𝑒 ∈ 𝐡} is relatively compact in

    𝑋𝛼. Moreover,

    Ξ₯2𝑒 (𝑑) βˆ’ Ξ₯πœ–

    2𝑒 (𝑑)

    𝛼

    =

    ∫

    𝑑

    π‘‘βˆ’πœ–

    𝑇 (𝑑 βˆ’ 𝑠) 𝑓 (𝑠, π‘₯𝑠) 𝑑𝑠

    + βˆ‘

    π‘‘βˆ’πœ–

  • Abstract and Applied Analysis 9

    β‰€πœ–

    4,

    βˆ‘

    𝑑

  • 10 Abstract and Applied Analysis

    Let 𝑋 = 𝐿2([0, πœ‹]) and 𝐴 be the infinitesimal generatorof an analytic semigroup {𝑇(𝑑)}

    𝑑β‰₯0which is compact for 𝑑 > 0

    and given by 𝐴𝑒 = 𝑒 with domain 𝐷(𝐴) = {𝑒 ∈ 𝐿2([0, πœ‹]) :𝑒

    ∈ 𝐿2([0, πœ‹]), 𝑒(0) = 𝑒(πœ‹) = 0}. The semigroup {𝑇(𝑑)}

    𝑑β‰₯0is

    defined for 𝑒 ∈ 𝐿2([0, πœ‹]) by

    𝑇 (𝑑) 𝑒 =

    ∞

    βˆ‘

    𝑛=1

    π‘’βˆ’π‘›2π‘‘βŸ¨π‘’, πœ™

    π‘›βŸ© πœ™

    𝑛, (52)

    where {πœ™π‘›, 𝑛 ∈ 𝑍} is an orthonormal basis of 𝑋; then

    |𝑇(𝑑)𝑒| ≀ π‘’βˆ’π‘‘|𝑒|, 0 ΜΈ= 𝑒 ∈ 𝐿2([0, πœ‹]). For 𝑒 ∈ 𝐿2([0, πœ‹]),

    𝛼 ∈ (0, 1), (βˆ’π΄)βˆ’π›Όπ‘’ = βˆ‘βˆžπ‘›=1

    π‘›βˆ’2𝛼

    βŸ¨π‘’, πœ™π‘›βŸ©πœ™

    𝑛, 𝑋

    𝛼is the Banach

    space endowed with the norm β€– β‹… ‖𝛼between𝑋 and𝐷(𝐴).

    In this paper, we assume 𝛼 = 1/4, 𝛽 = 3/4.To study the system (51), we make the following assump-

    tions.(i) The functions (πœ•π‘–/πœ•πœ‰π‘–)𝑏

    1(𝜏, πœ‚, πœ‰), 𝑖 = 0, 1 are Lebesgue

    measurable, 𝑏1(𝜏, πœ‚, 0) = 𝑏

    1(𝜏, πœ‚, πœ‹) = 0 and

    𝐿1

    := max{βˆ«πœ‹

    0

    ∫

    0

    βˆ’βˆž

    ∫

    πœ‹

    0

    (πœ•π‘–

    πœ•πœ‰π‘–π‘1(𝜏, πœ‚, πœ‰))

    2

    π‘‘πœ‚ π‘‘πœ π‘‘πœ‰ : 𝑖 = 0, 1}

    < ∞.

    (53)

    (ii) The functions 𝑏𝑖(𝑖 = 2, 3, 4), π‘Ž

    𝑖(𝑖 ∈ 𝑍) are

    continuous, and the sequence of functions {π‘Žπ‘–, 𝑖 ∈ 𝑍} is

    almost periodic.

    Under these conditions, we define 𝑓, 𝑔 : 𝑅 Γ—B β†’ 𝑋, 𝐼𝑖:

    B β†’ 𝑋 (𝑖 ∈ 𝑍) by

    𝑔 (𝑑, πœ™) = ∫

    0

    βˆ’βˆž

    ∫

    πœ‹

    0

    𝑏1(𝑠, πœ‚, πœ‰) πœ™ (𝑑 + 𝑠, πœ‚) π‘‘πœ‚ 𝑑𝑠,

    𝑑 ∈ 𝑅, πœ‰ ∈ [0, πœ‹] ,

    𝑓 (𝑑, πœ™) = 𝑏2(πœ‰) πœ™ (𝑑, πœ‰) + ∫

    0

    βˆ’βˆž

    𝑏3(𝑠) πœ™ (𝑑 + 𝑠, πœ‰) 𝑑𝑠 + 𝑏

    4(𝑑, πœ‰) ,

    𝑑 ∈ 𝑅, πœ‰ ∈ [0, πœ‹] ,

    𝐼𝑖(πœ™) = ∫

    πœ‹

    0

    π‘Žπ‘–(π‘‘π‘–βˆ’ 𝑠) πœ™ (𝑠, πœ‰) 𝑑𝑠, 𝑖 ∈ 𝑍, πœ‰ ∈ [0, πœ‹] .

    (54)

    We assume further that 𝑓, 𝑔 satisfy the following condi-tion.

    (iii) 𝑔 ∈ 𝐴𝑃𝑇(𝑅 Γ— B, 𝑋

    𝛽) and 𝑓 ∈ 𝐴𝑃

    𝑇(𝑅 Γ— B, 𝑋

    𝛼) are

    uniformly continuous in π‘₯ ∈ B uniformly in 𝑑 ∈ 𝑅.Under the above assumptions, we can rewrite (51) as

    the abstract form (1) and verify that the assumptions ofTheorem 12 hold; then we can get the next result, which is aconsequence of Theorem 12.

    Proposition 14. Assume that the previous conditions areverified, if

    𝐿1𝐿 (𝐾 + βˆšπœ‹) < 1. (55)

    The system (51) has a piecewise almost periodic solution.

    Conflict of Interests

    The authors declare that they have no conflict of interests.

    References

    [1] A. M. Samoilenko and N. A. Perestyuk, Impulsive DifferentialEquations, World Scientific, Singapore, 1995.

    [2] G. T. Stamov, J. O. Alzabut, P. Atanasov, and A. G. Stamov,β€œAlmost periodic solutions for an impulsive delaymodel of pricefluctuations in commodity markets,” Nonlinear Analysis: RealWorld Applications, vol. 12, no. 6, pp. 3170–3176, 2011.

    [3] G. T. Stamov and I. M. Stamova, β€œAlmost periodic solutions forimpulsive neural networks with delay,” Applied MathematicalModelling, vol. 31, no. 7, pp. 1263–1270, 2007.

    [4] J. O. Alzabut, G. T. Stamov, and E. Sermutlu, β€œOn almost peri-odic solutions for an impulsive delay logarithmic populationmodel,” Mathematical and Computer Modelling, vol. 51, no. 5-6, pp. 625–631, 2010.

    [5] Q.Wang, H. Zhang, M. Ding, and Z.Wang, β€œGlobal attractivityof the almost periodic solution of a delay logistic populationmodel with impulses,” Nonlinear Analysis: Theory, Methods &Applications, vol. 73, no. 12, pp. 3688–3697, 2010.

    [6] L. Pan and J. Cao, β€œAnti-periodic solution for delayed cellularneural networks with impulsive effects,” Nonlinear Analysis:Real World Applications, vol. 12, no. 6, pp. 3014–3027, 2011.

    [7] C. Cuevas, E.Hernandez, andM.Rabelo, β€œThe existence of solu-tions for impulsive neutral functional differential equations,”Computers & Mathematics with Applications. An InternationalJournal, vol. 58, no. 4, pp. 744–757, 2009.

    [8] A. Anguraj and K. Karthikeyan, β€œExistence of solutions forimpulsive neutral functional differential equations with nonlo-cal conditions,”Nonlinear Analysis: Theory, Methods & Applica-tions, vol. 70, no. 7, pp. 2717–2721, 2009.

    [9] E. Hernández, β€œGlobal solutions for abstract impulsive neutraldifferential equations,” Mathematical and Computer Modelling,vol. 53, no. 1-2, pp. 196–204, 2011.

    [10] O. Abdelghani, β€œLocal and global existence and uniquenessresults for impulsive functional differential equations withmul-tiple delay,” Journal of Mathematical Analysis and Applications,vol. 323, no. 1, pp. 456–472, 2006.

    [11] M. E. Hernandez, M. Rabello, and H. R. Henriquez, β€œExistenceof solutions for impulsive partial neutral functional differentialequations,” Journal of Mathematical Analysis and Applications,vol. 331, no. 2, pp. 1135–1158, 2007.

    [12] Y. Chang, A. Anguraj, andM.M.Arjunan, β€œExistence results forimpulsive neutral functional differential equations with infinitedelay,”Nonlinear Analysis: Hybrid Systems, vol. 2, no. 1, pp. 209–218, 2008.

    [13] R. Ye, β€œExistence of solutions for impulsive partial neutralfunctional differential equation with infinite delay,” NonlinearAnalysis: Theory, Methods & Applications A, vol. 73, no. 1, pp.155–162, 2010.

    [14] M. E. Hernández, H. R. Henŕıquez, and M. A. McKibben,β€œExistence results for abstract impulsive second-order neutralfunctional differential equations,” Nonlinear Analysis, vol. 70,no. 7, pp. 2736–2751, 2009.

    [15] H. R. Henŕıquez, B. de Andrade, and M. Rabelo, β€œExistenceof almost periodic solutions for a class of abstract impulsivedifferential equations,” ISRN Mathematical Analysis, vol. 2011,Article ID 632687, 21 pages, 2011.

  • Abstract and Applied Analysis 11

    [16] J.W. Liu andC.Y. Zhang, β€œExistence and stability of almost peri-odic solutions for impulsive differential equations,” Advances inDifference Equations, vol. 34, p. 14, 2012.

    [17] A. Pazy, Semigroups of Linear Operators and Applications toPartial Differential Equations, vol. 44 of Applied MathematicalSciences, Springer, New York, NY. USA, 1983.

    [18] H. R. Henŕıquez and C. Lizama, β€œCompact almost automorphicsolutions to integral equations with infinite delay,” NonlinearAnalysis: Theory, Methods & Applications A, vol. 71, no. 12, pp.6029–6037, 2009.

    [19] R. P. Agarwal, C. Cuevas, and J. P. dos Santos, β€œAnalyticresolvent operator and existence results for fractional integro-differential equations,” Journal of Abstract Differential Equationsand Applications, vol. 2, no. 2, pp. 26–47, 2012.

    [20] S. Sivasankaran,M.M.Arjunan, andV.Vijayakumar, β€œExistenceof global solutions for second order impulsive abstract partialdifferential equations,” Nonlinear Analysis. Theory, Methods &Applications. An International Multidisciplinary Journal. SeriesA: Theory and Methods, vol. 74, no. 17, pp. 6747–6757, 2011.

    [21] E. M. Hernandez, S. M. T. Aki, and H. Henŕıquez, β€œGlobalsolutions for impulsive abstract partial differential equations,”Computers & Mathematics with Applications, vol. 56, no. 5, pp.1206–1215, 2008.

    [22] R. P. Agarwal, B. de Andrade, and C. Cuevas, β€œWeightedpseudo-almost periodic solutions of a class of semilinear frac-tional differential equations,” Nonlinear Analysis. Real WorldApplications. An International Multidisciplinary Journal, vol. 11,no. 5, pp. 3532–3554, 2010.

    [23] Y. Chang, R. Zhang, and G.M. N’Guérékata, β€œWeighted pseudoalmost automorphic mild solutions to semilinear fractionaldifferential equations,” Computers and Mathematics with Appli-cations, vol. 64, no. 10, pp. 3160–3170, 2012.

    [24] T. A. Burton, β€œA fixed-point theorem of Krasnoselskii,” AppliedMathematics Letters, vol. 11, no. 1, pp. 85–88, 1998.

    [25] E. Hernández and H. R. HenrΔ±quez, β€œExistence of periodicsolutions of partial neutral functional-differential equationswith unbounded delay,” Journal of Mathematical Analysis andApplications, vol. 221, no. 2, pp. 499–522, 1998.

    [26] T. Diagana, E. Hernandez, and M. Rabello, β€œPseudo almostperiodic solutions to some non-autonomous neutral functionaldifferential equations with unbounded delay,” Mathematicaland Computer Modelling, vol. 45, no. 9-10, pp. 1241–1252, 2007.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of